1
|
Gwak J, Lee J, Cha J, Moon HB, Khim JS, Hong S. Effect-directed analysis and nontarget screening for identifying AhR-active substances in sediments of Gamcheon Harbor, South Korea. MARINE POLLUTION BULLETIN 2024; 209:117081. [PMID: 39393239 DOI: 10.1016/j.marpolbul.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Gamcheon Harbor in Busan, the largest port city in South Korea, is contaminated with persistent toxic substances, including polycyclic aromatic hydrocarbons (92 to 1700 ng g-1 dry mass (dm)) and styrene oligomers (17 to 520 ng g-1 dm). This study applied effect-directed analysis and nontarget screening (NTS) to identify aryl hydrocarbon receptor (AhR)-active substances in Gamcheon harbor sediments. Relatively great AhR-mediated potencies were found in RP-HPLC fractions, F2.7-F2.8 (mid-polar, log KOW 6-8) and F3.6-F3.7 (polar, log KOW 5-7). Target AhR agonists comprised up to 43% of total AhR-mediated potencies. NTS using GC-QTOFMS and LC-QTOFMS identified daphnoretin and isorhamnetin as significant AhR agonists, with relative potency values of 0.4 × 10-3 and 6.5 × 10-5, respectively, compared to benzo[a]pyrene. The major AhR agonists in the coastal sediments of Korea appeared to be region-specific. This approach is useful for identifying and managing key toxic substances in coastal ecosystems.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Jihyun Cha
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seongjin Hong
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Radivojević I, Stojilković N, Antonijević-Miljaković E, Đorđević AB, Baralić K, Ćurčić M, Marić Đ, Đukić-Ćosić D, Bulat Z, Durgo K, Antonijević B. In silico attempt to reveal the link between cancer development and combined exposure to the maize herbicides: Glyphosate, nicosulfuron, S-metolachlor and terbuthylazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175187. [PMID: 39094656 DOI: 10.1016/j.scitotenv.2024.175187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Pesticides are crucial for crop protection and have seen a 50 % increase in use in the last decade. Besides preventing significant crop losses their use has raised health concerns due to consumer exposure through residues in food and water. The toxicity data from individual components is often used to assess overall mixture toxicity, but uncertainty persists in understanding the behaviors of individual chemicals within these mixtures. Assessing the risk of pesticide mixture exposure remains challenging, potentially leading to overestimation or underestimation of toxicity. This study aims to establish a possible link between exposure to a herbicide mixture and genotoxic effects, focusing on cancer development. Our analysis was focused on four herbicides glyphosate, nicosulfuron, S-metolachlor and terbuthylazine. To determine the link between genes associated with cancer development due to exposure to herbicide mixture, a CTD database tools were used. Through the ToppFun tool molecular function and biological process associated with genes common to the disease of interest and selected herbicides were evaluated. And finally, GeneMANIA was used in order to analyze the function and interaction between common genes of herbicide mixture. Among the 7 common genes for herbicide mixture and cancer development coexpression characteristics were dominant at 65.41 %, 22.14 % of annotated genes shared the same pathway and 7.88 % showed co-localization. Among six target genes involved in genetic disease development co-expression was dominant at 87.34 %, colocalization at 8.03 % and shared protein domains at 4.52 %. Comprehensive molecular analyses, encompassing genomics, proteomics, and pathway analysis, are essential to unravel the specific mechanisms involved in the context of the studied mixture and its potential carcinogenic effects.
Collapse
Affiliation(s)
- Ivana Radivojević
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Nikola Stojilković
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Evica Antonijević-Miljaković
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Đurđica Marić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ksenija Durgo
- Faculty of food technology and biotechnology, University of Zagreb, Pierottijeva street 6, 10000 Zagreb, Croatia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
3
|
Krupčíková S, Stiborek M, Kalousková P, Urík J, Šimek Z, Melymuk L, Muz M, Vrana B. Investigation of occurrence of aromatic amines in municipal wastewaters using passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173196. [PMID: 38750764 DOI: 10.1016/j.scitotenv.2024.173196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 06/03/2024]
Abstract
Aromatic amines (AAs) are human-made compounds known for their mutagenic properties, entering surface waters from various sources, often originating as transformation products of dyes or pesticides. Despite their low concentrations in surface waters, AAs can exhibit mutagenicity. Our study focused on evaluating three passive samplers (PSs) for enriching these compounds from influent and effluent of a wastewater treatment plant (WWTP) in Brno, Czech Republic. The PSs tested included variants containing AttractSPE™ SDB-RPS sorbent disk, one with and one without a diffusive agarose hydrogel layer, and a modified Speedisk (Bakerbond Speedisk® H2O-Philic). PSs were deployed in wastewater (WW) for one to four weeks in various overlapping combinations, and the uptake of AAs to PSs was compared to their concentrations in 24-hour composite water samples. A targeted LC/MS analysis covered 42 amines, detecting 11 and 13 AAs in daily composite influent and effluent samples, respectively. In the influent, AAs ranged from 1.5 ng L-1 for 1-anilinonaphthalene to 1.0 μg L-1 for aniline, and the highest concentration among all measured amines was observed for cyclohexylamine at 2.9 μg L-1. In the effluent, concentrations ranged from 0.5 ng L-1 for 1-anilinonaphthalene to 88 ng L-1 for o-anisidine. PSs demonstrated comparable accumulation of amines, with integrative uptake up to 28 days in both influent and effluent and detection of up to 23 and 27 amines in influent and effluent, respectively; altogether 34 compounds were detected in the study. Sampling rates (Rs) were estimated for compounds present in at least 50 % of the samples and showing <40 % aqueous concentration variability, with robustness evaluated by comparing values for compounds in WWTP influent and effluent. Although all devices performed similarly, hydrogel-based PS exhibited superior performance in several criteria, including time integration and robustness of sampling rates, making it a suitable monitoring tool for AAs in WW.
Collapse
Affiliation(s)
- Simona Krupčíková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Marek Stiborek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Petra Kalousková
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Jakub Urík
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Zdeněk Šimek
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Melis Muz
- Helmholtz Centre for Environmental Research GmbH-UFZ, Department Exposure Science, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Branislav Vrana
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| |
Collapse
|
4
|
Luo W, Chou L, Cui Q, Wei S, Zhang X, Guo J. High-efficiency effect-directed analysis (EDA) advancing toxicant identification in aquatic environments: Latest progress and application status. ENVIRONMENT INTERNATIONAL 2024; 190:108855. [PMID: 38945088 DOI: 10.1016/j.envint.2024.108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Facing the great threats to ecosystems and human health posed by the continuous release of chemicals into aquatic environments, effect-directed analysis (EDA) has emerged as a powerful tool for identifying causative toxicants. However, traditional EDA shows problems of low-coverage, labor-intensive and low-efficiency. Currently, a number of high-efficiency techniques have been integrated into EDA to improve toxicant identification. In this review, the latest progress and current limitations of high-efficiency EDA, comprising high-coverage effect evaluation, high-resolution fractionation, high-coverage chemical analysis, high-automation causative peak extraction and high-efficiency structure elucidation, are summarized. Specifically, high-resolution fractionation, high-automation data processing algorithms and in silico structure elucidation techniques have been well developed to enhance EDA. While high-coverage effect evaluation and chemical analysis should be further emphasized, especially omics tools and data-independent mass acquisition. For the application status in aquatic environments, high-efficiency EDA is widely applied in surface water and wastewater. Estrogenic, androgenic and aryl hydrocarbon receptor-mediated activities are the most concerning, with causative toxicants showing the typical structural features of steroids and benzenoids. A better understanding of the latest progress and application status of EDA would be beneficial to further advance in the field and greatly support aquatic environment monitoring.
Collapse
Affiliation(s)
- Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qinglan Cui
- Bluestar Lehigh Engineering Institute Co., Ltd., Lianyungang 222004, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| |
Collapse
|
5
|
Edebali Ö, Krupčíková S, Goellner A, Vrana B, Muz M, Melymuk L. Tracking Aromatic Amines from Sources to Surface Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:397-409. [PMID: 38765463 PMCID: PMC11097632 DOI: 10.1021/acs.estlett.4c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 05/22/2024]
Abstract
This review examines the environmental occurrence and fate of aromatic amines (AAs), a group of environmental contaminants with possible carcinogenic and mutagenic effects. AAs are known to be partially responsible for the genotoxic traits of industrial wastewater (WW), and AA antioxidants are acutely toxic to some aquatic organisms. Still, there are gaps in the available data on sources, occurrence, transport, and fate in domestic WW and indoor environments, which complicate the prevention of adverse effects in aquatic ecosystems. We review key domestic sources of these compounds, including cigarette smoke and grilled protein-rich foods, and their presence indoors and in aquatic matrices. This provides a basis to evaluate the importance of nonindustrial sources to the overall environmental burden of AAs. Appropriate sampling techniques for AAs are described, including copper-phthalocyanine trisulfonate materials, XAD resins in solid-phase extraction, and solid-phase microextraction methods, which can offer insights into AA sources, transport, and fate. Further discussion is provided on potential progress in the research of AAs and their behavior in an aim to support the development of a more comprehensive understanding of their effects and potential environmental risks.
Collapse
Affiliation(s)
- Özge Edebali
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| | - Simona Krupčíková
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| | - Anna Goellner
- UFZ
Helmholtz Centre for Environmental Research, Department of Effect Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Branislav Vrana
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| | - Melis Muz
- UFZ
Helmholtz Centre for Environmental Research, Department of Effect Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Lisa Melymuk
- RECETOX,
Masaryk University, Faculty of Science, Kotlářská 2, 611 37 Brno, Czechia
| |
Collapse
|
6
|
Cajka T, Hricko J, Rakusanova S, Brejchova K, Novakova M, Rudl Kulhava L, Hola V, Paucova M, Fiehn O, Kuda O. Hydrophilic Interaction Liquid Chromatography-Hydrogen/Deuterium Exchange-Mass Spectrometry (HILIC-HDX-MS) for Untargeted Metabolomics. Int J Mol Sci 2024; 25:2899. [PMID: 38474147 DOI: 10.3390/ijms25052899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Liquid chromatography with mass spectrometry (LC-MS)-based metabolomics detects thousands of molecular features (retention time-m/z pairs) in biological samples per analysis, yet the metabolite annotation rate remains low, with 90% of signals classified as unknowns. To enhance the metabolite annotation rates, researchers employ tandem mass spectral libraries and challenging in silico fragmentation software. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) may offer an additional layer of structural information in untargeted metabolomics, especially for identifying specific unidentified metabolites that are revealed to be statistically significant. Here, we investigate the potential of hydrophilic interaction liquid chromatography (HILIC)-HDX-MS in untargeted metabolomics. Specifically, we evaluate the effectiveness of two approaches using hypothetical targets: the post-column addition of deuterium oxide (D2O) and the on-column HILIC-HDX-MS method. To illustrate the practical application of HILIC-HDX-MS, we apply this methodology using the in silico fragmentation software MS-FINDER to an unknown compound detected in various biological samples, including plasma, serum, tissues, and feces during HILIC-MS profiling, subsequently identified as N1-acetylspermidine.
Collapse
Affiliation(s)
- Tomas Cajka
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Jiri Hricko
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Stanislava Rakusanova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Kristyna Brejchova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Michaela Novakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Lucie Rudl Kulhava
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Veronika Hola
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Michaela Paucova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200 Prague, Czech Republic
| |
Collapse
|
7
|
Wu JH, Yang TH, Chen F, Yu HQ. Unexpected side reactions dominate the oxidative transformation of aromatic amines in the Co(II)/peracetic acid system. PNAS NEXUS 2024; 3:pgae040. [PMID: 38328784 PMCID: PMC10849606 DOI: 10.1093/pnasnexus/pgae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
Aromatic amines (AAs), ubiquitous in industrial applications, pose significant environmental hazards due to their resistance to conventional wastewater treatments. Peracetic acid (PAA)-based advanced oxidation processes (AOPs) have been proposed as effective strategies for addressing persistent AA contaminants. While the organic radicals generated in these systems are believed to be selective and highly oxidative, acetate residue complicates the evaluation of AA removal efficiency. In this work, we explored transformation pathways of AAs in a representative Co(II)-catalyzed PAA system, revealing five side reactions (i.e. nitrosation, nitration, coupling, dimerization, and acetylation) that yield 17 predominantly stable and toxic by-products. The dominant reactive species was demonstrated as Co-OOC(O)CH3, which hardly facilitated ring-opening reactions. Our findings highlight the potential risks associated with PAA-based AOPs for AA degradation and provide insights into selecting suitable catalytic systems aimed at efficient and by-product-free degradation of pollutants containing aromatic -NH2.
Collapse
Affiliation(s)
- Jing-Hang Wu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Tian-Hao Yang
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Hong S, Lee J, Cha J, Gwak J, Khim JS. Effect-Directed Analysis Combined with Nontarget Screening to Identify Unmonitored Toxic Substances in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19148-19155. [PMID: 37972298 DOI: 10.1021/acs.est.3c05035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Effect-directed analysis (EDA) combined with nontarget screening (NTS) has established a valuable tool for the identification of unmonitored toxic substances in environmental samples. It consists of three main steps: (1) highly potent fraction identification, (2) toxicant candidate selection, and (3) major toxicant identification. Here, we discuss the methodology, current status, limitations, and future challenges of EDA combined with NTS. This method has been applied successfully to various environmental samples, such as sediments, wastewater treatment plant effluents, and biota. We present several case studies and highlight key results. EDA has undergone significant technological advancements in the past 20 years, with the establishment of its key components: target chemical analysis, bioassays, fractionation, NTS, and data processing. However, it has not been incorporated widely into environmental monitoring programs. We provide suggestions for the application of EDA combined with NTS in environmental monitoring programs and management, with the identification of further research needs.
Collapse
Affiliation(s)
- Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Cha J, Hong S, Lee J, Gwak J, Kim M, Mok S, Moon HB, Jones PD, Giesy JP, Khim JS. Identification of Mid-Polar and Polar AhR Agonists in Cetaceans from Korean Coastal Waters: Application of Effect-Directed Analysis with Full-Scan Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15644-15655. [PMID: 37787753 PMCID: PMC10586376 DOI: 10.1021/acs.est.3c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
Major aryl hydrocarbon receptor (AhR) agonists were identified in extracts of blubber, liver, and muscle from six long-beaked common dolphins (Delphinus capensis) and one fin whale (Balaenoptera physalus) collected from Korean coastal waters using effect-directed analysis. Results of the H4IIE-luc bioassay indicated that the polar fractions of blubber and liver extracts from the fin whale exhibited relatively high AhR-mediated potencies. Based on full-scan screening with high-resolution mass spectrometry, 37 AhR agonist candidates, spanning four use categories: pharmaceuticals, pesticides, cosmetics, and natural products, were selected. Among these, five polar AhR agonists were newly identified through toxicological confirmation. Concentrations of polar AhR agonists in cetaceans were tissue-specific, with extracts of blubber and liver containing greater concentrations than muscle extracts. Polar AhR agonists with great log KOA values (>5) were found to biomagnify in the marine food chain potentially. Polar AhR agonists contributed 8.9% of the observed AhR-mediated potencies in blubber and 49% in liver. Rutaecarpine and alantolactone contributed significantly to the total AhR-mediated potencies of blubber, whereas hydrocortisone was a major AhR contributor in the liver of the fin whale. This study is the first to identify the tissue-specific accumulation of polar AhR agonists in blubber and liver extracts of cetaceans.
Collapse
Affiliation(s)
- Jihyun Cha
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Seongjin Hong
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Junghyun Lee
- School
of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Department
of Environmental Education, Kongju National
University, Gongju 32588, Republic of Korea
| | - Jiyun Gwak
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Mungi Kim
- Department
of Marine Environmental Science, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Sori Mok
- Department
of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic
of Korea
| | - Hyo-Bang Moon
- Department
of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic
of Korea
| | - Paul D. Jones
- Department
of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada
| | - John P. Giesy
- Department
of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada
- Department
of Integrative Biology and Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States
| | - Jong Seong Khim
- School
of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Zhang C, Fang M, Gao Y, Li Y, Fan L, Li X. Valence-Engineered Oxidase-Mimicking Nanozyme with Specificity for Aromatic Amine Oxidation and Identification. Anal Chem 2023. [PMID: 37402320 DOI: 10.1021/acs.analchem.3c01488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Oxidase-mimicking nanozymes with specificity for catalyzing oxidation of aromatic amines are of great significance for recognition of aromatic amines but rarely reported. Herein, Cu-A nanozyme (synthesized with Cu2+ as a node and adenine as a linker) could specifically catalyze oxidation of o-phenylenediamine (OPD) in Britton-Robinson buffer solution. Such a specific catalytic performance was also corroborated with other aromatic amines, such as p-phenylenediamine (PPD), 1,5-naphthalene diamine (1,5-NDA), 1,8-naphthalene diamine (1,8-NDA), and 2-aminoanthracene (2-AA). Moreover, the presence of salts (1 mM NaNO2, NaHCO3, NH4Cl, KCl, NaCl, NaBr, and NaI) greatly mediated the catalytic activity with the order of NaNO2 < blank ≈ NaHCO3 < NH4Cl ≈ KCl ≈ NaCl < NaBr < NaI, which was due to anions sequentially increasing interfacial Cu+ content via anionic redox reaction, while the effect of cations was negligible. With the increased Cu+ content, Km decreased and Vmax increased, indicating valence-engineered catalytic activity. Based on high specificity and satisfactory activity, a colorimetric sensor array with NaCl, NaBr, and NaI as sensing channels was constructed to identify five representative aromatic amines (OPD, PPD, 1,5-NDA, 1,8-NDA, and 2-AA) as low as 50 μM, quantitatively analyze single aromatic amine (with OPD and PPD as model analysts), and even identify 20 unknown samples with an accuracy of 100%. In addition, the performance was further validated through accurately recognizing various concentration ratios of binary, ternary, quaternary, and quinary mixtures. Finally, the practical applications were demonstrated by successfully discriminating five aromatic amines in tap, river, sewage, and sea water, providing a simple and feasible assay for large-scale scanning aromatic amine levels in environmental water samples.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Man Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuanbo Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Shuliakevich A, Schröder K, Nagengast L, Muz M, Pipal M, Brückner I, Hilscherova K, Brack W, Schiwy S, Hollert H. Morphological and behavioral alterations in zebrafish larvae after exposure to contaminated river sediments collected in different weather conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157922. [PMID: 35961394 DOI: 10.1016/j.scitotenv.2022.157922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are the primary source of micropollutants in aquatic ecosystems. Many micropollutants tend to bind to sediments and persist until remobilizion by bioturbation or flood events. Advanced effluent treatment by ozonation has been proven to eliminate most micropollutants. The present study characterizes sediments' toxic potential regarding zebrafish embryo development, which highly complex nervous system is vulnerable to exposure to neurotoxic substances. Furthermore, behavioral changes can be induced even at low pollutant concentrations and do not cause acute toxicity. The study area includes stretches of the main waterbody, the Wurm River (sampling sites W1-W5), and its tributary the Haarbach River (sampling sites H1, and H2) in North-Rhine Westphalia, Germany. Both waterbodies serve as recipients of WWTPs' effluents. The effluent entering the Haarbach River is conventionally treated, while the Wurm River receives ozonated effluent from the Aachen-Soers WWTP. Seven sampling sites up- and downstream of the WWTPs were investigated in June of two subsequent years. The first sampling campaign in 2017 was characterized by prolonged dry weather. The second sampling campaign in 2018 occurred after prolonged rain events and the release of the rainwater overflow basin. Direct exposure of zebrafish embryos to native sediments using the sediment contact test represented an ecologically realistic scenario and showed no acute sublethal effects. Exposure of the zebrafish embryo to freeze-dried sediments representing the ecotoxicological status of sediments during flood events unfolded acute sublethal toxicity. Behavioral studies with zebrafish larvae were an essential part of environmental neurotoxicity testing. Zebrafish larvae exposed to sediments' concentrations causing no acute effects led to behavioral changes signalizing neurotoxic substances in sediments. Polyaromatic hydrocarbons, polychlorinated biphenyls, and nitroaromatic compounds were identified as potential toxicity drivers, whereby the rainwater overflow basin served as a possible source of pollution. Mixture toxicity, effect-directed analysis, and further sediment monitoring are needed.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Melis Muz
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Marek Pipal
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Werner Brack
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabrina Schiwy
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Henner Hollert
- Goethe University Frankfurt/Main, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
12
|
Gwak J, Lee J, Cha J, Kim M, Hur J, Cho J, Kim MS, Jang KS, Giesy JP, Hong S, Khim JS. Molecular Characterization of Estrogen Receptor Agonists during Sewage Treatment Processes Using Effect-Directed Analysis Combined with High-Resolution Full-Scan Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13085-13095. [PMID: 35973975 DOI: 10.1021/acs.est.2c03428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endocrine-disrupting potential was evaluated during the sewage treatment process using in vitro bioassays. Aryl hydrocarbon receptor (AhR)-, androgen receptor (AR)-, glucocorticoid receptor (GR)-, and estrogen receptor (ER)-mediated activities were assessed over five steps of the treatment process. Bioassays of organic extracts showed that AhR, AR, and GR potencies tended to decrease through the sewage treatment process, whereas ER potencies did not significantly decrease. Bioassays on reverse-phase high-performance liquid chromatography fractions showed that F5 (log KOW 2.5-3.0) had great ER potencies. Full-scan screening of these fractions detected two novel ER agonists, arenobufagin and loratadine, which are used pharmaceuticals. These compounds accounted for 3.3-25% of the total ER potencies and 4% of the ER potencies in the final effluent. The well-known ER agonists, estrone and 17β-estradiol, accounted for 60 and 17% of the ER potencies in F5 of the influent and primary treatment, respectively. Fourier transform ion cyclotron resonance mass spectrometry analysis showed that various molecules were generated during the treatment process, especially CHO and CHOS (C: carbon, H: hydrogen, O: oxygen, and S: sulfur). This study documented that widely used pharmaceuticals are introduced into the aquatic environments without being removed during the sewage treatment process.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Min Sung Kim
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyoung-Soon Jang
- Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon SK S7N5B3, Canada
- Department of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Švara V, Michalski SG, Krauss M, Schulze T, Geuchen S, Brack W, Luckenbach T. Reduced genetic diversity of freshwater amphipods in rivers with increased levels of anthropogenic organic micropollutants. Evol Appl 2022; 15:976-991. [PMID: 35782015 PMCID: PMC9234654 DOI: 10.1111/eva.13387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Anthropogenic chemicals in freshwater environments contribute majorly to ecosystem degradation and biodiversity decline. In particular anthropogenic organic micropollutants (AOM), a diverse group of compounds, including pesticides, pharmaceuticals, and industrial chemicals, can significantly impact freshwater organisms. AOM were found to impact genetic diversity of freshwater species; however, to which degree AOM cause changes in population genetic structure and allelic richness of freshwater macroinvertebrates remains poorly understood. Here, the impact of AOM on genetic diversity of the common amphipod Gammarus pulex (Linnaeus, 1758) (clade E) was investigated on a regional scale. The site-specific AOM levels and their toxic potentials were determined in water and G. pulex tissue sample extracts for 34 sites along six rivers in central Germany impacted by wastewater effluents and agricultural run-off. Population genetic parameters were determined for G. pulex from the sampling sites by genotyping 16 microsatellite loci. Genetic differentiation among G. pulex from the studied rivers was found to be associated with geographic distance between sites and to differences in site-specific concentrations of AOM. The genetic diversity parameters of G. pulex were found to be related to the site-specific AOM levels. Allelic richness was significantly negatively correlated with levels of AOM in G. pulex tissue (p < 0.003) and was reduced by up to 22% at sites with increased levels of AOM, despite a positive relationship of allelic richness and the presence of waste-water effluent. In addition, the inbreeding coefficient of G. pulex from sites with toxic AOM levels was up to 2.5 times higher than that of G. pulex from more pristine sites. These results indicate that AOM levels commonly found in European rivers significantly contribute to changes in the genetic diversity of an ecologically relevant indicator species.
Collapse
Affiliation(s)
- Vid Švara
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Department of Evolutionary Ecology and Environmental ToxicologyGoethe University FrankfurtFrankfurt am MainGermany
- UNESCO Chair for Sustainable Management of Conservation AreasCarinthia University of Applied SciencesVillachAustria
| | - Stefan G. Michalski
- Department of Community EcologyHelmholtz Centre for Environmental Research – UFZHalleGermany
| | - Martin Krauss
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Tobias Schulze
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Stephan Geuchen
- Department of Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Werner Brack
- Department of Effect‑Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Department of Evolutionary Ecology and Environmental ToxicologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Till Luckenbach
- Department of Bioanalytical EcotoxicologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
14
|
Cha J, Hong S, Gwak J, Kim M, Lee J, Kim T, Han GM, Hong SH, Hur J, Giesy JP, Khim JS. Identification of novel polar aryl hydrocarbon receptor agonists accumulated in liver of black-tailed gulls in Korea using advanced effect-directed analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128305. [PMID: 35077967 DOI: 10.1016/j.jhazmat.2022.128305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Although bioaccumulation of persistent organic pollutants in seabirds has been examined, few studies have been conducted to identify previously unidentified substances. Here, aryl hydrocarbon receptor (AhR) agonists were identified in livers of black-tailed gulls from South Korea using effect-directed analysis combined with full-scan screening analysis. Significant AhR-mediated potencies were observed in the polar fractions of liver extracts using H4IIE-luc bioassay. Eight known polar AhR agonists accounted for 11-20% of the total AhR-mediated potencies in the polar fractions; hydrocortisone and rutaecarpine were the major contributors. Twenty-two AhR agonist candidates in the polar fractions were identified using liquid chromatography-quadrupole time-of-flight mass spectrometry during a six-step selection process. Of these, [10]-gingerol, angelicin, corticosterone, eupatilin, etofenprox, oxadixyl, and tretinoin were identified as novel AhR agonists. The contribution to potencies increased with inclusion of novel AhR agonists (27-52%); corticosterone and [10]-gingerol contributed significantly. Quantitative structure-activity relationship suggested that the novel AhR agonists have other potential toxic effects, including carcinogenicity and mutagenicity. Polar AhR agonists have been used for pharmaceuticals and pesticides. Some novel AhR agonists have log KOW > 2 and log KOA ≥ 6, which indicates that these compounds can be biomagnified in air-breathing organisms, such as seabirds.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Myung Han
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sang Hee Hong
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Sciences, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Shuliakevich A, Muz M, Oehlmann J, Nagengast L, Schröder K, Wolf Y, Brückner I, Massei R, Brack W, Hollert H, Schiwy S. Assessing the genotoxic potential of freshwater sediments after extensive rain events - Lessons learned from a case study in an effluent-dominated river in Germany. WATER RESEARCH 2022; 209:117921. [PMID: 34923444 DOI: 10.1016/j.watres.2021.117921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plant effluents and releases from rainwater overflow basins can contribute to the input of genotoxic micropollutants in aquatic ecosystems. Predominantly lipophilic genotoxic compounds tend to sorb to particulate matter, making sediment a source and a sink of pollution. Therefore, the present study aims to investigate the genotoxic potential of freshwater sediments (i) during the dry period and (ii) after extensive rain events by collecting sediment samples in one small anthropogenically impacted river in Germany up- and downstream of the local wastewater treatment plant. The Micronucleus and Ames fluctuation assays with Salmonella typhimurium strains TA98, TA100, YG1041, and YG1042 were used to assess the genotoxic potential of organic sediment extracts. For evaluation of possible genotoxicity drivers, target analysis for 168 chemical compounds was performed. No clastogenic effects were observed, while the genotoxic potential was observed at all sampling sites primarily driven by polycyclic aromatic hydrocarbons, nitroarenes, aromatic amines, and polycyclic heteroarenes. Freshwater sediments' genotoxic potential increased after extensive rain events due to sediment perturbation and the rainwater overflow basin release. In the present study, the rainwater overflow basin was a significant source for particle-bound pollutants from untreated wastewater, suggesting its role as a possible source of genotoxic potential. The present study showed high sensitivity and applicability of the bacterial Salmonella typhimurium strains YG1041 and YG1042 to organic sediment extracts to assess the different classes of genotoxic compounds. A combination of effect-based methods and a chemical analysis was shown as a suitable tool for a genotoxic assessment of freshwater sediments.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Melis Muz
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Yvonne Wolf
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Riccardo Massei
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| |
Collapse
|
16
|
Gwak J, Cha J, Lee J, Kim Y, An SA, Lee S, Moon HB, Hur J, Giesy JP, Hong S, Khim JS. Effect-directed identification of novel aryl hydrocarbon receptor-active aromatic compounds in coastal sediments collected from a highly industrialized area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149969. [PMID: 34481160 DOI: 10.1016/j.scitotenv.2021.149969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, we identified major aryl hydrocarbon receptor (AhR) agonists in the sediments from Yeongil Bay (n = 6) using effect-directed analysis. Using the H4IIE-luc bioassays, great AhR-mediated potencies were found in aromatic fractions (F2) of sediment organic extracts from silica gel column chromatography and sub-fractions (F2.6-F2.8) from reverse phase-HPLC. Full-scan mass spectrometric analysis using GC-QTOFMS was conducted to identify novel AhR agonists in highly potent fractions, such as F2.6-F2.8 of S1 (Gumu Creek). Selection criteria for AhR-active compounds consisted of three steps, including matching factor of NIST library (≥70), aromatic structures, and the number of aromatic rings (≥4). Fifty-nine compounds were selected as tentative AhR agonist candidates, with the AhR-mediated activity being assessed for six compounds for which standard materials were available commercially. Of these compounds, 20-methylcholanthrene, 7-methylbenz[a]anthracene, 10-methylbenz[a]pyrene, and 7,12-dimethylbenz[a]anthracene exhibited significant AhR-mediated potency. Relative potency values of these compounds were determined relative to benzo[a]pyrene to be 3.2, 1.4, 1.2, and 0.2, respectively. EPA positive matrix factorization modeling indicated that the sedimentary AhR-active aromatic compounds primarily originated from coal combustion and vehicle emissions. Potency balance analysis indicated that four novel AhR agonists explained 0.007% to 1.7% of bioassay-derived AhR-mediated potencies in samples.
Collapse
Affiliation(s)
- Jiyun Gwak
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jihyun Cha
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngnam Kim
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seong-Ah An
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Seongjin Hong
- Department of Marine Environmental Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
17
|
Günthardt BF, Hollender J, Scheringer M, Hungerbühler K, Nanusha MY, Brack W, Bucheli TD. Aquatic occurrence of phytotoxins in small streams triggered by biogeography, vegetation growth stage, and precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149128. [PMID: 34325139 DOI: 10.1016/j.scitotenv.2021.149128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Toxic plant secondary metabolites (PSMs), so-called phytotoxins, occur widely in plant species. Many of these phytotoxins have similar mobility, persistence, and toxicity properties in the environment as anthropogenic micropollutants, which increasingly contaminate surface waters. Although recent case studies have shown the aquatic relevance of phytotoxins, the overall exposure remains unknown. Therefore, we performed a detailed occurrence analysis covering 134 phytotoxins from 27 PSM classes. Water samples from seven small Swiss streams with catchment areas from 1.7 to 23 km2 and varying land uses were gathered over several months to investigate seasonal impacts. They were complemented with samples from different biogeographical regions to cover variations in vegetation. A broad SPE-LC-HRMS/MS method was applied with limits of detection below 5 ng/L for over 80% of the 134 included phytotoxins. In total, we confirmed 39 phytotoxins belonging to 13 PSM classes, which corresponds to almost 30% of all included phytotoxins. Several alkaloids were regularly detected in the low ng/L-range, with average detection frequencies of 21%. This is consistent with the previously estimated persistence and mobility properties that indicated a high contamination potential. Coumarins were previously predicted to be unstable, however, detection frequencies were around 89%, and maximal concentrations up to 90 ng/L were measured for fraxetin produced by various trees. Overall, rainy weather conditions at full vegetation led to the highest total phytotoxin concentrations, which might potentially be most critical for aquatic organisms.
Collapse
Affiliation(s)
- Barbara F Günthardt
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland; Masaryk University, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Konrad Hungerbühler
- Institute for Chemical and Bioengineering, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | - Mulatu Y Nanusha
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany; Goethe University Frankfurt,Max-von-Laue Str. 13, 60438 Frankfurt (Main), Germany
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig, Germany; Goethe University Frankfurt,Max-von-Laue Str. 13, 60438 Frankfurt (Main), Germany
| | - Thomas D Bucheli
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland.
| |
Collapse
|
18
|
Cha J, Hong S, Lee J, Gwak J, Kim M, Kim T, Hur J, Giesy JP, Khim JS. Novel polar AhR-active chemicals detected in sediments of an industrial area using effect-directed analysis based on in vitro bioassays with full-scan high resolution mass spectrometric screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146566. [PMID: 34030261 DOI: 10.1016/j.scitotenv.2021.146566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Studies investigating aryl hydrocarbon receptor (AhR)-active compounds in the environment typically focus on non- and mid-polar substances, such as PAHs; while, information on polar AhR agonists remains limited. Here, we identified polar AhR agonists in sediments collected from the inland creeks of an industrialized area (Lake Sihwa, Korea) using effect-directed analysis combined with full-scan screening analysis (FSA; using LC-QTOFMS). Strong AhR-mediated potencies were observed for the polar and latter fractions of RP-HPLC (F3.5-F3.8) from sediment organic extracts in the H4IIE-luc in vitro bioassays. FSA was performed on the corresponding fractions. Twenty-eight tentative AhR agonists were chosen using a five-step process. Toxicological confirmation using bioassay revealed that canrenone, rutaecarpine, ciprofloxacin, mepanipyrim, genistein, protopine, hydrocortisone, and medroxyprogesterone were significantly active. The relative potencies of these AhR-active compounds compared to that of benzo[a]pyrene ranged from 0.00002 to 2.0. Potency balance analysis showed that polar AhR agonists explained, on average, ~6% of total AhR-mediated potencies in samples. Some novel polar AhR agonists also exhibited endocrine-disrupting potentials capable of binding to estrogen and glucocorticoid receptors, as identified by QSAR modeling. In conclusion, the focused studies on distributions, sources, fate, and ecotoxicological effects of novel polar AhR agonists in the environment are necessary.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyun Gwak
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Brendt J, Crawford SE, Velki M, Xiao H, Thalmann B, Hollert H, Schiwy A. Is a liver comparable to a liver? A comparison of different rat-derived S9-fractions with a biotechnological animal-free alternative in the Ames fluctuation assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143522. [PMID: 33246726 DOI: 10.1016/j.scitotenv.2020.143522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Metabolism has to be considered during the toxicological assessment of chemical and environmental samples because it is an important process in the mammalian liver. It can be assessed in vitro via liver homogenates called S9-fractions, an external metabolic activation system. However, the external metabolic activation systems can vary greatly in their composition due to biological variations among individual animals and animal strains that the S9-fraction are derived as well as the differences in the production treatment. To gain more insight into these variances, three different but commonly used rat-derived S9-fractions were compared in the present study for their variance and performance with a reference compound in the Ames fluctuation assay with Salmonella typhimurium strains TA 98 and TA 100 according to ISO 11350. Severe shortcomings of conventional rat-derived S9-fractions were observed in the present study, such that S9-fractions differed significantly within the same rat strain and for different types of induction procedures in regards to the metabolic capability. An intrinsic mutagenic potential of the three rat-derived S9-fractions were identified in the Ames fluctuation assay with varying S9-fraction concentrations. To address some of the shortcomings of the animal-derived S9-fraction, the present study investigated the use and performance of a biotechnological, animal-free alternative, ewoS9R, in comparison to one of the rat-derived S9-fraction as the others showed a mutagenic potential themselves. Specifically, 12 different chemicals were used as a reference to determine if ewoS9R could serve as an adequate and more consistent replacement of traditional rat-derived metabolic activation systems: 8 pro-mutagenic compounds (i.e., require metabolic activation to show a mutagenic potential), one pro-mutagenic compound but not in the tested strains, one mutagenic compound without metabolic activation and two compounds that are equivocal in the literature. EwoS9R was evaluated as a promising approach in the Ames fluctuation assay with 5 compounds observed to have similar results with both rat-derived S9-fraction and ewoS9R (41%), for 3 compounds ewoS9R was a better metabolization system than the rat-derived S9-fraction (16%). Further research is necessary to determine the full potential of ewoS9R in comparison to rat-derived S9-fractions.
Collapse
Affiliation(s)
- Julia Brendt
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah E Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Beat Thalmann
- EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Andreas Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Oskarsson A, Rosenmai AK, Mandava G, Johannisson A, Holmes A, Tröger R, Lundqvist J. Assessment of source and treated water quality in seven drinking water treatment plants by in vitro bioassays - Oxidative stress and antiandrogenic effects after artificial infiltration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:144001. [PMID: 33338789 DOI: 10.1016/j.scitotenv.2020.144001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Drinking water quality and treatment efficacy was investigated in seven drinking water treatment plants (DWTPs), using water from the river Göta Älv, which also is a recipient of treated sewage water. A panel of cell-based bioassays was used, including measurements of receptor activity of aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), peroxisome proliferator-activated receptor alpha (PPARα) as well as induction of oxidative stress (Nrf2) and micronuclei formation. Grab water samples were concentrated by solid phase extraction (SPE) and water samples were analyzed at a relative enrichment factor of 50. High activities of AhR, ER and AR antagonism were present in WWTP outlets along the river. Inlet water from the river exhibited AhR and AR antagonistic activities. AhR activity was removed by DWTPs using granulated activated carbon (GAC) and artificial infiltration. AR antagonistic activity was removed by the treatment plants, except the artificial infiltration plant, which actually increased the activity. Furthermore, treated drinking water from the DWTP using artificial infiltration exhibited high Nrf2 activity, which was not found in any of the other water samples. Nrf2 activity was found in water from eight of the 13 abstraction wells, collecting water from the artificial infiltration. No genotoxic activity was detected at non-cytotoxic concentrations. No Nrf2 or AR antagonistic activities were detected in the inlet or outlet water after the DWTP had been replaced by a new plant, using membrane ultrafiltration and GAC. Neither target chemical analysis, nor chemical analysis according to the drinking water regulation, detected any presence of chemicals, which could be responsible of the prominent effects on oxidative stress and AR antagonistic activity in the drinking water samples. Thus, bioanalysis is a useful tool for detection of unknown hazards in drinking water and for assessment of drinking water treatments.
Collapse
Affiliation(s)
- Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Anna Kjerstine Rosenmai
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Anders Johannisson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, SE-750 07 Uppsala, Sweden
| | - Andrew Holmes
- Kungälv Drinking Water Treatment Plant, Filaregatan 15, SE-442 81 Kungälv, Sweden
| | - Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07 Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| |
Collapse
|
21
|
Rodríguez-Carrillo A, Rosenmai AK, Mustieles V, Couderq S, Fini JB, Vela-Soria F, Molina-Molina JM, Ferrando-Marco P, Wielsøe M, Long M, Bonefeld-Jorgensen EC, Olea N, Vinggaard AM, Fernández MF. Assessment of chemical mixtures using biomarkers of combined biological activity: A screening study in human placentas. Reprod Toxicol 2021; 100:143-154. [PMID: 33444715 DOI: 10.1016/j.reprotox.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Humans are simultaneously exposed to complex mixtures of chemicals with limited knowledge on potential health effects, therefore improved tools for assessing these mixtures are needed. As part of the Human Biomonitoring for Europe (HBM4EU) Project, we aimed to examine the combined biological activity of chemical mixtures extracted from human placentas using one in vivo and four in vitro bioassays, also known as biomarkers of combined effect. Relevant endocrine activities (proliferative and/or reporter gene assays) and four endpoints were tested: the estrogen receptor (ER), androgen receptor (AR), and aryl hydrocarbon receptor (AhR) activities, as well as thyroid hormone (TH) signaling. Correlations among bioassays and their functional shapes were evaluated. Results showed that all placental extracts agonized or antagonized at least three of the abovementioned endpoints. Most placentas induced ER-mediated transactivation and ER-dependent cell proliferation, together with a strong inhibition of TH signaling and the AR transactivity; while the induction of the AhR was found in only one placental extract. The effects in the two estrogenic bioassays were positively and significantly correlated and the AR-antagonism activity showed a positive borderline-significant correlation with both estrogenic bioassay activities. However, the in vivo anti-thyroid activities of placental extracts were not correlated with any of the tested in vitro assays. Findings highlight the importance of comprehensively mapping the biological effects of "real-world" chemical mixtures present in human samples, through a battery of in vitro and in vivo bioassays. This approach should be a complementary tool for epidemiological studies to further elucidate the combined biological fingerprint triggered by chemical mixtures.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Anna Kjerstine Rosenmai
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain.
| | - Stephan Couderq
- Physiologie moléculaire et Adaptation, Département "Adaptation du Vivant," UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Jean-Baptiste Fini
- Physiologie moléculaire et Adaptation, Département "Adaptation du Vivant," UMR 7221 MNHN/CNRS, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Fernando Vela-Soria
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Jose Manuel Molina-Molina
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | | | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark
| | - Eva Cecilie Bonefeld-Jorgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria Ibs GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), 18100, Spain.
| |
Collapse
|
22
|
Vinggaard AM, Bonefeld-Jørgensen EC, Jensen TK, Fernandez MF, Rosenmai AK, Taxvig C, Rodriguez-Carrillo A, Wielsøe M, Long M, Olea N, Antignac JP, Hamers T, Lamoree M. Receptor-based in vitro activities to assess human exposure to chemical mixtures and related health impacts. ENVIRONMENT INTERNATIONAL 2021; 146:106191. [PMID: 33068852 DOI: 10.1016/j.envint.2020.106191] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Humans are exposed to a large number of chemicals from sources such as the environment, food, and consumer products. There is growing concern that human exposure to chemical mixtures, especially during critical periods of development, increases the risk of adverse health effects in newborns or later in life. Historically, the one-chemical-at-a-time approach has been applied both for exposure assessment and hazard characterisation, leading to insufficient knowledge about human health effects caused by exposure to mixtures of chemicals that have the same target. To circumvent this challenge researchers can apply in vitro assays to analyse both exposure to and human health effects of chemical mixtures in biological samples. The advantages of using in vitro assays are: (i) that an integrated effect is measured, taking combined mixture effects into account and (ii) that in vitro assays can reduce complexity in identification of Chemicals of Emerging Concern (CECs) in human tissues. We have reviewed the state-of-the-art on the use of receptor-based in vitro assays to assess human exposure to chemical mixtures and related health impacts. A total of 43 studies were identified, in which endpoints for the arylhydrocarbon receptor (AhR), the estrogen receptor (ER), and the androgen receptor (AR) were used. The majority of studies reported biological activities that could be associated with breast cancer incidence, male reproductive health effects, developmental toxicities, human demographic characteristics or lifestyle factors such as dietary patterns. A few studies used the bioactivities to check the coverage of the chemical analyses of the human samples, whereas in vitro assays have so far not regularly been used for identifying CECs in human samples, but rather in environmental matrices or food packaging materials. A huge field of novel applications using receptor-based in vitro assays for mixture toxicity assessment on human samples and effect-directed analysis (EDA) using high resolution mass spectrometry (HRMS) for identification of toxic compounds waits for exploration. In the future this could lead to a paradigm shift in the way we unravel adverse human health effects caused by chemical mixtures.
Collapse
Affiliation(s)
- Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark.
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland's Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Tina Kold Jensen
- Dep of Environmental Medicine, University of Southern Denmark, Denmark
| | - Mariana F Fernandez
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Anna Kjerstine Rosenmai
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, 2800 Kgs. Lyngby, Denmark
| | | | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Nicolas Olea
- School of Medicine, Center of Biomedical Research, University of Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Timo Hamers
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Marja Lamoree
- Vrije Universiteit, Department Environment & Health, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| |
Collapse
|
23
|
Chang WCW, Chen YT, Chen HJ, Hsieh CW, Liao PC. Comparative UHPLC-Q-Orbitrap HRMS-Based Metabolomics Unveils Biochemical Changes of Black Garlic during Aging Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14049-14058. [PMID: 33166446 DOI: 10.1021/acs.jafc.0c04451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aged black garlic (BG) is a functional food in global markets; however, very few studies have ventured into comprehensive profiling of BG metabolomes during the aging process. Herein, we exploited UHPLC-Orbitrap HRMS for a comparative metabolomics analysis. During the heat treatment, organosulfur compounds such as allicin, diallyl disulfide, ajoene, S-allyl-l-cysteine (SAC), and γ-glutamyl-SAC were downregulated. Plenty of glycerophospholipids together with shikimate, aromatic amino acids, and vitamin B6 vitamers were significantly augmented; tryptophan was however consumed to generate downstream products manifested in nicotinate metabolism and aminobenzoate degradation. These secondary metabolites serve as signaling mediators or protectants against extreme thermal exposure. Besides, Heyns compounds and Amadori-rearrangement byproducts with potential mutagenic effects were concentrated. Together, our findings expand the known metabolome space of BG processing and better elucidate the reactivities of the key metabolites. We provide in-depth insights into the biochemical changes of BG that enable further functional or toxicological investigations of this popular food.
Collapse
Affiliation(s)
- William Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Ting Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Jhang Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
24
|
Beckers LM, Brack W, Dann JP, Krauss M, Müller E, Schulze T. Unraveling longitudinal pollution patterns of organic micropollutants in a river by non-target screening and cluster analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138388. [PMID: 32335446 DOI: 10.1016/j.scitotenv.2020.138388] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 05/28/2023]
Abstract
The pollution of aquatic ecosystems with complex and largely unknown mixtures of organic micropollutants is not sufficiently addressed with current monitoring strategies based on target screening methods. In this study, we implemented an open-source workflow based on non-target screening to unravel longitudinal pollution patterns of organic micropollutants along a river course. The 47 km long Holtemme River, a tributary of the Bode River (both Saxony-Anhalt, Germany), was used as a case study. Sixteen grab samples were taken along the river and analyzed by liquid chromatography coupled to high-resolution mass spectrometry. We applied a cluster analysis specifically designed for longitudinal data sets to identify spatial pollutant patterns and prioritize peaks for compound identification. Three main pollution patterns were identified representing pollutants entering a) from wastewater treatment plants, b) at the confluence with the Bode River and c) from diffuse and random inputs via small point sources and groundwater input. By further sub-clustering of the main patterns, source-related fingerprints were revealed. The main patterns were characterized by specific isotopologue signatures and the abundance of peaks in homologue series representing the major (pollution) sources. Furthermore, we identified 25 out of 38 representative compounds for the patterns by structure elucidation. The workflow represents an important contribution to the ongoing attempts to understand, monitor, prioritize and manage complex environmental mixtures and may be applied to other settings.
Collapse
Affiliation(s)
- Liza-Marie Beckers
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany.
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Janek Paul Dann
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany
| | - Erik Müller
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis (ESA), Worringer Weg 1, 52074 Aachen, Germany
| | - Tobias Schulze
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr.15, 04318 Leipzig, Germany
| |
Collapse
|
25
|
Zhou LJ, Rong ZY, Gu W, Fan DL, Liu JN, Shi LL, Xu YH, Liu ZY. Integrated fate assessment of aromatic amines in aerobic sewage treatment plants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:278. [PMID: 32277289 PMCID: PMC7148277 DOI: 10.1007/s10661-020-8111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/21/2020] [Indexed: 06/11/2023]
Abstract
The fate and exposure of chemicals in sewage treatment plants (STPs) are major considerations in risk assessment and environmental regulation. The biodegradability and removal of seven aromatic amines were systematically evaluated using a three-tiered integrated method: a standard ready biodegradability test, an aerobic sewage treatment simulation method, and model prediction. In tier 1, the seven aromatic amines were not readily biodegraded after 28 days. In adapted aerobic active sludge, 4-isopropyl aniline, 2,4-diaminotoluene, and 4-nitroaniline among them exhibited the degradation half-life time less than 20 h, the other four aromatic amines exhibited persistent with degradation half-life of > 60 h. In tier 2 of the aerobic sewage treatment simulation testing, 2,4-diaminotoluene, 4-nitroaniline, and 4-isopropylaniline demonstrated moderately to high overall removal. Hydraulic retention time (HRT) affects the removal with the optimum HRT was determined to be 12 h to 24. 2,6-Dimethyl aniline, 2-chloro-4-nitroaniline, 2,6-diethylaniline, and 3,4-dichloroaniline were not removed during the test, indicting these four aromatic amines will enter surface water and hence pose a potential risk to aquatic ecology. Considering the lack of an STP model in China for regulation purposes, in tier 3, we developed a Chinese STP (aerobic) (abbreviated as C-STP(O)) model that reflects a universal scenario for China to predict the fate. The predicted degradation, volatilization, and absorption showed a close relationship to the physicochemical properties of the chemicals, and had same tendency with tier 2 simulation test. The prediction showed that biodegradation rather than absorption or volatilization was the main removal process of aromatic amines in aerobic STP. With the combination of modified kinetics test with C-STP (O) model, the chemical fate can be more accurately predicted than using only the readily biodegradation result.
Collapse
Affiliation(s)
- Lin Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | | | - Wen Gu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - De Ling Fan
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Ji Ning Liu
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China.
| | - Li Li Shi
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yan Hua Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| | - Zhi Ying Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
26
|
Lee J, Hong S, Kim T, Lee C, An SA, Kwon BO, Lee S, Moon HB, Giesy JP, Khim JS. Multiple Bioassays and Targeted and Nontargeted Analyses to Characterize Potential Toxicological Effects Associated with Sediments of Masan Bay: Focusing on AhR-Mediated Potency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4443-4454. [PMID: 32167753 DOI: 10.1021/acs.est.9b07390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An enhanced, multiple lines of evidence approach was applied to assess potential toxicological effects associated with polluted sediments. Two in vitro bioassays (H4IIE-luc and Vibrio fischeri) and three in vivo bioassays (microalgae: Isochrysis galbana and Phaeodactylum tricornutum; zebrafish embryo: Danio rerio) were applied. To identify causative chemicals in samples, targeted analyses (polycyclic aromatic hydrocarbons (PAHs), styrene oligomers (SOs), and alkylphenols) and nontargeted full-scan screening analyses (FSA; GC- and LC-QTOFMS) were performed. First, great AhR-mediated potencies were observed in midpolar and polar fractions of sediment extracts, but known and previously characterized AhR agonists, including PAHs and SOs could not fully explain the total potencies of samples. Enoxolone was identified as a novel AhR agonist in a highly potent sediment fraction by use of FSA. Enoxolone has a relative potency of 0.13 compared to benzo[a]pyrene (1.0) in the H4IIE-luc bioassay. Nonylphenols associated with membrane damage that influenced the viability of the microalgae were also observed. Finally, inhibitions of bioluminescence of V. fischeri and lethality of D. rerio embryos were strongly related to nonpolar compounds. Overall, the present work addressed assay- and end point-specific variations and sensitivities for potential toxicities of mixture samples, warranting a significant utility of the "multiple lines of evidence" approach in ecological risk assessment.
Collapse
Affiliation(s)
- Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong-Ah An
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas 76706, United States
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Hashmi MAK, Krauss M, Escher BI, Teodorovic I, Brack W. Effect-Directed Analysis of Progestogens and Glucocorticoids at Trace Concentrations in River Water. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:189-199. [PMID: 31614391 DOI: 10.1002/etc.4609] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 05/07/2023]
Abstract
Effect-based monitoring is increasingly applied to detect and-in conjunction with chemical analysis-to identify endocrine-disrupting compounds (EDCs) in the environment. Although this approach of effect-directed analysis has been successfully demonstrated for estrogenicity and androgenicity, data on progestogens and glucocorticoids driving endocrine disruption are quite limited. We investigated progestogenic and glucocorticoid activities in Danube River water receiving untreated wastewater from Novi Sad, Serbia. After a 2-step fractionation, all fractions were tested with reporter gene bioassays for agonistic and antagonistic hormonal responses at progestogenic and glucocorticoid hormone receptors as well as with target and nontarget analytical screening of active fractions by liquid chromatography-high-resolution mass spectrometry. Due to masking by cytotoxic mixture components, the effects could not be detected in the raw water extract but were unraveled only after fractionation. Target chemical screening of the fraction that was active in the progesterone receptor (PR) assay revealed that progesterone and megestrol acetate were predominant drivers of PR-mediated activity along with medroxyprogesterone, dihydrotestosterone, androsterone, and epiandrosterone. Hydrocortisone was detected at sub-ng/L concentration in the active fraction in the glucocorticoid receptor (GR) assay but could not explain a significant fraction of the observed GR activity. The present study indicates that effect-based monitoring is a powerful tool to detect EDCs in the aquatic environment but that fractionation may be required to avoid masking effects of mixture components. Future effect-directed analysis studies are required to better understand the occurrence of EDCs and masking compounds in different lipophilicity windows, to finally reduce fractionation requirements for monitoring to a smart clean-up. Environ Toxicol Chem 2019;39:189-199. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Muhammad Arslan Kamal Hashmi
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University Aachen, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Beate I Escher
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Werner Brack
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research (Biology V), RWTH Aachen University Aachen, Germany
| |
Collapse
|
28
|
Cha J, Hong S, Kim J, Lee J, Yoon SJ, Lee S, Moon HB, Shin KH, Hur J, Giesy JP, Khim JS. Major AhR-active chemicals in sediments of Lake Sihwa, South Korea: Application of effect-directed analysis combined with full-scan screening analysis. ENVIRONMENT INTERNATIONAL 2019; 133:105199. [PMID: 31675573 DOI: 10.1016/j.envint.2019.105199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
This study utilized effect-directed analysis (EDA) combined with full-scan screening analysis (FSA) to identify aryl hydrocarbon receptor (AhR)-active compounds in sediments of inland creeks flowing into Lake Sihwa, South Korea. The specific objectives were to (i) investigate the major AhR-active fractions of organic extracts of sediments by using H4IIE-luc in vitro bioassay (4 h and 72 h exposures), (ii) quantify known AhR agonists, such as polycyclic aromatic hydrocarbons (PAHs) and styrene oligomers (SOs), (iii) identify unknown AhR agonists by use of gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOFMS), and (iv) determine contributions of AhR agonists to total potencies measured by use of the bioassay. FSA was conducted on fractions F2.6 and F2.7 (aromatics with log Kow 5-7) in extracts of sediment from Siheung Creek (industrial area). Those fractions exhibited significant AhR-mediated potency as well as relatively great concentrations of PAHs and SOs. FSA detected 461 and 449 compounds in F2.6 and F2.7, respectively. Of these, five tentative candidates of AhR agonist were selected based on NIST library matching, aromatic structures and numbers of rings, and available standards. Benz[b]anthracene, 11H-benzo[a]fluorene, and 4,5-methanochrysene exhibited significant AhR-mediated potency in the H4IIE-luc bioassay, and relative potencies of these compounds were determined. Potency balance analysis demonstrated that these three newly identified AhR agonists explained 1.1% to 67% of total induced AhR-mediated potencies of samples, which were particularly great for industrial sediments. Follow-up studies on sources and ecotoxicological effects of these compounds in coastal environments would be required.
Collapse
Affiliation(s)
- Jihyun Cha
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jaeseong Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Science, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Schymanski EL, Baker NC, Williams AJ, Singh RR, Trezzi JP, Wilmes P, Kolber PL, Kruger R, Paczia N, Linster CL, Balling R. Connecting environmental exposure and neurodegeneration using cheminformatics and high resolution mass spectrometry: potential and challenges. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1426-1445. [PMID: 31305828 DOI: 10.1039/c9em00068b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Connecting chemical exposures over a lifetime to complex chronic diseases with multifactorial causes such as neurodegenerative diseases is an immense challenge requiring a long-term, interdisciplinary approach. Rapid developments in analytical and data technologies, such as non-target high resolution mass spectrometry (NT-HR-MS), have opened up new possibilities to accomplish this, inconceivable 20 years ago. While NT-HR-MS is being applied to increasingly complex research questions, there are still many unidentified chemicals and uncertainties in linking exposures to human health outcomes and environmental impacts. In this perspective, we explore the possibilities and challenges involved in using cheminformatics and NT-HR-MS to answer complex questions that cross many scientific disciplines, taking the identification of potential (small molecule) neurotoxicants in environmental or biological matrices as a case study. We explore capturing literature knowledge and patient exposure information in a form amenable to high-throughput data mining, and the related cheminformatic challenges. We then briefly cover which sample matrices are available, which method(s) could potentially be used to detect these chemicals in various matrices and what remains beyond the reach of NT-HR-MS. We touch on the potential for biological validation systems to contribute to mechanistic understanding of observations and explore which sampling and data archiving strategies may be required to form an accurate, sustained picture of small molecule signatures on extensive cohorts of patients with chronic neurodegenerative disorders. Finally, we reflect on how NT-HR-MS can support unravelling the contribution of the environment to complex diseases.
Collapse
Affiliation(s)
- Emma L Schymanski
- Environmental Cheminformatics Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ruttkies C, Schymanski EL, Strehmel N, Hollender J, Neumann S, Williams AJ, Krauss M. Supporting non-target identification by adding hydrogen deuterium exchange MS/MS capabilities to MetFrag. Anal Bioanal Chem 2019; 411:4683-4700. [PMID: 31209548 PMCID: PMC6611743 DOI: 10.1007/s00216-019-01885-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 01/02/2023]
Abstract
Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) is increasingly popular for the non-targeted exploration of complex samples, where tandem mass spectrometry (MS/MS) is used to characterize the structure of unknown compounds. However, mass spectra do not always contain sufficient information to unequivocally identify the correct structure. This study investigated how much additional information can be gained using hydrogen deuterium exchange (HDX) experiments. The exchange of “easily exchangeable” hydrogen atoms (connected to heteroatoms), with predominantly [M+D]+ ions in positive mode and [M-D]− in negative mode was observed. To enable high-throughput processing, new scoring terms were incorporated into the in silico fragmenter MetFrag. These were initially developed on small datasets and then tested on 762 compounds of environmental interest. Pairs of spectra (normal and deuterated) were found for 593 of these substances (506 positive mode, 155 negative mode spectra). The new scoring terms resulted in 29 additional correct identifications (78 vs 49) for positive mode and an increase in top 10 rankings from 80 to 106 in negative mode. Compounds with dual functionality (polar head group, long apolar tail) exhibited dramatic retention time (RT) shifts of up to several minutes, compared with an average 0.04 min RT shift. For a smaller dataset of 80 metabolites, top 10 rankings improved from 13 to 24 (positive mode, 57 spectra) and from 14 to 31 (negative mode, 63 spectra) when including HDX information. The results of standard measurements were confirmed using targets and tentatively identified surfactant species in an environmental sample collected from the river Danube near Novi Sad (Serbia). The changes to MetFrag have been integrated into the command line version available at http://c-ruttkies.github.io/MetFrag and all resulting spectra and compounds are available in online resources and in the Electronic Supplementary Material (ESM). Graphical abstract ![]()
Collapse
Affiliation(s)
- Christoph Ruttkies
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 avenue du Swing, 4367, Belvaux, Luxembourg. .,Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| | - Nadine Strehmel
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - Steffen Neumann
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Germany.,iDiv - German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig Deutscher, Platz 5e, 04103, Leipzig, Germany
| | - Antony J Williams
- National Centre for Computational Toxicity (NCCT), United States Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
31
|
Kummrow F, Maselli BS, Lanaro R, Costa JL, Umbuzeiro GA, Linardi A. Mutagenicity of Ayahuasca and Their Constituents to the Salmonella/Microsome Assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:269-276. [PMID: 30488498 DOI: 10.1002/em.22263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Ayahuasca is a beverage used in religious rituals of indigenous and nonindigenous groups, and its therapeutic potential has been investigated. Ayahuasca is obtained by decoction of the Banisteriopsis caapi that contains β-carbolines (harmine, harmaline, and tetrahydroharmine) plus Psychotria viridis that contains N,N-dimethyltryptamine. Although plants used in folk medicine are recognized as safe, many of them have genotoxic potential. The Salmonella/microsome assay is usually the first line of the mutagenicity evaluation of products intended for therapeutic use. Our objective was to evaluate the mutagenicity of ayahuasca beverage and their constituents using the Salmonella/microsome assay with TA98 and TA100. We analyzed two ayahuasca samples, and also beverage samples prepared each individual plant P. viridis and B. caapi. Harmine and harmaline were also tested. All beverage samples were chemically characterized and both ayahuasca samples could be considered representative of the beverages consumed in religious rituals. Both ayahuasca samples were mutagenic for TA98 and TA100 with and without S9, with similar potencies. The beverage obtained from P. viridis was not mutagenic, and beverage obtained from B. caapi was mutagenic for TA98 with and without S9. Harmine was nonmutagenic and harmaline was mutagenic only for TA98 without S9. Harmaline fully explain the mutagenicity observed with TA98 without S9 of both ayahuasca samples and the B. caapi beverage samples. We conclude that the ayahuasca samples are mutagenic and this effect is partially explained by harmaline, one of the β-carbolines present in the beverage. Other mutagenic compounds seem to be present and need to be further investigated. Environ. Mol. Mutagen. 60:269-276, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Lanaro
- Poison Control Center, Faculty of Medical Sciences, State University of Campinas, Campinas (Unicamp), São Paulo, Brazil
| | - José Luis Costa
- Poison Control Center, Faculty of Medical Sciences, State University of Campinas, Campinas (Unicamp), São Paulo, Brazil
| | - Gisela A Umbuzeiro
- School of Technology, State University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
32
|
Shao Y, Hollert H, Tarcai Z, Deutschmann B, Seiler TB. Integrating bioassays, chemical analysis and in silico techniques to identify genotoxicants in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:3084-3092. [PMID: 30373085 DOI: 10.1016/j.scitotenv.2018.09.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Identification of hazardous compounds, as the first step of water protection and regulation, is still challenged by the difficulty to establish a linkage between toxic effects and suspected contaminants. Genotoxic compounds are one type of highly relevant toxicants in surface water, which may attack the DNA and lead to cancer in individual organism, or even damaged germ cells to be passed on to future generations. Thus, the establishment of a linkage between genotoxic effects and genotoxicant is important for environmental toxicologists and chemists. For this purpose, in the present study in silico methods were integrated with bioassays, chemical analysis and literature information to identify genotoxicants in surface water. Large volume water samples from 22 sampling sites of the Danube were collected and subjected to biological and chemical analysis. Samples from the most toxic sites (JDS32, JDS44 and JDS63) induced significant genotoxic effects in the micronucleus assay, and two of them caused mutagenicity in the Ames fluctuation assay. Chemical analysis showed that 68 chemicals were detected in these most toxic samples. Literature findings and in silico techniques using the OECD QSAR Toolbox and the ChemProp software package revealed genotoxic potentials for 29 compounds out of 68 targeted chemicals. To confirm the integrative technical data, the micronucleus assay and the Ames fluctuation assay were applied with artificial mixtures of those compounds and the raw water sample extracts. The results showed that 18 chemicals explained 48.5% of the genotoxicity in the micronucleus assay. This study highlights the capability of in silico techniques in linking adverse biological effect to suspicious hazardous compounds for the identification of toxicity drivers, and demonstrates the genotoxic potential of pollutants in the Danube.
Collapse
Affiliation(s)
- Ying Shao
- Institute for Environmental Research (Bio. V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Henner Hollert
- Institute for Environmental Research (Bio. V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Road Shapingba, 400044 Chongqing, China; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, 20092 Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Zsolt Tarcai
- Institute for Environmental Research (Bio. V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Björn Deutschmann
- Institute for Environmental Research (Bio. V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- Institute for Environmental Research (Bio. V), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
33
|
Bopp SK, Barouki R, Brack W, Dalla Costa S, Dorne JLCM, Drakvik PE, Faust M, Karjalainen TK, Kephalopoulos S, van Klaveren J, Kolossa-Gehring M, Kortenkamp A, Lebret E, Lettieri T, Nørager S, Rüegg J, Tarazona JV, Trier X, van de Water B, van Gils J, Bergman Å. Current EU research activities on combined exposure to multiple chemicals. ENVIRONMENT INTERNATIONAL 2018; 120:544-562. [PMID: 30170309 PMCID: PMC6192826 DOI: 10.1016/j.envint.2018.07.037] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 05/20/2023]
Abstract
Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals. If exposure to multiple chemicals is considered in a legislative framework, it is usually limited to chemicals falling within this framework and co-exposure to chemicals that are covered by a different regulatory framework is often neglected. Methodologies and guidance for assessing risks from combined exposure to multiple chemicals have been developed for different regulatory sectors, however, a harmonised, consistent approach for performing mixture risk assessments and management across different regulatory sectors is lacking. At the time of this publication, several EU research projects are running, funded by the current European Research and Innovation Programme Horizon 2020 or the Seventh Framework Programme. They aim at addressing knowledge gaps and developing methodologies to better assess chemical mixtures, by generating and making available internal and external exposure data, developing models for exposure assessment, developing tools for in silico and in vitro effect assessment to be applied in a tiered framework and for grouping of chemicals, as well as developing joint epidemiological-toxicological approaches for mixture risk assessment and for prioritising mixtures of concern. The projects EDC-MixRisk, EuroMix, EUToxRisk, HBM4EU and SOLUTIONS have started an exchange between the consortia, European Commission Services and EU Agencies, in order to identify where new methodologies have become available and where remaining gaps need to be further addressed. This paper maps how the different projects contribute to the data needs and assessment methodologies and identifies remaining challenges to be further addressed for the assessment of chemical mixtures.
Collapse
Key Words
- ao, adverse outcome
- aop, adverse outcome pathway
- bmd, benchmark dose modelling
- bqe, biological quality element
- ca, concentration addition
- cag, cumulative assessment group
- cmep, chemical monitoring and emerging pollutants
- cra, cumulative risk assessment
- dart, developmental and reproductive toxicity
- deb, dynamic energy budget
- ebt, effect-based tools
- edc, endocrine disrupting chemical
- eqs, environmental quality standard
- hbm, human biomonitoring
- ia, independent action
- iata, integrated approach to testing and assessment
- ipra, integrated probabilistic risk assessment
- ipsc, induced pluripotent stem cells
- loe, lines of evidence
- mcr, maximum cumulative ratio
- mcra, monte carlo risk assessment tool
- mec, measured exposure concentration
- moa, mode of action
- mra, mixture risk assessment
- msfd, marine strategy framework directive
- nam, new approach methodology
- pbtk, physiologically based toxicokinetic (model)
- pec, predicted exposure concentration
- pnec, predicted no effect concentration
- qsar, quantitative structure activity relationship
- rdt, repeated dose systemic toxicity
- tk, toxicokinetic
- smri, similar mixture risk indicator
- syrina, systematic review and integrated assessment
- ttc, threshold of toxicological concern
- wfd, water framework directive
Collapse
Affiliation(s)
- Stephanie K Bopp
- European Commission, Directorate General Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Ispra, Italy.
| | - Robert Barouki
- INSERM UMR-S 1124, Université Paris Descartes, Paris, France.
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Silvia Dalla Costa
- European Commission, Directorate General Joint Research Centre, Directorate B - Growth and Innovation, Ispra, Italy.
| | - Jean-Lou C M Dorne
- Scientific Committee and Emerging Risks Unit, European Food Safety Authority (EFSA), Parma, Italy.
| | - Paula E Drakvik
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden.
| | - Michael Faust
- Faust & Backhaus Environmental Consulting, Bremen, Germany.
| | - Tuomo K Karjalainen
- European Commission, Directorate General Research and Innovation, Directorate E - Health, Brussels, Belgium.
| | - Stylianos Kephalopoulos
- European Commission, Directorate General Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Ispra, Italy.
| | - Jacob van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | | | - Andreas Kortenkamp
- Institute for Environment, Health and Societies, Brunel University, Uxbridge, United Kingdom.
| | - Erik Lebret
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute of Risk Assessment Sciences - IRAS, Utrecht University, Utrecht, the Netherlands.
| | - Teresa Lettieri
- European Commission, Directorate General Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy.
| | - Sofie Nørager
- European Commission, Directorate General Research and Innovation, Directorate E - Health, Brussels, Belgium.
| | - Joëlle Rüegg
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden.
| | - Jose V Tarazona
- Pesticides Unit, European Food Safety Authority (EFSA), Parma, Italy.
| | - Xenia Trier
- European Environment Agency, Copenhagen, Denmark.
| | - Bob van de Water
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| | | | - Åke Bergman
- Swetox, Karolinska Institutet, Unit of Toxicology Sciences, Södertälje, Sweden; School of Science and Technology, MTM, Örebro University, Örebro, Sweden.
| |
Collapse
|
34
|
Zwarg JRRM, Morales DA, Maselli BS, Brack W, Umbuzeiro GA. Miniaturization of the microsuspension Salmonella/microsome assay in agar microplates. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:488-501. [PMID: 29668047 DOI: 10.1002/em.22195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The Salmonella/microsome assay (Ames test) is the most widely used mutagenicity test for the evaluation of pure chemicals and environmental samples. There are several versions of protocols available in the literature, including those that reduce the amount of sample needed for testing with liquid and agar media. The microsuspension version of the Salmonella/microsome assay is more sensitive than the standard protocol. It is performed using 5-times concentrated bacteria and less sample and S9 mixture, but still uses conventional Petri dishes (90 × 15 mm). It has been extensively used for environmental sample testing, including in effect-directed analysis (EDA). The objective of this study was to miniaturize the microsuspension assay using 12-well microplates instead of the conventional plates. For validation of this miniaturization, thirteen mutagenic compounds were tested using three Salmonella strains that were selected based on their different spontaneous reversion frequencies (low, medium, and high). The conditions of the miniaturized procedure were made as similar as possible to the microsuspension protocol, using the same testing design, metabolic activation, and data interpretation, and the tests were conducted in parallel. The miniaturized plate assay (MPA) and microsuspension procedures provided similar sensitivities although MPA is less laborious and require less sample and reagents, thereby reducing overall costs. We conclude that the MPA is a promising tool and can be particularly suitable for environmental studies such as EDA or monitoring programs. Environ. Mol. Mutagen. 59:488-501, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Daniel A Morales
- School of Technology, State University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- RWTH University of Aachen, Aachen, Germany
| | - Gisela A Umbuzeiro
- School of Technology, State University of Campinas (UNICAMP), Limeira, SP, Brazil
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
35
|
Muschket M, Di Paolo C, Tindall AJ, Touak G, Phan A, Krauss M, Kirchner K, Seiler TB, Hollert H, Brack W. Identification of Unknown Antiandrogenic Compounds in Surface Waters by Effect-Directed Analysis (EDA) Using a Parallel Fractionation Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:288-297. [PMID: 29211466 DOI: 10.1021/acs.est.7b04994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Among all the nuclear-receptor mediated endocrine disruptive effects, antiandrogenicity is frequently observed in aquatic environments and may pose a risk to aquatic organisms. Linking these effects to responsible chemicals is challenging and a great share of antiandrogenic activity detected in the environment has not been explained yet. To identify drivers of this effect at a hot spot of antiandrogenicity in the German river Holtemme, we applied effect-directed analysis (EDA) including a parallel fractionation approach, a downscaled luciferase reporter gene cell-based anti-AR-CALUX assay and LC-HRMS/MS nontarget screening. We identified and confirmed the highly potent antiandrogen 4-methyl-7-diethylaminocoumarin (C47) and two derivatives in the active fractions. The relative potency of C47 to the reference compound flutamide was over 5.2, whereas the derivatives were less potent. C47 was detected at a concentration of 13.7 μg/L, equal to 71.4 μg flutamide equivalents per liter (FEq/L) in the nonconcentrated water extract that was posing an antiandrogenic activity equal to 45.5 (±13.7 SD) FEq/L. Thus, C47 was quantitatively confirmed as the major cause of the measured effect in vitro. Finally, the antiandrogenic activity of C47 and one derivate was confirmed in vivo in spiggin-gfp Medaka. An endocrine disrupting effect of C47 was observed already at the concentration equal to the concentration in the nonconcentrated water extract, underlining the high risk posed by this compound to the aquatic ecosystem. This is of some concern since C47 is used in a number of consumer products indicating environmental as well as human exposure.
Collapse
Affiliation(s)
- Matthias Muschket
- Helmholtz Centre for Environmental Research - UFZ , Leipzig, Germany
- Department of Ecosystem Analysis, RWTH Aachen University , Aachen, Germany
| | - Carolina Di Paolo
- Department of Ecosystem Analysis, RWTH Aachen University , Aachen, Germany
| | | | | | | | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ , Leipzig, Germany
| | - Kristina Kirchner
- Department of Ecosystem Analysis, RWTH Aachen University , Aachen, Germany
| | | | - Henner Hollert
- Department of Ecosystem Analysis, RWTH Aachen University , Aachen, Germany
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ , Leipzig, Germany
- Department of Ecosystem Analysis, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
36
|
Brack W, Escher BI, Müller E, Schmitt-Jansen M, Schulze T, Slobodnik J, Hollert H. Towards a holistic and solution-oriented monitoring of chemical status of European water bodies: how to support the EU strategy for a non-toxic environment? ENVIRONMENTAL SCIENCES EUROPE 2018; 30:33. [PMID: 30221105 PMCID: PMC6132835 DOI: 10.1186/s12302-018-0161-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/25/2018] [Indexed: 05/02/2023]
Abstract
The definition of priority substances (PS) according to the Water Framework Directive (WFD) helped to remove many of these chemicals from the market and to reduce their concentrations in the European water bodies. However, it could not prevent that many of these chemicals have been replaced by others with similar risks. Today, monitoring of the PS-based chemical status according to WFD covers only a tiny fraction of toxic risks, extensively ignores mixture effects and lacks incentives and guidance for abatement. Thus, we suggest complement this purely status-related approach with more holistic and solution-oriented monitoring, which at the same time helps to provide links to the ecological status. Major elements include (1) advanced chemical screening techniques supporting mixture risk assessment and unraveling of source-related patterns in complex mixtures, (2) effect-based monitoring for the detection of groups of chemicals with similar effects and the establishment of toxicity fingerprints, (3) effect-directed analysis of drivers of toxicity and (4) to translate chemical and toxicological fingerprints into chemical footprints for prioritization of management measures. The requirement of more holistic and solution-oriented monitoring of chemical contamination is supported by the significant advancement of appropriate monitoring tools within the last years. Non-target screening technology, effect-based monitoring and basic understanding of mixture assessment are available conceptually and in research but also increasingly find their way into practical monitoring. Substantial progress in the development, evaluation and demonstration of these tools, for example, in the SOLUTIONS project enhanced their acceptability. Further advancement, integration and demonstration, extensive data exchange and closure of remaining knowledge gaps are suggested as high priority research needs for the next future to bridge the gap between insufficient ecological status and cost-efficient abatement measures.
Collapse
Affiliation(s)
- Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beate I. Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Erik Müller
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Schulze
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
37
|
Vacchi FI, Vendemiatti JADS, da Silva BF, Zanoni MVB, Umbuzeiro GDA. Quantifying the contribution of dyes to the mutagenicity of waters under the influence of textile activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:230-236. [PMID: 28554114 DOI: 10.1016/j.scitotenv.2017.05.103] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 04/15/2023]
Abstract
The combination of chemical analyses and bioassays allows the identification of potentially mutagenic compounds in different types of samples. Dyes can be considered as emergent contaminants and were detected in waters, under the influence of textile activities. The objective of this study was to evaluate the contribution of 9 azo dyes to the mutagenicity of representative environmental samples. Samples were collected along one year in the largest conglomerate of textile industries of Brazil. We analyzed water samples from an important water body, Piracicaba River, upstream and downstream two main discharges, the effluent of a wastewater treatment plant (WWTP) and the tributary Quilombo River, which receives untreated effluent from local industries. Samples were analyzed using a LC-MS/MS and tested for mutagenicity in the Salmonella/microsome microsuspension assay with TA98 and YG1041. Six dyes were detected in the collected samples, Disperse Blue 291, Disperse Blue 373, Disperse Orange 30, Disperse Red 1, Disperse Violet 93, and Disperse Yellow 3. The most sensitive condition for the detection of the mutagenicity was the strain YG1041 with S9. The concentration of dyes and mutagenicity levels varied along time and the dry season represented the worst condition. Disperse Blue 373 and Disperse Violet 93 were the major contributors to the mutagenicity. We conclude that dyes are contributing for the mutagenicity of Piracicaba River water; and both discharges, WWTP effluent and Quilombo River, increase the mutagenicity of Piracicaba River waters in about 10-fold. The combination of chemical analysis and bioassays were key in the identification the main drivers of the water mutagenicity and allows the selection of priority compounds to be included in monitoring programs as well for the enforcing actions required to protect the water quality for multiple uses.
Collapse
Affiliation(s)
- Francine Inforçato Vacchi
- Faculty of Pharmaceutical Sciences, University of São Paulo, USP, São Paulo, SP, Brazil; School of Technology, State University of Campinas, UNICAMP, Limeira, SP, Brazil
| | | | | | | | - Gisela de Aragão Umbuzeiro
- Faculty of Pharmaceutical Sciences, University of São Paulo, USP, São Paulo, SP, Brazil; School of Technology, State University of Campinas, UNICAMP, Limeira, SP, Brazil.
| |
Collapse
|
38
|
Muz M, Dann JP, Jäger F, Brack W, Krauss M. Identification of Mutagenic Aromatic Amines in River Samples with Industrial Wastewater Impact. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4681-4688. [PMID: 28388034 DOI: 10.1021/acs.est.7b00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Aromatic amines are one of the most important classes of compounds contributing to surface water mutagenicity due to their widespread occurrence as precursors and transformation products of dyes, pharmaceuticals, agrochemicals, and other compound classes. In this study, we implemented a workflow including novel analytical and data evaluation methods aiming to identify aromatic amines in six mutagenic wastewater effluents from a chemical-industrial area in Germany, collected by the passive sampler Blue Rayon. We identified 14 amines including the two potent mutagenic aromatic amines 2,3- and 2,8-phenazinediamine, which were reported for the first time as environmental contaminants. These two isomers accounted between 4.2 and 86% of the mutagenicity of the blue rayon extracts and may be byproducts of dye production at the studied site.
Collapse
Affiliation(s)
- Melis Muz
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
- Department of Ecosystem Analyses, Institute for Environmental Research, RWTH Aachen University , Worringerweg 1, 52074 Aachen, Germany
| | - Janek Paul Dann
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Felix Jäger
- Synchem UG & Co. KG, Am Kies 2, 34587 Felsberg-Altenburg, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
- Department of Ecosystem Analyses, Institute for Environmental Research, RWTH Aachen University , Worringerweg 1, 52074 Aachen, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|