1
|
Zhang S, Du Z, Wang M, Yu D, Yang Y, Li M, Fang W, Chen J. Synthesized CuO-PEI-JE with 3D open-cell structure as an efficient heterogeneous activator of peroxodisulfate for phenol degradation. ENVIRONMENTAL RESEARCH 2025; 264:120308. [PMID: 39515551 DOI: 10.1016/j.envres.2024.120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The core of heterogeneous catalytic systems is to design high-performance heterogeneous catalysts. In the present study, CuO-PEI-JE was synthesized via in situ precipitation of CuO on the 3D structure of PEI-JE prepared by a cross-linking method. It possessed a macro-size and 3D open-cell structure, being easily separated and having super-performance for PDS activation. Compared to PDS alone (0.0017 min-1), the CuO-PEI-JE + PDS + NaHCO3 system increased the kobs (0.3526 min-1) by a factor of 207 with 100% phenol degradation within 20 min and 87% TOC removal at 30 min. It outperformed many other published heterogeneous persulfate systems in phenol degradation. Meanwhile, the developed system displayed a good anti-interference ability in the coexistence of anions or different water matrixes. After five successive cycles, the degradation rate still kept 100%, exhibiting the excellent reusability of CuO-PEI-JE. Furthermore, the preparation of CuO-PEI-JE had the advantages with moderate preparation conditions (60 °C) and readily available raw materials. The activation mechanism was mainly involved in the formation of active PDS and its further decomposition into ·OHads, SO4·-ads, O2·- and 1O2. Surface functional groups and phenol acted as electron donors for active PDS. Phenol was first degraded into hexadienedioic acid, then oxidized to propane diacid and oxalic acid, and finally mineralized into CO2 and H2O. This work provides a new strategy for preparing effective heterogeneous persulfate activators and has high potential for the treatment of phenol-containing wastewater.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, 611756, Chengdu, Sichuan, China.
| | - Zhili Du
- School of Environmental Science and Engineering, Southwest Jiaotong University, 611756, Chengdu, Sichuan, China
| | - Mingxi Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, 611756, Chengdu, Sichuan, China
| | - Diyang Yu
- School of Environmental Science and Engineering, Southwest Jiaotong University, 611756, Chengdu, Sichuan, China
| | - Yiyue Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, 611756, Chengdu, Sichuan, China
| | - Maohong Li
- Civil Engineering Materials Research Institute, School of Civil Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Weizhen Fang
- Analysis and Testing Center of Southwest Jiaotong University, Chengdu, 610031, China
| | - Junmin Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, 611756, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li Y, Zhang L, Wang J, Xu S, Zhang Z, Guan Y. Activation of persulfate by a layered double oxide supported sulfidated nano zero-valent iron for efficient degradation of 2,2',4,4'-tetrabromodiphenyl ether in soil. ENVIRONMENT INTERNATIONAL 2024; 194:109098. [PMID: 39579442 DOI: 10.1016/j.envint.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024]
Abstract
The nano zero-valent iron (nZVI) activated persulfate (PS) is recognized as a promising approach to degrade 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), which is ubiquitous in the soil at electronic waste sites. However, all the reported studies were performed in liquids, gaps in the real behaviour and microbial contribution to the degradation of BDE-47 in soil media need to be urgently filled. The removal efficiency of BDE-47 is low using traditional nZVI as activator because of its aggregation and corrosion. Herein, we designed a novel layered double oxide supported sulfidated nano zero-valent iron (S-nZVI@LDO) composite and explored the performance of S-nZVI@LDO/PS to remediate BDE-47 contaminated soil. The results showed that S-nZVI@LDO has excellent stability and superior reduction capability. It could couple PS to achieve a rapid and efficient degradation of BDE-47, and the removal efficiency reached 92.31 % (5 mg/kg) within 6 h, which was much higher than that of n-ZVI/PS (53.38 %) or S-nZVI/PS (75.69 %). The kinetic constant of BDE-47 degradation by S-nZVI@LDO/PS was 23.6 and 3.7 times higher than that by single S-nZVI@LDO and nZVI/PS, respectively. It is attributable to the efficient production of SO4•-, •OH, O2•-, and 1O2 in the system, in which SO4•- and •OH dominated. The bioinformatic analysis demonstrate that soil remediation by S-nZVI@LDO/PS significantly enriched aromatic compounds-degrading bacteria and increased the abundance of hydrocarbon degradation functions. Microbial degradation may play important roles in the BDE-47 degradation and soil quality recovery. The identification of degradation pathways suggests that BDE-47 was degraded to very low-toxic products based on GHS toxicity prediction through a series process of debromination, hydroxylation, cleavage central oxygen, and ring opening, or even completely mineralized. The findings may provide significant implications for the in-situ clean-up of brominated flame retardants in contaminated soil using S-nZVI@LDO/PS Fenton-like system.
Collapse
Affiliation(s)
- Yibing Li
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Lixun Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Jing Wang
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Shan Xu
- JiangSu Longhuan Environmental Technology Co., LTD, Changzhou 213000, PR China
| | - Zhengfang Zhang
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuntao Guan
- Shenzhen Key Laboratory of Ecological Remediation and Carbon Sequestration, Guangdong Provincial Engineering Technology Research Center for Urban Water Cycle and Water Environment Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Song S, Liu W, Wang M, Xue J, Yao M. Beneficial utilization of ball-milled carbon sand to activate peroxymonosulfate oxidation: Quantitation of ROS using probe-based kinetic models and mechanism insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122568. [PMID: 39305887 DOI: 10.1016/j.jenvman.2024.122568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
In this study, the oil sand was treated with an integrated process of pyrolysis and ball milling, and the obtained ball-milled carbon sand (BMCS) was utilized as peroxymonosulfate (PMS) activator to treat wastewater containing aniline (AN). Quenching experiments and electron paramagnetic resonance (EPR) confirmed the existence of sulfate radical (SO4∙-), hydroxyl radical (·OH) and singlet oxygen (O12) in the BMCS/PMS system. A probe-based kinetic model was constructed to describe the degradation process of pollutants in the BMCS/PMS system, quantified the exposure of each reactive oxygen species and their contributions to AN degradation. BMCS activated PMS to quickly produce SO4∙- and gradually generate ·OH. The O12 exposure showed a rapid increasing trend and the largest total exposure, while its contribution to AN degradation was small. Ball milling time and BMCS dosage demonstrated significant effect on the exposure of ·OH and O12. The main active sites for BMCS to activate PMS were iron oxides, defective carbon and oxygen-containing functional groups. This study provides a green and low-cost process for value-added transformation of pyrolytic residue of oil sand (PROS), so as to promote PROS treatment mode from harmless disposal to resource utilization.
Collapse
Affiliation(s)
- Simin Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Wei Liu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Mingxin Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou, 213164, PR China.
| | - Jinjuan Xue
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Meng Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China
| |
Collapse
|
4
|
Liu Y, Wang T, Hong Q, Li C, Wang Z, Li F, Li M, He M, Qi F, Siedlecka EM, Kumirska J. Synergistic degradation of 2,4-dichlorophenoxyacetic acid in water by interfacial pre-reduction enhanced peroxymonosulfate activation derived from novel zero-valent iron/biochar. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135343. [PMID: 39068888 DOI: 10.1016/j.jhazmat.2024.135343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/30/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Iron-based biochar exhibits great potential in degrading emerging pollutants and remediation of water environments. In this study, a highly efficient catalytic Fe0/biochar (MZB-800) was synthesized by the co-pyrolysis of poplar sawdust and K2FeO4 at 800 °C. A novel water purification technology of pre-reduction followed by PMS activation for MZB-800 was proposed to degrade the refractory 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide. The corrosive effect of the strong oxidizing potassium salt endowed the MZB-800 surface with more Fe0 and porous structure, achieving greater 2,4-D adsorption binding energy. The removal efficiency of MZB-800 on 2,4-D was greater than that of biochar (BC) and conventional Fe0/biochar (Fe-BC) prepared by FeCl3·6 H2O as the precursor. The proposed novel water purification technology showed the synergistic effect between the interfacial pre-reduction and the PMS activation derived by MZB-800. Regarding 2,4-D degradation and dechlorination performance, the synergistic coefficient between pre-reduction and subsequent PMS activation for MZB-800 were 2 and 1.4 respectively. Based on the normalized kinetic analysis and the Langmuir-Hinshelwood model, we proposed the underlying mechanism of MZB-800 interfacial pre-reduction and subsequent PMS activation for synergistic removal of 2,4-D. The large amount of Fe2+ and hydroxyl density accumulated by the Fe0 and hydroquinone structures on the MZB-800 surface during the pre-reduction stage provided abundant active sites for the subsequent activation of PMS. The improved activation reaction rate generated more reactive oxygen species, further strengthening the removal efficiency of 2,4-D. This work manifested that the novel water purification technology of pre-reduction/PMS activation of iron-based biochar is feasible for removing emerging pollutants in the water environment. ENVIRONMENTAL IMPLICATION: Extensive abuse of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide with high solubility and refractory degradation has caused environmental pollution and ecological deterioration. This manuscript described a novel water purification technology, centered on high-efficiency Fe0/biochar and utilizing pre-reduction and PMS reactivation strategies to synergistically degrade 2,4-D, which had strong environmental relevance. By elucidating the synergistic removal mechanism, the research provided valuable insights into removing emerging pollutants, thus promoting environmental sustainability and safeguarding ecosystem health. Overall, it is of high importance to provide a feasible and efficient method for removing hazardous 2,4-D from water environments, which contributes to addressing pressing environmental problems.
Collapse
Affiliation(s)
- Yatao Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Tianyi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qiaofeng Hong
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Chen Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhenbei Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Fan Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Mingyuan Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Mengfei He
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Fei Qi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Ewa Maria Siedlecka
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Poland
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Poland
| |
Collapse
|
5
|
Esmaeili S, Dehvari M, Neisi A, Takdastan A, Tahmasebi Birgani Y, Babaei AA. Ultrasound‒induced facile synthesis of spinel CoFe 2O 4‒PAC magnetic nanocatalyst for remediation of hypersaline petrochemical wastewater: Degradation mechanism, biodegradability enhancement and phytotoxicity mitigation. ENVIRONMENTAL RESEARCH 2024; 254:118676. [PMID: 38763285 DOI: 10.1016/j.envres.2024.118676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 05/21/2024]
Abstract
In this study, magnetic CoFe2O4-PAC nanocatalysts were synthesized through facile hydrothermal and co‒precipitation approaches with ultrasonic irradiation, which were used for the treatment of hypersaline petrochemical wastewater (HPCW). When an ultrasound‒induced synthesis process (US@CoFe2O4‒PAC) was used, a more efficient and stable magnetic spinel CoFe2O4‒PAC nanocatalyst was developed. The application of this nanocatalyst as a PMS activator, not only caused eradication of 90.4% of chemical oxygen demand (COD) of a HPCW after 90 min reaction time under the optimum conditions (pH 5-6, catalyst dose 1.0 g/L and 1.0 mM PMS), but also led to marginal leaching of iron (314 μg/L) and cobalt (95 μg/L) from the nanocatalyst. Recycling experiments over five consecutive runs showed a negligible decrease (7.2%) in COD removal efficiency which proved the stability and reusability of magnetic US@CoFe2O4-PAC. Two main mechanisms of adsorption and catalytic oxidation processes (homogeneous and heterogeneous PMS) are involved simultaneously in the PMS/US@CoFe2O4-PAC system, which are responsible for the destruction of refractory contaminants of HPCW through the generation of SO4•‒ and OH• radicals. COD of HPCW was mainly removed through SO4•- radical attack (73.6%) and the biodegradability of HPCW was enhanced dramatically after 90 min reaction time. The germination index (GI) of raw HPCW was increased 17.1 ± 4.2% and 24.3 ± 8.8% after 15 and 90 min reaction time, respectively, even PMS/US@CoFe2O4-PAC system showed less impact on phytotoxicity mitigation. Hence, it can be recommended to dilute the effluent before using for irrigational purpose. The findings of this study present practical significance of spinel US@CoFe2O4-PAC, which is an environment‒friendly catalyst, easy to handle and can sustain long‒term operation for the treatment of recalcitrant hypersaline wastewater and the other potential practical applications.
Collapse
Affiliation(s)
- Shirin Esmaeili
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboobeh Dehvari
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolkazem Neisi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaser Tahmasebi Birgani
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Liu X, Li Z, Jin L, Wang H, Huang Y, Huang D, Liu X. Peracetic Acid Activation by Modified Hematite for Water Purification: Performance, Degradation Pathways, and Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15301-15309. [PMID: 38982808 DOI: 10.1021/acs.langmuir.4c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Natural mineral-based advanced oxidation processes (AOPs) are now receiving increasing attention for the efficient degradation of pollutants. In this work, we used a common reducing agent (NaBH4) to treat natural Hematite to obtain modified Hematite (Hematite-(R)) and applied it to activate peracetic acid (PAA) for efficient degradation of cefazolin (CFZ). Compared with Hematite, the Hematite-(R)/PAA system increased the degradation rate of CFZ by 21.7% within 80 min under neutral conditions. Scavenging experiments and electron paramagnetic resonance (EPR) technology were introduced to identify the principal roles of 1O2, CH3C(O)OO•, and •OH for CFZ removal over the Hematite-(R)/PAA process. The outstanding capability of Hematite-(R) could be mainly due to the higher percentage of Fe(II) (52%) on the surface of catalysts. Furthermore, the possible degradation pathways of CFZ were explored. Moreover, the Hematite-(R)/PAA process showed a superior CFZ removal efficiency with a wide initial pH scope of 1.0-9.0. The degradation efficiency of CFZ showed a negligible effect in the presence of Cl-, SO42-, and NO3-, while significant inhibition was recorded after the addition of H2PO4- and CO32-. The inhibition of humic acid (HA) on CFZ degradation via the Hematite-(R)/PAA process showed an obvious concentration dependence. This work could provide strong support for the use of natural Hematite in water purification.
Collapse
Affiliation(s)
- Xiaohong Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Zhangli Li
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Lei Jin
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Haoqi Wang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Hydraulic & Environmental Engineering, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
7
|
Xu T, Fan L, Xiong Z, Lai B. Insight into the Discriminative Efficiencies and Mechanisms of Peroxy Activation via Fe/Cu Bimetallic Catalysts for Wastewater Purification. Molecules 2024; 29:2868. [PMID: 38930932 PMCID: PMC11206741 DOI: 10.3390/molecules29122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Fe/Cu bimetallic catalysts have a synergistic effect that can effectively enhance catalytic activity, so Fe/Cu bimetallic catalysts have been extensively studied. However, the efficacy and mechanisms of Fe/Cu bimetallic catalysts' peroxidation activation have rarely been explored. In this study, Fe/Cu bimetallic materials were fabricated to catalyze different oxidizing agents, including peroxymonosulfate (PMS), peroxydisulfate (PDS), peroxyacetic acid (PAA), and hydrogen peroxide (H2O2), for the degradation of sulfamethoxazole (SMX). The Fe/Cu/oxidant systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). In the Fe/Cu/PMS, Fe/Cu/PDS, and Fe/Cu/PAA systems, the main reactive oxygen species (ROS) responsible for SMX degradation were hydroxyl radical (•OH) and singlet oxygen (1O2), while the main ROS was only •OH in the H2O2 system. The differences in the surface structure of the materials before and after oxidation were examined, revealing the presence of a large amount of flocculent material on the surface of the oxidized PMS material. Anion experiments and actual body experiments also revealed that the PMS system had a strong anti-interference ability. Finally, a comprehensive comparison concluded that the PMS system was the optimal system among the four oxidation systems. Overall, this work revealed that the PMS oxidant has a better catalytic degradation of SMX compared to other oxidizers for Fe/Cu, that PMS generates more ROS, and that the PMS system has a stronger resistance to interference.
Collapse
Affiliation(s)
- Tingjin Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Lu Fan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Tian L, Tang ZJ, Hao LY, Dai T, Zou JP, Liu ZQ. Efficient Homolytic Cleavage of H 2O 2 on Hydroxyl-Enriched Spinel CuFe 2O 4 with Dual Lewis Acid Sites. Angew Chem Int Ed Engl 2024; 63:e202401434. [PMID: 38425264 DOI: 10.1002/anie.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47 Å → 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.
Collapse
Affiliation(s)
- Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zi-Jun Tang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Le-Yang Hao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ting Dai
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Zheng Z, Shi R, Zhang X, Ni Y, Zhang H. Preparation of Activated Carbon-Reinforced Composite Beads Based on MnO 2/MCM-41@Fe 3O 4 and Calcium Alginate for Efficient Removal of Tetracycline in Aqueous Solutions. Polymers (Basel) 2024; 16:1115. [PMID: 38675034 PMCID: PMC11055116 DOI: 10.3390/polym16081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Tetracycline (TC) is a common antibiotic; when untreated TC enters the environment, it will cause a negative impact on the human body through the food chain. In the present study, MnO2/MCM-41@Fe3O4 (FeMnMCM) prepared using a hydrothermal and redox method and Camellia oleifera shell-activated carbon (COFAC) prepared through alkali activation were encapsulated using alginate (ALG) and calcium chloride as a cross-linking matrix to give the composite beads COFAC-FeMnMCM-ALG. The resultant COFAC-FeMnMCM-ALG composite beads were then carefully characterized, showing a high immobilization of MnO2/MCM-41@Fe3O4, with porous COFAC as an effective bioadsorbent for enriching the pollutants in the treated samples. These bead catalysts were subsequently applied to the oxidative degradation of TC in a Fenton oxidation system. Several parameters affecting the degradation were investigated, including the H2O2 concentration, catalyst dosage, initial TC concentration, and temperature. A very high catalytic activity towards the degradation of TC was demonstrated. The electron paramagnetic resonance (EPR) and quenching results showed that ·OH and ·O2- were generated in the system, with ·OH as the main radical species. In addition, the COFAC-FeMnMCM-ALG catalyst exhibited excellent recyclability/reusability. We conclude that the as-prepared COFAC-FeMnMCM-ALG composite beads, which integrate MnO2 and Fe3O4 with bioadsorbents, provide a new idea for the design of catalysts for advanced oxidation processes (AOPs) and have great potential in the Fenton oxidation system to degrade toxic pollutants.
Collapse
Affiliation(s)
- Zhigong Zheng
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (R.S.); (X.Z.)
| | - Ronghui Shi
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (R.S.); (X.Z.)
| | - Xiaoping Zhang
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China; (R.S.); (X.Z.)
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Hui Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
10
|
Zhou C, Wu M, Song H, Yan Z, Yang L, Liu Y, Mao X, Sun Y. Low energy consumption pathway to improve sulfamethoxazole degradation by carbon fiber@Fe 3O 4-CuO: Electrocatalysis activity, mechanism and toxicity. J Colloid Interface Sci 2024; 660:834-844. [PMID: 38277840 DOI: 10.1016/j.jcis.2024.01.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Catalysts play a pivotal role in advanced oxidation processes for the remediation of organic wastewater. In this study, a 3D carbon fiber@Fe3O4-CuO catalyst was fabricated, and its efficacy for persulfate activation to remove sulfamethoxazole (SMX) was investigated at extremely low current density. The results of characterization revealed that the catalyst was uniformly distributed on the carbon fiber, and the loaded catalyst was Fe3O4-CuO nanoparticles with a diameter range of 20-50 nm. The SMX removal rate was significantly enhanced at extremely low current density by the metallic oxide catalyst loaded on carbon fiber. Approximately 90 % of SMX was degraded within 90 min when the electric current density was set at 0.1 mA cm-2. This modification process not only improved the persulfate activation efficiency but also enhanced the generation of hydrogen peroxide. Both radical and non-radical pathways were involved in the degradation of SMX. The degradation pathway mainly included hydroxylation, carboxylation, aniline cleavage, and desulfonation reactions. The quantitative structure-activity relationship model indicated that the potential risk of intermediate products to fish, daphnia, and green algae significantly decreased during the electrocatalytic oxidation process. This study provides a novel strategy for persulfate activation, which can significantly enhance the degradation efficiency, toxicity abatement, and energy usage effectiveness of electrocatalytic technology.
Collapse
Affiliation(s)
- Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Mian Wu
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Huarong Song
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zongyu Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resource and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Lei Yang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Yan Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Xingzhi Mao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Yanlong Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China.
| |
Collapse
|
11
|
Mo Y, Meng X, Liu C, Xu W, Zheng L, Chen F, Qian J, Cai H, Chen Z. Performance and mechanism of biochar@FeMg-LDH for efficient activation of persulfate for degradation of 2, 4-dichlorophenol in groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22630-22644. [PMID: 38413523 DOI: 10.1007/s11356-024-32456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
Groundwater environments are complex, and traditional advanced oxidation technologies mainly based on free radicals have limitations such as poor selectivity and low interference resistance, making it difficult to efficiently degrade target pollutants in groundwater. Therefore, we developed a sludge-based biochar-supported FeMg-layered double hydroxide catalyst (BC@FeMg-LDH) for the catalytic degradation of 2, 4-dichlorophenol (2, 4-DCP) using persulfate (PDS) as an oxidant. The removal efficiency of the catalyst exceeded 95%, showing high oxidation activity in a wide pH range while being almost unaffected by reducing substances and ions in the environment. Meanwhile, under neutral conditions, the leaching of metal ions from BC@FeMg-LDH was minimal, thereby eliminating the risk of secondary pollution. According to quenching experiments and electron paramagnetic resonance spectroscopy, the main active species during BC@FeMg-LDH/PDS degradation of 2, 4-DCP is 1O2, indicating a non-radical reaction mechanism dominated by 1O2. Characterization techniques, including X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, revealed that the carbonyl (C = O) and metal hydroxyl (M-OH) groups on the material surface were the main reactive sites mediating 1O2 generation. The 1O2 generation mechanism during the reaction involved ketone-like activation of carbonyl groups on the biochar surface and complexation of hydroxyl groups on the material surface with PDS, resulting in the formation of O2·- and further generation of 1O2. 1O2 exhibited high selectivity toward electron-rich organic compounds such as 2, 4-DCP and demonstrated strong interference resistance in complex groundwater environments. Therefore, BC@FeMg-LDH holds promising applications for the remediation of organic-contaminated groundwater.
Collapse
Affiliation(s)
- Yuanye Mo
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
| | - Xianrong Meng
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Chengbao Liu
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China.
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China.
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Wei Xu
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Leizhi Zheng
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feng Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Junchao Qian
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hui Cai
- Suzhou Yifante Environmental Remediation Co., Ltd, Suzhou, 215168, China
| | - Zhigang Chen
- Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou, 215009, China
- School of Materials Science and Engineering, Suzhou University of Science, Suzhou, 215009, China
- Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
12
|
Dong R, Bai L, Liang S, Xu S, Gao S, Li H, Hong R, Wang C, Gu C. Self-Assembled Fe III-TAML-Based Magnetic Nanostructures for Rapid and Sustainable Destruction of Bisphenol A. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:30. [PMID: 38281179 DOI: 10.1007/s00128-023-03834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 01/30/2024]
Abstract
This study focused on constructing iron(III)-tetraamidomacrocyclic ligand (FeIII-TAML)-based magnetic nanostructures via a surfactant-assisted self-assembly (SAS) method to enhance the reactivity and recoverability of FeIII-TAML activators, which have been widely employed to degrade various organic contaminants. We have fabricated FeIII-TAML-based magnetic nanomaterials (FeIII-TAML/CTAB@Fe3O4, CTAB refers to cetyltrimethylammonium bromide) by adding a mixed solution of FeIII-TAML and NH3·H2O into another mixture containing CTAB, FeCl2 and FeCl3 solutions. The as-prepared FeIII-TAML/CTAB@Fe3O4 nanocomposite showed relative reactivity compared with free FeIII-TAML as indicated by decomposition of bisphenol A (BPA). Moreover, our results demonstrated that the FeIII-TAML/CTAB@Fe3O4 composite can be separated directly from reaction solutions by magnet adsorption and reused for at least four times. Therefore, the efficiency and recyclability of self-assembled FeIII-TAML/CTAB@Fe3O4 nanostructures will enable the application of FeIII-TAML-based materials with a lowered expense for environmental implication.
Collapse
Affiliation(s)
- Ruochen Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lihua Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shuxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Song Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hongjian Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ran Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China.
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, 210019, People's Republic of China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
13
|
Elkomy HA, El-Naggar SA, Elantary MA, Gamea SM, Ragab MA, Basyouni OM, Mouhamed MS, Elnajjar FF. Nanozyme as detector and remediator to environmental pollutants: between current situation and future prospective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3435-3465. [PMID: 38141123 PMCID: PMC10794287 DOI: 10.1007/s11356-023-31429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
The term "nanozyme" refers to a nanomaterial possessing enzymatic capabilities, and in recent years, the field of nanozymes has experienced rapid advancement. Nanozymes offer distinct advantages over natural enzymes, including ease of production, cost-effectiveness, prolonged storage capabilities, and exceptional environmental stability. In this review, we provide a concise overview of various common applications of nanozymes, encompassing the detection and removal of pollutants such as pathogens, toxic ions, pesticides, phenols, organic contaminants, air pollution, and antibiotic residues. Furthermore, our focus is directed towards the potential challenges and future developments within the realm of nanozymes. The burgeoning applications of nanozymes in bioscience and technology have kindled significant interest in research in this domain, and it is anticipated that nanozymes will soon become a topic of explosive discussion.
Collapse
Affiliation(s)
- Hager A Elkomy
- Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Shimaa A El-Naggar
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mariam A Elantary
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sherif M Gamea
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A Ragab
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar M Basyouni
- Chemistry/Zoology Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Moustafa S Mouhamed
- Microbiology Sector, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Fares F Elnajjar
- Chemistry/Biochemistry Sector, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
14
|
Deng S, Yang M, An Q, Li Z, Zhao B, Ran B. Efficient rhodamine B dye degradation by red mud-grapefruit peel biochar catalysts activated persulfate in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119034-119049. [PMID: 37919501 DOI: 10.1007/s11356-023-30537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
The continuous and rapid development of textile industry intensifies rhodamine B dye (RhB) wastewater pollution. Meanwhile, massive red mud (RM) solid waste generated by the industrial alumina production process poses detrimental effects to the environment after leaching. For resource utilization and to reduce the expansion of RhB pollution, RM and peel red mud-biochar composite (RMBC) catalyst were synthesized in activating peroxydisulfate (PDS) for RhB degradation. Firstly, characterization results showed that compared to RM, RMBC had a higher content of catalytically active metals (Fe, Al, Ti) (higher than 0.92-4.18%), smaller pore size, and larger specific surface area (10 times), which verified RMBC had more potential catalytic oxidation activity. Secondly, under optimal dosage (catalyst, PDS), pH 4.6, and 20 mg L-1 RhB, it was found that the RhB degradation ratio of RM was 76.70%, which was reduced to 41% after three cycles, while that of RMBC was 89.98% and 67%, respectively. The results indicated that the performance of RMBC was significantly superior to that of RM. Furthermore, the quenching experiments, electron paramagnetic resonance spectroscopy tests, FTIR, and XPS analysis showed the function of O-H, C=O, C-O, Fe-O, and Fe-OH functional groups, which converted the PDS to the active state and hydrolyzed it to produce free radicals ([Formula: see text], 1O2, [Formula: see text]) for RhB degradation. And, Q Exactive Plus MS test obtained that RhB was degraded to CO2, H2O, and intermediate products. This study aimed to raise a new insight to the resource utilization of RM and the control of dye pollution.
Collapse
Affiliation(s)
- Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Maolin Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China.
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Binbin Ran
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
15
|
Li X, Li X, Song C, Yang X, Liu Y, Zhu J. Efficient degradation of tetrabromobisphenol A using peroxymonosulfate oxidation activated by a novel nano-CuFe 2O 4@coconut shell biochar catalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122488. [PMID: 37678734 DOI: 10.1016/j.envpol.2023.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
In this study, a novel bimetallic complexation-curing nucleation-anaerobic calcination method was developed to synthesize a nano-CuFe2O4@coconut shell biochar (CuFe2O4@CSBC) catalyst to activate peroxymonosulfate for degradation of tetrabromobisphenol A (TBBPA). The reaction processes of the TBBPA on CuFe2O4@CSBC have been investigated using in situ characterization and metal leaching. The effects of initial reaction conditions and degradation mechanism were investigated. Greater than 99% degradation of TBBPA at 10 mg L-1 was achieved in 30 min under the condition of pH 11, a total organic carbon removal rate of up to 70.67% was achieved and the degradation efficiency was 90% after 5 cycles of CuFe2O4@CSBC use. The degradation was in a second-order reaction at a constant of 0.797 M-1 min-1 (R2 = 0.993). The degradation was attributed to the main active species (SO4·-≈·OH < 1O2), and the surface active site of CuFe2O4@CSBC was the key role. The degradation process involved three main degradation pathways. Path A: ·OH attacked the C-Br bonds (TBBPA→TriBBPA→DBBPA→MBBPA→BPA); Path B: Hydroxylation and decarboxylation; Path C: Dehydrocoupling of TBBPA. What's more, the practical application of the system was very positive, achieved >77% degradation in sewage and industrial wastewater.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xujing Li
- Beijing Risun Science and Technology Limited, Beijing, 100070, China
| | - Chuang Song
- Tieling Ecological Environment Bureau, Tieling, 112008, China
| | - Xiaojin Yang
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jia Zhu
- Shenzhen Key Laboratory of Industrial Water Saving and Urban Sewage Resources, School of Construction and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| |
Collapse
|
16
|
Huang J, Zhu Y, Bian H, Song L, Liu Y, Lv Y, Ye X, Lin C, Li X. Insights into Enhanced Peroxydisulfate Activation with B and Fe Co-Doped Biochar from Bark for the Rapid Degradation of Guaiacol. Molecules 2023; 28:7591. [PMID: 38005313 PMCID: PMC10674898 DOI: 10.3390/molecules28227591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A boron and iron co-doped biochar (B-Fe/biochar) from Masson pine bark was fabricated and used to activate peroxydisulfate (PDS) for the degradation of guaiacol (GL). The roles of the dopants and the contribution of the radical and non-radical oxidations were investigated. The results showed that the doping of boron and iron significantly improved the catalytic activity of the biochar catalyst with a GL removal efficiency of 98.30% within 30 min. The degradation of the GL mainly occurred through the generation of hydroxyl radicals (·OHs) and electron transfer on the biochar surface, and a non-radical degradation pathway dominated by direct electron transfer was proposed. Recycling the B-Fe/biochar showed low metal leaching from the catalyst and satisfactory long-term stability and reusability, providing potential insights into the use of metal and non-metal co-doped biochar catalysts for PDS activation.
Collapse
Affiliation(s)
- Jian Huang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yu Zhu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China;
| | - Liang Song
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Xiaojuan Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| |
Collapse
|
17
|
Zhou Q, Luo L, Xia L, Cha C, Jiang F, Wang H, Dai J, Shu L. Persulfate enhanced removal of bisphenol A by copper oxide/reduced graphene oxide foam: Influencing factors, mechanism and degradation pathway. CHEMOSPHERE 2023; 340:139786. [PMID: 37574092 DOI: 10.1016/j.chemosphere.2023.139786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
The CuO/reduced graphene oxide foam (CuO/RGF) with excellent recyclability was prepared via hydrothermal method followed by freeze drying treatment for bisphenol A (BPA) removal via activating peroxydisulfate (PDS). SEM, XRD, XPS, FT-IR, BET, and TG techniques were used to investigate the structure and property of CuO/RGF. The effect of degradation conditions (pH, PDS amount, Cl-, HCO3-, HA and FA) on BPA removal by CuO/RGF were investigated. The result presented that CuO nanosheet was inserted into the RGF carrier with three-dimensional structure. The degradation rate constant of BPA over CuO/RGF (0.00917 min-1) was 1.24 and 6.46 times higher than those of BPA over CuO (0.00714 min-1) and RGF (0.00142 min-1). More importantly, the pore structure of RGF can successfully limit the release of Cu (II) compared to pure CuO. According to quenching test as well as electron spin resonance (EPR) spectra, BPA degradation was triggered by 1O2, •OH and SO4•-, which was the combination of nonradical (1O2) and radical activation of PDS (•OH and SO4•-). The possible degradation route of BPA was proposed based on intermediates obtained by combining solid phase extraction pretreatment technique with high performance liquid-mass spectrometry. After assessing the viability of MCF-7 cells, we can see that the estrogenic activities of treated solution reduced without producing stronger endocrine disruptors.
Collapse
Affiliation(s)
- Qinwen Zhou
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Lijun Luo
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China.
| | - Lihong Xia
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Canhu Cha
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Fengzhi Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, China
| | - Hongbin Wang
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Jianhui Dai
- Key Laboratory of Environmental Functional Materials of Yunnan Province Education Department, School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, China
| | - Li Shu
- School of Engineering, Edith Cowan University, 70 Joondalup Drive, Joondalup, Perth, WA, 6027, Australia
| |
Collapse
|
18
|
Muzenda C, Nkwachukwu OV, Jayeola KD, Zinyemba O, Zhou M, Arotiba OA. Heterogenous electro-Fenton degradation of sulfamethoxazole on a polyethylene glycol-coated magnetite nanoparticles catalyst. CHEMOSPHERE 2023; 339:139698. [PMID: 37532200 DOI: 10.1016/j.chemosphere.2023.139698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
We report the preparation and application of poly (ethylene) glycol (PEG) coated magnetite nanoparticles (MNPs) catalyst for the heterogeneous electro-Fenton (HEF) degradation of sulfamethoxazole in real wastewater PEG-coated MNPs of four MNP:PEG ratios were synthesised using the co-precipitation method. The synthesised MNP were characterised using FTIR, XRD, EDX, TEM, and CHN elemental analysis. It was observed that the coating of MNP with PEG influences the nanoparticle size, agglomeration tendencies and catalytic efficiency of MNPs properties in the HEF degradation process. A 1:1 optimal MNP:PEG catalyst yielded 91% sulfamethoxazole degradation and 48% total organic carbon removal in 60 min, which is an improvement of 11% over degradation with the uncoated MNP. The PEG-coated MNP showed higher stability in 10 consecutive reaction cycles, reduced leaching, and improved performance at a lower dosage and broader pH range than the uncoated MNPs. These results show that coating MNP with PEG enhances HEF catalytic performance in the degradation of sulfamethoxazole in wastewater.
Collapse
Affiliation(s)
- Charles Muzenda
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Oluchi V Nkwachukwu
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Kehinde D Jayeola
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa
| | - Orpah Zinyemba
- Department of Chemical Sciences, University of Johannesburg, South Africa
| | - Minghua Zhou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.
| |
Collapse
|
19
|
Zhang L, Ji P, Song R, Li J, Qin K, Xu G. Synergistic activation of persulfate by a manganese cobalt oxide/reduced graphene oxide nanocomposite with enhanced degradation of trichloroethylene. RSC Adv 2023; 13:28984-28992. [PMID: 37799304 PMCID: PMC10548434 DOI: 10.1039/d3ra03834c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
Advanced oxidation technology based on persulfate is one of the most reliable and effective technologies for the degradation of wastewater, however the key lies in developing highly efficient catalysts to activate persulfate. Herein, manganese cobalt oxide/reduced graphene oxide (MnCo2O4/rGO) nanocomposites were successfully synthesized via a facile solvothermal method and employed as a highly efficient catalyst to active persulfate for the degradation of trichloroethylene (TCE). The rGO nanosheets have large surface areas, which can increase the contact area with reactants and make the degradation more efficient. Additionally, the MnCo2O4 nanoparticles are in situ grown on the surface of ultrathin rGO nanosheets, endowing the material with high structural porosity and fast transport channels, and are beneficial for the improvement of catalytic sites and the transport of catalysis-relevant species. More importantly, the close contact between MnCo2O4 nanoparticles and rGO nanosheets synergistically favors the electron transfer, thereby accelerating the electron transfer, improving the activation efficiency, and promoting the generation of sulfate radicals (·SO4-). rGO can also reduce the spillover of metal ions. The kinetics model and degradation mechanism of the nanocomposites are also proposed.
Collapse
Affiliation(s)
- Lu Zhang
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education Shanghai 200444 P. R. China
| | - Pengfei Ji
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Rui Song
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Jiayuan Li
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Kaifeng Qin
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education Shanghai 200444 P. R. China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education Shanghai 200444 P. R. China
| |
Collapse
|
20
|
Javanroudi SR, Fattahi N, sharafi K, Arfaeinia H, Moradi M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023; 9:e19992. [PMID: 37809581 PMCID: PMC10559683 DOI: 10.1016/j.heliyon.2023.e19992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Advanced oxidation processes (AOPs) based on oxidants have attracted attention for the degradation of organic pollutants. The combination of chalcopyrite with oxidants such as persulfate, peroxide, percarbonate, and others shows promise as a system due to its ability to activate through various pathways, leading to the formation of numerous radical and non-radical species. In this review, the generation of sulfate radical (SR) and hydroxyl radical (HR) in AOPs were summarized. The significance of chalcopyrite in various approaches including Fenton, photo-Fenton, and photo/Fenton-like methods, as well as its involvement in electrochemical Fenton-based processes was discussed. The stability and reusability, toxicity, catalyst mechanism, and effects of operational parameters (pH, catalyst dosage, and oxidant concentration) are evaluated in detail. The review also discusses the role of Fe2+/3+, Cu1+/2+, S2- and Sn2- present in CuFeS2 in the generation of free radicals. Finally, guidelines for future research are presented in terms of future perspectives.
Collapse
Affiliation(s)
- Setareh Rostami- Javanroudi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
Ren J, Huang Y, Yao J, Zheng S, Zhao Y, Hou Y, Yang B, Lei L, Li Z, Dionysiou DD. The role of reactive phosphate species in the abatement of micropollutants by activated peroxymonosulfate in the treatment of phosphate-rich wastewater. WATER RESEARCH 2023; 243:120341. [PMID: 37625213 DOI: 10.1016/j.watres.2023.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
This study investigated the mechanisms of forming reactive species to degrade micropollutants through the activation of peroxymonosulfate (PMS) by phosphate, a prevalent ion in wastewater. Considering the density functional theory results, the formation of hydrogen bonds between phosphate and PMS molecules might be the crucial step in the overall reactions, which prefers producing ⋅OH and reactive phosphate species (RPS, namely H2PO4⋅, HPO4⋅-, and PO4⋅2-) to yielding SO4⋅-. Besides, in the phosphate (5 mM)/PMS system at pH = 8, HPO4⋅- was modeled to be the dominant radical with a steady-state concentration of 3.6 × 10-12 M, which was 666 and 773 times higher than those of ⋅OH and SO4⋅-. The contributions of 1O2, ⋅OH, SO4⋅-, and RPS to the micropollutant decomposition in phosphate/PMS were studied, and RPS were found to be selective for micropollutants with electron-donating moieties (such as phenolic and aniline groups). Additionally, the degradation pathways of bisphenol A, diclofenac, ibuprofen, and atrazine in phosphate/PMS were proposed according to the detected transformation products. Cytotoxicity analysis was carried out to evaluate the potential environmental impacts resulting from the degradation of micropollutants by phosphate/PMS. This study confirmed the significance of RPS for micropollutant degradation during PMS-based treatment in phosphate-rich scenarios.
Collapse
Affiliation(s)
- Jiaqi Ren
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Ying Huang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jiani Yao
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Shujie Zheng
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yingjie Zhao
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu 610213, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China; Institute of Zhejiang University-Quzhou, Quzhou 324000, China; Academy of Ecological Civilization, Zhejiang University, Hangzhou 310058, China.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
22
|
Sharma I, Kaur J, Poonia G, Mehta SK, Kataria R. Nanoscale designing of metal organic framework moieties as efficient tools for environmental decontamination. NANOSCALE ADVANCES 2023; 5:3782-3802. [PMID: 37496632 PMCID: PMC10368002 DOI: 10.1039/d3na00169e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Environmental pollutants, being a major and detrimental component of the ecological imbalance, need to be controlled. Serious health issues can get intensified due to contaminants present in the air, water, and soil. Accurate and rapid monitoring of environmental pollutants is imperative for the detoxification of the environment and hence living beings. Metal-organic frameworks (MOFs) are a class of porous and highly diverse adsorbent materials with tunable surface area and diverse functionality. Similarly, the conversion of MOFs into nanoscale regime leads to the formation of nanometal-organic frameworks (NMOFs) with increased selectivity, sensitivity, detection ability, and portability. The present review majorly focuses on a variety of synthetic methods including the ex situ and in situ synthesis of MOF nanocomposites and direct synthesis of NMOFs. Furthermore, a variety of applications such as nanoabsorbent, nanocatalysts, and nanosensors for different dyes, antibiotics, toxic ions, gases, pesticides, etc., are described along with illustrations. An initiative is depicted hereby using nanostructures of MOFs to decontaminate hazardous environmental toxicants.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Jaspreet Kaur
- School of Basic Sciences, Indian Institute of Information Technology (IIIT) Una-177 209 India
| | - Gargi Poonia
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Surinder Kumar Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| | - Ramesh Kataria
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh-160 014 India
| |
Collapse
|
23
|
Cai S, Wang T, Wu C, Tang W, Chen J. Efficient degradation of norfloxacin using a novel biochar-supported CuO/Fe 3O 4 combined with peroxydisulfate: Insights into enhanced contribution of nonradical pathway. CHEMOSPHERE 2023; 329:138589. [PMID: 37023897 DOI: 10.1016/j.chemosphere.2023.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/28/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Nonradical persulfate oxidation techniques have evolved as a new contaminated water treatment approach due to its great tolerance to water matrixes. The catalysts of CuO-based composites have received much attention in that aside from SO4•-/•OH radicals, the nonradicals of singlet oxygen (1O2) can be also generated during persulfate activation via CuO. However, the issues regarding particles aggregation and metal leaching from the catalysts during the decontamination process remain to be addressed, which could have a remarkable impact on the catalytic degradation of organic pollutants. Accordingly in the present study, a novel biochar-supported bimetallic Fe3O4-CuO catalyst (CuFeBC) was facilely developed to activate peroxodisulfate (PDS) for the degradation of norfloxacin (NOR) in aqueous solution. The results showed CuFeBC has a superior stability against metal ions Cu/Fe leaching, and NOR (30 mg L-1) was degraded at 94.5% within 180 min in the presence of CuFeBC (0.5 g L-1) and PDS (6 mM) in pH 8.5. The scavenging of reactive oxygen species and electron spin resonance analysis revealed that 1O2 dominated the degradation of NOR. Compared with pristine CuO-Fe3O4, the interaction between biochar substrate and metal particles could significantly enhance the contribution of the nonradical pathway to NOR degradation from 49.6% to 84.7%. Biochar substrate could efficiently reduce the leaching of metal species from the catalyst, thereby maintaining excellent catalytic activity and lasting reusability of the catalyst. These findings could enlighten new insights into fine-tuning radical/nonradical processes from CuO-based catalysts for the efficient remediation of organic contaminants in polluted water.
Collapse
Affiliation(s)
- Song Cai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Tongshuai Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China; China Household Elect Appliance Res Inst CHEARDI, Beijing, 100053, PR China
| | - Congyi Wu
- School of Science, China University of Geosciences, Beijing, 100083, PR China
| | - Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
24
|
Ma Y, Ma B, Wu D, Wang J, Li Y, Fan X, Xia Q, Zhang F, Peng W. Stability enhancing of perovskite LaCoO 3 by compositing with oxygen doped MoS 2 in Fenton-like reactions. CHEMOSPHERE 2023; 326:138441. [PMID: 36935060 DOI: 10.1016/j.chemosphere.2023.138441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Perovskite materials are reported to be effective in peroxymonosulfate (PMS) based Fenton-like reactions, the leaching rates of chalcogenide materials in perovskite materials are however serious, thus leading to bad performance in long-term stability. In this study, an O-doped MoS2 is synthesized to composite with LaCoO3, and the high catalytic activity of LaCoO3 is well preserved with greatly decreased Co leaching. During the BPA degradation with PMS as oxidant, ∼100% degradation can be achieved in 20 min and this degradation efficiency can be maintained for ∼45 h in a simulated fixed bed reactor, which is almost 3 times longer than the pure LaCoO3. With the compositing of O-doped MoS2, the leached Co was greatly decreased and the dominated reactive oxidation species (ROS) transformed from SO4•- into O2•- with longer lifespan, thus resulting in the better stability. This study could promote the application of perovskite materials in the real industrial wastewater treatment.
Collapse
Affiliation(s)
- Yansong Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Biao Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Institute of Shaoxing, Tianjin University, Zhejiang, 312099, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Institute of Shaoxing, Tianjin University, Zhejiang, 312099, PR China
| | - Qing Xia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Institute of Shaoxing, Tianjin University, Zhejiang, 312099, PR China.
| |
Collapse
|
25
|
Li T, Lu Y, Liu L, He Y, Huang J, Peng X. Efficient degradation of hexabromocyclododecane using montmorillonite supported nano-zero-valent iron and Citrobacter sp. Y3. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131739. [PMID: 37269562 DOI: 10.1016/j.jhazmat.2023.131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The coupling of modified nanoscale zero-valent iron (nZVI) with organohalide-degrading bacteria provides a promising solution for the remediation of hexabromocyclododecane (HBCD)-contaminated environments. However, the interactions between modified nZVI and dehalogenase bacteria are intricate, and the mechanisms of synergistic action and electron transfer are not clear, and requires further specific investigation. In this study, HBCD was used as a model pollutant, and stable isotope analysis revealed that organic montmorillonite (OMt)-supported nZVI coupled with the degrading bacterial strain Citrobacter sp. Y3 (nZVI/OMt-Y3) can use [13C]HBCD as the sole carbon source and degrade or even mineralise it into 13CO2 with a maximum conversion rate of 100% within approximately 5 days. Analysis of the intermediates showed that the degradation of HBCD mainly involves three different pathways: dehydrobromination, hydroxylation, and debromination. The proteomics results showed that nZVI introduction promoted the transport of electrons and debromination. Combining the results from XPS, FTIR, and Raman spectroscopy with the analysis results of proteinomics and biodegradation products, we verified the process of electron transport and proposed a metabolic mechanism of HBCD degradation by the nZVI/OMt-Y3. Moreover, this study provides insightful avenues and models for the further remediation of HBCD and other similar pollutants in the environment.
Collapse
Affiliation(s)
- Tianyu Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingyuan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Lei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuzhe He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, 15 Shangxiadian Road, Fuzhou 350002, China.
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
26
|
Wang C, Wang X, Wang H, Zhang L, Wang Y, Dong CL, Huang YC, Guo P, Cai R, Haigh SJ, Yang X, Sun Y, Yang D. Low-coordinated Co-N 3 sites induce peroxymonosulfate activation for norfloxacin degradation via high-valent cobalt-oxo species and electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131622. [PMID: 37196442 DOI: 10.1016/j.jhazmat.2023.131622] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
The identification of reactive species in peroxymonosulfate (PMS) activation triggered by carbon-based single atom catalysts is the key to reveal the pollutant degradation mechanism. Herein, carbon-based single atom catalyst with low-coordinated Co-N3 sites (CoSA-N3-C) was synthesized to active PMS for norfloxacin (NOR) degradation. The CoSA-N3-C/PMS system exhibited consistent high performance for oxidizing NOR over a wide pH range (3.0-11.0). The system also achieved complete NOR degradation in different water matrixes, high cycle stability and excellent degradation performance for other pollutants. Theoretical calculations confirmed that the catalytic activity was derived from the favorable electron density of low-coordinated Co-N3 configuration, which was more conductive to PMS activation than other configurations. Electron paramagnetic resonance spectra, in-situ Raman analysis, solvent exchange (H2O to D2O), salt bridge and quenching experiments concluded that high-valent cobalt(IV)-oxo species (56.75%) and electron transfer (41.22%) contributed dominantly to NOR degradation. Moreover, 1O2 was generated in the activation process while not involved in pollutant degradation. This research demonstrates the specific contributions of nonradicals in PMS activation over Co-N3 sites for pollutant degradation. It also offers updated perceptions for rational design of carbon-based single atom catalysts with appropriate coordination structure.
Collapse
Affiliation(s)
- Caiyun Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Xiaoxia Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Hu Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Lijie Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Yonghao Wang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
| | - Chung-Li Dong
- Research Center for X-ray Science, Department of Physics, Tamkang University, 151 Yingzhuan Road, New Taipei City 25137, Taiwan
| | - Yu-Cheng Huang
- Research Center for X-ray Science, Department of Physics, Tamkang University, 151 Yingzhuan Road, New Taipei City 25137, Taiwan
| | - Peng Guo
- Advanced Chemical Engineering and Energy Materials Research Center, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Rongsheng Cai
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Xianfeng Yang
- Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China.
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Bio-based Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
27
|
Preparation of Fe-Cu bimetal from copper slag by carbothermic reduction–magnetic process for activating persulfate to degrade bisphenol A. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
28
|
Nie C, Hou Y, Liu F, Dong Q, Li Z, Han P, Tong M. Efficient peroxymonosulfate activation by magnetic MoS 2@Fe 3O 4 for rapid degradation of free DNA bases and antibiotic resistance genes. WATER RESEARCH 2023; 239:120026. [PMID: 37182307 DOI: 10.1016/j.watres.2023.120026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have become as emerging contaminant with great concerns worldwide due to their threats to human health. It is thus urgent to develop techniques to degrade ARGs in water. In this study, MoS2@Fe3O4 (MF) particles were fabricated and used to activate peroxymonosulfate (PMS) for the degradation of four types of free DNA bases (T, A, C, and G, major components of ARGs) and ARGs. We found that MF/PMS system could effectively degrade all four DNA bases (T within 10 min, A within 30 min, C within 5 min, and G within 5 min) in very short time. During the reaction process, MF could activate PMS to form the reactive radicals such as ·OH, SO4·-, O2·-, and 1O2, contributing to the degradation of DNA bases. Due to the low adsorption energy, high charge transfer, and great capability for PMS cleavage, MF exhibited excellent PMS adsorption and activation performances. MoS2 in MF could enhance the cycle of Fe(III)/Fe(II), improving the catalytic performance. Excellent catalytic performances of MF/PMS system were achieved in complex water matrix (including different solution pH, coexisting of anions and natural organic matter) as well as in real water samples (including tap water, river water, sea water, and sewage) especially under high salinity conditions due to the generation of Cl· radicals and HClO species. MF/PMS system could also efficiently degrade ARGs (chromosomal kanR and plasmid gmrA) and DNA extracted from antibiotic resistant bacteria (ARB) in super-short time. Moreover, complete disinfection of two types of model ARB (E. coli K-12 MG 1655 and E. coli S17-1) could also be achieved in MF/PMS system. The high degradation performances of MF/PMS system achieved in the reused experiments and the 14-day continuous flow reactor experiments indicated the stability of MF particles. Due to the magnetic property, it would be convenient to separate MF particles from water after use via using magnet, facilitating their reuse of MF and avoiding potential water contamination by catalysts. Overall, this study not only provided a deep insight on Fe/Mo-triggered PMS activation process, but also provided an effective and reliable approach for the treatment of DNA bases, ARGs, DNA, and ARB in water.
Collapse
Affiliation(s)
- Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
29
|
Guo Z, Wang D, Yan Z, Qian L, Yang L, Yan J, Chen M. Efficient Remediation of p-chloroaniline Contaminated Soil by Activated Persulfate Using Ball Milling Nanosized Zero Valent Iron/Biochar Composite: Performance and Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091517. [PMID: 37177062 PMCID: PMC10180579 DOI: 10.3390/nano13091517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
In this study, efficient remediation of p-chloroaniline (PCA)-contaminated soil by activated persulfate (PS) using nanosized zero-valent iron/biochar (B-nZVI/BC) through the ball milling method was conducted. Under the conditions of 4.8 g kg-1 B-nZVI/BC and 42.0 mmol L-1 PS with pH 7.49, the concentration of PCA in soil was dramatically decreased from 3.64 mg kg-1 to 1.33 mg kg-1, which was much lower than the remediation target value of 1.96 mg kg-1. Further increasing B-nZVI/BC dosage and PS concentration to 14.4 g kg-1 and 126.0 mmol L-1, the concentration of PCA was as low as 0.15 mg kg-1, corresponding to a degradation efficiency of 95.9%. Electron paramagnetic resonance (EPR) signals indicated SO4•-, •OH, and O2•- radicals were generated and accounted for PCA degradation with the effect of low-valence iron and through the electron transfer process of the sp2 hybridized carbon structure of biochar. 1-chlorobutane and glycine were formed and subsequently decomposed into butanol, butyric acid, ethylene glycol, and glycolic acid, and the degradation pathway of PCA in the B-nZVI/BC-PS system was proposed accordingly. The findings provide a significant implication for cost-effective and environmentally friendly remediation of PCA-contaminated soil using a facile ball milling preparation of B-nZVI/BC and PS.
Collapse
Affiliation(s)
- Zihan Guo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210019, China
| | - Zichen Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Li X, Zhu X, Wu J, Gao H, Yang W, Hu X. Enhanced Heterogeneous Peroxymonosulfate Activation by MOF-Derived Magnetic Carbonaceous Nanocomposite for Phenol Degradation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3325. [PMID: 37176207 PMCID: PMC10179389 DOI: 10.3390/ma16093325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Degradation efficiency and catalyst stability are crucial issues in the control of organic compounds in wastewater by advanced oxidation processes (AOPs). However, it is difficult for catalysts used in AOPs to have both high catalytic activity and high stability. Combined with the excellent activity of cobalt/copper oxides and the good stability of carbon, highly dispersed cobalt-oxide and copper-oxide nanoparticles embedded in carbon-matrix composites (Co-Cu@C) were prepared for the catalytic activation of peroxymonosulfate (PMS). The catalysts exhibited a stable structure and excellent performance for complete phenol degradation (20 mg L-1) within 5 min in the Cu-Co@C-5/PMS system, as well as low metal-ion-leaching rates and great reusability. Moreover, a quenching test and an EPR analysis revealed that ·OH, O2·-, and 1O2 were generated in the Co-Cu@C/PMS system for phenol degradation. The possible mechanism for the radical and non-radical pathways in the activation of the PMS by the Co-Cu@C was proposed. The present study provides a new strategy with which to construct heterostructures for environmentally friendly and efficient PMS-activation catalysts.
Collapse
Affiliation(s)
- Xinyu Li
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Hongbin Gao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation, Henan University of Urban Construction, Pingdingshan 467000, China
| | - Weichun Yang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xiaoxian Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation, Henan University of Urban Construction, Pingdingshan 467000, China
| |
Collapse
|
31
|
Zhou R, Xu W, Liu P, Zhao S, Xu G, Xiong Q, Zhang W, Zhang C, Ye X. Synthesis of FeOOH-Loaded Aminated Polyacrylonitrile Fiber for Simultaneous Removal of Phenylphosphonic Acid and Phosphate from Aqueous Solution. Polymers (Basel) 2023; 15:polym15081918. [PMID: 37112065 PMCID: PMC10146033 DOI: 10.3390/polym15081918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphorus is one of the important metabolic elements for living organisms, but excess phosphorus in water can lead to eutrophication. At present, the removal of phosphorus in water bodies mainly focuses on inorganic phosphorus, while there is still a lack of research on the removal of organic phosphorus (OP). Therefore, the degradation of OP and synchronous recovery of the produced inorganic phosphorus has important significance for the reuse of OP resources and the prevention of water eutrophication. Herein, a novel FeOOH-loaded aminated polyacrylonitrile fiber (PANAF-FeOOH) was constructed to enhance the removal of OP and phosphate. Taking phenylphosphonic acid (PPOA) as an example, the results indicated that modification of the aminated fiber was beneficial to FeOOH fixation, and the PANAF-FeOOH prepared with 0.3 mol L-1 Fe(OH)3 colloid had the best performance for OP degradation. The PANAF-FeOOH efficiently activated peroxydisulfate (PDS) for the degradation of PPOA with a removal efficiency of 99%. Moreover, the PANAF-FeOOH maintained high removal capacity for OP over five cycles as well as strong anti-interference in a coexisting ion system. In addition, the removal mechanism of PPOA by the PANAF-FeOOH was mainly attributed to the enrichment effect of PPOA adsorption on the fiber surface's special microenvironment, which was more conducive to contact with SO4•- and •OH generated by PDS activation. Furthermore, the PANAF-FeOOH prepared with 0.2 mol L-1 Fe(OH)3 colloid possessed excellent phosphate removal capacity with a maximal adsorption quantity of 9.92 mg P g-1. The adsorption kinetics and isotherms of the PANAF-FeOOH for phosphate were best depicted by pseudo-quadratic kinetics and a Langmuir isotherm model, showing a monolayer chemisorption procedure. Additionally, the phosphate removal mechanism was mainly due to the strong binding force of iron and the electrostatic force of protonated amine on the PANAF-FeOOH. In conclusion, this study provides evidence for PANAF-FeOOH as a potential material for the degradation of OP and simultaneous recovery of phosphate.
Collapse
Affiliation(s)
- Rui Zhou
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wusong Xu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Peisen Liu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shangyuan Zhao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Gang Xu
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qizhong Xiong
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Weifeng Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Chaochun Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinxin Ye
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-Restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
32
|
Zhu W, Zuo X, Zhang X, Deng X, Ding D, Wang C, Yan J, Wang X, Wang G. MOFs-derived CuO-Fe 3O 4@C with abundant oxygen vacancies and strong Cu-Fe interaction for deep mineralization of bisphenol A. ENVIRONMENTAL RESEARCH 2023; 228:115847. [PMID: 37030409 DOI: 10.1016/j.envres.2023.115847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
A novel CuO-Fe3O4 encapsulated in the carbon framework with abundant oxygen vacancies (CuO-Fe3O4@C) was successfully prepared by thermal conversion of Cu(OAc)2/Fe-metal organic framework. The as-prepared catalyst exhibited excellent peroxymonosulfate (PMS) activation performance, good recyclability and fast magnetic separation. Under optimal conditions, the added BPA (60 mg/L) could be completely removed by CuO-Fe3O4@C/PMS system within 15 min with the degradation rate constant (k) of 0.32 min-1, being 10.3 and 246.2 times that in CuO/PMS (0.031min-1) and Fe3O4/PMS (0.0013 min-1) system. A deep mineralization rate of BPA (>80%) was achieved within 60 min. The results demonstrated the synergistic effect of bimetallic clusters, oxygen vacancies and carbon framework was a key benefit for the exposure of more active sites, the electron donor capacity and the mass transfer of substrates, thereby promoting the decomposition of BPA. Capture experiments and EPR indicated that 1O2 was the predominant reactive oxygen species (ROSs). The degradation routes of BPA and the activation mechanism of PMS were proposed. This study offers an opportunity to develop promising MOFs-derived hybrid catalysts with tailored structures and properties for the practical application of SR-AOPs.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaohua Zuo
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiaofei Zhang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiangyi Deng
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chunlei Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - JunTao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaobo Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Guanghui Wang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
33
|
Lu M, Wu XJ, Wan CX, Gong QP, Li JX, Liao SS, Wang YA, Yuan SH. Evaluation of Fe 3O 4-MnO 2@RGO magnetic nanocomposite as an effective persulfate activator and metal adsorbent in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51125-51142. [PMID: 36808038 DOI: 10.1007/s11356-023-25911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
A reduced graphene oxide (RGO) supported Fe3O4-MnO2 nanocomposite (Fe3O4-MnO2@RGO) was successfully prepared for catalytic degradation of oxytetracycline (20 mg/L) by potassium persulfate (PS) and adsorption removal of mixture of Pb2+, Cu2+, and Cd2+ ions (each 0.2 mM) in the synchronous scenario. The removal efficiencies of oxytetracycline, Pb2+, Cu2+, and Cd2+ ions were observed as high as 100%, 99.9%, 99.8%, and 99.8%, respectively, under the conditions of [PS]0 = 4 mM, pH0 = 7.0, Fe3O4-MnO2@RGO dosage = 0.8 g/L, reaction time = 90 min. The ternary composite exhibited higher oxytetracycline degradation/mineralization efficiency, greater metal adsorption capacity (Cd2+ 104.1 mg/g, Pb2+ 206.8 mg/g, Cu2+ 70.2 mg/g), and better PS utilization (62.6%) than its unary and binary counterparts including RGO, Fe3O4, Fe3O4@RGO, and Fe3O4-MnO2. More importantly, the ternary composite had good magnetic recoverability and excellent reusability. Notably, Fe, Mn, and RGO could play a synergistic role in the improvement of pollutant removal. Quenching results indicate that surface bounded SO4•- was the major contributor to oxytetracycline decomposition, and the -OH groups on the composite surface shouldered a significant role in PS activation. The results indicate that the magnetic Fe3O4-MnO2@RGO nanocomposite has a good potential for removing organic-metal co-contaminants in waterbody.
Collapse
Affiliation(s)
- Mang Lu
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China.
| | - Xue-Jiao Wu
- The Library, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Chu-Xing Wan
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Qiu-Ping Gong
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Jia-Xin Li
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Shuang-Shuang Liao
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Yu-An Wang
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| | - Shu-Hao Yuan
- School of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330032, Jiangxi Province, China
| |
Collapse
|
34
|
Musajan Z, Xiao P. Facile fabrication of mesoporous carbon-anchored cobalt ferrite nanoparticles as a heterogeneous activator of peroxymonosulfate for efficient degradation of Congo red. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48088-48106. [PMID: 36750515 DOI: 10.1007/s11356-023-25758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Herein, mesoporous carbon-anchored cobalt ferrite nanocomposites (nano-CoFe2O4@MC) were fabricated using a hydrothermal method for application as heterogeneous catalysts to activate peroxymonosulfate (PMS), in order to solve the problems of low activation performance and secondary pollution caused by the inter-particle agglomeration, metal ion leaching, and difficult recovery of nano metal catalysts. Analysis techniques such as SEM, TEM, XRD, BET, FTIR, VSM, TGA, and Raman spectroscopy indicated that the prepared nanocomposites have excellent surface properties, structural stability, and magnetic properties. The performance of nano-CoFe2O4@MC for Congo red (CR) degradation was evaluated by comparison with other treatment systems and study of the influence of experimental parameters, including the anchoring ratios, catalyst dosage, PMS concentration, initial pH, CR concentration, coexisting anions, and humic acid. Both radical and nonradical pathways were observed in the activation process of PMS by nano-CoFe2O4@MC. The analysis results of the element composition and ionic state of the catalyst show that the redox cycle of two ion pairs, Co3+/Co2+ and Fe2+/Fe3+, could enhance the multipath electron transfer on the catalyst surface to promote the generation of reactive oxygen species. Identification of the intermediate products revealed CR was transformed into 12 intermediates through two branch pathways in the nano-CoFe2O4@MC/PMS system. After five cycles of use, the catalytic efficiency of the catalyst did not decrease significantly. Nanocomposites with high catalytic performance, stability, recyclability, and a low ion leaching rate have broad application prospects in the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Zulhumar Musajan
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Hexing Road 26, Harbin, 150040, China.
| |
Collapse
|
35
|
Catalytic Degradation of Ciprofloxacin in Aqueous Solution by Peroxymonosulfate Activated with a Magnetic CuFe2O4@Biochar Composite. Int J Mol Sci 2023; 24:ijms24065702. [PMID: 36982776 PMCID: PMC10051636 DOI: 10.3390/ijms24065702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
A magnetic copper ferrite and biochar composite (CuFe2O4@BC) catalyst was prepared by an improved sol-gel calcination method and initially used for the removal of antibiotics ciprofloxacin (CIP) by activated peroxymonosulfate (PMS). Using CuFe2O4@BC as the activator, 97.8% CIP removal efficiency could be achieved in 30 min. After a continuous degradation cycle, CuFe2O4@BC catalyst still exhibited great stability and repeatability and could also be quickly recovered by an external magnetic field. Meanwhile, the CuFe2O4@BC/PMS system presented good stability for metal ion leaching, which was far less than the leaching of metal ions in the CuFe2O4/PMS system. Moreover, the effects of various influencing factors, such as initial solution pH, activator loading, PMS dosage, reaction temperature, humic acid (HA), and the inorganic anions were explored. The quenching experiments and the electron paramagnetic resonance (EPR) analysis manifested that hydroxyl radical (•OH), sulfate radical (SO4•−), superoxide radical (O2•−), and singlet oxygen (1O2) were generated in the CuFe2O4@BC/PMS system, while 1O2 and O2•− are mainly involved in the degradation process. The synergistic effect between CuFe2O4 and BC enhanced the structural stability and electrical conductivity of the material, which promoted the bonding between the catalyst and PMS, resulting in the enhanced catalytic activity of CuFe2O4@BC. This indicates that CuFe2O4@BC activating PMS is a promising remediation technique for CIP-contaminated water.
Collapse
|
36
|
Iqbal S, Liu J, Ma H, Liu W, Zuo S, Yu Y, Khan A. Development of TiO2 decorated Fe2O3QDs/g-C3N4 Ternary Z-scheme photocatalyst involving the investigation of phase analysis via strain mapping and its photocatalytic performance under visible light illumination. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
37
|
Yuan Y, Zhang C, Zhao C, Wang B, Wang X, Gao B, Wang S, Rinklebe J. One-step preparation of a novel graphitic biochar/Cu 0/Fe 3O 4 composite using CO 2-ambiance pyrolysis to activate peroxydisulfate for dye degradation. J Environ Sci (China) 2023; 125:26-36. [PMID: 36375912 DOI: 10.1016/j.jes.2021.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 06/16/2023]
Abstract
Herein, a one-step co-pyrolysis protocol was adopted for the first time to prepare a novel pyrogenic carbon-Cu0/Fe3O4 heteroatoms (FCBC) in CO2 ambiance to discern the roles of each component in PDS activation. During co-pyrolysis, CO2 catalyzed formation of reducing gases by biomass which facilitated reductive transformation of Fe3+ and Cu2+ to Cu0 and Fe3O4, respectively. According to the analysis, the resulting metal (oxide) catalyzed graphitization of biocharand decomposition of volatile substances resulting in an unprecedented surface area (1240 m2/g). The resulting FCBC showed greater structural defects and less electrical impedance. Batch experiments indicated that Rhodamine B (RhB) degradation by FCBC (100%) was superior to Fe3O4 (50%) and Cu0/Fe3O4 (76.4%) in persulfate (PDS) system, which maintained reasonable efficiency (75.6%-63.6%) within three cycles. The reactive oxygen species (ROS) associated with RhB degradation was identified by an electron paramagnetic resonance and confirmed by scavenging experiments. RhB degradation invoked both (sulfate and dominantly hydroxyl) radical and non-radical (singlet oxygen, 1O2) pathways. Regarding FCBC, Cu0 can continuously react with Fe3+ in Fe3O4 to generate larger quantities of Fe2+, and both Cu0 and Fe2+ activated PDS to yield sulfate radicals which was quickly converted to hydroxyl radical. Besides, Cu0/Cu2+ could complex with PDS to form a metastable complex, which particularly contributed to 1O2 generation. These cascade reactions by FCBC were reinforced by carbonyl group of biochar and favorable electron transfer ability. This work highlighted a new approach to prepare a magnetic and environment-benign heterogonous catalyst to remove organic pollutants in water.
Collapse
Affiliation(s)
- Yangfan Yuan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou 225127, China
| | - Changai Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chenhao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Bing Wang
- School of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou 225127, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville FL, 32611, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou 225127, China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Guangjin-Gu, Seoul 05006, South Korea.
| |
Collapse
|
38
|
Yu J, Zhang X, Zhao X, Ma R, Du Y, Zuo S, Dong K, Wang R, Zhang Y, Gu Y, Sun J. Heterogeneous Fenton oxidation of 2,4-dichlorophenol catalyzed by PEGylated nanoscale zero-valent iron supported by biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41333-41347. [PMID: 36630031 DOI: 10.1007/s11356-023-25182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The excessive use of herbicides and fungicides containing 2,4-dichlorophenol (2,4-DCP) has led to serious environmental water pollution; 2,4-DCP is chemically stable and difficult to be degraded effectively by biological and physical methods. And the degradation of 2,4-DCP using advanced oxidation techniques has been a hot topic. Biochar, polyethylene glycol, ferrous sulfate, and sodium borohydride were used to synthesize the heterogeneous catalyst PEGylated nanoscale zero-valent iron supported by biochar (PEG-nZVI@BC). The catalyst was characterized using scanning electron microscope (SEM) and other means to determine its physicochemical properties. Catalytic performance and mechanism of this catalyst with hydrogen peroxide for the oxidation of 2,4-DCP were investigated. The results showed that PEG-nZVI@BC had good dispersibility, stability, and inoxidizability; the degradation efficiency of 50 mg/L 2,4-DCP by PEG-nZVI@BC/H2O2 system 92.94%, 1.68 times higher than that of nZVI/H2O2 system; there are both free radical and non-free radical pathways in PEG-nZVI@BC/H2O2 system; the degradation process of 2,4-DCP includes hydroxylation, dechlorination, and ring-opening. Overall, PEG-nZVI@BC is a promising heterogeneous catalyst for the degradation of 2,4-DCP.
Collapse
Affiliation(s)
- Junlong Yu
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Xiuxia Zhang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Xiaodong Zhao
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Ruojun Ma
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yi Du
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Shuai Zuo
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Kangning Dong
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Ruirui Wang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yupeng Zhang
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yingying Gu
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Juan Sun
- Department of Environmental and Safety Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| |
Collapse
|
39
|
Tang J, Yao S, Yao R, Liu H, Chen M, Zhong Y, Yu X, Yin A, Sun J. Insight into radical-nonradical coupling activation pathways of peroxymonosulfate by Cu xO for antibiotics degradation. CHEMOSPHERE 2023; 318:137970. [PMID: 36708784 DOI: 10.1016/j.chemosphere.2023.137970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In this work, a heterogeneous catalyst of CuxO was rationally designed by using Cu-based metal organic frameworks (marked Cu-BDC) as the template, and was used to degrade tetracycline (TC) via activation of peroxymonosulfate (PMS). The optimal CuxO-350 showed excellent catalytic efficiency for TC degradation, and the reaction rate constant (0.104 min-1) was 8 times higher than that (0.013 min-1) of raw Cu-BDC. The characterization observations confirmed that CuxO-350 possessed multiple valence states (CuO and Cu2O) and oxygen vacancies (Ov), both of which were favorable for the activation of PMS, resulting in promoting the generation of active species in the CuxO-350 + PMS system. Different from the free radical pathway in Cu-BDC + PMS system, a radical-nonradical coupling process was detected in the CuxO-350 + PMS system, which was confirmed by quenching experiments and EPR measurements. Moreover, the toxicity prediction showed that the toxicity of degradation intermediates declined compared with TC. This work not only opened up a new strategy for the rational design and preparation of high-efficient catalysts by employing metal organic frameworks precursors, but also offered an insight into the reaction mechanism of PMS activation through a radical-nonradical coupling process catalyzed by CuxO-350 derived from Cu-BDC.
Collapse
Affiliation(s)
- Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Meiqin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Aiguo Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| |
Collapse
|
40
|
Wang L, Li R, Zhang Y, Gao Y, Xiao X, Zhang Z, Chen T, Zhao Y. Tetracycline degradation mechanism of peroxymonosulfate activated by oxygen-doped carbon nitride. RSC Adv 2023; 13:6368-6377. [PMID: 36845579 PMCID: PMC9943927 DOI: 10.1039/d3ra00345k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
In this study, oxygen-doped carbon nitride (O-C3N4) was prepared by thermal polymerization and was applied to activate peroxymonosulfate (PMS) for tetracycline (TC) degradation. Experiments were performed to comprehensively evaluate the degradation performance and mechanism. The oxygen atom replaced the nitrogen atom of the triazine structure, which improves the specific surface area of the catalyst, enriches the pore structure and achieves higher electron transport capacity. The characterization results showed that 0.4 O-C3N4 had the best physicochemical properties, and the degradation experiments showed that the 0.4 O-C3N4/PMS system had a higher TC removal rate in 120 min (89.94%) than the unmodified graphitic-phase C3N4/PMS system (52.04%). Cycling experiments showed that O-C3N4 has good reusability and structural stability. Free radical quenching experiments showed that the O-C3N4/PMS system had free radical and non-radical pathways for TC degradation and that the main active species was singlet oxygen (1O2). Intermediate product analysis showed that TC was mineralized to H2O and CO2 mainly by the ring opening, deamination, and demethylation reactions. The results of this study show that the 0.4 O-C3N4/PMS system is simple to prepare and is efficient at removing TC from contaminated water.
Collapse
Affiliation(s)
- Liquan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment Nanjing 210042 China +86 13951930765
- School of Environmental Science and Engineering, Changzhou University Changzhou 213164 China +86 15961238081
| | - Ruyi Li
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment Nanjing 210042 China +86 13951930765
| | - Yimin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment Nanjing 210042 China +86 13951930765
- School of Environmental Science and Engineering, Changzhou University Changzhou 213164 China +86 15961238081
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment Nanjing 210042 China +86 13951930765
| | - Xian Xiao
- School of Environmental Science and Engineering, Changzhou University Changzhou 213164 China +86 15961238081
| | - Zhiwei Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment Nanjing 210042 China +86 13951930765
| | - Ting Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment Nanjing 210042 China +86 13951930765
| | - Yuan Zhao
- School of Environmental Science and Engineering, Changzhou University Changzhou 213164 China +86 15961238081
| |
Collapse
|
41
|
Qu H, Chen L, Yang F, Zhu J, Qi C, Peng G. Synthesis of an Environmentally Friendly Modified Mulberry Branch-Derived Biochar Composite: High Degradation Efficiency of BPA and Mitigation of Toxicity in Silkworm Larvae. Int J Mol Sci 2023; 24:ijms24043609. [PMID: 36835021 PMCID: PMC9961375 DOI: 10.3390/ijms24043609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
In the present study, mulberry branch-derived biochar CuO (MBC/CuO) composite was successfully synthesized and used as a catalyst to activate persulfate (PS) for the degradation of bisphenol A (BPA). The MBC/CuO/PS system exhibited a high degradation efficiency (93%) of BPA, under the conditions of 0.1 g/L MBC/CuO, 1.0 mM PS, 10 mg/L BPA. Free radical quenching and electron spin-resonance spectroscopy (ESR) experiments confirmed that both free radicals •OH, SO4•- and O2•- and non-radicals 1O2 were involved in the MBC/CuO reaction system. Cl- and NOM displayed negligible influence on the degradation of BPA, while HCO3- promoted the removal of BPA. In addition, the toxicity tests of BPA, MBC/CuO and the degraded BPA solution were conducted by the 5th instar silkworm larvae. The toxicity of BPA was reduced after the treatment in the MBC/CuO/PS system, and no obvious toxicity of the synthesized MBC/CuO composite was found in the toxicity evaluation experiments. This work provides a new value-added utilization of mulberry branches as a cost-effective and environmentally friendly PS activator.
Collapse
Affiliation(s)
- Han Qu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lin Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fujian Yang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Chengdu Qi
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (C.Q.); (G.P.)
| | - Guilong Peng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (C.Q.); (G.P.)
| |
Collapse
|
42
|
Iqbal S, Liu J, Ma H, Liu W, Zuo S, Yu Y. Fabrication of TiO2/Fe2O3/g-C3N4 Ternary Photocatalyst via a Low-Temperature Calcination and Solvothermal Route and its visible light Assisted Photocatalytic Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
43
|
Chen Z, Cao W, Bai H, Zhang R, Liu Y, Li Y, Song J, Liu J, Ren G. Review on the degradation of chlorinated hydrocarbons by persulfate activated with zero-valent iron-based materials. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:761-782. [PMID: 36789716 DOI: 10.2166/wst.2023.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated hydrocarbons (CHCs) are often used in industrial processes, and they have been found in groundwater with increasing frequency in recent years. Several typical CHCs, including trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride (CT), etc., have strong cytotoxicity and carcinogenicity, posing a serious threat to human health and ecological environment. Advanced persulfate (PS) oxidation technology based on nano zero-valent iron (nZVI) has become a research hotspot for CHCs degradation in recent years. However, nZVI is easily oxidized to form the surface passivation layer and prone to aggregation in practical application, which significantly reduces the activation efficiency of PS. In order to solve this problem, various nZVI modification solutions have been proposed. This review systematically summarizes four commonly used modification methods of nZVI, and the theoretical mechanisms of PS activated by primitive and modified nZVI. Besides, the influencing factors in the engineering application process are discussed. In addition, the controversial views on which of the two (SO4·- and ·OH) is dominant in the nZVI/PS system are summarized. Generally, SO4·- predominates in acidic conditions while ·OH prefers neutral and alkaline environments. Finally, challenges and prospects for practical application of CHCs removal by nZVI-based materials activating PS are also analyzed.
Collapse
Affiliation(s)
- Zhiguo Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Wenqing Cao
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - He Bai
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Rong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yiyun Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yan Li
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Jingpeng Song
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Juncheng Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Gengbo Ren
- School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
44
|
Xiao J, Dong H, Li Y, Li L, Chu D, Xiang S, Hou X, Dong Q, Xiao S, Jin Z, Wang J. Graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) effectively activate peracetic acid for elimination of sulfamethazine in water under neutral condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129895. [PMID: 36087535 DOI: 10.1016/j.jhazmat.2022.129895] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, a graphene shell-encapsulated copper-based nanoparticles (G@Cu-NPs) was prepared and employed for peracetic acid (PAA) activation. The characterization of G@Cu-NPs confirmed that the as-prepared material was composed of Cu0 and Cu2O inside and encapsulated by a graphene shell. Experimental results suggested that the synthesized G@Cu-NPs could activate PAA to generate free radicals for efficiently removing sulfamethazine (SMT) under neutral condition. The formation of graphene shells could strongly facilitated electron transfer from the core to the surface. Radical quenching experiments and electron spin resonance (ESR) analysis confirmed that organic radicals (R-O•) and hydroxyl radicals (•OH) were generated in the G@Cu-NPs/PAA system, and R-O• (including CH3CO3• and CH3CO2•) was the main contributor to the elimination of SMT. The possible SMT degradation pathways and mechanisms were proposed, and the toxicity of SMT and its intermediates was predicted with the quantitative structure-activity relationship (QSAR) analysis. Besides, the effects of some key parameters, common anions, and humic acid (HA) on the removal of SMT in the G@Cu-NPs/PAA system were also investigated. Finally, the applicability of G@Cu-NPs/PAA system was explored, showing that the G@Cu-NPs/PAA system possessed satisfactory adaptability to treat different water bodies with admirable reusability and stability.
Collapse
Affiliation(s)
- Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Dongdong Chu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuxue Xiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiuzhen Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qixia Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
45
|
Novel Fe0 Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Movahedian S, Faraji AR, Ashouri F. Enhanced PMS/O 2 activation by self-crosslinked amine-gluteraldehyde/chitosan-Cu biocomposites for efficient degradation of HEPES as biological pollutants and selective allylic oxidation of cyclohexene. NEW J CHEM 2023. [DOI: 10.1039/d2nj05161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimization and mechanism elucidation of the catalytic degradation of HEPES and selective aerobic oxidation of cyclohexene by Cu@cross-linked magnetic chitosan.
Collapse
Affiliation(s)
- Sara Movahedian
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Reza Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Applied Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
47
|
Cai C, Liu Y, Xu R, Zhou J, Zhang J, Chen Y, Liu L, Zhang L, Kang S, Xie X. Bicarbonate enhanced heterogeneous activation of peroxymonosulfate by copper ferrite nanoparticles for the efficient degradation of refractory organic contaminants in water. CHEMOSPHERE 2023; 312:137285. [PMID: 36403810 DOI: 10.1016/j.chemosphere.2022.137285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the treatment of residual refractory organic contaminants (ROCs) is a huge challenge for environmental remediation. In this study, a potential process is provided by copper ferrite catalyst (CuFe2O4) activated peroxymonosulfate (PMS, HSO5-) in the bicarbonate (HCO3-) enhanced system for efficient removal of Acid Orange 7 (AO7), 2,4-dichlorophenol, phenol and methyl orange (MO) in water. The impact of key reaction parameters, water quality components, main reactive oxygen species (ROS), probable degradation mechanism, rational degradation pathways and catalyst stability were systematically investigated. A 95.0% AO7 (C0 = 100 mg L-1) removal was achieved at initial pH (pH0) of 5.9 ± 0.1 (natural pH), CuFe2O4 dosage of 0.15 g L-1, PMS concentration of 0.98 mM, HCO3- concentration of 2 mM, and reaction time of 30 min. Both sulfate radical (SO4-•) and hydroxyl radical (•OH) on the surface of catalyst were proved as the predominant radical species through radical quenching experiments and electron paramagnetic resonance (EPR) analysis. The buffer nature of HCO3- was partially contributed for the enhanced degradation of AO7 under CuFe2O4/PMS/HCO3- system. Importantly, according to 13C nuclear magnetic resonance (NMR) and EPR analysis, the positive effect of bicarbonate may be mainly attributed to the formation of peroxymonocarbonate (HCO4-), which may enhance the generation of •OH. The magnetic CuFe2O4 particles can be well recycled and the leaching concentration of Cu was acceptable (<1 mg L-1). Considering the widespread presence of bicarbonate in water environment, this work may provide a safe, efficient, and sustainable technique for the elimination of ROCs from practical complex wastewater.
Collapse
Affiliation(s)
- Chun Cai
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China.
| | - Yangfan Liu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Rui Xu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Jiaheng Zhou
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Jin Zhang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Yu Chen
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Lingyu Liu
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Lexiang Zhang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Shuping Kang
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China
| | - Xianjun Xie
- Department of Environmental Science and Engineering, Hubei Water Systematic Pollution Control and Remediation Technology Engineering Center, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
48
|
Zhang L, Li Y, Guo J, Kan Z, Jia Y. Catalytic ozonation mechanisms of Norfloxacin using Cu-CuFe 2O 4. ENVIRONMENTAL RESEARCH 2023; 216:114521. [PMID: 36216118 DOI: 10.1016/j.envres.2022.114521] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
As an easily recoverable, environmentally friendly and cost-effective catalyst, CuFe2O4 is a promising candidate for the catalytic ozonation of antibiotics in wastewater. However, its catalytic activity is restricted due to its limited active sites and low electron transfer efficiency. In this study, cetyl trimethyl ammonium bromide (CTAB) and Cu0 were doped with CuFe2O4 to introduce more OV, providing more active sites and improving electron transfer efficiency. Experimental results show that the optimum removal efficiency of the catalytic ozonation of Norfloxacin (NOR, a widely used antibiotic) using CTAB doped with Cu-CuFe2O4 as the catalyst is 81.58% with a first-order reaction kinetics constant of 0.03967 min-1. The associated O3 and catalyst dosages are 2.72 mg·L-1 and 0.1 g·L-1, respectively, which are 1.63 times and 2.22 times higher than those in an equivalent O3 system. OV can provide generation sites for surface hydroxyl groups and trigger ·O2- and 1O2 as the main active oxygen species. The synergistic redox cycles of Fe2+/Fe3+ and Cu0/Cu2+ accelerate electron transfer efficiency. The possible degradation pathways of NOR are identified as defluorination, naphthyridine ring-opening and piperazine ring-opening. In summary, this work proposes a new strategy for the modification of CuFe2O4 catalysts and provides new insights into the catalytic ozonation mechanisms for NOR removal.
Collapse
Affiliation(s)
- Lanhe Zhang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Yiran Li
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Jingbo Guo
- School of Civil and Architecture Engineering, Northeast Electric Power University, Jilin, 132012, China.
| | - Zhongfeng Kan
- Jilin Power Supply Company, State Grid Jilin Electric Power Co., Ltd, Jilin, 132000, China
| | - Yanping Jia
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China
| |
Collapse
|
49
|
Oliveira RL, Pisarek M, Ledwa KA, Pasternak G, Kepinski L. Enhanced activation of persulfate improves the selective oxidation of alcohols catalyzed by earth-abundant metal oxides embedded on porous N-doped carbon derived from chitosan. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00566b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metal clusters oxide were embedded in an N-doped carbon and used as catalysts for the activation of peroxydisulfate or peroxymonosulfate in the selective oxidation of benzyl alcohol. Quenching tests were done to investigate the reaction mechanism.
Collapse
Affiliation(s)
- Rafael L. Oliveira
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, Poland
| | - Marcin Pisarek
- Institute of Physical Chemistry of the Polish Academy of Sciences, Poland
| | - Karolina A. Ledwa
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, Poland
| | - Grzegorz Pasternak
- Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Leszek Kepinski
- Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, Poland
| |
Collapse
|
50
|
Yin K, Hao L, Li G. CuO nanosheets incorporated scrap steel slag coupled with persulfate catalysts for high-efficient degradation of sulfonamide from water. ENVIRONMENTAL RESEARCH 2023; 216:114614. [PMID: 36272596 DOI: 10.1016/j.envres.2022.114614] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
A highly efficient and magnetically recoverable persulfate (PS) catalyst was prepared for the removal of sulfonamide (SMD) from wastewater, which is difficult to be degraded by the conventional biological treatment. In this study, the scrap steel slag (SSS) was used as supporting carrier and the CuO nanosheet was incorporated on the surface of SSS. The optimal conditions were determined as follows: the dosage of CuO/SSS was 1 g L-1, the PS concentration was 4 mM and the optimal initial pH was 6.85. Under the optimal conditions, the maximum SMD removal efficiency of 80.29% was achieved within 30 min by using CuO/SSS + PS. In addition, the CuO/SSS + PS system had a wide pH range (5-9) and more than 60% removal efficiency of SMD could be obtained with the pH between 3 and 11. The mechanism based on the phase transformation of Cu(I/II), Cu(II/III) and Fe(II/III) was elucidated by using different analytical techniques, such as SEM, XRD, XPS, BET, FTIR, VSM characterization and free radical analysis. This study provided a new pathway for the SSS resource utilization and the effective degradation of SMD from the refractory wastewater by using CuO/SSS catalyst coupled with PS system.
Collapse
Affiliation(s)
- Keke Yin
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, 300457, Tianjin, China
| | - Guiju Li
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, 300457, Tianjin, China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, 300457, Tianjin, China.
| |
Collapse
|