1
|
Li M, Ye L, Chang M, Chen W, He S, Zhong B, Wang X. Long-term trends and response of wet ammonia deposition to changes in anthropogenic emissions in the Pearl River delta of China. J Environ Sci (China) 2025; 151:373-386. [PMID: 39481946 DOI: 10.1016/j.jes.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/03/2024]
Abstract
The Pearl River Delta (PRD) region has been identified as a significant hotspot of wet ammonium deposition. However, the absence of long-term monitoring data in the area hinders the comprehension of the historical trends and changes in wet NH4+-N deposition in response to emissions, which interferes with the ability to make effective decisions. This study has analyzed the long-term trends of wet NH4+-N deposition flux and has quantified the effect of anthropogenic emissions and meteorological factors at a typical urban site and a typical forest site in the PRD region from 2009 to 2020. It revealed a significant decreasing trend in wet NH4+-N flux in both the typical urban and forest areas of the PRD region, at -6.2%/year (p < 0.001) and -3.3%/year (p < 0.001), respectively. Anthropogenic emissions are thought to have contributed 47%-57% of the wet NH4+-N deposition trend over the past 12 years compared to meteorological factors. Meteorological conditions dominated the inter-annual fluctuations in wet NH4+-N deposition with an absolute contribution of 46%-52%, while anthropogenic emissions change alone explained 10%-31%. NH3 emissions have the greatest impact on the urban area among anthropogenic emission factors, while SO2 emissions have the greatest impact on the forest area. Additionally, precipitation was identified as the primary meteorological driver for both sites. Our findings also imply that the benefits of NH3 emissions reductions might not immediately emerge due to interference from weather-related factors.
Collapse
Affiliation(s)
- Mingyue Li
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Lyumeng Ye
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou 510530, China
| | - Ming Chang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China.
| | - Weihua Chen
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Shuidi He
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Buqing Zhong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
2
|
Luo L, Wang K, Liu S, Liu H, Tong L, He L, Liu K. Tracking Carbon and Ammonia Emission Flows of China's Nitrogen Fertilizer System: Implications for Domestic and International Trade. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17641-17649. [PMID: 39314039 DOI: 10.1021/acs.est.4c04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
China is the world's largest producer, consumer, and exporter of synthetic nitrogen (N) fertilizer. To assess the impact of domestic demand and international exports, we quantified the life-cycle CO2eq and ammonia (NH3) emissions by tracking carbon (C) and nitrogen (N) flows from coal/gas mining through ammonia production to N fertilizer production, application, and export. In 2020, China's N fertilizer system emitted 496.04 Tg of CO2eq and 3.74 Tg of NH3, with ammonia production and N fertilizer application processes contributing 36 and 85% of the life-cycle CO2eq and NH3 emissions, respectively. As the largest importers of N fertilizer, India, Myanmar, South Korea, Malaysia, and the Philippines collectively shifted 112.41 Tg of CO2eq. For every ton of N fertilizer produced and used in China, 16 t of CO2eq and 0.18 t of NH3 were emitted, compared to 9.7 t of CO2eq and 0.13 t of NH3 in Europe. By adopting currently available technologies, improving N fertilizer utilization efficiency and employing nitrification inhibitors could synergistically reduce CO2eq emissions by 20% and NH3 emissions by 75%, while energy transformation efforts would primarily reduce CO2eq emissions by 59%. The production of ammonia using green electricity or green hydrogen could significantly enhance the decarbonization of China's N fertilizer system.
Collapse
Affiliation(s)
- Lining Luo
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Kun Wang
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Shuhan Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongrui Liu
- Unit 32182 of People's Liberation Army, Beijing 100042, China
| | - Li Tong
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China
| | - Lingyi He
- International College Beijing, China Agricultural University, Beijing 100091, China
| | - Kaiyun Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
3
|
Liu Y, Zhuang M, Liang X, Lam SK, Chen D, Malik A, Li M, Lenzen M, Zhang L, Zhang R, Zhang L, Hao Y. Localized nitrogen management strategies can halve fertilizer use in Chinese staple crop production. NATURE FOOD 2024; 5:825-835. [PMID: 39333297 DOI: 10.1038/s43016-024-01057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/06/2024] [Indexed: 09/29/2024]
Abstract
Nitrogen (N) management is the key to achieving food security and environmental sustainability. Here we analyse N flows using a localized N management model for wheat, maize and rice in 1,690 Chinese counties, with a breakdown of multiple reactive N (Nr) loss pathways. Results show that the total N input for producing these three staple crops in China was 22.2 Tg N in 2015, of which 7.4 Tg N was harvested as grain N and 4.0 Tg N was Nr losses in the forms of NH3 (47%), NOx (10%), N2O (3%), and leaching and runoff (40%). By assuming a production level equivalent to that of the top 10% of counties with the highest N use efficiency and yields surpassing the regional average, we reveal the possibility of achieving national staple crop production targets while improving net ecosystem economic benefit in 2050 through a 49% reduction (10.4 Tg N) in synthetic N fertilizer inputs and a 52% decrease (2.9 Tg N) in Nr losses.
Collapse
Affiliation(s)
- Yize Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Minghao Zhuang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Xia Liang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia.
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Field Scientific Observation and Experiment Station of Ecological Agriculture in Miyun, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shu Kee Lam
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deli Chen
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Arunima Malik
- ISA, School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Discipline of Accounting, Sydney Business School, The University of Sydney, Sydney, New South Wales, Australia
| | - Mengyu Li
- ISA, School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - Manfred Lenzen
- ISA, School of Physics, The University of Sydney, Sydney, New South Wales, Australia
| | - Liying Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
- National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Lixiao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China.
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, China.
| |
Collapse
|
4
|
Yang Y, Tilman D, Jin Z, Smith P, Barrett CB, Zhu YG, Burney J, D'Odorico P, Fantke P, Fargione J, Finlay JC, Rulli MC, Sloat L, Jan van Groenigen K, West PC, Ziska L, Michalak AM, Lobell DB, Clark M, Colquhoun J, Garg T, Garrett KA, Geels C, Hernandez RR, Herrero M, Hutchison WD, Jain M, Jungers JM, Liu B, Mueller ND, Ortiz-Bobea A, Schewe J, Song J, Verheyen J, Vitousek P, Wada Y, Xia L, Zhang X, Zhuang M. Climate change exacerbates the environmental impacts of agriculture. Science 2024; 385:eadn3747. [PMID: 39236181 DOI: 10.1126/science.adn3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
- The National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, PR China
- The Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, PR China
| | - David Tilman
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Zhenong Jin
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland
| | - Christopher B Barrett
- CH Dyson School of Applied Economics and Management, JE Brooks School of Public Policy, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14850, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jennifer Burney
- School of Global Policy and Strategy, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92037 USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Peter Fantke
- substitute ApS, Graaspurvevej 55, 2400 Copenhagen, Denmark
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joe Fargione
- The Nature Conservancy, Minneapolis, MN 55415, USA
| | - Jacques C Finlay
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
- St. Anthony Falls Laboratory, Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, MN 55414, USA
| | | | - Lindsey Sloat
- World Resources Institute, Washington, DC 20002, USA
| | | | - Paul C West
- Department of Applied Economics, University of Minnesota, St. Paul, MN 55108, USA
- Project Drawdown, St. Paul, MN 55101, USA
| | - Lewis Ziska
- Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Anna M Michalak
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, CA 94305, USA
- Department of Earth System Science, and Department of Biology, Stanford University, Stanford, CA 94305, USA
- Google Research, Mountain View, CA 94043, USA
| | - David B Lobell
- Department of Earth System Science and Center on Food Security and the Environment, Stanford University, Stanford, CA 94305, USA
| | - Michael Clark
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Jed Colquhoun
- The National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing 400045, PR China
| | - Teevrat Garg
- The Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, PR China
| | - Karen A Garrett
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Camilla Geels
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Rebecca R Hernandez
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Mario Herrero
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, Scotland
| | - William D Hutchison
- CH Dyson School of Applied Economics and Management, JE Brooks School of Public Policy, and Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14850, USA
| | - Meha Jain
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jacob M Jungers
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Beibei Liu
- School of Global Policy and Strategy, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel D Mueller
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA 92037 USA
| | - Ariel Ortiz-Bobea
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | - Jacob Schewe
- substitute ApS, Graaspurvevej 55, 2400 Copenhagen, Denmark
| | - Jie Song
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - Peter Vitousek
- St. Anthony Falls Laboratory, Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, MN 55414, USA
| | - Yoshihide Wada
- Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Longlong Xia
- World Resources Institute, Washington, DC 20002, USA
| | - Xin Zhang
- Department of Geography, University of Exeter, Exeter EX4 4RJ, UK
| | - Minghao Zhuang
- Department of Applied Economics, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
5
|
Gong C, Tian H, Liao H, Pan N, Pan S, Ito A, Jain AK, Kou-Giesbrecht S, Joos F, Sun Q, Shi H, Vuichard N, Zhu Q, Peng C, Maggi F, Tang FHM, Zaehle S. Global net climate effects of anthropogenic reactive nitrogen. Nature 2024; 632:557-563. [PMID: 39048828 PMCID: PMC11324526 DOI: 10.1038/s41586-024-07714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Anthropogenic activities have substantially enhanced the loadings of reactive nitrogen (Nr) in the Earth system since pre-industrial times1,2, contributing to widespread eutrophication and air pollution3-6. Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of -0.34 [-0.20, -0.50] W m-2 in the year 2019 relative to the year 1850. This net cooling effect is the result of increased aerosol loading, reduced methane lifetime and increased terrestrial carbon sequestration associated with increases in anthropogenic Nr, which are not offset by the warming effects of enhanced atmospheric nitrous oxide and ozone. Future predictions using three representative scenarios show that this cooling effect may be weakened primarily as a result of reduced aerosol loading and increased lifetime of methane, whereas in particular N2O-induced warming will probably continue to increase under all scenarios. Our results indicate that future reductions in anthropogenic Nr to achieve environmental protection goals need to be accompanied by enhanced efforts to reduce anthropogenic greenhouse gas emissions to achieve climate change mitigation in line with the Paris Agreement.
Collapse
Affiliation(s)
- Cheng Gong
- Max Planck Institute for Biogeochemistry, Jena, Germany.
| | - Hanqin Tian
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA
| | - Hong Liao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Naiqing Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
- International Center for Climate and Global Change Research, College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL, USA
| | - Shufen Pan
- Center for Earth System Science and Global Sustainability, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA, USA
- Department of Engineering and Environmental Studies Program, Boston College, Chestnut Hill, MA, USA
| | - Akihiko Ito
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Earth System Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Atul K Jain
- Department of Atmospheric Science, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Sian Kou-Giesbrecht
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fortunat Joos
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Qing Sun
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Hao Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Vuichard
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Qing Zhu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Changhui Peng
- Department of Biology Sciences, Institute of Environment Science, University of Quebec at Montreal, Montreal, Quebec, Canada
- School of Geographic Sciences, Hunan Normal University, Changsha, China
| | - Federico Maggi
- Environmental Engineering, School of Civil Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona H M Tang
- Department of Civil Engineering, Monash University, Clayton, Victoria, Australia
| | - Sönke Zaehle
- Max Planck Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
6
|
Shang Y, Yin Y, Ying H, Tian X, Cui Z. Updated loss factors and high-resolution spatial variations for reactive nitrogen losses from Chinese rice paddies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120752. [PMID: 38614004 DOI: 10.1016/j.jenvman.2024.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
Anthropogenic reactive nitrogen (Nr) loss has been a critical environmental issue. However, due to the limitations of data availability and appropriate methods, the estimation of Nr loss from rice paddies and associated spatial patterns at a fine scale remain unclear. Here, we estimated the background Nr loss (BNL, i.e., Nr loss from soils without fertilization) and the loss factors (the percentage of Nr loss from synthetic fertilizer, LFs) for five loss pathways in rice paddies and identified the national 1 × 1 km spatial variations using data-driven models combined with multi-source data. Based on established machine learning models, an average of 23.4% (15.3-34.6%, 95% confidence interval) of the synthetic N fertilizer was lost to the environment, in the forms of NH3 (17.4%, 10.9-26.7%), N2O (0.5%, 0.3-0.8%), NO (0.2%, 0.1-0.4%), N leaching (3.1%, 0.8-5.7%), and runoff (2.3%, 0.6-4.5%). The total Nr loss from Chinese rice paddies was estimated to be 1.92 ± 0.52 Tg N yr-1 in 2021, in which synthetic fertilizer-induced Nr loss accounted for 69% and BNL accounted for the other 31%. The hotspots of Nr loss were concentrated in the middle and lower regions of the Yangtze River, an area with extensive rice cultivation. This study improved the estimation accuracy of Nr losses and identified the hotspots, which could provide updated insights for policymakers to set the priorities and strategies for Nr loss mitigation.
Collapse
Affiliation(s)
- Yiwei Shang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China; Department of Agroecology, Aarhus University, 8830, Tjele, Denmark
| | - Yulong Yin
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Hao Ying
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Xingshuai Tian
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Zhenling Cui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Wu L, Wang P, Zhang Q, Ren H, Shi Z, Hu W, Chen J, Xie Q, Li L, Yue S, Wei L, Song L, Zhang Y, Wang Z, Chen S, Wei W, Wang X, Zhang Y, Kong S, Ge B, Yang T, Fang Y, Ren L, Deng J, Sun Y, Wang Z, Zhang H, Hu J, Liu CQ, Harrison RM, Ying Q, Fu P. Dominant contribution of combustion-related ammonium during haze pollution in Beijing. Sci Bull (Beijing) 2024; 69:978-987. [PMID: 38242834 DOI: 10.1016/j.scib.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.
Collapse
Affiliation(s)
- Libin Wu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Peng Wang
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200438, China; IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Hong Ren
- Air Environmental Modeling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institute, Chengdu University of Information Technology, Chengdu 610225, China
| | - Zongbo Shi
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jing Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiaorong Xie
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Linjie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Siyao Yue
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Linlin Song
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Yonggen Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zihan Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shuang Chen
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wan Wei
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaoman Wang
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200438, China; IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Yanlin Zhang
- Yale-NUIST Center on Atmospheric Environment, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies and Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Baozhu Ge
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Ting Yang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yunting Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Lujie Ren
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Junjun Deng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hongliang Zhang
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jianlin Hu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Roy M Harrison
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Environmental Sciences/Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Qi Ying
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station TX 77843-3136, USA
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
8
|
Feng S, Li M, Wang K, Liu X, Xu W. Source apportionment of atmospheric ammonia in suburban Beijing revealed through 15N-stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170728. [PMID: 38325487 DOI: 10.1016/j.scitotenv.2024.170728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Addressing the urgent issue of atmospheric ammonia (NH3) emissions is crucial in combating poor air quality in megacities. Previous research has highlighted the significant contribution of nonagricultural sources, particularly fossil fuel emissions, to urban NH3 levels. However, there is limited assessment of NH3 dynamics in suburban areas. This study focuses on four suburban sites in Beijing, covering a 16 to 22-month observation period, to investigate spatial and temporal patterns of NH3 concentrations. The δ15N-stable isotope method is employed to identify NH3 sources and their contributions. Our results demonstrate that agricultural sources (53 %) dominate atmospheric NH3 emissions in suburban areas of Beijing, surpassing nonagricultural sources, and primarily emanate from local sources. Notably, fertilizer application (37 ± 11 %) and livestock breeding (32 ± 6 %) emerge as the primary contributors in summer and spring, respectively, leading to significantly elevated NH3 concentrations during these seasons. Even in autumn and winter, both agricultural (49 %) and nonagricultural (51 %) sources contribute almost equally to NH3 emissions. This study emphasizes the need for coordinated efforts to control atmospheric NH3 pollution in Beijing City, with particular attention to addressing both vehicular and agricultural emissions.
Collapse
Affiliation(s)
- Sijie Feng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Meitong Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Kaiyan Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Wen Xu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Wang S, Wang Q, Zhang T, Liu S, Ho SSH, Tian J, Su H, Zhang Y, Wang L, Wu T, Cao J. Elaborations of the influencing factors on the formation of secondary inorganic aerosols in a heavily polluted urban area of China. J Environ Sci (China) 2024; 138:406-417. [PMID: 38135406 DOI: 10.1016/j.jes.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 12/24/2023]
Abstract
In this study, online water-soluble inorganic ions were detected to deduce the formation mechanism of secondary inorganic aerosol in Xianyang, China during wintertime. The dominant inorganic ions of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) (the sum of those is abbreviated as SNA) accounted for 17%, 21%, and 12% of PM2.5 mass, respectively. While the air quality deteriorated from excellent to poor grades, the precursor gas sulfur dioxide (SO2) of SO42- increased and then decreased with a fluctuation, while nitrogen dioxide (NO2) and ammonia (NH3), precursors of NO3- and NH4+, and SNA show increasing trends. Meteorological factors including boundary layer height (BLH), temperature, and wind speed also show decline trends, except relative humidity (RH). Meanwhile, the secondary conversion ratio shows a remarkable increasing trend, indicating that there was a strong secondary transformation. From the perspective of chemical mechanisms, RH is positively correlated with sulfur oxidation ratios (SOR), nitrogen oxidation ratios (NOR), and ammonia conversion ratios, representing that the increase of humidity could promote the generation of SNA. Notably, SOR and NOR were also positively related to the ammonia. On the one hand, the low wind speed and BLH led to the accumulation of pollutants. On the other hand, the increases of RH and ammonia promoted more formations of SNA and PM2.5. The results advance our identification of the contributors to the haze episodes and assist to establish more efficient emission controls in Xianyang, in addition to other cities with similar emission and geographical characteristics.
Collapse
Affiliation(s)
- Shuang Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Qiyuan Wang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an 710061, China.
| | - Ting Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Suixin Liu
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada, 89512, United States; Hong Kong Premium Services and Research Laboratory, Kowloon, Hong Kong SAR, China
| | - Jie Tian
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| | - Hui Su
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Yong Zhang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Luyao Wang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Tingting Wu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
10
|
Shen M, Li J, Liu Y, Dai W, Wang G, Qi W, Chen Y, Guo X, Zhang Y, Li L, Cao Y, Feng Q, Su H, Cao J. Comparison of acidity and chemical composition of summertime cloud water and aerosol at an alpine site in Northwest China: Implications for the neutral property of clouds in the free troposphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171775. [PMID: 38499095 DOI: 10.1016/j.scitotenv.2024.171775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Aerosol and cloud acidity are essential to human health, ecosystem health and productivity, as well as climate effects. The main chemical composition of cloud water greatly varies in different regions, resulting in substantial differences in the pH of cloud water. However, the influences of the anthropogenic emissions of acidic gases and substances, alkaline dust components, and dicarboxylic acids (diacids) on the ground concerning the acidity of cloud water in the free troposphere of the Guanzhong Plain, China, remain clear. In this study, cloud water and PM2.5 samples were simultaneously collected in the troposphere (Mt. Hua, 2060 m a.s.l). The results indicated that the cloud water was alkaline (pH = 7.6) and PM2.5 was acidic (pH = 3.2). These results showed the neutral property of clouds collected in the heavily polluted Guanzhong Plain, although most previous studies always considered acidity as a marker of pollution. The sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) (SNA) of particulate matter and cloud water in the same period were compared. SO42- was dominant in particulate matters (accounting for 63.4 % of the total SNA) but substantially decreased in cloud water (only 30.1 % of the total SNA), whereas NO3- and NH4+ increased from 28.5 % and 8.2 % to 39.8 % and 30.2 %, respectively. This could be attributed to the complex formation mechanism and sources of SO42- and NO3- in the cloud. The results of ion balance indicated that a significant deficit of inorganic anion equivalents was observed in the cloud water samples. The high concentration of diacids in the cloud phase (1237.4 μg L-1) may facilitate the formation of salt complexes with NH4+, thus influencing the acidity of the cloud water. The pH of cloud water has increased in recent decades due to the sustained reduction of sulfur dioxide, which may also affect the acidity of future precipitation.
Collapse
Affiliation(s)
- Minxia Shen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Shaanxi 710061, China.
| | - Yali Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Gehui Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Weining Qi
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yukun Chen
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao Guo
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yifan Zhang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Lu Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yue Cao
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Qiao Feng
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hui Su
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
11
|
Cui N, Veresoglou S, Tian Y, Guo R, Zhang L, Jiang L, Kang F, Yuan W, Hou D, Shi L, Guo J, Sun M, Zhang T. Arbuscular mycorrhizal fungi offset NH 3 emissions in temperate meadow soil under simulated warming and nitrogen deposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120239. [PMID: 38354607 DOI: 10.1016/j.jenvman.2024.120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Most soil ammonia (NH3) emissions originate from soil nitrogen (N) that has been in the form of exchangeable ammonium. Emitted NH3 not only induces nutrient loss but also has adverse effects on the cycling of N and accelerates global warming. There is evidence that arbuscular mycorrhizal (AM) fungi can alleviate N loss by reducing N2O emissions in N-limited ecosystems, however, some studies have also found that global changes, such as warming and N deposition, can affect the growth and development of AM fungi and alter their functionality. Up to now, the impact of AM fungi on NH3 emissions, and whether global changes reduce the AM fungi's contribution to NH3 emissions reduction, has remained unclear. In this study, we examined how warming, N addition, and AM fungi alter NH3 emissions from high pH saline soils typical of a temperate meadow through a controlled microscopic experiment. The results showed that warming significantly increased soil NH3 emissions, but N addition and combined warming plus N addition had no impact. Inoculations with AM fungi strongly reduced NH3 emissions both under warming and N addition, but AM fungi effects were more pronounced under warming than following N addition. Inoculation with AM fungi reduced soil NH4+-N content and soil pH, and increased plant N content and soil net N mineralization rate while increasing the abundance of ammonia-oxidizing bacterial (AOB) gene. Structural equation modeling (SEM) shows that the regulation of NH3 emissions by AM fungi may be related to soil NH4+-N content and soil pH. These findings highlight that AM fungi can reduce N loss in the form of NH3 by increasing N turnover and uptake under global changes; thus, AM fungi play a vital role in alleviating the aggravation of N loss caused by global changes and in mitigating environmental pollution in the future.
Collapse
Affiliation(s)
- Nan Cui
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Stavros Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yibo Tian
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China
| | - Lei Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Furong Kang
- Alashan Forestry and Grassland Bureau, Alashan 750306, China
| | - Weizhe Yuan
- Jilin Institute of Geological Sciences, Changchun 130012, China
| | - Dan Hou
- Jilin Institute of Geological Sciences, Changchun 130012, China
| | - Lianxuan Shi
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Mingzhou Sun
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China.
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
12
|
Yan F, Chen W, Wang X, Jia S, Mao J, Cao J, Chang M. Significant Increase in Ammonia Emissions in China: Considering Nonagricultural Sectors Based on Isotopic Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2423-2433. [PMID: 38270134 DOI: 10.1021/acs.est.3c07222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Isotopic source apportionment results revealed that nonagricultural sectors are significant sources of ammonia (NH3) emissions, particularly in urban areas. Unfortunately, nonagricultural sources have been substantially underrepresented in the current anthropogenic NH3 emission inventories (EIs). Here, we propose a novel approach to develop a gridded EI of nonagricultural NH3 in China for 2016 using a combination of isotopic source apportionment results and the emission ratios of carbon monoxide (CO) and NH3. We estimated that isotope-corrected nonagricultural NH3 emissions were 4370 Gg in China in 2016, accounting for an increase in the total NH3 emissions from 7 to 31%. As a result, compared to the original NH3 EI, the annual emissions of total NH3 increased by 35%. Thus, in comparison to the simulation driven by the original NH3 EI, the WRF-Chem model driven by the isotope-corrected NH3 EI has reduced the model biases in the surface concentrations and dry deposition flux of reduced nitrogen (NHx = gaseous NH3 + particulate NH4+) by 23 and 31%, respectively. This study may have wide-ranging implications for formulating targeted strategies for nonagricultural NH3 emissions controls, making it facilitate the achievement of simultaneously alleviating nitrogen deposition and atmospheric pollution in the future.
Collapse
Affiliation(s)
- Fenghua Yan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Weihua Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Shiguo Jia
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingying Mao
- Scientific Research Academy of Guangxi Environmental Protection, Nanning 530022, China
| | - Jiachen Cao
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ming Chang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| |
Collapse
|
13
|
Liu Y, Zeng H. Spatial-temporal differentiation and control strategies of nitrogen environmental loss in China's coastal regions based on flow analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119667. [PMID: 38042075 DOI: 10.1016/j.jenvman.2023.119667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Nitrogen pollution emissions from human production and living activities in coastal regions are important topics in the management of environmental pollution in coastal waters. However, to date, there has been relatively little research systematically assessing the environmental loss of nitrogen (NEL) from human activities that negatively affect marine ecosystems. This study categorised emission sources into five subsystems, namely livestock, farming, aquatic, industrial, and residential. Through flow analysis, the anthropogenic emissions of nitrogen in the gas, liquid, and solid phases from 11 coastal provinces in China in 2011, 2015, and 2020 were determined. A nitrogen cost index was constructed by combining the social indicators of each province. The effectiveness of nitrogen emission control since the land-sea coordination and the future challenges for the coastal region were discussed from various perspectives. The results of the study showed that the total NEL that poses a potential threat to marine ecosystems in coastal areas of China has decreased from 18.93 TgN to 14.66 TgN since the proposal of land-sea coordination, with livestock systems and aquatic systems emitting the most. The Bohai and Yellow Seas area were most threatened by nitrogen pollution. Among the three oceanic pathways, liquid-phase nitrogen discharge from each subsystem was effectively controlled, and the control of gas-phase nitrogen emissions is still the most numerous NEL state, although it has had a significant effect. The results of the correlation analysis suggest that NEL flow can characterize the regional management of nutrient-based organic pollutants. Past management tools and environmental investments in China have been more effective in controlling emissions from point and line sources involving artificial facilities, but less direct effect on mariculture. How to control surface source pollution from livestock and aquaculture will be an important challenge to reduce reactive nitrogen emissions in the future.
Collapse
Affiliation(s)
- Yiming Liu
- School of Urban Planning and Design, Peking University, Shenzhen, 518055, China
| | - Hui Zeng
- School of Urban Planning and Design, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Zhan G, Cao F, Chen J, Chen Z, Duan Y, Chang F, Zeng S, Bai Y, Li Z, Zhang X, Li J. Comprehensive evaluation of an ionic liquid based deep purification process for NH 3-containing industrial gas. J Environ Sci (China) 2024; 136:698-708. [PMID: 37923478 DOI: 10.1016/j.jes.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 11/07/2023]
Abstract
Ammonia (NH3) emission has caused serious environment issues and aroused worldwide concern. The emerging ionic liquid (IL) provides a greener way to efficiently capture NH3. This paper provides rigorous process simulation, optimization and assessment for a novel NH3 deep purification process using IL. The process was designed and investigated by simulation and optimization using ionic liquid [C4im][NTF2] as absorbent. Three objective functions, total purification cost (TPC), total process CO2 emission (TPCOE) and thermal efficiency (ηeff) were employed to optimize the absorption process. Process simulation and optimization results indicate that at same purification standard and recovery rate, the novel process can achieve lower cost and CO2 emission compared to benchmark process. After process optimization, the optimal functions can achieve 0.02726 $/Nm3 (TPC), 311.27 kg CO2/hr (TPCOE), and 52.21% (ηeff) for enhanced process. Moreover, compared with conventional process, novel process could decrease over $ 3 million of purification cost and 10000 tons of CO2 emission during the life cycle. The results provide a novel strategy and guidance for deep purification of NH3 capture.
Collapse
Affiliation(s)
- Guoxiong Zhan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fei Cao
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanmeng Duan
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Fei Chang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaojuan Zeng
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinge Bai
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengxi Li
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiangping Zhang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; College of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Song L, Wang A, Li Z, Kang R, Walters WW, Pan Y, Quan Z, Huang S, Fang Y. Large Seasonal Variation in Nitrogen Isotopic Abundances of Ammonia Volatilized from a Cropland Ecosystem and Implications for Regional NH 3 Source Partitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1177-1186. [PMID: 38170897 DOI: 10.1021/acs.est.3c08800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ammonia (NH3) volatilization from agricultural lands is a main source of atmospheric reduced nitrogen species (NHx). Accurately quantifying its contribution to regional atmospheric NHx deposition is critical for controlling regional air nitrogen pollution. The stable nitrogen isotope composition (expressed by δ15N) is a promising indicator to trace atmospheric NHx sources, presupposing a reliable nitrogen isotopic signature of NH3 emission sources. To obtain more specific seasonal δ15N values of soil NH3 volatilization for reliable regional seasonal NH3 source partitioning, we utilized an active dynamic sampling technique to measure the δ15N-NH3 values volatilized from maize cropping land in northeast China. These values varied from -38.0 to -0.2‰, with a significantly lower rate-weighted value observed in the early period (May-June, -30.5 ± 6.7‰) as compared with the late period (July-October, -8.5 ± 4.3‰). Seasonal δ15N-NH3 variations were related to the main NH3 production pathway, degree of soil ammonium consumption, and soil environment. Bayesian isotope mixing model analysis revealed that without considering the seasonal δ15N variation in soil-volatilized NH3 could result in an overestimate by up to absolute 38% for agricultural volatile NH3 to regional atmospheric bulk ammonium deposition during July-October, further demonstrating that it is essential to distinguish seasonal δ15N profile of agricultural volatile NH3 in regional source apportionment.
Collapse
Affiliation(s)
- Linlin Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Zhengjie Li
- College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ronghua Kang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Wendell W Walters
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhi Quan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Shaonan Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
16
|
Xu H, Liu S, Ding J, Wang J, Liu L. Mapping crop-specific emission factors highlights hotspots of ammonia mitigation in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168157. [PMID: 37923266 DOI: 10.1016/j.scitotenv.2023.168157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Mapping gridded emission factors (EFs) of crops is vital for estimating ammonia (NH3) emissions in China using the bottom-up methods. However, there is still a lack of high-resolution gridded EFs of NH3 by crops in China, which are affected by climate, soil, and human management. Here, we established a data-driven approach for mapping crop-specific EFs of NH3 in China based on ground-based data and multiple geospatial data. We found that rice exhibited the highest EFs at 13.35 %, followed by wheat at 5.50 %, and maize at 5.15 %. This underscores the significance of utilizing EFs specific to each crop for predicting NH3 emission estimations. Furthermore, our results reveal substantial spatial variations in NH3 EFs across China, with notably higher values observed in South China for rice and elevated EFs in North China for wheat and maize. According to our model, the deep fertilization method emerges as the most effective method for reducing NH3 emissions, offering a remarkable 64 % reduction. Ongoing urbanization in China will lead to a rapid decline in the rural labor force in the coming years, which requires agricultural mechanization with less labor input. This shift in turn could support the implementation of deep fertilization techniques and reduce NH3 emissions by half in 2050. Our findings offer valuable insights for shaping the future trajectory of Chinese agriculture in overcoming agricultural NH3 loss.
Collapse
Affiliation(s)
- Hang Xu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sheng Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Ding
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiani Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Mgelwa AS, Zhu F, Huang D, Song L, Wang Y, Gurmesa GA, Wang A, Liu M, Huang S, Qiu Q, Sase H, Zhu W, Fang Y. Patterns and drivers of atmospheric inorganic nitrogen deposition in Northeast Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119343. [PMID: 37918232 DOI: 10.1016/j.jenvman.2023.119343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Elevated nitrogen (N) deposition due to intensified emissions of NH3 and NOx is a global problem with profound consequences on living organisms and the environment. Although N emission rates are currently considered to be high in East Asia, reports on the current N deposition level and composition are still limited, especially in northeastern China, where official N deposition monitoring sites are unavailable. This limits our understanding of the spatio-temporal N deposition patterns and their influencing factors at regional to continental scales. Here, we used data collected mostly during 2019 at 38 sites, comprising 7 sites in northeastern China and 31 EANET (Acid Deposition Monitoring Network in East Asia) sites in middle and east Russia, Mongolia, central and southern China, South Korea and Japan to explore the spatial-seasonal variations and drivers of ammonium and nitrate deposition across the Northeast Asia. Total bulk inorganic N (TIN) deposition was 3.7-24.5 kg N ha-1 yr-1 and NH4+-N/NO3--N ratio in the TIN was 0.8-2.8 in northeastern China. The bulk/wet TIN deposition averaged 7.5 kg N ha-1 yr-1 (predominantly in the form of ammonium-N: NH4+-N/NO3--N = 1.4) over the Northeast Asia region, with the highest rates being observed in northeastern China (11.6), as well as central and southern China (10.7), followed by east Russia, South Korea and Japan (5.6), and the lowest in middle Russia and Mongolia (1.5). This regional bulk/wet TIN deposition level is about twice of the wet TIN deposition level in Europe and the United States. The TIN deposition in summer and spring was 45-467% higher than in autumn and winter. Out of the ten land uses considered, only agricultural and urban land uses significantly positively correlated with NH4+-N and NO3--N deposition rates across all monitored sites. This study suggests that the ongoing agricultural and urban expansions are likely to enhance N deposition and its associated effects across global ecosystems.
Collapse
Affiliation(s)
- Abubakari Said Mgelwa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China; College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania
| | - Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China; Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dan Huang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Linlin Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Yingying Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Geshere Abdisa Gurmesa
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Ang Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China
| | - Miao Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shaonan Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, 475004, China; Henan Key Laboratory of Air Pollution Prevention and Ecological Security (Henan University), Kaifeng, 475004, China
| | - Qingyan Qiu
- Forest Ecology & Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hiroyuki Sase
- Asia Center for Air Pollution Research, 1182, Sowa Nishi-ku, Niigata-shi, 950-2144, Japan
| | - Weixing Zhu
- Department of Biological Sciences, Binghamton University, The State University of New York, Binghamton, NY, USA
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning, 110016, China; Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
18
|
Shen N, Wang W, Tan J, Wang Q, Huang L, Wang Y, Wang M, Li L. Roles of historical land use/cover and nitrogen fertilizer application changes on ammonia emissions in farmland ecosystem from 1990 to 2020 in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167565. [PMID: 37802343 DOI: 10.1016/j.scitotenv.2023.167565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/10/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023]
Abstract
In the past decades, China has witnessed significant changes in its land use/land cover (LULC) pattern. These changes have led to a direct impact on ammonia (NH3) emissions in soil background, and indirectly affected the total nitrogen fertilizer (N-fertilizer) application, crop planting amount and the resulting straw mass through the changes of cropland area. Great changes have also taken place in the amount and structure of fertilizer application in China, which affects the NH3 emissions from farmland ecosystems caused by N-fertilizer application. The aforementioned changes have led to significant alterations in NH3 emissions from China's farmland ecosystems over the past 30 years. The process of these changes remains to be analyzed, and the contributions of LULC changes and N-fertilizer application in this process are yet to be assessed. This study aims to investigate the NH3 emission changes and spatiotemporal variation characteristics from farmland ecosystems during 1990 and 2020 due to the LULC changes. Additionally, the study employs scenario analysis method to discuss the effects of LULC changes and N-fertilizer application changes on NH3 emissions in farmland ecosystems. Results indicate that there is evident spatiotemporal heterogeneity in China's LULC pattern, particularly in eastern China. The southeast region is predominantly characterized by the conversion of cropland into construction land. Moreover, some regions such as Northwest China and Northeast China have experienced the conversion of other land types into cropland, significantly influenced by national development policies. From 1990 to 2020, the national NH3 emissions from farmland ecosystem range from 3294.75 Gg to 4064.20 Gg. NH3 emissions and their interannual variation in farmland ecosystems exhibit significant differences across various regions. The regions with higher contributions to NH3 emissions in farmland ecosystems are East China, Central China, and North China, accounting for 25.32 %-37.26 %, 18.85 %-22.46 % and 11.24 %-18.50 % of the total emissions, respectively. NH3 emissions in each region are influenced by cropland area, N-fertilizer application, and regional development characteristics. Compared to LULC changes, changes in N-fertilizer application have a more pronounced impact on NH3 emission changes in farmland ecosystems. From 1990 to 2020, the contribution (increase or decrease) of N-fertilizer application changes to NH3 emission changes in farmland ecosystems in China ranges from 0.11 % to 16.61 %, while the contribution (increase or decrease) of LULC changes ranges from 0.47 % to 2.38 %. South China demonstrates a unique situation regarding the influence of LULC changes. This region has a relatively small cropland area, and fluctuations in cropland area significantly affect NH3 emissions in farmland ecosystems. The influence of policies is evident. From the changes in cropland area in Northwest China and Northeast China to changes in N-fertilizer application, policy changes have consistently impacted the changes in NH3 emissions in China's farmland ecosystems. From "soft policies" involving encouragement and guidance to "hard policies" encompassing the establishment of necessary targets, the degree of strictness in policy directly affects the timeliness of policies effectiveness. The results of this study indicate that reducing the application of N-fertilizers is the primary approach to reducing NH3 emissions in China's farmland ecosystems. In terms of policy guidance, compared to implementing structural and pathway adjustments, implementing clear total control of fertilizer usage is a timely and effective choice for reducing NH3 emissions.
Collapse
Affiliation(s)
- Nanchi Shen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Wenjin Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Jiani Tan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Qing Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ling Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Yangjun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, China.
| |
Collapse
|
19
|
Zong Z, Ren C, Shi X, Sun Z, Huang X, Tian C, Li J, Zhang G, Fang Y, Gao H. Isotopic comparison of ammonium between two summertime field campaigns in 2013 and 2021 at a background site of North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167304. [PMID: 37742956 DOI: 10.1016/j.scitotenv.2023.167304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Ammonia (NH3) is the primary atmospheric alkaline gas, playing a crucial role in the atmospheric chemistry. Recently, non-agricultural emissions have been identified as the dominant sources of NH3 in urban areas. However, few studies have quantified the contributions of different sources to regional NH3. This study conducted two summertime field observations in 2013 and 2021 at a background site of North China to comprehensively explore the regional variations in concentration, nitrogen isotope composition (δ15N), and sources of ammonium (NH4+). The results indicate that NHx (NHx = NH3 + NH4+) concentration has increased in 2021, but the fNH4+ (NH4+/ NHx) has decreased significantly. The δ15N-NH4+ values show a significant increase, ranging from -4.7 ± 8.1 ‰ to +12.0 ± 2.4 ‰. The increase can be attributed to two primary factors: changes in fNH4+ resulting from the reduction of atmospheric acid gases and alterations in the sources of NH3. Bayesian simulation analysis reveals substantial variations in NH3 sources between 2013 and 2021 observations. Non-agricultural sources have significantly increased their contribution to NHx concentration, with vehicle exhaust and NH3 slip experiencing growth rates of 187 % and 104 %, respectively. Our results confirm the dominate contribution of non-agricultural sources to regional NH3 at the present stage and propose relevant mitigation strategies, which would provide essential insights for reducing NH3 emissions in North China.
Collapse
Affiliation(s)
- Zheng Zong
- Environment Research Institute, Shandong University, Qingdao 266237, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Chuanhua Ren
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaolan Shi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zeyu Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China
| | - Xin Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, China.
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110164, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| |
Collapse
|
20
|
Li Y, Liu J, George C, Herrmann H, Gu M, Yang M, Wang Y, Mellouki A, Pan Y, Felix JD, Kawashima H, Zhang Z, Wang S, Zeng Y. Apportioning Atmospheric Ammonia Sources across Spatial and Seasonal Scales by Their Isotopic Fingerprint. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16424-16434. [PMID: 37844023 DOI: 10.1021/acs.est.3c04027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Mitigating ammonia (NH3) emissions is a significant challenge, given its well-recognized role in the troposphere, contributing to secondary particle formation and impacting acid rain. The difficulty arises from the highly uncertain attribution of atmospheric NH3 to specific emission sources, especially when accounting for diverse environments and varying spatial and temporal scales. In this study, we established a refined δ15N fingerprint for eight emission sources, including three previously overlooked sources of potential importance. We applied this approach in a year-long case study conducted in urban and rural sites located only 40 km apart in the Shandong Peninsula, North China Plain. Our findings highlight that although atmospheric NH3 concentrations and seasonal trends exhibited similarities, their isotopic compositions revealed significant distinctions in the primary NH3 sources. In rural areas, although agriculture emerged as the dominant emission source (64.2 ± 19.5%), a previously underestimated household stove source also played a considerably greater role, particularly during cold seasons (36.5 ± 12.5%). In urban areas, industry and traffic (33.5 ± 15.6%) and, surprisingly, sewage treatment (27.7 ± 11.3%) associated with high population density were identified as the major contributors. Given the relatively short lifetime of atmospheric NH3, our findings highlight the significance of the isotope approach in offering a more comprehensive understanding of localized and seasonal influences of NH3 sources compared to emissions inventories. The refined isotopic fingerprint proves to be an effective tool in distinguishing source contributions across spatial and seasonal scales, thereby providing valuable insights for the development of emission mitigation policies aimed at addressing the increasing NH3 burden on the local atmosphere.
Collapse
Affiliation(s)
- Yongzhi Li
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jing Liu
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Christian George
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
- Shandong University Chamber Laboratory, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Mengna Gu
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Muhan Yang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanjun Wang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Abdelwahid Mellouki
- Institut de Combustion Aérothermique, Réactivité et Environnement (ICARE), Centre National de la Recherche Scientifique (CNRS), Orléans 45071, France
- College of Sustainable Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Rehamna 43150, Morocco
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Joseph David Felix
- Department of Physical and Environmental Science, Texas A & M University - Corpus Christi, Corpus Christi, Texas 78412, United States
| | - Hiroto Kawashima
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama 337-8570, Japan
| | - Zhongyi Zhang
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Shuguang Wang
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yang Zeng
- Sino-French Research Institute for Ecology and Environment, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
21
|
Zhao Y, Li B, Dong J, Li Y, Wang X, Gan C, Lin Y, Liao H. Improved ammonia emission inventory of fertilizer application for three major crops in China based on phenological data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165225. [PMID: 37392872 DOI: 10.1016/j.scitotenv.2023.165225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
NH3 has an important impact on atmospheric chemistry, and its reduction has become a potential pathway to alleviate haze pollution. The existing NH3 emission inventories still have significant uncertainties in terms of their temporal distributions. In this study, we combined satellite remote-sensing phenological data with ground-station phenological data to develop a method for the temporal allocation of NH3 emissions from fertilizer application. A high-resolution dataset for fertilizer application in China was established. We developed NH3 emission inventories for the fertilization of three major crops in China, with a resolution of 1/12° × 1/12°. The results showed that there was a significant temporal variation in fertilizer application dates across the country, mainly concentrated in June (17.16 %), July (19.08 %), and August (18.77 %). The majority of fertilizer application for the three major crops occurred during the spring and summer months, with a particular emphasis on April (5.72 Tg), May (7.05 Tg), and June (4.29 Tg). The total NH3 emission from the three major crops in China in 2019 was 2.73 Tg. The North China Plain (762.23 Gg) and Middle and Lower Yangtze River Plain (606.85 Gg) were identified as the primary regions for high NH3 emissions from fertilizer application. The results also showed that NH3 emissions from the three major crops were predominantly observed during summer, with a peak value in July (606.99 Gg), mainly because of the high proportion of topdressing fertilizers. Areas with high fertilizer application generally coincided with areas of high NH3 emissions. This study may be the first to utilize remote-sensing phenological data to establish the NH3 emission inventory, which is of great significance for further improving the accuracy of the NH3 emission inventory.
Collapse
Affiliation(s)
- Yongqi Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Baojie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jinyan Dong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xueqing Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Cong Gan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yingzhen Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hong Liao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
22
|
He W, Lu J, Zhang N, Zhou Y, Ding D, Feng Y, Rong S. Surface acidic sites strengthened core-shell HC@MnO 2 for enhanced gaseous ammonia adsorption. CHEMOSPHERE 2023; 338:139507. [PMID: 37453518 DOI: 10.1016/j.chemosphere.2023.139507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
As a common gaseous pollutant in atmospheric environment, ammonia (NH3) not only contributes to the formation of haze, but also disturb the nitrogen balance in ecosystem through atmospheric nitrogen deposition. Therefore, the control of NH3 emission has important environmental significance. Adsorption is the most commonly used technology for NH3 purification in practice, and efficient adsorbents are the key to adsorption method. Herein, a core-shell structured HC@MnO2 adsorbent was constructed by in-situ growth of layered δ-MnO2 on hydrochar (HC) surface, and its surface acidic sites were further strengthened. The enhancement of surface acidic sites significantly improved the adsorption performance of HC@MnO2 for NH3, reaching 34.49 mg NH3/g, which was superior to commercial carbon-based materials (whose adsorption capacity was 8.47 times that of Coal-based activated carbon, 14.25 times that of Coconut shell activated carbon, and 12.77 times that of Bamboo charcoal). Moreover, the operating parameters and adsorption kinetics were detailly investigated. The adsorption of HC@MnO2 on NH3 was in accordance with pseudo-second-order adsorption kinetics model. Large surface area of core-shell structure and abundant surface acidic sites of δ-MnO2 are the decisive reasons for the excellent adsorption performance of HC@MnO2. Importantly, the enhancement of surface stronger Brønsted acidic sites is the key to improve NH3 adsorption performance of HC@MnO2. Finally, the thermal regeneration and recycling performance of HC@MnO2-H were also investigated. This study provides a suggestive for further research on low-cost composite materials with excellent NH3 adsorption performance.
Collapse
Affiliation(s)
- Weijiang He
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Jingling Lu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Nan Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yu Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Danni Ding
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
| | - Shaopeng Rong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
23
|
Sharma S, Kumar T, Foulkes MJ, Orford S, Singh AM, Wingen LU, Karnam V, Nair LS, Mandal PK, Griffiths S, Hawkesford MJ, Shewry PR, Bentley AR, Pandey R. Nitrogen uptake and remobilization from pre- and post-anthesis stages contribute towards grain yield and grain protein concentration in wheat grown in limited nitrogen conditions. CABI AGRICULTURE AND BIOSCIENCE 2023; 4:12. [PMID: 38800116 PMCID: PMC11116178 DOI: 10.1186/s43170-023-00153-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/24/2023] [Indexed: 05/29/2024]
Abstract
Background In wheat, nitrogen (N) remobilization from vegetative tissues to developing grains largely depends on genetic and environmental factors. The evaluation of genetic potential of crops under limited resource inputs such as limited N supply would provide an opportunity to identify N-efficient lines with improved N utilisation efficiency and yield potential. We assessed the genetic variation in wheat recombinant inbred lines (RILs) for uptake, partitioning, and remobilization of N towards grain, its association with grain protein concentration (GPC) and grain yield. Methods We used the nested association mapping (NAM) population (195 lines) derived by crossing Paragon (P) with CIMMYT core germplasm (P × Cim), Baj (P × Baj), Watkins (P × Wat), and Wyalkatchem (P × Wya). These lines were evaluated in the field for two seasons under limited N supply. The plant sampling was done at anthesis and physiological maturity stages. Various physiological traits were recorded and total N uptake and other N related indices were calculated. The grain protein deviation (GPD) was calculated from the regression of grain yield on GPC. These lines were grouped into different clusters by hierarchical cluster analysis based on grain yield and N-remobilization efficiency (NRE). Results The genetic variation in accumulation of biomass at both pre- and post-anthesis stages were correlated with grain-yield. The NRE significantly correlated with aboveground N uptake at anthesis (AGNa) and grain yield but negatively associated with AGN at post-anthesis (AGNpa) suggesting higher N uptake till anthesis favours high N remobilization during grain filling. Hierarchical cluster analysis of these RILs based on NRE and yield resulted in four clusters, efficient (31), moderately efficient (59), moderately inefficient (58), and inefficient (47). In the N-efficient lines, AGNa contributed to 77% of total N accumulated in grains, while it was 63% in N-inefficient lines. Several N-efficient lines also exhibited positive grain protein deviation (GPD), combining high grain yield and GPC. Among crosses, the P × Cim were superior and N-efficient, while P × Wya responded poorly to low N input. Conclusions We propose that traits favouring pre- or post-anthesis biomass accumulation and pre-anthesis N uptake may be targeted for breeding to improve grain-yield under limited N. The lines with positive GPD, a first report of genotype-dependent GPD associated with both AGNpa and AGNa in wheat, may be used as varieties or genetic resources to improve grain yield with high GPC for sustainable development under limited N conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s43170-023-00153-7.
Collapse
Affiliation(s)
- Sandeep Sharma
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Tarun Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - M. John Foulkes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD UK
| | - Simon Orford
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Anju Mahendru Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Luzie U. Wingen
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Venkatesh Karnam
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana India
| | - Lekshmy S. Nair
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Pranab Kumar Mandal
- National Institute of Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Simon Griffiths
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | | | - Peter R. Shewry
- Plant Sciences Department, Rothamsted Research, Harpenden, AL5 2JQ UK
| | - Alison R. Bentley
- National Institute for Agricultural Botany, Cambridge, CB3 0LE UK
- Present Address: International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, Mexico
| | - Renu Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
24
|
Dong J, Li B, Li Y, Zhou R, Gan C, Zhao Y, Liu R, Yang Y, Wang T, Liao H. Atmospheric ammonia in China: Long-term spatiotemporal variation, urban-rural gradient, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163733. [PMID: 37116808 DOI: 10.1016/j.scitotenv.2023.163733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
In recent years, atmospheric ammonia (NH3) concentrations have increased in China. Ammonia control has become one of the next hot topics in air pollution mitigation with the increasing cost of acid gas emission reduction. In this study, using Infrared Atmospheric Sounding Interferometer (IASI) satellite observations, we analyzed the spatiotemporal distribution, the urban-rural gradient of the vertical column densities (VCDs) of NH3 and the contribution of influencing factors (meteorology, social, atmospheric acid gases, and NH3 emissions) in China from 2008 to 2019 using hotspot analysis, circular gradient analysis, geographical and temporal weighted regression, and some other methods. Our results showed that NH3 VCDs in China have significantly increased (31.88 %) from 2008 to 2019, with the highest occurring in North China Plain. The average NH3 VCDs in urban areas were significantly higher than those in rural areas, and the urban-rural gap in NH3 VCDs was widening. The results of circular gradient analysis showed an overall decreasing trend in NH3 VCDs along the urban-rural gradient. We used a geographically and temporally weighted regression model to analyze the contribution of various influencing factors to NH3 VCDs: meteorology (30.13 %), social (27.40 %), atmospheric acid gases (23.20 %), and NH3 emissions (19.28 %) factors. The results showed substantial spatiotemporal differences in the influencing factors. Atmospheric acid gas was the main reason for the increase in NH3 VCDs from 2008 to 2019. A more thorough understanding of the spatiotemporal distribution, urban-rural variations, and factors influencing NH3 in China will aid in developing control strategies to reduce PM2.5.
Collapse
Affiliation(s)
- Jinyan Dong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Baojie Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rui Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Cong Gan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongqi Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rui Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yating Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Teng Wang
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Hong Liao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
25
|
Ren C, Zhang X, Reis S, Wang S, Jin J, Xu J, Gu B. Climate change unequally affects nitrogen use and losses in global croplands. NATURE FOOD 2023; 4:294-304. [PMID: 37117545 DOI: 10.1038/s43016-023-00730-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/08/2023] [Indexed: 04/30/2023]
Abstract
Maintaining food production while reducing agricultural nitrogen pollution is a grand challenge under global climate change. Yet, the response of global agricultural nitrogen uses and losses to climate change on the temporal and spatial scales has not been fully characterized. Here, using historical data for 1961-2018 from over 150 countries, we show that global warming leads to small temporal but substantial spatial impacts on cropland nitrogen use and losses. Yield and nitrogen use efficiency increase in 29% and 56% of countries, respectively, whereas they reduce in the remaining countries compared with the situation without global warming in 2018. Precipitation and farm size changes would further intensify the spatial variations of nitrogen use and losses globally, but managing farm size could increase the global cropland nitrogen use efficiency to over 70% by 2100. Our results reveal the importance of reducing global inequalities of agricultural nitrogen use and losses to sustain global agriculture production and reduce agricultural pollution.
Collapse
Affiliation(s)
- Chenchen Ren
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Department of Land Management, Zhejiang University, Hangzhou, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China
| | - Xiuming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stefan Reis
- UK Centre for Ecology and Hydrology, Penicuik, UK
- University of Exeter Medical School, Knowledge Spa, Truro, UK
- The University of Edinburgh, School of Chemistry, Edinburgh, UK
| | - Sitong Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China
| | - Jiaxin Jin
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
- Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China.
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou, China.
| |
Collapse
|
26
|
Liu J, Li X, Xu Y, Wu Y, Wang R, Zhang X, Hou Y, Qu H, Wang L, He M, Kupczok A, He J. Highly efficient reduction of ammonia emissions from livestock waste by the synergy of novel manure acidification and inhibition of ureolytic bacteria. ENVIRONMENT INTERNATIONAL 2023; 172:107768. [PMID: 36709675 DOI: 10.1016/j.envint.2023.107768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The global livestock system is one of the largest sources of ammonia emissions and there is an urgent need for ammonia mitigation. Here, we designed and constructed a novel strategy to abate ammonia emissions via livestock manure acidification based on a synthetic lactic acid bacteria community (LAB SynCom). The LAB SynCom possessed a wide carbon source spectrum and pH profile, high adaptability to the manure environment, and a high capability of generating lactic acid. The mitigation strategy was optimized based on the test and performance by adjusting the LAB SynCom inoculation ratio and the adding frequency of carbon source, which contributed to a total ammonia reduction efficiency of 95.5 %. Furthermore, 16S rDNA amplicon sequencing analysis revealed that the LAB SynCom treatment reshaped the manure microbial community structure. Importantly, 22 manure ureolytic microbial genera and urea hydrolysis were notably inhibited by the LAB SynCom treatment during the treatment process. These findings provide new insight into manure acidification that the conversion from ammonia to ammonium ions and the inhibition of ureolytic bacteria exerted a synergistic effect on ammonia mitigation. This work systematically developed a novel strategy to mitigate ammonia emissions from livestock waste, which is a crucial step forward from traditional manure acidification to novel and environmental-friendly acidification.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Bioinformatics Group, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Xia Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yanliang Xu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yutian Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Ruili Wang
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Xiujuan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Yaguang Hou
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Haoli Qu
- Ministry of Agriculture, Nanjing Research Institute for Agricultural Mechanization, Nanjing 210014, China
| | - Li Wang
- Sichuan Academy of Forestry, Chengdu 610081, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Anne Kupczok
- Bioinformatics Group, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Jing He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|
27
|
Sun M, Li M, Zhou Y, Liu J, Shi W, Wu X, Xie B, Deng Y, Gao Z. Nitrogen deposition enhances the deterministic process of the prokaryotic community and increases the complexity of the microbial co-network in coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158939. [PMID: 36170917 DOI: 10.1016/j.scitotenv.2022.158939] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Global nitrogen deposition has increased significantly in recent years. At present, research on the effects of different amounts and types of nitrogen deposition on soil microorganisms in coastal wetlands is scarce. In this study, based on 7 years of simulated nitrogen deposition at multiple levels (low, medium, high) and of multiple types (NH4NO3, NH4Cl, KNO3), the effects of different nitrogen deposition conditions on the diversity, community assembly processes, co-networks, and community function of soil prokaryotes in coastal wetlands were examined. The results showed that, compared with that in control, the microbial α diversity increased significantly under nitrogen deposition (P < 0.05). However, it decreased significantly in the high-NH4NO3 and high-NH4Cl treatments (P < 0.05). The deterministic process of community assembly was strengthened under the different types of nitrogen deposition. Compared with that under NH4+-N deposition, the microbial co-network under NO3--N deposition was more complex. Network stability significantly decreased under different NH4+-N deposition levels. In addition, the results of FAPROTAX functional prediction showed that microbial community functional groups associated with carbon and nitrogen cycling changed significantly (P < 0.05). In conclusion, our results emphasize that nitrogen deposition environments cause changes in soil microbial community structure and interactions, and may also affect soil carbon and nitrogen cycling, but the effects of different forms and levels of nitrogen deposition are not consistent. This study provides new insights for evaluating the changes in soil microbial communities in coastal wetlands caused by different types of long-term nitrogen deposition, and has scientific significance for assessing the ecological effects of long-term nitrogen deposition.
Collapse
Affiliation(s)
- Mengyue Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Mingcong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Tai'an 271018, China
| | - Yuqi Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jiai Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wenchong Shi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | | | - Baohua Xie
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, CAS, Shandong provincial Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying 257500, China.
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zheng Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Tai'an 271018, China.
| |
Collapse
|
28
|
Chen B, Ren C, Wang C, Duan J, Reis S, Gu B. Driving forces of nitrogen use efficiency in Chinese croplands on county scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120610. [PMID: 36356887 DOI: 10.1016/j.envpol.2022.120610] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen use efficiency (NUE, defined as the fraction of N input harvested as product) is an important indicator to understand nitrogen use and losses in croplands as an element of determining sustainable food production. China, as the country with the largest amount of nitrogen fertilizer use globally, research into NUE consistently finds it to be much lower than that in developed countries. Understanding the driving forces of the underlying causes of this low NUE is thus crucial to improve nitrogen use and reduce losses in China. Here we applied the CHANS model to estimate cropland NUE for over 2800 counties in China for the year 2017. Results showed that in most counties NUE ranged between 20% and 40%, while an NUE >50% was mainly found in Northeastern China, likely as a result of large-scale, modern agriculture operations. The source of N input and crop types significantly affected NUE in our assessment. Nitrogen deposition, straw recycling, and biological nitrogen fixation (BNF) could improve NUE, while chemical nitrogen fertilizer and manure inputs reduce NUE. Grain crops have a much higher NUE compared to vegetables, which are often over-fertilized. Moreover, NUE in Southern China is strongly influenced by natural factors such as temperature and precipitation. Specifically, NUE in the Yangtze River Delta (eastern coastal region of China) is associated with socio-economic factors including GDP and the degree of urbanization, while in North-central China, NUE is mainly determined by nitrogen input sources. These examples illustrate that approaches aiming at improving NUE need to be location-specific with consideration of multiple natural and socioeconomic factors.
Collapse
Affiliation(s)
- Binhui Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Policy Simulation Laboratory, Zhejiang University, Hangzhou, 310058, China
| | - Chenchen Ren
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, 310058, China; Department of Land Management, Zhejiang University, Hangzhou, 310058, China
| | - Chen Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Policy Simulation Laboratory, Zhejiang University, Hangzhou, 310058, China
| | - Jiakun Duan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Land Management, Zhejiang University, Hangzhou, 310058, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Penicuik, EH26 0QB, United Kingdom; University of Exeter Medical School, Knowledge Spa, Truro, TR1 3HD, United Kingdom; The University of Edinburgh, School of Chemistry, Edinburgh, EH9 3BF, United Kingdom
| | - Baojing Gu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Cui M, Guo Q, Wei Y, Yu X, Hu J, Tian L, Kong J. Variations and its driven factors of anthropogenic nitrogen loads in the Yangtze River Economic Belt during 2000-2019. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2450-2468. [PMID: 35931850 PMCID: PMC9362473 DOI: 10.1007/s11356-022-21943-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Since the millennium, China has economically taken off with rapid urbanization, and anthropogenic nitrogen emission intensity has undergone remarkable changes. To better understand the impact of urbanization on anthropogenic nitrogen, this study calculated the spatio-temporal heterogeneity of anthropogenic nitrogen in the Yangtze River Economic Belt (YREB) since 2000, based on the estimation, using obstacle analysis to quantify the driving of industry and agriculture on N growth and using the gray model to analyze the impact of urbanization on N changes. Additionally, using the environmental pressure model to predict the future N load. The results indicated N load in the YREB increased rapidly from 21.4 Tg in 2001 to a peak of 24.5 Tg in 2012 and then decreased to 22.2 Tg in 2019. Although N flux gradually increased from the west to the east of the YREB, the growth rate had an opposite trend with a negative growth in the eastern region. Hotspots are mainly concentrated in urban agglomerations, which contributed to ~ 60% N load of the YREB, and the YREB contributed to ~ 90% N load of the Yangtze River Basin. Obstacle degree scores indicated wastewater was a major industrial driver of N growth before 2010, and then became waste gas; increased mechanization and fertilizer control effectively reduced nitrogen emissions during agricultural development. The gray analysis of urbanization indicated urban population, industry, and services had the strongest correlation with N load changes. Scenario simulations suggest N loads of the YREB remain at a high level by 2030; however, there are still opportunities to effectively control N growth through high technological innovation and reducing the proportion of industry under an enormous population. This research contributes to a better understanding of the impact of urbanization on anthropogenic nitrogen and helps developing countries to precisely control nitrogen hotspots and sources.
Collapse
Affiliation(s)
- Meng Cui
- National Marine Data and Information Service, Ministry of Natural Resources, Tianjin, 300171, China
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yujun Wei
- Research Center for Intelligent Society and Governance, Zhejiang Lab, Hangzhou, 310000, China
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuening Yu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Jian Hu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Kong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
30
|
Chen ZL, Song W, Hu CC, Liu XJ, Chen GY, Walters WW, Michalski G, Liu CQ, Fowler D, Liu XY. Significant contributions of combustion-related sources to ammonia emissions. Nat Commun 2022; 13:7710. [PMID: 36513669 PMCID: PMC9747788 DOI: 10.1038/s41467-022-35381-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Atmospheric ammonia (NH3) and ammonium (NH4+) can substantially influence air quality, ecosystems, and climate. NH3 volatilization from fertilizers and wastes (v-NH3) has long been assumed to be the primary NH3 source, but the contribution of combustion-related NH3 (c-NH3, mainly fossil fuels and biomass burning) remains unconstrained. Here, we collated nitrogen isotopes of atmospheric NH3 and NH4+ and established a robust method to differentiate v-NH3 and c-NH3. We found that the relative contribution of the c-NH3 in the total NH3 emissions reached up to 40 ± 21% (6.6 ± 3.4 Tg N yr-1), 49 ± 16% (2.8 ± 0.9 Tg N yr-1), and 44 ± 19% (2.8 ± 1.3 Tg N yr-1) in East Asia, North America, and Europe, respectively, though its fractions and amounts in these regions generally decreased over the past decades. Given its importance, c-NH3 emission should be considered in making emission inventories, dispersion modeling, mitigation strategies, budgeting deposition fluxes, and evaluating the ecological effects of atmospheric NH3 loading.
Collapse
Affiliation(s)
- Zhi-Li Chen
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Wei Song
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Chao-Chen Hu
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xue-Jun Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guan-Yi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wendell W Walters
- Institute at Brown for Environment and Society, Brown University, 85 Waterman St, Providence, RI, 02912, USA
| | - Greg Michalski
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Cong-Qiang Liu
- School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - David Fowler
- Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, United Kingdom
| | - Xue-Yan Liu
- School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
31
|
Ren F, Sun N, Misselbrook T, Wu L, Xu M, Zhang F, Xu W. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China's main crops: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158064. [PMID: 35981586 DOI: 10.1016/j.scitotenv.2022.158064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The effective utilization of manure in cropland systems is essential to sustain yields and reduce reactive nitrogen (Nr) losses. However, there are still uncertainties regarding the substitution of mineral nitrogen (N) fertilizer with manure in terms of its effects on crop yield and Nr losses. We conducted a comprehensive meta-analysis of wheat, maize, and rice applications in China and discovered that substituting mineral N fertilizer with manure increased wheat and maize yields by 4.9 and 5.5 %, respectively, but decreased rice yield by 1.7 %. The increase of yield is larger at low N application and low mineral N substitution rates ((SR) ≤30 %) for silt soils, warm regions, and acidic soils. High SR (>70 %) decreased rice yield as well as the N use efficiency of wheat and maize. Substitution of mineral N fertilizer with manure resulted in lower NH3 volatilization for wheat (48.7 %), lower N2O and NH3 emissions, and N runoff for maize (12.8, 49.6, and 66.7 %, respectively), and lower total Nr losses for rice (11.3-26.5 %). The loss of Nr was significantly and negatively correlated with soil organic carbon content. The rate of N application, soil properties, and climate were critical factors influencing N2O and NH3 emissions and N leaching, whereas climate or soil properties were the dominant factors influencing response in N runoff. We concluded that in silt soils, warm regions, and neutral soils, a ≤ 50 % substitution of mineral N fertilizer with manure can sustain crop yields while mitigating Nr losses.
Collapse
Affiliation(s)
- Fengling Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nan Sun
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tom Misselbrook
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
| | - Lianhai Wu
- Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
| | - Minggang Xu
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Li H, Xue H, Chu B, Ma Q, He H. Promoted Activity of Surface Hydroxyls on γ-Al 2O 3 Mineral Dust with the Coexistence of SO 2 and NH 3. J Phys Chem Lett 2022; 13:10335-10341. [PMID: 36314658 DOI: 10.1021/acs.jpclett.2c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sulfate and ammonium formed on mineral dust can be mutually accelerated through the heterogeneous reactions of coexisting SO2 and NH3. However, little is known about the underlying mechanism, especially the pivotal reactive sites. Using combined Born-Oppenheimer molecular dynamics simulations and density functional theory calculations, the results show that, compared to that of SO2 or NH3 alone on the γ-Al2O3 surface, the increased level of formation of sulfate and ammonium can be attributed to the promoted activity of the surface-bridged hydroxyl with the coexistence of SO2 and NH3. In the specific mechanism, the O and H of the surface-bridged hydroxyl group are attacked by the adjacent SO2 and NH3, respectively, which directly enhances the formation of absorbed sulfite and ammonium, and indirectly facilitates the production of sulfate by oxidation of atmospheric O2. The proposed mechanisms can be broadly applied to other aluminum-based suspended dust particles, such as kaolinite, montmorillonite, and clay dust.
Collapse
Affiliation(s)
- Hao Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Haobo Xue
- College of Environmental Science and Engineering, North China Electric Power University, Hebei102206, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100029, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100029, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing100029, China
| |
Collapse
|
33
|
Egyir M, Luyima D, Park SJ, Lee KS, Oh TK. Volatilisations of ammonia from the soils amended with modified and nitrogen-enriched biochars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155453. [PMID: 35469865 DOI: 10.1016/j.scitotenv.2022.155453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Biochar's capacity to abate NH3 emissions from fertilised agricultural soils may be enhanced through both modifications and formulation of slow-release biochar-based N fertilisers but there is a dearth of data in this area. Sulphuric acid (H2SO4), hydrogen peroxide (H2O2) and potassium hydroxide (KOH) were used to modify biochars which are denoted as BSAD, BHPO and BKOH, respectively. Nitrogen (N) enrichment was performed using urea and ammonium nitrate and the enriched biochars are denoted as BUR and BAN, respectively. The biochars were characterised by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The ammonia abatement potentials of both the modified and N-enriched biochars were assessed in the incubation experiments which lasted for 30 days. Urea was used as a control while non-modified biochar (PrBC) was included for comparison. Compared to the control, PrBC, BKOH, BHPO, BSAD, BUR and BAN attenuated gaseous NH3 emissions by 57.62%, 63.06%, 73.23% and 74.85%, 79.93% and 82.88%, respectively. Biochar modifications increased the content of oxygen containing surface groups especially carboxyl and sulphoxide in the case of BSAD as depicted from the instrumental analysis data, which most probably increased the sorption of NH3 and its transformation to nitrates thus, resulting in a higher NH3 abatement capacity than that of PrBC. XPS data indicated that N-enrichment resulted in reactions of N with the surface groups of biochar which slowed its release, concomitantly lowering NH3 volatilisation better than even the modified biochars.
Collapse
Affiliation(s)
- Michael Egyir
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Deogratius Luyima
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seong-Jin Park
- Department of Soil and Fertilisers, National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea.
| | - Kyo Suk Lee
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Agricultural Sciences Research, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Taek-Keun Oh
- Department of Bio-Environmental Chemistry, College of Agricultural and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
34
|
Xie X, Hu J, Qin M, Guo S, Hu M, Wang H, Lou S, Li J, Sun J, Li X, Sheng L, Zhu J, Chen G, Yin J, Fu W, Huang C, Zhang Y. Modeling particulate nitrate in China: Current findings and future directions. ENVIRONMENT INTERNATIONAL 2022; 166:107369. [PMID: 35772313 DOI: 10.1016/j.envint.2022.107369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Particulate nitrate (pNO3) is now becoming the principal component of PM2.5 during severe winter haze episodes in many cities of China. To gain a comprehensive understanding of the key factors controlling pNO3 formation and driving its trends, we reviewed the recent pNO3 modeling studies which mainly focused on the formation mechanism and recent trends of pNO3 as well as its responses to emission controls in China. The results indicate that although recent chemical transport models (CTMs) can reasonably capture the spatial-temporal variations of pNO3, model-observation biases still exist due to large uncertainties in the parameterization of dinitrogen pentoxide (N2O5) uptake and ammonia (NH3) emissions, insufficient heterogeneous reaction mechanism, and the predicted low sulfate concentrations in current CTMs. The heterogeneous hydrolysis of N2O5 dominates nocturnal pNO3 formation, however, the contribution to total pNO3 varies among studies, ranging from 21.0% to 51.6%. Moreover, the continuously increasing PM2.5 pNO3 fraction in recent years is mainly due to the decreased sulfur dioxide emissions, the enhanced atmospheric oxidation capacity (AOC), and the weakened nitrate deposition. Reducing NH3 emissions is found to be the most effective control strategy for mitigating pNO3 pollution in China. This review suggests that more field measurements are needed to constrain the parameterization of heterogeneous N2O5 and nitrogen dioxide (NO2) uptake. Future studies are also needed to quantify the relationships of pNO3 to AOC, O3, NOx, and volatile organic compounds (VOCs) in different regions of China under different meteorological conditions. Research on multiple-pollutant control strategies involving NH3, NOX, and VOCs is required to mitigate pNO3 pollution, especially during severe winter haze events.
Collapse
Affiliation(s)
- Xiaodong Xie
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Momei Qin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jingyi Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jinjin Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Li Sheng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jianlan Zhu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ganyu Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Junjie Yin
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wenxing Fu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen 361021, China.
| |
Collapse
|
35
|
Wang C, Duan J, Ren C, Liu H, Reis S, Xu J, Gu B. Ammonia Emissions from Croplands Decrease with Farm Size in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9915-9923. [PMID: 35621262 DOI: 10.1021/acs.est.2c01061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Farm size affects nitrogen fertilizer input and agricultural practices, which are key determinants of ammonia (NH3) emissions from croplands. However, the degree to which NH3 emissions are associated with changes in farm size is not well understood yet despite its crucial role in achieving agricultural sustainability in China, where agricultural production is still dominated by smallholder farms. Here we provide a first analysis of the relationship between farm size and NH3 emissions based on 863 000 surveys conducted in 2017 across China. Results show that NH3 emissions (kg ha-1) on average decrease by 0.07% for each 1% increase in average farm size. This change occurs mainly due to a reduction in nitrogen fertilizer use and the introduction of more efficient fertilization practices. The largest reduction in NH3 emissions is found in maize, with less pronounced changes in rice cultivation, and none for wheat production. Overall lower NH3 emissions factors can be observed in the north of China with increasing farm size, especially in the northeast, the opposite pattern was found in the south. National total NH3 emissions could be approximately halved (1.5 Tg) in a scenario favoring a conversion to large-scale farming systems. This substantial reduction potential highlights the potential of such a transition to reduce NH3 emissions, including benefits from a socioeconomic point of view as well as for improving air quality.
Collapse
Affiliation(s)
- Chen Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Jiakun Duan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou 310058, China
| | - Chenchen Ren
- Policy Simulation Laboratory, Zhejiang University, Hangzhou 310058, China
- Department of Land Management, Zhejiang University, Hangzhou 310058, China
| | - Hongbin Liu
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, U.K
- University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro TR1 3HD, U.K
- The University of Edinburgh, School of Chemistry, Level 3, Murchison House, 10 Max Born Crescent, The King's Buildings, West Mains Road, Edinburgh EH9 3BF, U.K
| | - Jianming Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Baojing Gu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Wang S, Hu J, He S, Wang J. Removal of ammonia and phenol from saline chemical wastewater by ionizing radiation: Performance, mechanism and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128727. [PMID: 35364541 DOI: 10.1016/j.jhazmat.2022.128727] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Saline chemical wastewater containing ammonia and toxic organic pollutants has been a challenge for conventional wastewater treatment technology. Advanced treatment is thus required. In this study, the removal of ammonia and phenol in saline chemical wastewater by radiation was investigated in detail. The results showed that chloridion in saline chemical wastewater could be transferred to •Cl and •ClO by radiation, which promoted ammonia oxidation, but inhibited phenol degradation. Solution pH affected the types of reactive species, which further affected the removal of ammonia and phenol. When ammonia and phenol co-existed in saline chemical wastewater, the removal efficiency of ammonia was depressed compared to that in the absence of phenol. Similarly, the phenol removal efficiency was also depressed in the presence of ammonia when the solution pH was lower than 7.0. Interestingly, the phenol removal efficiency was improved with increase of either chloridion concentration (2-8 g/L) or dose (2-5 kGy), which was attributed to the formation of intermediate nitrogen-centered radicals that can react with phenol. In addition, the intermediate products of phenol degradation under different conditions were identified. The acute toxicity of saline chemical wastewater after radiation treatment was evaluated. The results of this study could provide an insight into the removal of ammonia and phenol from saline chemical wastewater by radiation technology.
Collapse
Affiliation(s)
- Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Shijun He
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Dasheng Electron Accelerator Device Co., Ltd., China Guangdong Nuclear Group, Suzhou, Jiangsu 215214, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
37
|
Zheng M, Wang Y, Yuan L, Chen N, Kong S. Ambient observations indicating an increasing effectiveness of ammonia control in wintertime PM 2.5 reduction in Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153708. [PMID: 35182649 DOI: 10.1016/j.scitotenv.2022.153708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Ammonia emission reduction is increasingly being considered one of the control measures to mitigate wintertime fine particulate matter (PM2.5) pollution. Three wintertime observations from 2012 to 2018 in Wuhan, China, were analyzed to examine the effectiveness of ammonia control in wintertime PM2.5 reduction based on the critical total ammonia concentration (CTAC, i.e., the inflection point of effective ammonia control for PM2.5 mass reduction based on the asymmetric response of PM2.5 to ammonia control). The CTAC gradually approached 0% (immediate effectiveness), with values of -26% in 2012, -23% in 2015, and -9% in 2018. At the observed ambient conditions, there were significant positive correlations of the CTAC with sulfate and total nitrate changes, in contrast to the negative correlation of the CTAC with total ammonia change. An approximately 10% total ammonia reduction could offset the decline in CTAC attributed to a 30-40% sulfate or 20-30% total nitrate reduction in Wuhan. This study indicates that the combined control of SO2 + NOx (NO+NO2) remains the preferred way to reduce inorganic particles in Central China at present, despite a tendency of the ambient chemical state moving towards effective ammonia control. However, as the CTAC approaches 0%, the effectiveness of ammonia and NOx reduction measures targeting wintertime PM2.5 can greatly exceed that observed during the 2012-2018 period in Central China.
Collapse
Affiliation(s)
- Mingming Zheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Lianxin Yuan
- Hubei Environment Monitoring Center, Wuhan 430072, China
| | - Nan Chen
- Hubei Environment Monitoring Center, Wuhan 430072, China
| | - Shaofei Kong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
38
|
Liu L, Xu W, Lu X, Zhong B, Guo Y, Lu X, Zhao Y, He W, Wang S, Zhang X, Liu X, Vitousek P. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc Natl Acad Sci U S A 2022; 119:e2121998119. [PMID: 35344440 PMCID: PMC9169101 DOI: 10.1073/pnas.2121998119] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceAgricultural systems are already major forces of ammonia pollution and environmental degradation. How agricultural ammonia emissions affect the spatio-temporal patterns of nitrogen deposition and where to target future mitigation efforts, remains poorly understood. We develop a substantially complete and coherent agricultural ammonia emissions dataset in nearly recent four decades, and evaluate the relative role of reduced nitrogen in total nitrogen deposition in a spatially explicit way. Global reduced nitrogen deposition has grown rapidly, and will occupy a greater dominant position in total nitrogen deposition without future ammonia regulations. Recognition of agricultural ammonia emissions on nitrogen deposition is critical to formulate effective policies to address ammonia related environmental challenges and protect ecosystems from excessive nitrogen inputs.
Collapse
Affiliation(s)
- Lei Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wen Xu
- Key Laboratory of Plant-Soil Interactions of Ministry of Education (MOE), Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Buqing Zhong
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yixin Guo
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Xiao Lu
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 510275, China
| | - Yuanhong Zhao
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Wei He
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Songhan Wang
- Key Laboratory of Crop Physiology and Ecology in Southern China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuying Zhang
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Xuejun Liu
- Key Laboratory of Plant-Soil Interactions of Ministry of Education (MOE), Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Peter Vitousek
- Department of Biology, Stanford University, Stanford, CA 94016
| |
Collapse
|
39
|
Zhang Z, Yan Y, Kong S, Deng Q, Qin S, Yao L, Zhao T, Qi S. Benefits of refined NH 3 emission controls on PM 2.5 mitigation in Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151957. [PMID: 34838911 DOI: 10.1016/j.scitotenv.2021.151957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric ammonia (NH3) is one of the most crucial precursors of secondary inorganic aerosols. However, its emission control is still weakness over China. NH3 emission inventories of 2015 with and without considering a set of refined emission reduction strategies covering seven major NH3 emission sources were constructed in Central China. GEOS-Chem model simulations were conducted to quantify the benefits of NH3 emission reduction on PM2.5 mitigation in four typical months (January, April, July and October). The results showed that these control strategies could reduce approximately 47.0% (152 Gg) of the total NH3 emissions in Hubei Province, with the agricultural (livestock and fertilizer application) source being reduced the most (133 Gg). NH3 had a significant nonlinear relationship with sulfate, nitrate, ammonium and PM2.5. NH3 emission reduction exerted less effect on sulfate mitigations (the annual average sensitivity was 4.5%), but it obviously alleviated nitrate, ammonium and thus PM2.5, with the annual average sensitivities of 81.9%, 34.8% and 22.0%, respectively. The average provincial concentrations of PM2.5 were alleviated by 11.2% in January, 10.6% in October, 10.2% in April and 9.3% in July through NH3 emission reduction by 47.0%. The reduction benefits were more pronounced in high NH3 emission areas, such as Yichang, with the PM2.5 reduction of 14.4% in January. This research could provide scientific support for formulating NH3 emission reduction policies to further mitigate PM2.5 pollution.
Collapse
Affiliation(s)
- Zexuan Zhang
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yingying Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Shanghai 200433, China.
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Qimin Deng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Si Qin
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liquan Yao
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tianliang Zhao
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shihua Qi
- Department of Environmental Science and Engineering, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
40
|
Chen Y, Zhang Q, Cai X, Zhang H, Lin H, Zheng C, Guo Z, Hu S, Chen L, Tao S, Liu M, Wang X. Rapid Increase in China's Industrial Ammonia Emissions: Evidence from Unit-Based Mapping. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3375-3385. [PMID: 35107276 DOI: 10.1021/acs.est.1c08369] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3) is an important precursor of secondary inorganic aerosols and greatly impacts nitrogen deposition and acid rain. Previous studies have mainly focused on the agricultural NH3 emissions, while recent research has noted that industrial sources could be significant in China. However, detailed estimates of NH3 emitted from industrial sectors in China are lacking. Here, we established an unprecedented high-spatial-resolution data set of China's industrial NH3 emissions using up-to-date measurements of NH3 and point source-level information covering eight major industries and 27 subdivided process categories. We found that China emitted 798 (90% confidence interval: 668-933) gigagrams of industrial NH3 into the atmosphere in 2019, equivalent to 44 ± 20% of the industrial emissions worldwide; this flux is 3-fold larger than that in 1998 and has fluctuated since 2014. Furthermore, although fertilizer production is responsible for approximately half of the emissions in China, the emissions from cement production and coal-fired power plants increased dramatically from near zero to 164 and 41 gigagrams, respectively, in the past two decades, primarily due to the NH3 escape caused by the large-scale application of the denitration process. Our results reveal that, unlike other major air pollutants, China's industrial NH3 emission control is still in a critical period, and stricter NH3 emission standards and innovation in pollution control technologies are highly desirable.
Collapse
Affiliation(s)
- Yuang Chen
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xingrui Cai
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haoran Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huiming Lin
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chaoyue Zheng
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhanqiang Guo
- China Association of Circular Economy, Beijing 100037, China
| | - Shanying Hu
- Center for Industrial Ecology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Shu Tao
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Maodian Liu
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
41
|
Abstract
Measurements with high time resolution are necessary to capture variation patterns and to facilitate the estimation of uncertainty in ammonia inventories. Continuous real-time monitoring of ammonia was carried out in a naturally ventilated nursery pig house during two periods in winter and summer, respectively. A higher ventilation rate of about 73,799 ± 39,655 m3/h was obtained during the summer period in comparison with 1646 ± 604 m3/h in the winter. Correspondingly, ammonia level observed in summer (0.25 ± 0.10 mg/m3) was lower than that in winter (1.28 ± 0.74 mg/m3). Spatial variation of ammonia concentration was observed during the winter monitoring period. The mean ammonia emission factor was about 0.3221 ± 0.2921 g d−1 pig−1 in summer and 0.1039 ± 0.0550 g d−1 pig−1 in winter, ranging from 0.0094 to 1.9422 g d−1 pig−1 and 0.0046 to 0.2899 g d−1 pig−1, respectively. Significant correlation was found between ammonia emission and indoor temperature and relative humidity during the winter period. For the summer measurement, effects of ventilation rate and ammonia concentration on ammonia emission were significant. Prominent diurnal pattern existed for both ammonia concentration and emission, with higher emission rates during daytime. The results confirmed the existence of considerable uncertainty associated with the ammonia emission factor, acquired by snapshot measurements.
Collapse
|
42
|
Du C, Guo Q, Zhang J. A review on moss nitrogen and isotope signatures evidence for atmospheric nitrogen deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150765. [PMID: 34666089 DOI: 10.1016/j.scitotenv.2021.150765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Moss nitrogen (N) concentration and isotopic composition (δ15N) values can reveal a better understanding of atmospheric N deposition patterns. Here, we summarize the moss N content and δ15N signatures using data compiled from 104 papers. Based on the dataset, we summarize the models for assessing the level and reduced (NHx): oxidised compounds (NOx) ratio of atmospheric N deposition. Results showed a historical increase in N concentration and 15N depletion of specimen mosses close to anthropogenic N sources from intensive animal production and agricultural activities (NHx emission) since the 1800s. However, an increase of moss N with a less negative 15N observed in the last three decades could be due to a substantial fossil fuel combustion contributed NOx emission. Spatially, N deposition in Europe decreased due to successful control actions, but Asia has become a hotspot for NHx emission from agriculture. The present results highlight the importance of moss N and δ15N values for estimating atmospheric N deposition patterns at spatio-temporal trends.
Collapse
Affiliation(s)
- Chenjun Du
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Quantifying the Influence of a Burn Event on Ammonia Concentrations Using a Machine-Learning Technique. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although combustion is considered a common source of ammonia (NH3) in the atmosphere, field measurements quantifying such emissions of NH3 are still lacking. In this study, online measurements of NH3 were performed by a cavity ring-down spectrometer, in the cold season at a rural site in Xianghe on the North China Plain. We found that the NH3 concentrations were mostly below 65 ppb during the study period. However, from 18 to 21 November 2017, a close burn event (~100 m) increased the NH3 concentrations to 145.6 ± 139.9 ppb. Using a machine-learning technique, we quantified that this burn event caused a significant increase in NH3 concentrations by 411%, compared with the scenario without the burn event. In addition, the ratio of ∆NH3/∆CO during the burn period was 0.016, which fell in the range of biomass burning. Future investigations are needed to evaluate the impacts of the NH3 combustion sources on air quality, ecosystems, and climate in the context of increasing burn events worldwide.
Collapse
|
44
|
Zhu X, Shen J, Li Y, Liu X, Xu W, Zhou F, Wang J, Reis S, Wu J. Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117870. [PMID: 34385131 DOI: 10.1016/j.envpol.2021.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The study of emissions and depositions of atmospheric reactive nitrogen species (Nrs) in a region is important to uncover the sources and sinks of atmospheric Nrs in the region. In this study, atmospheric total Nrs depositions including both wet-only and dry deposition were monitored simultaneously across major land-use types in a 105 km2 catchment called Jinjing River Catchment (JRC) in subtropical central China from 2015 to 2016. Based on activity data and emission factors for the main Nrs emission sources, ammonia (NH3) and nitrogen oxides (NOx) emission inventories for the catchment were also compiled. The estimated total Nrs deposition in JRC was 35.9 kg N ha-1 yr-1, with approximately 49.7 % attributed to reduced compounds (NHx), and 40.5 % attributed to oxidized (NOy). The total Nrs emission rate in JRC was 80.4 kg N ha-1 yr-1, with 61.5 and 18.9 kg N ha-1 yr-1 from NH3 and NOx emissions, respectively. Livestock excretion and fertilization were the two main contributing emission sources for NH3, while vehicle sources contributed the bulk of NOx emissions. The net atmospheric budgets of Nrs in paddy field, forest, and tea field were +3.7, -36.1, and +23.8 kg N ha-1 yr-1, respectively. At the catchment scale, the net atmospheric budget of Nrs was +47.7 kg N ha-1 yr-1, with +43.7 kg N ha-1 yr-1 of NHx and +4.0 kg N ha-1 yr-1 of NOy, indicating that the subtropical catchment was net sources of atmospheric Nrs. Considering that excessive atmospheric Nr emissions and deposition may cause adverse effects on the environment, effects should be conducted to mitigate the Nrs emissions from agriculture and transportation, and increasing the area of forest is good for reducing the net positive budget of atmospheric Nrs in the subtropical catchments in China.
Collapse
Affiliation(s)
- Xiao Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianlin Shen
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wen Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Zhou
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Juan Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK; University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro, TR1 3HD, UK
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
45
|
Zhang X, Lin W, Ma Z, Xu X. Indoor NH3 variation and its relationship with outdoor NH3 in urban Beijing. INDOOR AIR 2021; 31:2130-2141. [PMID: 34288147 DOI: 10.1111/ina.12907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Online measurements of indoor and outdoor ammonia (NH3 ) were conducted at a university building in Haidian District, Beijing, to investigate their variation characteristics, indoor-outdoor differences, influencing factors, and possible contribution of indoor NH3 to atmospheric NH3 . Indoor NH3 mixing ratios varied greatly among the rooms of the same building. Indoor NH3 mixing ratio peaked at 1.43 ppm in a toilet. Both indoor and outdoor NH3 mixing ratios exhibited higher values during summer and lower values during winter and correlated significantly with relative humidity and temperature. Moreover, their daily mean mixing ratios were significantly correlated with each other. But indoor and outdoor NH3 in cold months exhibited quite different diurnal variations. During the measurement period, indoor NH3 mixing ratios were substantially higher than those outdoors, by an average factor of 3.1 (1.0-6.6). This indicates that indoor NH3 could be a source of outdoor atmospheric NH3 . The contribution of indoor NH3 to atmospheric NH3 was estimated at 0.7 ± 0.5 Gg NH3 -N·a-1 , accounting for approximately 1.0 ± 0.7% of total emissions in Beijing and being comparable to industry, biomass combustion, and soil emissions, but lower than transportation emissions. The influence of COVID-19 control measures caused indoor and outdoor NH3 mixing ratios to decrease by 22.8% and 19.3%, respectively-attributable to decreased human activity and traffic flow.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China
- Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Weili Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zhiqiang Ma
- Beijing Shangdianzi Regional Atmosphere Watch Station, Beijing, China
| | - Xiaobin Xu
- Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, China
| |
Collapse
|
46
|
Wang C, Cheng K, Ren C, Liu H, Sun J, Reis S, Yin S, Xu J, Gu B. An empirical model to estimate ammonia emission from cropland fertilization in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117982. [PMID: 34426229 DOI: 10.1016/j.envpol.2021.117982] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Ammonia (NH3) volatilization is one of the main pathways of nitrogen loss from cropland, resulting not only in economic losses, but also environmental and human health impacts. The magnitude and timing of NH3 emissions from cropland fertilizer application highly depends on agricultural practices, climate and soil factors, which previous studies have typically only considered at coarse spatio-temporal resolution. In this paper, we describe a first highly detailed empirical regression model for ammonia (ERMA) emissions based on 1443 field observations across China. This model is applied at county level by integrating data with unprecedented high spatio-temporal resolution of agricultural practices and climate and soil factors. Results showed that total NH3 emissions from cropland fertilizer application amount to 4.3 Tg NH3 yr-1 in 2017 with an overall NH3 emission factor of 12%. Agricultural production for vegetables, maize and rice are the three largest emitters. Compared to previous studies, more emission hotspots were found in South China and temporally, emission peaks are estimated to occur three months earlier in the year, while the total amount of emissions is estimated to be close to that calculated by previous studies. A second emission peak is identified in October, most likely related to the fertilization of the second crop in autumn. Incorporating these new findings on NH3 emission patterns will enable a better parametrization of models and hence improve the modelling of air quality and subsequent impacts on ecosystems through reactive N deposition.
Collapse
Affiliation(s)
- Chen Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Chenchen Ren
- Department of Land Management, Zhejiang University, Hangzhou, 310058, China
| | - Hongbin Liu
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianfei Sun
- Institute of Resource, Ecosystem and Environment of Agriculture, and Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, UK; University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro, TR1 3HD, UK
| | - Shasha Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jianming Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baojing Gu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Adalibieke W, Zhan X, Cui X, Reis S, Winiwarter W, Zhou F. Decoupling between ammonia emission and crop production in China due to policy interventions. GLOBAL CHANGE BIOLOGY 2021; 27:5877-5888. [PMID: 34403176 DOI: 10.1111/gcb.15847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Cropland ammonia (NH3 ) emission is a critical driver triggering haze pollution. Many agricultural policies were enforced in past four decades to improve nitrogen (N) use efficiency while maintaining crop yield. Inadvertent reductions of NH3 emissions, which may be induced by such policies, are not well evaluated. Here, we quantify the China's cropland-NH3 emission change from 1980 to 2050 and its response to policy interventions, using a data-driven model and a survey-based dataset of the fertilization scheme. Cropland-NH3 emission in China doubled from 1.93 to 4.02 Tg NH3 -N in period 1980-1996, and then decreased to 3.50 Tg NH3 -N in 2017. The prevalence of four agricultural policies may avoid ~3.0 Tg NH3 -N in 2017, mainly located in highly fertilized areas. Optimization of fertilizer management and food consumption could mitigate three-quarters of NH3 emission in 2050 and lower NH3 emission intensity (emission divided by crop production) close to the European Union and the United States. Our findings provide an evidence on the decoupling of cropland-NH3 from crop production in China and suggest the need to achieve cropland-NH3 mitigation while sustaining crop yields in other developing economies.
Collapse
Affiliation(s)
- Wulahati Adalibieke
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, PR China
| | - Xiaoying Zhan
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xiaoqing Cui
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, PR China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Penicuik, Midlothian, UK
- University of Exeter Medical School, European Centre for Environment and Health, Knowledge Spa, Truro, UK
| | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- The Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Feng Zhou
- Sino-France Institute of Earth Systems Science, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, PR China
| |
Collapse
|
48
|
Ye L, Zhong B, Huang M, Chen W, Wang X. Pollution evaluation and children's multimedia exposure of atmospheric arsenic deposition in the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147629. [PMID: 34000541 DOI: 10.1016/j.scitotenv.2021.147629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The populous Pearl River Delta (PRD) region in China suffers from serious air arsenic (As) pollution. The objective of this study was to explore the pollution situation of atmospheric arsenic deposition in the PRD region, and to evaluate the associated multimedia daily intake in children. The average deposition flux was 3921.7 μg/m2/year during the 2016-2017, and the pollution situation was even worse than that in 2015. A continuously increasing trend of arsenic atmospheric deposition was found. The bioaccessibility of As in the settled dust was determined as about 22% by a physiologically based extraction test (PBET). After corrected with the bioaccessibilities of As in the settled dust and food items, the geometry means (GM) value of daily uptake through multimedia ingestion of produce (dust and diet) originated from arsenic atmospheric deposition was 0.23 μg/kg/day for 1- to 6-year-old children. The contribution of the non-dietary oral exposure (settled dust) was negligible and just accounted for only 0.01% of the daily uptake. This estimated value was much lower than those in the literatures, in which the bioaccessibility of As was not taken into account, concluding that the role of the settled dust in the total daily intake may have been overestimated previously. Milk, eggs and freshwater fish were the dominant pathways for children to intake the products derived from atmospheric arsenic deposition. There still be a concern about the high non-carcinogenic and carcinogenic risk by long-term multimedia ingestion. Special care should be considered toward the emission sources of air arsenic, including the coal combustion from industries and construction dust, etc., to reduce the negative effect of air arsenic in children.
Collapse
Affiliation(s)
- Lyumeng Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Buqing Zhong
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Minjuan Huang
- School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihua Chen
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
49
|
Zhang Y, Liu X, Zhang L, Tang A, Goulding K, Collett JL. Evolution of secondary inorganic aerosols amidst improving PM 2.5 air quality in the North China plain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117027. [PMID: 33857715 DOI: 10.1016/j.envpol.2021.117027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The Clean Air Action implemented by the Chinese government in 2013 has greatly improved air quality in the North China Plain (NCP). In this work, we report changes in the chemical components of atmospheric fine particulate matter (PM2.5) at four NCP sampling sites from 2012/2013 to 2017 to investigate the impacts and drivers of the Clean Air Action on aerosol chemistry, especially for secondary inorganic aerosols (SIA). During the observation period, the concentrations of PM2.5 and its chemical components (especially SIA, organic carbon (OC), and elemental carbon (EC)) and the frequency of polluted days (daily PM2.5 concentration ≥ 75 μg m-3) in the NCP, declined significantly at all four sites. Asynchronized reduction in SIA components (large decreases in SO42- with stable or even increased NO3- and NH4+) was observed in urban Beijing, revealing a shift of the primary form of SIA, which suggested the fractions of NO3- increased more rapidly than SO42- during PM2.5 pollution episodes, especially in 2016 and 2017. In addition, unexpected increases in the sulfur oxidation ratio (SOR) and the nitrogen oxidation ratio (NOR) were observed among sites and across years in the substantially decreased PM2.5 levels. They were largely determined by secondary aerosol precursors (i.e. decreased SO2 and NO2), photochemical oxidants (e.g. increased O3), temperature, and relative humidity via gas-phase and heterogeneous reactions. Our results not only highlight the effectiveness of the Action Plan for improving air quality in the NCP, but also suggest an increasing importance of SIA in determining PM2.5 concentration and composition.
Collapse
Affiliation(s)
- Yangyang Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuejun Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Lin Zhang
- Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Aohan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Keith Goulding
- Department of Sustainable Agricultural Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Jeffrey L Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
50
|
Sun X, Zong Z, Li Q, Shi X, Wang K, Lu L, Li B, Qi H, Tian C. Assessing the emission sources and reduction potential of atmospheric ammonia at an urban site in Northeast China. ENVIRONMENTAL RESEARCH 2021; 198:111230. [PMID: 33984305 DOI: 10.1016/j.envres.2021.111230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric ammonium and ammonia have brought negative environmental impacts and adverse health effects. However, ammonia emissions are generally less regulated worldwide. This study analyzed ammonium pollution character, quantified the dominant ammonia emission sources, and assessed ammonia reduction potential in urban Harbin (China). The results showed that ammonium recorded low concentration in the non-heating season (1.34 ± 1.57 μg/m3), and recorded sharply increased concentration (6.50 ± 7.02 μg/m3) and relative abundance in the heating season. It was closely correlated with vehicle-related pollutants (CO) in non-heating season, while with biomass burning-related pollutants (K+, Cl-) in the heating season. Bayesian Mixing Model emphasized the increasing contribution of biomass burning and decreasing contribution of fertilizer as the pollution levels escalate. The results from the thermodynamic equilibrium model showed that a 50%-60% ammonium decrease could bring marketable decrements of the aerosol pH, aerosol water content, ammonium nitrate concentration, and inorganic ion mass. The results of this study would provide scientific bases for ammonia emission reduction and haze pollution control in urban Harbin.
Collapse
Affiliation(s)
- Xiazhong Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zheng Zong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences, Yantai, 264003, China
| | - QiangQiang Li
- 3Clear Science & Technology Co., Ltd., Beijing, 100029, China
| | - Xiaofei Shi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|