1
|
Jiang Y, Ma Y, Zheng J, Ye N, Yuan C. Characterization of size-resolved aerosol hygroscopicity and liquid water content in Nanjing of the Yangtze River Delta. J Environ Sci (China) 2025; 151:26-41. [PMID: 39481938 DOI: 10.1016/j.jes.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 11/03/2024]
Abstract
Aerosol hygroscopicity and liquid water content (ALWC) have important influences on the environmental and climate effect of aerosols. In this study, we measured the hygroscopic growth factors (GF) of particles with dry diameters of 40, 80, 150, and 200 nm during the wintertime in Nanjing. Both the GF-derived hygroscopicity parameter (κgf) and ALWC increased with particle size, but displayed differing diurnal variations, with κgf peaking around the midday, while ALWC peaking in the early morning. Nitrate, ammonium and oxygenated organic aerosols (OOA) were found as the chemical components mostly strongly correlated with ALWC. A closure study suggests that during midday photo-oxidation and nighttime high ALWC periods, the κ of organic aerosols (κorg) was underestimated when using previous parameterizations. Accordingly, we re-constructed parameterizations for κorg and the oxidation level of organics for these periods, which indicates a higher hygroscopicity of photochemically formed OOA than the aqueous OOA, yet both being much higher than the generally assumed OOA hygroscopicity. Additionally, in a typical high ALWC episode, concurrently increased ALWC, nitrate, OOA as well as aerosol surface area and mass concentrations were observed under elevated ambient RH. This strongly indicates a coupled effect that the hygroscopic secondary aerosols, in particular nitrate with strong hygroscopicity, led to large increase in ALWC, which in turn synergistically boosted nitrate and OOA formation by heterogeneous/aqueous reactions. Such interaction may represent an important mechanism contributing to enhanced formation of secondary aerosols and rapid growth of fine particulate matter under relatively high RH conditions.
Collapse
Affiliation(s)
- Youling Jiang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Ma
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jun Zheng
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Nan Ye
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Cheng Yuan
- School of Emergency Management, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Li A, Wang Y, Qi Q, Li Y, Jia H, Zhou X, Guo H, Xie S, Liu J, Mu Y. Improved PM 2.5 prediction with spatio-temporal feature extraction and chemical components: The RCG-attention model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177183. [PMID: 39471939 DOI: 10.1016/j.scitotenv.2024.177183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Deep learning models are widely used for PM2.5 prediction. However, neglecting temporal and spatial characteristics leads to low prediction accuracy. In this work, a new deep learning model (RCG - Attention model) was developed, which combines the residual neural network (ResNet) and the convolution gated recurrent network (ConvGRU) and is applied to extract the spatio - temporal features for predicting PM2.5 concentration over the subsequent 24 h. The ResNet extracts the spatial distribution features of pollutants, and the ConvGRU extracts temporal features. The spatial and temporal features are fused by the multi - head attention mechanism to obtain multi - dimensional features. These features are finally fed into a series of fully connected layers to predict the future results. Incorporating these chemical components enhances the scientific validity of the dataset and strengthens the inherent logical connections among variables. The Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE), and R - squared (R2) results indicate that the prediction performance of the RCG - Attention model surpasses that of other baseline models. The model demonstrates superior prediction performance across multiple monitoring stations, suggesting robust generalization capabilities and adaptability for various regions in one city. The SHAP results show that PM10, NO2, RH, NO3-, OC and NH4+ are significant influencing features. The RCG - Attention model provides a comprehensive solution for PM2.5 concentration prediction by integrating spatial and temporal feature extraction with chemical components.
Collapse
Affiliation(s)
- Ao Li
- Beijing Institute of Petrochemical Technology, China
| | - Yafei Wang
- Beijing Institute of Petrochemical Technology, China.
| | - Qianqian Qi
- Beijing Institute of Petrochemical Technology, China
| | - Yunfeng Li
- Beijing Institute of Petrochemical Technology, China
| | - Haixia Jia
- Beijing Daxing District Ecology and Environment Bureau, China
| | - Xin Zhou
- Beijing Daxing District Ecology and Environment Bureau, China
| | - Haixin Guo
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shuyang Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Junfeng Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yujing Mu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Cao X, Liu YX, Huang Q, Chen Z, Sun J, Sun J, Pang SF, Liu P, Wang W, Zhang YH, Ge M. Single Droplet Tweezer Revealing the Reaction Mechanism of Mn(II)-Catalyzed SO 2 Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5068-5078. [PMID: 38446141 DOI: 10.1021/acs.est.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Sulfate aerosol is one of the major components of secondary fine particulate matter in urban haze that has crucial impacts on the social economy and public health. Among the atmospheric sulfate sources, Mn(II)-catalyzed SO2 oxidation on aerosol surfaces has been regarded as a dominating one. In this work, we measured the reaction kinetics of Mn(II)-catalyzed SO2 oxidation in single droplets using an aerosol optical tweezer. We show that the SO2 oxidation occurs at the Mn(II)-active sites on the aerosol surface, per a piecewise kinetic formulation, one that is characterized by a threshold surface Mn(II) concentration and gaseous SO2 concentration. When the surface Mn(II) concentration is lower than the threshold value, the reaction rate is first order with respect to both Mn(II) and SO2, agreeing with our traditional knowledge. But when surface Mn(II) concentration is above the threshold, the reaction rate becomes independent of Mn(II) concentration, and the reaction order with respect to SO2 becomes greater than unity. The measured reaction rate can serve as a tool to estimate sulfate formation based on field observation, and our established parametrization corrects these calculations. This framework for reaction kinetics and parametrization holds promising potential for generalization to various heterogeneous reaction pathways.
Collapse
Affiliation(s)
- Xue Cao
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu-Xin Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qishen Huang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhe Chen
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiuyi Sun
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Sun
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shu-Feng Pang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pai Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Wang W, Liu Y, Wang T, Ge Q, Li K, Liu J, You W, Wang L, Xie L, Fu H, Chen J, Zhang L. Significantly Accelerated Photosensitized Formation of Atmospheric Sulfate at the Air-Water Interface of Microdroplets. J Am Chem Soc 2024; 146:6580-6590. [PMID: 38427385 DOI: 10.1021/jacs.3c11892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The multiphase oxidation of sulfur dioxide (SO2) to form sulfate is a complex and important process in the atmosphere. While the conventional photosensitized reaction mainly explored in the bulk medium is reported to be one of the drivers to trigger atmospheric sulfate production, how this scheme functionalizes at the air-water interface (AWI) of aerosol remains an open question. Herein, employing an advanced size-controllable microdroplet-printing device, surface-enhanced Raman scattering (SERS) analysis, nanosecond transient adsorption spectrometer, and molecular level theoretical calculations, we revealed the previously overlooked interfacial role in photosensitized oxidation of SO2 in humic-like substance (HULIS) aerosol, where a 3-4 orders of magnitude increase in sulfate formation rate was speculated in cloud and aerosol relevant-sized particles relative to the conventional bulk-phase medium. The rapid formation of a battery of reactive oxygen species (ROS) comes from the accelerated electron transfer process at the AWI, where the excited triplet state of HULIS (3HULIS*) of the incomplete solvent cage can readily capture electrons from HSO3- in a way that is more efficient than that in the bulk medium fully blocked by water molecules. This phenomenon could be explained by the significantly reduced desolvation energy barrier required for reagents residing in the AWI region with an open solvent shell.
Collapse
Affiliation(s)
- Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
5
|
Zhang S, Li D, Ge S, Wu C, Xu X, Liu X, Li R, Zhang F, Wang G. Elucidating the Mechanism on the Transition-Metal Ion-Synergetic-Catalyzed Oxidation of SO 2 with Implications for Sulfate Formation in Beijing Haze. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2912-2921. [PMID: 38252977 DOI: 10.1021/acs.est.3c08411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Currently, atmospheric sulfate aerosols cannot be predicted reliably by numerical models because the pathways and kinetics of sulfate formation are unclear. Here, we systematically investigated the synergetic catalyzing role of transition-metal ions (TMIs, Fe3+/Mn2+) in the oxidation of SO2 by O2 on aerosols using chamber experiments. Our results showed that the synergetic effect of TMIs is critically dependent on aerosol pH due to the solubility of Fe(III) species sensitive to the aqueous phase acidity, which is effective only under pH < 3 conditions. The sulfate formation rate on aerosols is 2 orders of magnitude larger than that in bulk solution and increases significantly on smaller aerosols, suggesting that such a synergetic-catalyzed oxidation occurs on the aerosol surface. The kinetic reaction rate can be described as R = k*[H+]-2.95[Mn(II)][Fe(III)][S(IV)] (pH ≤ 3.0). We found that TMI-synergetic-catalyzed oxidation is the dominant pathway of sulfate formation in Beijing when haze particles are very acidic, while heterogeneous oxidation of SO2 by NO2 is the most important pathway when haze particles are weakly acidic. Our work for the first time clarified the role and kinetics of TMI-synergetic-catalyzed oxidation of SO2 by O2 in haze periods, which can be parameterized into models for future studies of sulfate formation.
Collapse
Affiliation(s)
- Si Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Dapeng Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Shanghai Energy Construction Group Co., Ltd, Shanghai 200434, China
| | | | - Can Wu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Xinbei Xu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodi Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Li
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Fan Zhang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202150, China
| |
Collapse
|
6
|
Zang X, Zhang Z, Zhao Y, Li G, Xie H, Zhang W, Wu G, Yang X, Jiang L. Effects of NO 2 and SO 2 on the secondary organic aerosol formation from β-pinene photooxidation. J Environ Sci (China) 2024; 136:151-160. [PMID: 37923426 DOI: 10.1016/j.jes.2022.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2023]
Abstract
Elucidating the effects of anthropogenic pollutants on the photooxidation of biogenic volatile organic compounds is crucial to understanding the fundamental mechanisms of secondary organic aerosol (SOA) formation. Here, the impacts of NO2 and SO2 on SOA formation from the photooxidation of a representative monoterpene, β-pinene, were investigated by a number of laboratory studies. The results indicated NO2 enhanced the SOA mass concentrations and particle number concentrations under both low and high β-pinene conditions. This could be rationalized that the increased O3 concentrations upon the NOx photolysis was helpful for the generation of more amounts of O3-oxidized products, which accelerated the SOA nucleation and growth. Combing with NO2, the promotion of the SOA yield by SO2 was mainly reflected in the increase of mass concentration, which might be due to the elimination of the newly formed particles by the initially formed particles. The observed low oxidation degree of SOA might be attributed to the fast growth of SOA, resulting in the uptake of less oxygenated gas-phase species onto the particle phase. The present findings have important implications for SOA formation affected by anthropogenic-biogenic interactions in the ambient atmosphere.
Collapse
Affiliation(s)
- Xiangyu Zang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Ge Q, Liu Y, You W, Wang W, Li K, Ruan X, Xie L, Wang T, Zhang L. Prebiotic synthesis of mineral-bearing microdroplet from inorganic carbon photoreduction at air-water interface. PNAS NEXUS 2023; 2:pgad389. [PMID: 38034096 PMCID: PMC10682977 DOI: 10.1093/pnasnexus/pgad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
The origin of life on Earth is an enigmatic and intricate conundrum that has yet to be comprehensively resolved despite recent significant developments within the discipline of archaeology and geology. Chemically, metal-sulfide minerals are speculated to serve as an important medium for giving birth in early life, while yet so far direct evidence to support the hypothesis for the highly efficient conversion of inorganic carbon into praxiological biomolecules remains scarce. In this work, we provide an initial indication that sphalerite, employed as a typical mineral, shows its enormous capability for promoting the conversion of inorganic carbon into elementary biomolecule formic acid (HCOOH) in airborne mineral-bearing aerosol microdroplet, which is over two orders of magnitude higher than that of the corresponding conventional bulk-like aqueous phase medium in the environment (e.g. river, lake, sea, etc.). This significant enhancement was further validated by a wide range of minerals and clays, including CuS, NiS, CoS, CdS, MnS, elemental sulfur, Arizona Test Dust, loess, nontronite, and montmorillonite. We reveal that the abundant interface of unique physical-chemical features instinct for aerosol or cloud microdroplets reduces the reaction energy barrier for the reaction, thus leading to extremely high HCOOH production (2.52 × 1014 kg year-1). This study unfolds unrecognized remarkable contributions of the considered scheme in the accumulation of prebiotic biomolecules in the ancient period of the Earth.
Collapse
Affiliation(s)
- Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wenbo You
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Xuejun Ruan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Lifang Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
8
|
Yao M, Zhao Y, Chang C, Wang S, Li Z, Li C, Chan AWH, Xiao H. Multiphase Reactions between Organic Peroxides and Sulfur Dioxide in Internally Mixed Inorganic and Organic Particles: Key Roles of Particle Phase Separation and Acidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15558-15570. [PMID: 37797208 DOI: 10.1021/acs.est.3c04975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Organic peroxides (POs) are ubiquitous in the atmosphere and particularly reactive toward dissolved sulfur dioxide (SO2), yet the reaction kinetics between POs and SO2, especially in complex inorganic-organic mixed particles, remain poorly constrained. Here, we report the first investigation of the multiphase reactions between SO2 and POs in monoterpene-derived secondary organic aerosol internally mixed with different inorganic salts (ammonium sulfate, ammonium bisulfate, or sodium nitrate). We find that when the particles are phase-separated, the PO-S(IV) reactivity is consistent with that measured in pure SOA and depends markedly on the water content in the organic shell. However, when the organic and inorganic phases are miscible, the PO-S(IV) reactivity varies substantially among different aerosol systems, mainly driven by their distinct acidities (not by ionic strength). The second-order PO-S(IV) rate constant decreases monotonically from 5 × 105 to 75 M-1 s-1 in the pH range of 0.1-5.6. Both proton catalysis and general acid catalysis contribute to S(IV) oxidation, with their corresponding third-order rate constants determined to be (6.4 ± 0.7) × 106 and (6.9 ± 4.6) × 104 M-2 s-1 at pH 2-6, respectively. The measured kinetics imply that the PO-S(IV) reaction in aerosol is an important sulfate formation pathway, with the reaction kinetics dominated by general acid catalysis at pH > 3 under typical continental atmospheric conditions.
Collapse
Affiliation(s)
- Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Environmental & Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongxuan Chang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ziyue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenxi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Huayun Xiao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Wang N, Zhou L, Feng M, Song T, Zhao Z, Song D, Tan Q, Yang F. Progressively narrow the gap of PM 2.5 pollution characteristics at urban and suburban sites in a megacity of Sichuan Basin, China. J Environ Sci (China) 2023; 126:708-721. [PMID: 36503796 DOI: 10.1016/j.jes.2022.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, the fine particle pollution is still severe in some megacities of China, especially in the Sichuan Basin, southwestern China. In order to understand the causes, sources, and impacts of fine particles, we collected PM2.5 samples and analyzed their chemical composition in typical months from July 2018 to May 2019 at an urban and a suburban (background) site of Chengdu, a megacity in this region. The daily average concentrations of PM2.5 ranged from 5.6-102.3 µg/m3 and 4.3-110.4 µg/m3 at each site. Secondary inorganics and organic matters were the major components in PM2.5 at both sites. The proportion of nitrate in PM2.5 has exceeded sulfate and become the primary inorganic component. SO2 was easier to transform into sulfate in urban areas because of Mn-catalytic heterogeneous reactions. In contrast, NO2 was easily converted in suburbs with high aerosol water content. Furthermore, organic carbon in urban was much greater than that in rural, other than elemental carbon. Element Cr and As were the key cancer risk drivers. The main sources of PM2.5 in urban and suburban areas were all secondary aerosols (42.9%, 32.1%), combustion (16.0%, 25.2%) and vehicle emission (15.2%, 19.2%). From clean period to pollution period, the contributions from combustion and secondary aerosols increased markedly. In addition to tightening vehicle controls, urban areas need to restrict emissions from steel smelters, and suburbs need to minimize coal and biomass combustion in autumn and winter.
Collapse
Affiliation(s)
- Ning Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Tianli Song
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhuoran Zhao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Danlin Song
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Wang J, Ma X, Ji Y, Ji Y, Gao Y, Xiao Y, Li G, An T. Competing esterification and oligomerization reactions of typical long-chain alcohols to secondary organic aerosol formation. J Environ Sci (China) 2023; 126:103-112. [PMID: 36503740 DOI: 10.1016/j.jes.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 06/17/2023]
Abstract
Organosulfate (OSA) nanoparticles, as secondary organic aerosol (SOA) compositions, are ubiquitous in urban and rural environments. Hence, we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations. The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ions (CBs), which engage in the subsequent esterification or oligomerization reactions to form OSAs/organosulfites (OSIs) or dimers. The kinetic results reveal that dehydration to form CBs for BOL and DOL reaction systems is the rate-limiting step. Subsequently, about 18% of CBs occur via oligomerization to dimers, which are difficult to further oligomerize because all reactive sites are occupied. The rate constant of BOL reaction system is one order of magnitude larger than that of DOL reaction system, implying that relative short-chain alcohols are more prone to contribute OSAs/OSIs than long-chain alcohols. Our results reveal that typical long-chain alcohols contribute SOA formation via esterification rather than oligomerization because OSA/OSI produced by esterification engages in nanoparticle growth through enhancing hygroscopicity.
Collapse
Affiliation(s)
- Jiaxin Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaohui Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yongpeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuqi Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Jing B, Zhou J, Li D, Ao Z. Computational study on persulfate activation by two-dimensional carbon materials with various nitrogen proportions for carbamazepine oxidation in wastewater: The essential role of graphitic N atoms. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130074. [PMID: 36193610 DOI: 10.1016/j.jhazmat.2022.130074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/06/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional carbon materials with various N atom proportions (2D-CNMs) are constructed to clarify the optimal catalyst for carbamazepine (CBZ) oxidation and the inner mechanism for persulfate-based advanced oxidation processes (P-AOPs). Results show that peroxydisulfate (PDS) can be activated by all 2D-CNMs with the order of C3N > C71N > graphene > C2N > CN, while C3N is the only catalyst for peroxymonosulfate (PMS) activation. The C3N with the maximum graphitic N can activate PDS and PMS in a wide temperature range at any pH, and demonstrates the optimal CBZ oxidation performance. Notably, the graphitic N atoms promote P-AOPs from five aspects: (i) electron structure, (ii) electrical conductivity, (iii) electron transfer from persulfate to catalysts, (iv) electron jump of co-system before and after activation, (v) interaction between catalyst and persulfate. The most vigorous activity of C3N is attributed to the greatest number of graphitic N. This work clarifies the essential role of graphitic N atoms with implications for the catalyst design, and facilitates the environmental applications of P-AOPs for micropollutant abatement.
Collapse
Affiliation(s)
- Binghua Jing
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon 99977, Hong Kong, China
| | - Junhui Zhou
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, PR China
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhimin Ao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, PR China.
| |
Collapse
|
12
|
Wang L, Li K, Liu Y, Gong K, Liu J, Ao J, Ge Q, Wang W, Ji M, Zhang L. Significantly Accelerated Hydroxyl Radical Generation by Fe(III)-Oxalate Photochemistry in Aerosol Droplets. J Phys Chem A 2023; 127:250-260. [PMID: 36595358 DOI: 10.1021/acs.jpca.2c05919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fe(III)-oxalate complexes are ubiquitous in atmospheric environments, which can release reactive oxygen species (ROS) such as H2O2, O•2-, and OH• under light irradiation. Although Fe(III)-oxalate photochemistry has been investigated extensively, the understanding of its involvement in authentic atmospheric environments such as aerosol droplets is far from enough, since the current available knowledge has mainly been obtained in bulk-phase studies. Here, we find that the production of OH• by Fe(III)-oxalate in aerosol microdroplets is about 10-fold greater than that of its bulk-phase counterpart. In addition, in the presence of Fe(III)-oxalate complexes, the rate of photo-oxidation from SO2 to sulfate in microdroplets was about 19-fold faster than that in the bulk phase. The availability of efficient reactants and mass transfer due to droplet effects made dominant contributions to the accelerated OH• and SO42- formation. This work highlights the necessary consideration of droplet effects in atmospheric laboratory studies and model simulations.
Collapse
Affiliation(s)
- Longqian Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People's Republic of China
| | - Kejian Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People's Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Kedong Gong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Juan Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Qiuyue Ge
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Wei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai200433, People's Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai200433, People's Republic of China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, People's Republic of China
| |
Collapse
|
13
|
Ye C, Lu K, Song H, Mu Y, Chen J, Zhang Y. A critical review of sulfate aerosol formation mechanisms during winter polluted periods. J Environ Sci (China) 2023; 123:387-399. [PMID: 36522000 DOI: 10.1016/j.jes.2022.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 06/17/2023]
Abstract
Sulfate aerosol contributes to particulate matter pollution and plays a key role in aerosol radiative forcing, impacting human health and climate change. Atmospheric models tend to substantially underestimate sulfate concentrations during haze episodes, indicating that there are still missing mechanisms not considered by the models. Despite recent good progress in understanding the missing sulfate sources, knowledge on different sulfate formation pathways during polluted periods still involves large uncertainties and the dominant mechanism is under heated debate, calling for more field, laboratory, and modeling work. Here, we review the traditional sulfate formation mechanisms in cloud water and also discuss the potential factors affecting multiphase S(Ⅳ) oxidation. Then recent progress in multiphase S(Ⅳ) oxidation mechanisms is summarized. Sulfate formation rates by different prevailing oxidation pathways under typical winter-haze conditions are also calculated and compared. Based on the literature reviewed, we put forward control of the atmospheric oxidation capacity as a means to abate sulfate aerosol pollution. Finally, we conclude with a concise set of research priorities for improving our understanding of sulfate formation mechanisms during polluted periods.
Collapse
Affiliation(s)
- Can Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Huan Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Gao J, Shi G, Zhang Z, Wei Y, Tian X, Feng Y, Russell AG, Nenes A. Targeting Atmospheric Oxidants Can Better Reduce Sulfate Aerosol in China: H 2O 2 Aqueous Oxidation Pathway Dominates Sulfate Formation in Haze. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10608-10618. [PMID: 35786903 DOI: 10.1021/acs.est.2c01739] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Particulate sulfate is one of the most important components in the atmosphere. The observation of rapid sulfate aerosol production during haze events provoked scientific interest in the multiphase oxidation of SO2 in aqueous aerosol particles. Diverse oxidation pathways can be enhanced or suppressed under different aerosol acidity levels and high ionic strength conditions of atmospheric aerosol. The importance of ionic strength to sulfate multiphase chemistry has been verified under laboratory conditions, though studies in the actual atmosphere are still limited. By utilizing online observations and developing an improved solute strength-dependent chemical thermodynamics and kinetics model (EF-T&K model, EF is the enhancement factor that represents the effect of ionic strength on an aerosol aqueous-phase reaction), we provided quantitative evidence that the H2O2 pathway was enhanced nearly 100 times and dominated sulfate formation for entire years (66%) in Tianjin (a northern city in China). TMI (oxygen catalyzed by transition-metal ions) (14%) and NO2 (14%) pathways got the second-highest contributions. Machine learning supported the result that aerosol sulfate production was more affected by the H2O2 pathway. The collaborative effects of atmospheric oxidants and SO2 on sulfate aerosol production were further investigated using the improved EF-T&K model. Our findings highlight the effectiveness of adopting target oxidant control as a new direction for sustainable mitigation of sulfate, given the already low SO2 concentrations in China.
Collapse
Affiliation(s)
- Jie Gao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Zhongcheng Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yuting Wei
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Xiao Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Athanasios Nenes
- School of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras GR-26504, Greece
| |
Collapse
|
15
|
Liu Y, Deng Y, Liu J, Fang X, Wang T, Li K, Gong K, Bacha AU, Nabi I, Ge Q, Zhang X, George C, Zhang L. A novel pathway of atmospheric sulfate formation through carbonate radicals. ATMOSPHERIC CHEMISTRY AND PHYSICS 2022; 22:9175-9197. [DOI: 10.5194/acp-22-9175-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Abstract. Carbon dioxide is considered an inert gas that rarely participates in atmospheric chemical reactions. Nonetheless, we show here that CO2 is involved in some important photo-oxidation reactions in the atmosphere through the formation of carbonate radicals (CO3⚫-). This potentially active intermediate CO3⚫- is routinely overlooked in atmospheric chemistry concerning its effect on sulfate formation. The present work demonstrates that the SO2 uptake coefficient is enhanced by 17 times on mineral dust particles driven by CO3⚫-. Importantly, upon irradiation, mineral dust particles are speculated to produce gas-phase carbonate radical ions when the atmospherically relevant concentration of CO2 presents, thereby potentially promoting external sulfate aerosol formation and oxidative potential in the atmosphere. Employing a suite of laboratory investigations of sulfate formation in the presence of carbonate radicals on the model and authentic dust particles, ground-based field measurements of sulfate and (bi)carbonate ions within ambient PM, together with density functional theory (DFT) calculations for single electron transfer processes in terms of CO3⚫--initiated S(IV) oxidation, a novel role of carbonate radical in atmospheric chemistry is elucidated.
Collapse
|
16
|
Chen Z, Liu P, Wang W, Cao X, Liu YX, Zhang YH, Ge M. Rapid Sulfate Formation via Uncatalyzed Autoxidation of Sulfur Dioxide in Aerosol Microdroplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7637-7646. [PMID: 35638231 DOI: 10.1021/acs.est.2c00112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Severe winter haze events in Beijing and North China Plain are characterized by rapid production of sulfate aerosols with unresolved mechanisms. Oxidation of SO2 by O2 in the absence of metal catalysts (uncatalyzed autoxidation) represents the most ubiquitous SO2 conversion pathway in the atmosphere. However, this reaction has long been regarded as too slow to be atmospherically meaningful. This traditional view was based on the kinetic studies conducted in bulk dilute solutions that mimic cloudwater but deviate from urban aerosols. Here, we directly measure the sulfate formation rate via uncatalyzed SO2 autoxidation in single (NH4)2SO4 microdroplets, by using an aerosol optical tweezer coupled with a cavity-enhanced Raman spectroscopy technique. We find that the aqueous reaction of uncatalyzed SO2 autoxidation is accelerated by two orders of magnitude at the high ionic strength (∼36 molal) conditions in the supersaturated aerosol water. Furthermore, at acidic conditions (pH 3.5-4.5), uncatalyzed autoxidation predominately occurs on droplet surface, with a reaction rate unconstrained by SO2 solubility. With these rate enhancements, we estimate that the uncatalyzed SO2 autoxidation in aerosols can produce sulfate at a rate up to 0.20 μg m-3 hr-1, under the winter air pollution condition in Beijing.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pai Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | - Xue Cao
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu-Xin Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Li J, Li J, Wang G, Ho KF, Han J, Dai W, Wu C, Cao C, Liu L. In-vitro oxidative potential and inflammatory response of ambient PM 2.5 in a rural region of Northwest China: Association with chemical compositions and source contribution. ENVIRONMENTAL RESEARCH 2022; 205:112466. [PMID: 34863982 DOI: 10.1016/j.envres.2021.112466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/15/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Overproduction of reactive oxygen species (ROS) induced by atmospheric particles and subsequent inflammatory responses are considered as one of the most important pathological mechanisms with regard to the adverse effects of air pollution exposure. In this study, fine particulate matter (PM2.5) samples were collected at a rural site in Guanzhong Basin, Northwest China, in both summer (August 3-23, 2016) and winter (January 5-February 1, 2017). Then, human bronchial epithelial BEAS-2B cells were exposed to the PM2.5, cultured for 24 h, and then assayed for particle-induced ROS and three inflammatory factors (tumor necrosis-α (TNF-α), interleukin-6 (IL-6), and interferon-γ (IFN-γ)) in vitro. The oxidative potential (OP) induced by winter PM2.5 samples was higher than that induced by summertime samples, whereas inflammatory values showed contrasting seasonal variations. Both OP and inflammatory factors were significantly correlated with most chemical compounds in winter, but not in summer, which was thought to be related mainly to the higher contribution from secondary aerosols formed during the warm season. Source apportionment results showed secondary aerosols formation have significant contribution to OP of PM2.5 in both seasons, but the dominant oxidation processes is different. Secondary nitrates-related process was the major contributors regulating the OP in winter; however, secondary sulfates formation were mainly responsible for the ROS responses in summer. For primary emission, biomass burning, rather than coal emission or vehicle exhaust, was the significant source for OP of PM2.5 in winter. In most cases, the source contribution of each inflammatory factor was similar to that of the ROS. Our results highlighted the significant health risk of atmospheric aerosols from biomass burning in the rural regions of Guanzhong Basin, Northwest China.
Collapse
Affiliation(s)
- Jianjun Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Jin Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China.
| | - Kin Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing Han
- College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Wenting Dai
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Can Wu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Institute of Eco-Chongming, 3663 N. Zhongshan Rd., Shanghai, 200062, China
| | - Cong Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Lang Liu
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
18
|
Sha T, Ma X, Wang J, Tian R, Zhao J, Cao F, Zhang YL. Improvement of inorganic aerosol component in PM 2.5 by constraining aqueous-phase formation of sulfate in cloud with satellite retrievals: WRF-Chem simulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150229. [PMID: 34798748 DOI: 10.1016/j.scitotenv.2021.150229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
High concentrations of PM2.5 in China have caused severe visibility degradation and health problems. However, it is still challenging to accurately predict PM2.5 and its chemical components in numerical models. In this study, we compared the inorganic aerosol components of PM2.5 (sulfate, nitrate, and ammonium (SNA)) simulated by the Weather Research and Forecasting model fully coupled with chemistry (WRF-Chem) model with in-situ data in a heavy haze-fog event during November 2018 in Nanjing, China. Comparisons show that the model underestimates sulfate concentrations by 81% and fails to reproduce the significant increase of sulfate from early morning to noon, which corresponds to the timing of fog dissipation that suggests the model underestimates the aqueous-phase formation of sulfate in clouds. In addition, the model overestimates both nitrate and ammonium concentrations by 184% and 57%, respectively. These overestimates contribute to the simulated SNA being 77.2% higher than observed. However, cloud water content is also underestimated which is a pathway for important aqueous-phase reactions. Therefore, we constrained the simulated cloud water content based on the Moderate Resolution Imaging Spectroradiometer (MODIS) Liquid Water Path observations. Results show that the simulation with MODIS-corrected cloud water content increases the sulfate by a factor of 3, decreases the Normalized Mean Bias (NMB) by 53.5%, and reproduces its diurnal cycle with the peak concentration occurring at noon. The improved sulfate simulation also improves the simulation of nitrate, which decreases the simulated nitrate bias by 134%. Although the simulated ammonium is still higher than the observations, corrected cloud water content leads to a decrease of the modelled bias in SNA from 77.2% to 14.1%. The strong sensitivity of simulated SNA concentration to the cloud water content provides an explanation for the simulated SNA bias. Hence, uncertainties in cloud water content can contribute to model biases in simulating SNA which are less frequently explored from a process-level perspective and can be reduced by constraining the model with satellite observations.
Collapse
Affiliation(s)
- Tong Sha
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoyan Ma
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa 52242, United States
| | - Rong Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianqi Zhao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Fang Cao
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change and Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change and Key Laboratory Meteorological Disaster, Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Jiangsu Provincial Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
19
|
Li H, Ma Y, Duan F, Huang T, Kimoto T, Hu Y, Huo M, Li S, Ge X, Gong W, He K. Characterization of haze pollution in Zibo, China: Temporal series, secondary species formation, and PM x distribution. CHEMOSPHERE 2022; 286:131807. [PMID: 34371362 DOI: 10.1016/j.chemosphere.2021.131807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/13/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
An online field observation was conducted in Zibo, China from September 1, 2018 to February 28, 2019, covering autumn and winter. Within the investigation period, the mean mass concentrations of PM1, PM2.5, and PM10 were 49.3, 86.1, and 136.5 μg m-3, respectively. OA (organic aerosol) was the most dominant species in PM2.5 (39.7 %), followed by NO3- (26.3 %) and SO42- (17.0 %), indicating the importance of secondary species on PM2.5. Increase of particles were always accompanied increasing relative humidity (RH), slow wind, and increasing precursors, contributing the secondary transition. SO42- was more susceptible to RH, indicating the dominant role of heterogeneous processes in its secondary formation. As RH increased, its strengthening effect on SO42- increased as well. Photochemistry was the main contributor to the secondary formation of NO3-. The morning and evening rush hours determined the peak of absolute NO3- throughout the day. By classifying particles into three bins, we found that smaller particles were the biggest contributors (larger PM1/PM2.5) of slight pollution (35 < PM2.5<115 μg m-3). When severe haze occurred, PM2.5 contributed more than particles of other sizes (PM1 or PM10). Secondary species contributed more to particles within 2.5 μm but less to larger particles. PM1/PM2.5 was high from 9:00 to 15:00, indicating the strong effect of photochemistry on smaller particles. In comparison, larger particles favored more humid conditions. NO3- preferentially existed in larger particles because the hygroscopicity of preexisting species (SO42- and NO3-) promoted partitioning. SO42- appeared a stable diurnal variation, replying its stable contribution to particles of different sizes.
Collapse
Affiliation(s)
- Hui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, 100084, China
| | - Yongliang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, 100084, China.
| | - Tao Huang
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka, 543-0024, Japan
| | - Takashi Kimoto
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka, 543-0024, Japan
| | - Yunxing Hu
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka, 543-0024, Japan
| | - Mingyu Huo
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka, 543-0024, Japan
| | - Shihong Li
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka, 543-0024, Japan
| | - Xiang Ge
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka, 543-0024, Japan
| | - Wanru Gong
- Kimoto Electric Co. Ltd, Funahashi-Cho, Tennouji-Ku, Osaka, 543-0024, Japan
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Park DH, Cho C, Kim H, Park RJ, Anderson B, Lee T, Huey GL, Wennberg PO, Weinheimer AJ, Yum SS, Long R, Kim SW. Boundary layer versus free tropospheric submicron particle formation: A case study from NASA DC-8 observations in the Asian continental outflow during the KORUS-AQ campaign. ATMOSPHERIC RESEARCH 2021; 264:1-11. [PMID: 36936135 PMCID: PMC10019524 DOI: 10.1016/j.atmosres.2021.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we contrasted major secondary inorganic species and processes responsible for submicron particle formation (SPF) events in the boundary layer (BL) and free troposphere (FT) over the Korean Peninsula during Korea-United States Air Quality (KORUS-AQ) campaign (May-June, 2016) using aircraft observations. The number concentration of ultrafine particles with diameters between 3 nm and 10 nm (NCN3-10) during the entire KORUS-AQ period reached a peak (7,606 ± 12,003 cm -3) at below 1 km altitude, implying that the particle formation around the Korean Peninsula primarily occurred in the daytime BL. During the BL SPF case (7 May, 2016), the SPF over Seoul metropolitan area was more attributable to oxidation of NO2 rather than SO2-to-sulfate conversion. From the analysis of the relationship between nitrogen oxidation ratio (NOR) and temperature or relative humidity (RH), NOR showed a positive correlation only with temperature. This suggests that homogeneous gas-phase reactions of NO2 with OH or O3 contributed to nitrate formation. From the relationship between NCN3-10 (> 10,000 cm-3) and the NOR (or sulfur oxidation ratio) at Olympic Park in Seoul during the entire KORUS-AQ period, it was regarded that the relative importance of nitrogen oxidation was grown as the NCN3-10 increased. During the FT SPF case (31 May, 2016) over the yellow sea, the SO2-to-sulfate conversion seemed to influence SPF highly. The sulfate/CO ratio had a positive correlation with both the temperature and RH, suggesting that aqueous-phase pathways as well as gas-phase reactions might be attributable to sulfate formation in the FT. In particular, FT SPF event on 31 May was possibly caused by the direct transport of SO2 precursors from the continent above the shallow marine boundary layer under favorable conditions for FT SPF events, such as decreased aerosol surface area and increased solar radiation.
Collapse
Affiliation(s)
- Do-Hyeon Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Chaeyoon Cho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Hyeonmin Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Rokjin J. Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | | | - Taehyoung Lee
- Department of Environmental Science, Hankuk University of Foreign Studies, Korea
| | - Greg L. Huey
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | - Seong Soo Yum
- Department of Atmosphere Science, Yonsei University, Seoul, Korea
| | - Russell Long
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Sang-Woo Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Tang B, Li Z. Reaction between a NO 2 Dimer and Dissolved SO 2: A New Mechanism for ONSO 3- Formation and its Fate in Aerosol. J Phys Chem A 2021; 125:8468-8475. [PMID: 34543016 DOI: 10.1021/acs.jpca.1c06215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental observations indicate that sulfate formation in aerosol is sensitive to the concentrations of nitric oxide (NO2). While it also widely exists as a dimer in the gas phase, previous studies focus on the monomer of NO2. In this study, we employ quantum chemical calculations and ab initio molecular dynamics simulations to investigate the reaction between the NO2 dimer (ONONO2) and sulfite (HSO3-/SO32-) in the gas phase and in an aerosol. Gas-phase reactions turn out to be barrierless. In an aerosol, the reaction between adsorbed ONONO2 and HSO3- to form ONSO3- follows a stepwise mechanism with proton and electron transfer processes. The reaction between ONONO2 and SO32- is more straightforward. Nevertheless, both reactions occur at a picosecond time scale. Decomposition of ONSO3- can form an NO molecule and SO3-, which gives a complementary pathway for sulfate formation in an aerosol. Hydrolysis of ONSO3- to form HNO and HSO4- is highly impossible in an aerosol, which calls for a revisit of the atmospheric N2O formation mechanism. The results presented in this study deepen our understanding of the interaction between NO2 and SO2 pollutants in the atmosphere.
Collapse
Affiliation(s)
- Bo Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Liu J, Ning A, Liu L, Wang H, Kurtén T, Zhang X. A pH dependent sulfate formation mechanism caused by hypochlorous acid in the marine atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147551. [PMID: 34000527 DOI: 10.1016/j.scitotenv.2021.147551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Secondary sulfate plays a crucial role in forming marine aerosol, which in turn is an important source of natural aerosol at a global level. Recent experimental studies suggest that oxidation of S(IV) compounds, in practice dissolved sulfur dioxide, to sulfate (S(VI)) by hypochloric acid could be one of the most significant pathways for sulfate formation in marine areas. However, the exact mechanism responsible for this process remains unknown. Using high-level quantum chemical calculations, we studied the reaction between dissolved sulfur dioxide and hypochloric acid. We account for the dominant protonation states of reactants in the pH range 3.0-9.0. We also consider possible catalytic effects of species such as H2O. Our results show that sulfate formation in HOCl+HOSO2- and HOCl+SO32- reactions relevant to acidic and nearly neutral conditions can occur either through previously proposed Cl+ transfer or through a novel HO+ transfer mechanism. In alkaline conditions, where the dominant reactants are OCl- and SO32-, an O atom transfer mechanism proposed in previous experimental studies may be more important than Cl+ transfer. Catalysis by common cloud-water species is found to lower barriers of Cl+ transfer mechanisms substantially. Nevertheless, we find that the dominant S(IV) + HOCl reaction mechanism for the full studied pH range is HO+ transfer from HOCl to SO32-, which leads directly to sulfate formation without ClSO3- intermediates. The rate-limiting barrier of this reaction is low, leading to an essentially diffusion-controlled reaction rate. S(IV) lifetimes due to this reaction decrease with increasing pH due to the increasing fractional population of SO32-. Especially in neutral and alkaline conditions, depletion of HOCl by the reaction is so rapid that S(IV) oxidation will be controlled mainly by mass transfer of gas-phase HOCl to the liquid phase. The mechanism proposed here may help to explain marine sulfate sources missing from current atmospheric models.
Collapse
Affiliation(s)
- Jiarong Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huixian Wang
- Beijing Guodian Longyuan Environment Engineering Co. Ltd, Beijing 100081, China
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland.
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
23
|
Tilgner A, Schaefer T, Alexander B, Barth M, Collett JL, Fahey KM, Nenes A, Pye HOT, Herrmann H, McNeill VF. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:10.5194/acp-21-13483-2021. [PMID: 34675968 PMCID: PMC8525431 DOI: 10.5194/acp-21-13483-2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.
Collapse
Affiliation(s)
- Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA 98195, USA
| | - Mary Barth
- Atmospheric Chemistry Observation & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
24
|
Chen L, Kong L, Tong S, Yang K, Jin S, Wang C, Xia L, Wang L. Aqueous phase oxidation of bisulfite influenced by nitrate and its photolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147345. [PMID: 33940423 DOI: 10.1016/j.scitotenv.2021.147345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Nitrate aerosol is ubiquitous in the atmosphere. Nitrate in the particulate and aqueous phase can affect various atmospheric chemical processes through its hygroscopicity and photolysis. The impacts of nitrate photolysis on the heterogeneous oxidation of SO2 have been attracting attention. However, the influence of nitrate on heterogeneous aqueous phase formation of atmospheric sulfate aerosol is still not very clear. In this study, the effects of nitrate on aqueous phase oxidation of bisulfite under different conditions were investigated. Results show that nitrate photolysis can promote the oxidation of bisulfite to sulfate, especially in the presence of O2. It is found that pH plays a significant role in the reaction, and ammonium sulfate has significant impacts on the enhancement of aqueous phase sulfate production through regulating the pH of solution. An apparent synergism is found among halogen chemistry, nitrate and its photochemistry and S (IV) aqueous oxidation, especially the oxidation of halide ions by nitrate and its photolysis and by the intermediate products produced by the free radical chain oxidation of S (IV) in acidic solution, leading to the coupling of the redox cycle of halogen with the oxidation of bisulfite, which promotes the continuous aqueous oxidation of bisulfite and the formation of sulfate. In addition, the role of nitrate itself in the aqueous phase oxidation of bisulfite is revealed. These results provide a new insight into the heterogeneous aqueous phase oxidation pathways and mechanisms of SO2 in cloud and fog droplets and haze particles.
Collapse
Affiliation(s)
- Lu Chen
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lingdong Kong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China; Institute of Eco-Chongming, East China Normal University, No.3663 Northern Zhongshan Road, Shanghai 200062, China.
| | - Songying Tong
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Kejing Yang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Shengyan Jin
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Chao Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lianghai Xia
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| | - Lin Wang
- Department of Environmental Science & Engineering, Jiangwan Campus, Fudan University, No. 2205 Songhu Road, Shanghai 200438, China
| |
Collapse
|
25
|
Xu L, Tsona NT, Du L. Relative Humidity Changes the Role of SO 2 in Biogenic Secondary Organic Aerosol Formation. J Phys Chem Lett 2021; 12:7365-7372. [PMID: 34324359 DOI: 10.1021/acs.jpclett.1c01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SO2 influences secondary organic aerosol (SOA) and organosulfates (OSs) formation but mechanisms remain elusive. This study focuses on this topic by investigating biogenic γ-terpinene ozonolysis under various SO2 and relative humidity (RH) conditions. With a constant SO2 concentration (∼110 ppb), the increase in RH transformed SO2 sinks from stabilized Criegee intermediates (sCIs) to peroxides in aerosol particles. The associated changes in particle acidity and liquid water content may collectively first lead to decreased and then increased SOA yield with increasing RH, with the turning point appearing at ∼30% RH. The abundance of most OSs formed under 45% RH was more than 5 times higher than that of OSs formed under 10% RH, possibly due to interactions of dissolved SO2 with hydroperoxides (ROOH) in SOA. ROOHs formed from the autoxidation processes of alkylperoxy radicals were proposed to be precursors for highly oxidized OSs (HOOSs) that decreased SOA volatility and showed a certain abundance in ambient aerosols. This study highlights that high RH potentially enhances the contribution of SO2 to OSs formation, and particularly, HOOSs formation during monoterpene ozonolysis in the atmosphere.
Collapse
Affiliation(s)
- Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
26
|
Du CY, Wang W, Wang N, Pang SF, Zhang YH. Impact of ambient relative humidity and acidity on chemical composition evolution for malonic acid/calcium nitrate mixed particles. CHEMOSPHERE 2021; 276:130140. [PMID: 33690047 DOI: 10.1016/j.chemosphere.2021.130140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The chemical compositions in atmospheric aerosols, which often evolve with environmental factors, have significant impact on climate and human health, while our fundamental understanding of chemical process is limited owing to their sensitive to atmospheric conditions. pH and RH are critical chemical factors of aerosols, impacting reaction pathways and kinetics that ultimately govern final components in particles. Herein, we monitored the chemical composition in internally mixed malonic acid/calcium nitrate with the mole ratio of 1:1 as a function of pH and relative humidity (RH). At 30% RH, lower than efflorescence relative humidity (ERH) of pure malonic acid aerosols, malonic acid still exhibits solution feature reflected by IR spectra, which was observed to transform to malonate, along with water loss and nitrate depletion. At another RH of 54% and 80%, the similar chemical process happened with less reaction rate. The response of chemical reaction between malonic acid and calcium nitrate to pH was studied by manipulating the starting pH of the bulk solution through dropping aqueous sodium hydroxide. Due to lower H+ concentration at higher pH, the formation and liberation of HNO3 slow down, as well as water loss. After a down-up RH cycle, the water loss was obvious and grew with the decrease in pH. These measurements are improving our understanding of chemical composition evolution dependent upon pH and RH from a fundamental physical chemistry perspective and are critical for connecting chemistry and climate.
Collapse
Affiliation(s)
- Chun-Yun Du
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Na Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shu-Feng Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Yun-Hong Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| |
Collapse
|
27
|
Ma S, Pang S, Li J, Zhang Y. A review of efflorescence kinetics studies on atmospherically relevant particles. CHEMOSPHERE 2021; 277:130320. [PMID: 33773310 DOI: 10.1016/j.chemosphere.2021.130320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The efflorescence transitions of aerosol particles have been intensively investigated due to their critical impacts on global climate and atmospheric chemistry. In the present study, we present a critical review of efflorescence kinetics focusing on three key issues: the efflorescence relative humidity (ERH) and the influence factors for aerosol ERH (e.g. particle sizes, and temperature); efflorescence processes of mixed aerosols, concerning the effect of coexisting inorganic and organic components on the efflorescence of inorganic salts; homogeneous and heterogeneous nucleation rates of pure and mixed aerosols. Among the previous studies, there are significant discrepancies for measured aerosol ERH under even the same conditions. Moreover, the interactions between organic and inorganic components remain largely unclear, causing efflorescence transition behaviours and chemical composition evolutions of certain mixed systems to be debatable. Thus, it is important to better understand efflorescence to gain insights into the physicochemical properties and characterize observed efflorescence characteristics of atmospheric particles, as well as guide further studies on aerosol hygroscopicity and reactivity.
Collapse
Affiliation(s)
- Shuaishuai Ma
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shufeng Pang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jing Li
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Yunhong Zhang
- The Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
28
|
Wang X, Li J, Sun R, Jiang H, Zong Z, Tian C, Xie L, Li Q, Jia W, Peng P, Zhang G. Regional characteristics of atmospheric δ 34S-SO 42- over three parts of Asia monitored by quartz wool-based passive samplers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146107. [PMID: 33714091 DOI: 10.1016/j.scitotenv.2021.146107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
A new method is presented for measuring atmospheric contents and δ34S-SO42- in airborne particulate matter using quartz wool disk passive air samplers (Pas-QW). The ability of Pas-QW samplers to provide time-integrated measurements of atmospheric SO42- was confirmed in a field calibration study. The average sampling rate of SO42- measured was 2.3 ± 0.3 m3/day, and this was not greatly affected by changes in meteorological parameters. The results of simultaneous sampling campaign showed that the average SO42- contents in Pakistan and the Indochina Peninsula (ICP) were relatively lower than that of China. The spatial distribution of SO42- concentrations was largely attributed to the development of the regional economies. The range of δ34S values observed in Pakistan (4.3 ± 1.4‰) and the ICP (4.5 ± 1.2‰) were relatively small, while a large range of δ34S values was observed in China (3.9 ± 2.5‰). The regional distribution of sulfur isotope compositions was significantly affected by coal combustion. A source analysis based on a Bayesian mixing model showed that 80.4 ± 13.1% and 19.6 ± 13.1% of artificial sulfur dioxide (SO2) sources in China could be attributed to coal combustion and oil combustion, respectively. The two sources differed greatly between regions, and the contribution of oil combustion in cities was higher than previously reported data obtained from emission inventories. This study confirmed that the Pas-QW is a promising tool for simultaneously monitoring atmospheric δ34S-SO42- over large regions, and that the results of the isotope models can provide a reference for the compilation of SO2 emission inventories.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China.
| | - Rong Sun
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Luhua Xie
- Key Laboratory of Ocean and Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang 453007, China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| |
Collapse
|
29
|
Zhang S, Li D, Ge S, Liu S, Wu C, Wang Y, Chen Y, Lv S, Wang F, Meng J, Wang G. Rapid sulfate formation from synergetic oxidation of SO 2 by O 3 and NO 2 under ammonia-rich conditions: Implications for the explosive growth of atmospheric PM 2.5 during haze events in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144897. [PMID: 33770894 DOI: 10.1016/j.scitotenv.2020.144897] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Extremely high levels of atmospheric sulfate aerosols have still frequently occurred in China especially in winter haze periods and often been underestimated by models due to some missing formation mechanisms. Here we investigated the heterogeneous reaction dynamics of SO2 oxidation by the abundantly co-existing O3 and NO2 in the urban atmosphere of China by using a laboratory smog chamber simulation technique. Our results showed that with an increase of NH3 concentrations from 0.05 ppm to 1.5 ppm, SO2 oxidation by O3 can be greatly promoted and lead to an exponential increase of diameter growth factor (GF) of particles in the chamber from 1.29 to 1.98 for NaCl seeds and from 1.20 to 1.60 for (NH4)2SO4 seeds, along with an increasing uptake coefficient (γ) of SO2 from 4.47 × 10-5 to 1.52 × 10-4 on NaCl seeds and from 2.32 × 10-5 to 5.74 × 10-5 on (NH4)2SO4 seeds, respectively. The heterogeneous production of sulfate from oxidation of SO2 under NH3-rich conditions by O3 and NO2 mixture in the chamber was 2.0-3.5 times the sum of sulfate from SO2 oxidations by O3 and NO2, suggesting a strongly synergetic effect of the mixed oxidants on the heterogeneous oxidation of SO2, which can cause rapid formation of (NH4)2SO4 and NH4NO3 and is responsible for the explosive growth of PM2.5 in the winter haze period of China. Our chamber results further showed that such synergetic process is only efficient under NH3-rich conditions, clearly indicating that the combined controls on O3, NOx and NH3 are necessary for further mitigating the PM2.5 pollution in China.
Collapse
Affiliation(s)
- Si Zhang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Dapeng Li
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Shuangshuang Ge
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Shijie Liu
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Can Wu
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Yiqian Wang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Yubao Chen
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Shaojun Lv
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Fanglin Wang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China
| | - Jingjing Meng
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Gehui Wang
- School of Geographic Sciences, Key Lab of Geographic Information Science of the Ministry of Education, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming, 20 Cuiniao Rd., Chongming, Shanghai 202162, China.
| |
Collapse
|
30
|
Huang Y, Li Z, Zhang L, Tang H, Zhang H, Wang C, Chen SY, Bu D, Zhang Z, Zhu Z, Yuan P, Li K, Yu X, Kong W, Tang C, Jung Y, Ferreira RB, Carroll KS, Du J, Yang J, Jin H. Endogenous SO 2-dependent Smad3 redox modification controls vascular remodeling. Redox Biol 2021; 41:101898. [PMID: 33647858 PMCID: PMC7933484 DOI: 10.1016/j.redox.2021.101898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sulfur dioxide (SO2) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO2 influences its upper-stream targets have been elusive. Here we show that SO2 may mediate conversion of hydrogen peroxide (H2O2) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H2O2 to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO2. Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO2, among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor β signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO2 on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO2 in vascular pathophysiology through a redox-dependent mechanism.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zongmin Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China; Anhui Medical University, Hefei, 230032, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Huan Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Selena Ying Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dingfang Bu
- Laboratory Center, Peking University First Hospital, Beijing, 100034, China
| | - Zaifeng Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhigang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Piaoliu Yuan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Youngeun Jung
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Renan B Ferreira
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China; Anhui Medical University, Hefei, 230032, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China.
| |
Collapse
|
31
|
Liu T, Chan AWH, Abbatt JPD. Multiphase Oxidation of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate Formation in Polluted Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4227-4242. [PMID: 33760581 DOI: 10.1021/acs.est.0c06496] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atmospheric oxidation of sulfur dioxide (SO2) forms sulfate-containing aerosol particles that impact air quality, climate, and human and ecosystem health. It is well-known that in-cloud oxidation of SO2 frequently dominates over gas-phase oxidation on regional and global scales. Multiphase oxidation involving aerosol particles, fog, and cloud droplets has been generally thought to scale with liquid water content (LWC) so multiphase oxidation would be negligible for aerosol particles due to their low aerosol LWC. However, recent field evidence, particularly from East Asia, shows that fast sulfate formation prevails in cloud-free environments that are characterized by high aerosol loadings. By assuming that the kinetics of cloud water chemistry prevails for aerosol particles, most atmospheric models do not capture this phenomenon. Therefore, the field of aerosol SO2 multiphase chemistry has blossomed in the past decade, with many oxidation processes proposed to bridge the difference between modeled and observed sulfate mass loadings. This review summarizes recent advances in the fundamental understanding of the aerosol multiphase oxidation of SO2, with a focus on environmental conditions that affect the oxidation rate, experimental challenges, mechanisms and kinetics results for individual reaction pathways, and future research directions. Compared to dilute cloud water conditions, this paper highlights the differences that arise at the molecular level with the extremely high solute strengths present in aerosol particles.
Collapse
Affiliation(s)
- Tengyu Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
32
|
Peng J, Hu M, Shang D, Wu Z, Du Z, Tan T, Wang Y, Zhang F, Zhang R. Explosive Secondary Aerosol Formation during Severe Haze in the North China Plain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2189-2207. [PMID: 33539077 DOI: 10.1021/acs.est.0c07204] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Severe haze events with exceedingly high-levels of fine aerosols occur frequently over the past decades in the North China Plain (NCP), exerting profound impacts on human health, weather, and climate. The development of effective mitigation policies requires a comprehensive understanding of the haze formation mechanisms, including identification and quantification of the sources, formation, and transformation of the aerosol species. Haze evolution in this region exhibits distinct physical and chemical characteristics from clean to polluted periods, as evident from increasing stagnation and relative humidity, but decreasing solar radiation as well as explosive secondary aerosol formation. The latter is attributed to highly elevated concentrations of aerosol precursor gases and is reflected by rapid increases in the particle number and mass concentrations, both corresponding to nonequilibrium chemical processes. Considerable new knowledge has been acquired to understand the processes regulating haze formation, particularly in light of the progress in elucidating the aerosol formation mechanisms. This review synthesizes recent advances in understanding secondary aerosol formation, by highlighting several critical chemical/physical processes, that is, new particle formation and aerosol growth driven by photochemistry and aqueous chemistry as well as the interaction between aerosols and atmospheric stability. Current challenges and future research priorities are also discussed.
Collapse
Affiliation(s)
- Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhuofei Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianyi Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanan Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
- College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
33
|
Yang G, Zhou L. Acid rain formation through catalytic transformation of sulfur dioxide over clay dusts: remarkable promotion by a vicinal aluminium site. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02069a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanisms for catalytic SO2 transformation to H2SO4 over clay dusts have been unraveled at a molecular level. All O atoms in ozone (especially molecular oxygen) are effective oxidants due to remarkable promotion of a vicinal Al3+ site.
Collapse
Affiliation(s)
- Gang Yang
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process Southwest University
- Chongqing 400715
- China
| | - Lijun Zhou
- College of Resources and Environment & Chongqing Key Laboratory of Soil Multi-scale Interfacial Process Southwest University
- Chongqing 400715
- China
| |
Collapse
|
34
|
Xu W, Kuang Y, Liang L, He Y, Cheng H, Bian Y, Tao J, Zhang G, Zhao P, Ma N, Zhao H, Zhou G, Su H, Cheng Y, Xu X, Shao M, Sun Y. Dust-Dominated Coarse Particles as a Medium for Rapid Secondary Organic and Inorganic Aerosol Formation in Highly Polluted Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15710-15721. [PMID: 33237756 DOI: 10.1021/acs.est.0c07243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Secondary aerosol (SA) frequently drives severe haze formation on the North China Plain. However, previous studies mostly focused on submicron SA formation, thus our understanding of SA formation on supermicron particles remains poor. In this study, PM2.5 chemical composition and PM10 number size distribution measurements revealed that the SA formation occurred in very distinct size ranges. In particular, SA formation on dust-dominated supermicron particles was surprisingly high and increased with relative humidity (RH). SA formed on supermicron aerosols reached comparable levels with that on submicron particles during evolutionary stages of haze episodes. These results suggested that dust particles served as a medium for rapid secondary organic and inorganic aerosol formation under favorable photochemical and RH conditions in a highly polluted environment. Further analysis indicated that SA formation pathways differed among distinct size ranges. Overall, our study highlights the importance of dust in SA formation during non-dust storm periods and the urgent need to perform size-resolved aerosol chemical and physical property measurements in future SA formation investigations that are extended to the coarse mode because the large amount of SA formed thereon might have significant impacts on ice nucleation, radiative forcing, and human health.
Collapse
Affiliation(s)
- Wanyun Xu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ye Kuang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Linlin Liang
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yao He
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hongbing Cheng
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yuxuan Bian
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jiangchuan Tao
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Pusheng Zhao
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Nan Ma
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Huarong Zhao
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Guangsheng Zhou
- State Key Laboratory of Severe Weather, Institute of Agricultural Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hang Su
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Xiaobin Xu
- State Key Laboratory of Severe Weather, Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
35
|
Bloss WJ, Kramer L, Crilley LR, Vu T, Harrison RM, Shi Z, Lee JD, Squires FA, Whalley LK, Slater E, Woodward-Massey R, Ye C, Heard DE, Tong S, Hou S, Sun Y, Xu J, Wei L, Fu P. Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing. Faraday Discuss 2020; 226:223-238. [PMID: 33283833 DOI: 10.1039/d0fd00100g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity - so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NOx) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events. We show that HONO abundance is dominated by established fast gas-phase photochemistry, but the consideration of the additional formation potentially associated with condensed-phase oxidation of S species by aqueous NO2 leading to NO2- production and hence HONO release, improves agreement between observed and calculated gas-phase HONO levels. This conclusion is highly dependent upon aerosol pH, ionic strength and particularly the parameterisation employed for S(iv) oxidation kinetics, for which an upper limit is derived.
Collapse
Affiliation(s)
- William J Bloss
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Su H, Cheng Y, Pöschl U. New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene. Acc Chem Res 2020; 53:2034-2043. [PMID: 32927946 PMCID: PMC7581287 DOI: 10.1021/acs.accounts.0c00246] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Atmospheric aerosols and fine particulate matter (PM2.5) are strongly affecting human health and climate in the Anthropocene,
that is, in the current era of globally pervasive and rapidly increasing
human influence on planet Earth. Poor air quality associated with high aerosol concentrations is among the
leading health risks worldwide, causing millions of attributable excess
deaths and years of life lost every year. Besides their health impact,
aerosols are also influencing climate through interactions with clouds
and solar radiation with an estimated negative total effective radiative
forcing that may compensate about half of the positive radiative forcing
of carbon dioxide but exhibits a much larger uncertainty. Heterogeneous
and multiphase chemical reactions on the surface and in the bulk of
solid, semisolid, and liquid aerosol particles have been recognized
to influence aerosol formation and transformation and thus their environmental
effects. However, atmospheric multiphase chemistry is not well understood
because of its intrinsic complexity of dealing with the matter in
multiple phases and the difficulties of distinguishing its effect
from that of gas phase reactions. Recently, research on atmospheric
multiphase chemistry received
a boost from the growing interest in understanding severe haze formation
of very high PM2.5 concentrations in polluted megacities
and densely populated regions. State-of-the-art models suggest that
the gas phase reactions, however, are not capturing the high concentrations
and rapid increase of PM2.5 observed during haze events,
suggesting a gap in our understanding of the chemical mechanisms of
aerosol formation. These haze events are characterized by high concentrations
of aerosol particles and high humidity, especially favoring multiphase
chemistry. In this Account, we review recent advances that we have
made, as well as current challenges and future perspectives for research
on multiphase chemical processes involved in atmospheric aerosol formation
and transformation. We focus on the following questions: what are
the key reaction pathways leading to aerosol formation under polluted
conditions, what is the relative importance of multiphase chemistry
versus gas-phase chemistry, and what are the implications for the
development of efficient and reliable air quality control strategies?
In particular, we discuss advances and challenges related to different
chemical regimes of sulfate, nitrate, and secondary organic aerosols
(SOAs) under haze conditions, and we synthesize new insights into
the influence of aerosol water content, aerosol pH, phase state, and
nanoparticle size effects. Overall, there is increasing evidence that
multiphase chemistry plays an important role in aerosol formation
during haze events. In contrast to the gas phase photochemical reactions,
which are self-buffered against heavy pollution, multiphase reactions
have a positive feedback mechanism, where higher particle matter levels
accelerate multiphase production, which further increases the aerosol
concentration resulting in a series of record-breaking pollution events.
We discuss perspectives to fill the gap of the current understanding
of atmospheric multiphase reactions that involve multiple physical
and chemical processes from bulk to nanoscale and from regional to
global scales. A synthetic approach combining laboratory experiments,
field measurements, instrument development, and model simulations
is suggested as a roadmap to advance future research.
Collapse
Affiliation(s)
- Hang Su
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Yafang Cheng
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| | - Ulrich Pöschl
- Max Planck Institute for Chemistry, Mainz 55128, Germany
| |
Collapse
|
37
|
Zou L, Yan P, Lu P, Chen D, Chu W, Cen W. Enhanced heterogenous hydration of SO 2 through immobilization of pyridinic-N on carbon materials. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192248. [PMID: 32968503 PMCID: PMC7481677 DOI: 10.1098/rsos.192248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Carbon materials doped with nitrogen have long been used for SO2 removal from flue gases for the benefits of the environment. The role of water is generally regarded as hydration of SO3 which is formed through the oxidization of SO2. However, the hydration of SO2, especially on the surface of N-doped carbon materials, was almost ignored. In this study, the hydration of SO2 was investigated in detail on the pyridinic nitrogen (PyN)-doped graphene (GP) surfaces. It is found that, compared with the homogeneous hydration of SO2 assisted with NH3 in gas phase, the heterogeneous hydration is much more thermodynamically and kinetically favourable. Specifically, when a single H2O molecule is involved, the energy barrier for SO2 hydration is as low as 0.15 eV, with 0.59 eV released, indicating the hydration of SO2 can occur at rather low water concentration and temperature. Thermodynamic integration molecular dynamics results show the feasibility of the hydrogenated substrate recovery and the immobilized N acting as a catalytic site for SO2 hydration. Our findings show that the heterogeneous hydration of SO2 should be universal and potentially uncover the puzzling reaction mechanism for SO2 catalytic oxidation at low temperature by N-doped carbon materials.
Collapse
Affiliation(s)
- Longhua Zou
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ping Yan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, People's Republic of China
| | - Peng Lu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510655, People's Republic of China
| | - Dongyao Chen
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510655, People's Republic of China
| | - Wei Chu
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, People's Republic of China
| | - Wanglai Cen
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610065, People's Republic of China
- National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
38
|
Classification of Clouds Sampled at the Puy de Dôme Station (France) Based on Chemical Measurements and Air Mass History Matrices. ATMOSPHERE 2020. [DOI: 10.3390/atmos11070732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A statistical analysis of 295 cloud samples collected at the Puy de Dôme station in France (PUY), covering the period 2001–2018, was conducted using principal component analysis (PCA), agglomerative hierarchical clustering (AHC), and partial least squares (PLS) regression. Our model classified the cloud water samples on the basis of their chemical concentrations and of the dynamical history of their air masses estimated with back-trajectory calculations. The statistical analysis split our dataset into two sets, i.e., the first set characterized by westerly air masses and marine characteristics, with high concentrations of sea salts and the second set having air masses originating from the northeastern sector and the “continental” zone, with high concentrations of potentially anthropogenic ions. It appears from our dataset that the influence of cloud microphysics remains minor at PUY as compared with the impact of the air mass history, i.e., physicochemical processes, such as multiphase reactivity.
Collapse
|
39
|
He X, Zhang YH. Kinetics study of heterogeneous reactions of O 3 and SO 2 with sea salt single droplets using micro-FTIR spectroscopy: Potential for formation of sulfate aerosol in atmospheric environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118219. [PMID: 32163877 DOI: 10.1016/j.saa.2020.118219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
The heterogeneous reactions of sea salt single droplets with the mixture of O3 and SO2 were studied in real time using microscopic Fourier transform infrared (micro-FTIR) spectrometer. Chemical conversion of SO2 to sulfate and consumption of gaseous HCl occur on the surface of droplets in the presence of O3. The sulfate formation rate and the uptake coefficient are obtained by quantitatively estimating the changes in absorbance area of the sulfate stretching band. In order to further establish a mechanistic framework, we observed the reaction kinetics versus ambient relative humidities (RHs) and droplet sizes. In the view of RH effect, sulfate formation rates are enhanced by about a factor of two on the MgCl2 and ZnCl2 single droplets with increasing RH ranges. High RH is favorable for the sulfate formation because water vapor can trap and activate more gas molecules on the interface of the single droplet. The values of uptake coefficient increase slightly with an increase in single droplet size for the two reaction systems, indicating that the effect of surface adsorption dominates the reactions. Considering the existence of combined pollution with high concentrations of trace gases and sea salt aerosols, as expected in coastal regions, the formation micro-mechanism of sulfate revealed in this work should be incorporated into air quality models to improve the prediction of sulfate concentrations.
Collapse
Affiliation(s)
- Xiang He
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, PR China; Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
40
|
Zhang R, Gen M, Huang D, Li Y, Chan CK. Enhanced Sulfate Production by Nitrate Photolysis in the Presence of Halide Ions in Atmospheric Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3831-3839. [PMID: 32126769 DOI: 10.1021/acs.est.9b06445] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heterogeneous oxidation of SO2 is an effective production pathway of sulfate in the atmosphere. We recently reported a novel pathway for the heterogeneous oxidation of SO2 by in-particle oxidants (OH, NO2, and NO2-/HNO2) produced from particulate nitrate photolysis (Environ. Sci. Technol. 2019, 53, 8757-8766). Particulate nitrate is often found to coexist with chloride and other halide ions, especially in aged sea-salt aerosols and combustion aerosols. Reactive uptake experiments of SO2 with UV-irradiated nitrate particles showed that sulfate production rates were enhanced by a factor of 1.4, 1.3, and 2.0 in the presence of Cl-, Br-, and I-, respectively, compared to those in the absence of halide ions. The larger sulfate production was attributed to enhanced nitrate photolysis promoted by the increased incomplete solvation of nitrate at the air-particle interface due to the presence of surface-active halide ions. Modeling results based on the experimental data showed that the nitrate photolysis rate constants increased by a factor of 2.0, 1.7, and 3.7 in the presence of Cl-, Br-, and I-, respectively. A linear relation was found between the nitrate photolysis rate constant, jNO3-, and the initial molar ratio of Cl- to NO3-, [Cl-]0/[NO3-]0, as jNO3- = 9.7 × 10-5[Cl-]0/[NO3-]0 + 1.9 × 10-5 at [Cl-]0/[NO3-]0 below 0.2. The present study demonstrates that the presence of halide ions enhances sulfate production produced during particulate nitrate photolysis and provides insights into the enhanced formation of in-particle oxidants that may increase atmospheric oxidative capacity.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Masao Gen
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Dandan Huang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yongjie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
41
|
Wang X, Gemayel R, Hayeck N, Perrier S, Charbonnel N, Xu C, Chen H, Zhu C, Zhang L, Wang L, Nizkorodov SA, Wang X, Wang Z, Wang T, Mellouki A, Riva M, Chen J, George C. Atmospheric Photosensitization: A New Pathway for Sulfate Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3114-3120. [PMID: 32022545 DOI: 10.1021/acs.est.9b06347] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Northern China is regularly subjected to intense wintertime "haze events", with high levels of fine particles that threaten millions of inhabitants. While sulfate is a known major component of these fine haze particles, its formation mechanism remains unclear especially under highly polluted conditions, with state-of-the-art air quality models unable to reproduce or predict field observations. These haze conditions are generally characterized by simultaneous high emissions of SO2 and photosensitizing materials. In this study, we find that the excited triplet states of photosensitizers could induce a direct photosensitized oxidation of hydrated SO2 and bisulfite into sulfate S(VI) through energy transfer, electron transfer, or hydrogen atom abstraction. This photosensitized pathway appears to be a new and ubiquitous chemical route for atmospheric sulfate production. Compared to other aqueous-phase sulfate formation pathways with ozone, hydrogen peroxide, nitrogen dioxide, or transition-metal ions, the results also show that this photosensitized oxidation of S(IV) could make an important contribution to aerosol sulfate formation in Asian countries, particularly in China.
Collapse
Affiliation(s)
- Xinke Wang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Rachel Gemayel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Nathalie Hayeck
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Sebastien Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Nicolas Charbonnel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Chao Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhe Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Abdelwahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS/OSUC, 45071 Orléans, Cedex 2, France
| | - Matthieu Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| |
Collapse
|
42
|
Liu JM, Wang PF, Zhang HL, Du ZY, Zheng B, Yu QQ, Zheng GJ, Ma YL, Zheng M, Cheng Y, Zhang Q, He KB. Integration of field observation and air quality modeling to characterize Beijing aerosol in different seasons. CHEMOSPHERE 2020; 242:125195. [PMID: 31683164 DOI: 10.1016/j.chemosphere.2019.125195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Fine particulate matter (PM2.5) pollution in Beijing was investigated based on field observation and air quality modeling. Measurement results showed that when using elemental carbon (EC) as the reference component, concurrent increases were observed in the relative abundances of sulfate, nitrate, organic carbon (OC) and water-soluble organic carbon (WSOC) when RH exceeded ∼65% during winter. The observed increases could not be explained by variations of primary biomass burning emissions, instead they likely pointed to heterogeneous chemistry and presumably indicated that formation of secondary inorganic and organic aerosols might be related during winter haze events in Beijing. Large gaps were found in winter when comparing the observational and modeling results. In summer, RH exhibited little influence on the observed sulfate/EC, OC/EC or WSOC/EC, and the observed and modeled results were in general comparable for the concentrations of sulfate, EC and OC. This study suggests that distinct yet poorly-understood atmospheric chemistry may be at play in China's winter haze events, and it could be a substantial challenge to properly incorporate the related mechanisms into air quality models.
Collapse
Affiliation(s)
- Jiu-Meng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Peng-Fei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Hong-Liang Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China; Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Zhen-Yu Du
- National Research Center for Environmental Analysis and Measurement, Beijing, China
| | - Bo Zheng
- Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette, France
| | - Qin-Qin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Guang-Jie Zheng
- Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yong-Liang Ma
- School of Environment, Tsinghua University, Beijing, China
| | - Mei Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yuan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Ke-Bin He
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
43
|
Kong L, Tan Q, Feng M, Qu Y, An J, Liu X, Cheng N, Deng Y, Zhai R, Wang Z. Investigating the characteristics and source analyses of PM 2.5 seasonal variations in Chengdu, Southwest China. CHEMOSPHERE 2020; 243:125267. [PMID: 31734594 DOI: 10.1016/j.chemosphere.2019.125267] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
In 2015, comprehensive observations were carried out in Chengdu, Sichuan Province, China, to elucidate the seasonal variation characteristics of the concentrations, chemical compositions, and the sources of PM2.5 pollution. The meteorological parameters, gaseous pollutants and chemical compositions of PM2.5 were measured. The annual average concentration of PM2.5 in Chengdu was 67.44 ± 48.78 μg/m3. The highest seasonal PM2.5 mass concentration occurred in winter with an average of 103.04 ± 66.76 μg/m3, followed by spring, autumn, and summer, and the wind speed had an important impact on the diffusion of PM2.5. The seasonal variation characteristics of chemical components in PM2.5 were analysed. The contribution and chemical conversion ability of secondary aerosols increased with increasing of PM2.5 concentration. Source appointment of positive matrix factorization (PMF) shows that the main sources of PM2.5 were secondary aerosols, coal combustion, biomass burning, vehicle emissions, dust and industrial sources, which have more obvious seasonal differences than other sources, and secondary aerosols and coal combustion were the major sources. Conditional probability function (CPF) analysis showed that the local sources of high PM2.5 concentrations were mainly from the eastern and southeastern areas of Chengdu. Potential source contribution function (PSCF), concentration weighted trajectory (CWT) and backward trajectory cluster analyses indicated that the southern, southeast and eastern parts of the Sichuan Basin were the most likely potential sources of PM2.5, and the unique geographical and topographical factors in Chengdu play important roles in the transport and diffusion of pollutants in this region.
Collapse
Affiliation(s)
- Liuwei Kong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu, 610072, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Nianliang Cheng
- Beijing Municipal Environmental Monitoring Center, Beijing, 100048, China
| | - Yijun Deng
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China
| | - Ruixiao Zhai
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China
| | - Zheng Wang
- Yuncheng Municipal Ecological Environment Bureau, Yuncheng, 044000, China
| |
Collapse
|
44
|
Liu T, Clegg SL, Abbatt JPD. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles. Proc Natl Acad Sci U S A 2020; 117:1354-1359. [PMID: 31900361 PMCID: PMC6983387 DOI: 10.1073/pnas.1916401117] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atmospheric sulfate aerosols have important impacts on air quality, climate, and human and ecosystem health. However, current air-quality models generally underestimate the rate of conversion of sulfur dioxide (SO2) to sulfate during severe haze pollution events, indicating that our understanding of sulfate formation chemistry is incomplete. This may arise because the air-quality models rely upon kinetics studies of SO2 oxidation conducted in dilute aqueous solutions, and not at the high solute strengths of atmospheric aerosol particles. Here, we utilize an aerosol flow reactor to perform direct investigation on the kinetics of aqueous oxidation of dissolved SO2 by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, deliquesced aerosol particles at relative humidity of 73 to 90%. We find that the high solute strength of the aerosol particles significantly enhances the sulfate formation rate for the H2O2 oxidation pathway compared to the dilute solution. By taking these effects into account, our results indicate that the oxidation of SO2 by H2O2 in the liquid water present in atmospheric aerosol particles can contribute to the missing sulfate source during severe haze episodes.
Collapse
Affiliation(s)
- Tengyu Liu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
| | - Simon L Clegg
- School of Environmental Sciences, University of East Anglia, NR4 7TJ Norwich, United Kingdom
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
| |
Collapse
|
45
|
Photochemistry of the Cloud Aqueous Phase: A Review. Molecules 2020; 25:molecules25020423. [PMID: 31968643 PMCID: PMC7024559 DOI: 10.3390/molecules25020423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 11/19/2022] Open
Abstract
This review paper describes briefly the cloud aqueous phase composition and deeply its reactivity in the dark and mainly under solar radiation. The role of the main oxidants (hydrogen peroxide, nitrate radical, and hydroxyl radical) is presented with a focus on the hydroxyl radical, which drives the oxidation capacity during the day. Its sources in the aqueous phase, mainly through photochemical mechanisms with H2O2, iron complexes, or nitrate/nitrite ions, are presented in detail. The formation rate of hydroxyl radical and its steady state concentration evaluated by different authors are listed and compared. Finally, a paragraph is also dedicated to the sinks and the reactivity of the HO• radical with the main compounds found in the cloud aqueous phase. This review presents an assessment of the reactivity in the cloud aqueous phase and shows the significant potential impact that this medium can have on the chemistry of the atmosphere and more generally on the climate.
Collapse
|
46
|
Boyer HC, Gorkowski K, Sullivan RC. In Situ pH Measurements of Individual Levitated Microdroplets Using Aerosol Optical Tweezers. Anal Chem 2020; 92:1089-1096. [PMID: 31760745 DOI: 10.1021/acs.analchem.9b04152] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pH of microscale reaction environments controls numerous physicochemical processes, requiring a real-time pH microprobe. We present highly accurate real-time pH measurements of microdroplets using aerosol optical tweezers (AOT) and analysis of the whispering gallery modes (WGMs) contained in the cavity-enhanced Raman spectra. Uncertainties ranging from ±0.03 to 0.06 in pH for picoliter droplets are obtained through averaging Raman frames acquired at 0.5 Hz over 3.3 min. The high accuracy in pH determination is achieved by combining two independent measurements uniquely provided by the AOT approach: the anion concentration ratio from the spontaneous Raman spectra, and the total solute concentration from the refractive index retrieved from WGM analysis of the stimulated cavity-enhanced Raman spectra. pH can be determined over a range of -0.36 to 0.76 using the aqueous sodium bisulfate system. This technique enables direct measurements of pH-dependent chemical and physical changes experienced by individual microparticles and exploration of the role of pH in the chemical behavior of confined microenvironments.
Collapse
Affiliation(s)
- Hallie C Boyer
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kyle Gorkowski
- Department of Atmospheric and Oceanic Sciences , McGill University , Montreal , Quebec H3A 0B9 , Canada
| | - Ryan C Sullivan
- Center for Atmospheric Particle Studies , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
47
|
Kong L, Hu M, Tan Q, Feng M, Qu Y, An J, Zhang Y, Liu X, Cheng N. Aerosol optical properties under different pollution levels in the Pearl River Delta (PRD) region of China. J Environ Sci (China) 2020; 87:49-59. [PMID: 31791517 DOI: 10.1016/j.jes.2019.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 06/10/2023]
Abstract
To clarify the aerosol hygroscopic growth and optical properties of the Pearl River Delta (PRD) region, integrated observations were conducted in Heshan City of Guangdong Province from October 19 to November 17, 2014. The concentrations and chemical compositions of PM2.5, aerosol optical properties and meteorological parameters were measured. The mean value of PM2.5 increased from less than 35 (excellent) to 35-75 μg/m3 (good) and then to greater than 75 μg/m3 (pollution), corresponding to mean PM2.5 values of 24.9, 51.2, and 93.3 μg/m3, respectively. The aerosol scattering hygroscopic growth factor (f(RH = 80%)) values were 2.0, 2.12, and 2.18 for the excellent, good, and pollution levels, respectively. The atmospheric extinction coefficient (σext) and the absorption coefficient of aerosols (σap) increased, and the single scattering albedo (SSA) decreased from the excellent to the pollution levels. For different air mass sources, under excellent and good levels, the land air mass from northern Heshan had lower f(RH) and σsp values. In addition, the mixed aerosol from the sea and coastal cities had lower f(RH) and showed that the local sources of coastal cities have higher scattering characteristics in pollution periods.
Collapse
Affiliation(s)
- Liuwei Kong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Min Hu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Miao Feng
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Yu Qu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junling An
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuanhang Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xingang Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Nianliang Cheng
- Beijing Municipal Environmental Monitoring Center, Beijing 100048, China
| |
Collapse
|
48
|
Yang J, Li L, Wang S, Li H, Francisco JS, Zeng XC, Gao Y. Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol Haze: Gaseous NO2 with Aqueous HSO3–/SO32–. J Am Chem Soc 2019; 141:19312-19320. [DOI: 10.1021/jacs.9b08503] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jinrong Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Lei Li
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Shixian Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Joseph S. Francisco
- Department of Earth and Environmental Sciences and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiao Cheng Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Yi Gao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
49
|
Yue F, Xie Z, Zhang P, Song S, He P, Liu C, Wang L, Yu X, Kang H. The role of sulfate and its corresponding S(IV)+NO 2 formation pathway during the evolution of haze in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:741-751. [PMID: 31412477 DOI: 10.1016/j.scitotenv.2019.06.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
To better understand the role of stationary sources during the evolution of haze, we investigated sulfate formation characteristics at different stages of four haze events in Beijing, China. The mass fraction of sulfate in PM2.5 increased while that of nitrate declined slightly during the worsening process of most haze events, consistent with higher ratios of SO42-/NO3- on haze days (0.50 on average) than those on clean days (0.32 on average). Further calculations indicated that sulfate had a higher mass growth rate than nitrate during the haze-worsening process, probably due to regional transport of sulfate from heavy industrial areas accompanied by increased sulfate secondary transformation during polluted periods. We quantitatively evaluated the contribution of the S(IV) + NO2 reaction (pH-dependent) in sulfate formation during the haze evolution. The production rate (PS(IV)+NO2) of the S(IV) + NO2 pathway ranged from 1.97 × 10-4 to 5.91 (mean: 0.39) μg·m-3·h-1. Its proportion to sulfate total heterogeneous production rate (PS(IV)+NO2/Phet) was generally correlated positively with PM2.5 concentrations, indicating the relative importance of this pathway on haze days. Due to the mutual restriction between aerosol pH and aerosol liquid water content (ALWC) during haze evolution, the relative contribution of the S(IV) + NO2 pathway to sulfate heterogeneous formation was generally limited to 40%.
Collapse
Affiliation(s)
- Fange Yue
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhouqing Xie
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Pengfei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Shaojie Song
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pengzhen He
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Cheng Liu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Longquan Wang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiawei Yu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hui Kang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
50
|
Ruiz-López MF, Martins-Costa MTC, Anglada JM, Francisco JS. A New Mechanism of Acid Rain Generation from HOSO at the Air-Water Interface. J Am Chem Soc 2019; 141:16564-16568. [PMID: 31589817 DOI: 10.1021/jacs.9b07912] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The photochemistry of SO2 at the air-water interface of water droplets leads to the formation of HOSO radicals. Using first-principles simulations, we show that HOSO displays an unforeseen strong acidity (pKa = -1) comparable with that of nitric acid and is fully dissociated at the air-water interface. Accordingly, this radical might play an important role in acid rain formation. Potential implications are discussed.
Collapse
Affiliation(s)
- Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques , UMR CNRS 7019, University of Lorraine , CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy , France
| | - Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques , UMR CNRS 7019, University of Lorraine , CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy , France
| | - Josep M Anglada
- Departament de Química Biològica (IQAC) , CSIC , c/Jordi Girona 18 , E-08034 Barcelona , Spain
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104-6316 , United States
| |
Collapse
|