1
|
Wei L, Liu J, Jiang G. Nanoparticle-specific transformations dictate nanoparticle effects associated with plants and implications for nanotechnology use in agriculture. Nat Commun 2024; 15:7389. [PMID: 39191767 DOI: 10.1038/s41467-024-51741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Nanotechnology shows potential to promote sustainable and productive agriculture and address the growing population and food demand worldwide. However, the applications of nanotechnology are hindered by the lack of knowledge on nanoparticle (NP) transformations and the interactions between NPs and macromolecules within crops. In this Review, we discuss the beneficial and toxicity-relieving transformation products of NPs that provide agricultural benefits and the toxic and physiology-disturbing transformations that induce phytotoxicities. Based on knowledge related to the management of NP transformations and their long-term effects, we propose feasible design suggestions to attain nano-enabled efficient and sustainable agricultural applications.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
2
|
Liang Y, Liu J, Jin J, Han Y, Wei Z. Effects of low-molecular-weight organic acids on the transformation and phosphate retention of iron (hydr)oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173667. [PMID: 38823699 DOI: 10.1016/j.scitotenv.2024.173667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The retention and mobilization of phosphate in soils are closely associated with the adsorption of iron (hydr)oxides and root exudation of low-molecular-weight organic acids (LMWOAs). This study investigated the role of LMWOAs in phosphate mobilization under incubation and field conditions. LMWOAs-mediated iron (hydr)oxide transformation and phosphate adsorption experiments revealed that the presence of LMWOAs decreased the phosphate adsorption capacity of iron (hydr)oxides by up to ~74 % due to the competition effect, while LMWOAs-induced iron mineral transformation resulted in an approximately six-fold increase in phosphate retention by decreasing the crystallinity and increasing the surface reactivity. Root simulation in rhizobox experiments demonstrated that LMWOAs can alter the contents of different extractable phosphate species and iron components, leading to 10 % ~ 30 % decreases in available phosphate in the near root region of two tested soils. Field experiments showed that crop covering between mango tree rows promoted the exudation of LMWOAs from mango roots. In addition, crop covering increased the contents of total phosphate and available phosphate by 9.08 % ~ 61.20 % and 34.33 % ~ 147.33 % in the rhizosphere soils of mango trees, respectively. These findings bridge the microscale and field scale to understand the delicate LMWOAs-mediated balance between the retention and mobilization of phosphate on iron (hydr)oxide surface, thereby providing important implications for mitigating the low utilization efficiency of phosphate in iron-rich soils.
Collapse
Affiliation(s)
- Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jing Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiezi Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuling Han
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiyuan Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
3
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
4
|
Martins MR, Kiirika LM, Schaffer N, Sajnóg A, Coutinho JAP, Franklin G, Mondal D. Unveiling Dissolution Kinetics of CuO Nanofertilizer Using Bio-Based Ionic Liquids Envisaging Controlled Use Efficiency for Sustainable Agriculture. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:1291-1301. [PMID: 38957680 PMCID: PMC11215779 DOI: 10.1021/acssusresmgt.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 07/04/2024]
Abstract
The need for sustainable agriculture amid a growing population and challenging climatic conditions is hindered by the environmental repercussions of widespread fertilizer use, resulting in the accumulation of metal ions and the loss of micronutrients. The present study provides an approach to improve the efficiency of nanofertilizers by controlling the release of copper (Cu) ions from copper oxide (CuO) nanofertilizers through bioionic liquids based on plant growth regulators (PGR-ILs). A 7-day study was conducted to understand the kinetics of Cu ion release in aqueous solution of five different PGR-ILs, with choline ascorbate ([Cho][Asc]) or choline salicylate ([Cho][Sal]) leading to 200- to 700-fold higher dissolution of Cu ions in comparison to choline indole-3-acetate ([Cho][IAA]), choline indole-3-butyrate ([Cho][IBA]), and choline gibberellate ([Cho][GA3]). The tunable diffusion of Cu ions from CuO nanofertilizers using PGR-ILs is then applied in a foliar spray study, evaluating its impact on the growth phenotype, photosynthetic parameters, and carbon dioxide (CO2) sequestration in Nicotiana tabacum in a greenhouse. The results indicate that nanoformulations with lower concentrations of Cu ions in PGR-IL solutions exhibit superior outcomes in terms of plant length, net photosynthetic rate, dry biomass yield, and CO2 sequestration, emphasizing the critical role of dissolution kinetics in determining the effectiveness of PGR-IL-based nanoformulations for sustainable agriculture.
Collapse
Affiliation(s)
- Mónia
A. R. Martins
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
- Centro
de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório
para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Leonard M. Kiirika
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Nicolas Schaffer
- CICECO
− Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adam Sajnóg
- Department
of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - João A. P. Coutinho
- CICECO
− Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gregory Franklin
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Dibyendu Mondal
- Institute
of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
- Centre for
Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global
Campus, Kanakapura, Bangalore, Karnataka 562112, India
| |
Collapse
|
5
|
Gao J, Zhu Y, Zeng L, Liu X, Yang Y, Zhou Y. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121289. [PMID: 38820797 DOI: 10.1016/j.jenvman.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.
Collapse
Affiliation(s)
- Jieyu Gao
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Yi Zhu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Lingfeng Zeng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
6
|
Agarwal P, Vibhandik R, Agrahari R, Daverey A, Rani R. Role of Root Exudates on the Soil Microbial Diversity and Biogeochemistry of Heavy Metals. Appl Biochem Biotechnol 2024; 196:2673-2693. [PMID: 37191824 DOI: 10.1007/s12010-023-04465-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 05/17/2023]
Abstract
Due to extensive industrialization and escalation in pollution, the world is facing problems related to soil heavy metal pollution. The traditional ways of soil remediation are neither feasible nor cost-effective in most of the real-world scenarios, where metal concentration is relatively low in soil. Therefore, phytoremediation using plants and plant secretions to remediate heavy metal-contaminated soil is recently getting more attention. The plant root exudates act as an ecological driver in the rhizospheric region where they influence and guide the microbial community to function in such a way that can be advantageous for plant growth. They also promote phytoremediation process by altering the bioavailability of pollutants in soil. Root exudates affect the biogeochemical properties of heavy metals as well. In this review, existing literature on the role of root exudates (natural as well as artificial) on the phytoremediation of heavy metal-contaminated (particularly lead) soil is reviewed. The effect of root exudates on the biogeochemistry of lead in soil is also discussed.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Teliyarganj, Uttar Pradesh, 211004, India
| | - Rutuja Vibhandik
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Teliyarganj, Uttar Pradesh, 211004, India
| | - Roma Agrahari
- Department of Biochemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248001, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Teliyarganj, Uttar Pradesh, 211004, India.
| |
Collapse
|
7
|
Wei L, Liu J, Hou X, Chen W, Feng Y, Kong W, Tang Y, Zhong C, Zhang S, Wang T, Zhao G, Jiao S, Jiang G. Rice Seedlings and Microorganisms Mediate Biotransformation of Se in CdSe/ZnS Quantum Dots to Volatile Alkyl Selenides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20261-20271. [PMID: 37992251 DOI: 10.1021/acs.est.3c07094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Quantum dots (QDs) are widely applied and inevitably released into the environment. The biotransformation of Se in typical CdSe/ZnS QDs coated with glutathione (CdSe/ZnS-GSH) to volatile alkyl selenides and the fate of alkyl selenides in the hydroponically grown rice system were investigated herein. After a 10-day exposure to CdSe/ZnS-GSH (100 nmol L-1), seven alkyl selenides, dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), methyl selenol (MSeH), ethylmethyl selenide (EMSe), ethylmethyl diselenide (EMDSe), dimethyl selenenyl sulfide (DMSeS), and ethylmethyl selenenyl sulfide (EMSeS), were detected in the exposure system using the suspect screening strategy. CdSe/ZnS-GSH was first biotransformed to DMSe and DMDSe by plant and microorganisms. The generated DMSe was volatilized to the gas phase, adsorbed and absorbed by leaves and stems, downward transported, and released into the hydroponic solution, whereas DMDSe tended to be adsorbed/absorbed by roots and upward transported to stems. The airborne DMSe and DMDSe also partitioned from the gas phase to the hydroponic solution. DMSe and DMDSe in the exposure system were further transformed to DMSeS, EMSeS, EMSe, EMDSe, and MSeH. This study gives a comprehensive understanding on the behaviors of Se in CdSe/ZnS-GSH in a rice plant system and provides new insights into the environmental fate of CdSe/ZnS QDs.
Collapse
Affiliation(s)
- Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yue Feng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanji Zhong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ganghui Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
8
|
Gao H, Li H, Zhou X, Wei J, Qu X, Long T. Effect of low molecular weight organic acids on the lead and chromium release from widely-used lead chromate pigments under sunlight irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122553. [PMID: 37716691 DOI: 10.1016/j.envpol.2023.122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Lead chromate pigments are commonly used yellow inorganic pigments. They can pose environmental risks as they contain toxic heavy metals lead and chromium. Low molecular weight organic acids (LMWOAs), as widespread dissolved organic matter (DOM), affect the lead and chromium release from the pigment in water. In this work, the role of LMWOAs in the photodissolution of commercial lead chromate pigment was investigated. The pigment underwent significant photodissolution under simulated sunlight exposure with LMWOAs, and subsequently released Cr(III) and Pb(II). The photodissolution process is caused by the reduction of Cr(VI) by photogenerated electrons of the lead chromate pigment. The LMWOAs promoted photodissolution of the pigment by improving the electron-hole separation. The formation of Cr(III)-contained compounds leads to a slower release of chromium than lead. The photodissolution kinetics increase with decreasing pH and increasing LMWOAs concentration. The photodissolution of lead chromate pigment was basically positively related to the total number of hydroxyl and carboxyl groups in LMWOAs. The LMWOAs with stronger affinity to lead chromate pigment, lower adiabatic ionization potential (AIP) and higher energy of the highest occupied molecular orbital (EHOMO) are favorable to Cr(VI) reduction by photogenerated electrons and pigment photodissolution. 2.39% of chromium and 10.34% of lead released from the lead chromate pigment in natural conditions during a 6-h sunlight exposure. This study revealed the photodissolution mechanism of lead chromate pigment mediated by LMWOAs with different molecular structures, which helps understand the environmental photochemical behavior of the pigment. The present results emphasize the important role of DOM in the heavy metals release from commercial inorganic pigments.
Collapse
Affiliation(s)
- Han Gao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Huixin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Xinwei Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China.
| |
Collapse
|
9
|
Wang J, Zhang X, Li X, Wang Z. Exposure pathways, environmental processes and risks of micro (nano) plastics to crops and feasible control strategies in agricultural regions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132269. [PMID: 37607458 DOI: 10.1016/j.jhazmat.2023.132269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Micro/nanoplastics (MPs/NPs) pollution may adversely impact agricultural ecosystems, threatening the sustainability and security of agricultural production. This drives an urgent need to comprehensively understand the environmental behavior and effects of MPs/NPs in soil and atmosphere in agricultural regions, and to seek relevant pollution prevention strategies. The rhizosphere and phyllosphere are the interfaces where crops are exposed to MPs/NPs. The environmental behavior of MPs/NPs in soil and atmosphere, especially in the rhizosphere and phyllosphere, determines their plant accessibility, bioavailability and ecotoxicity. This article comprehensively reviews the transformation and migration of MPs/NPs in soil, transportation and deposition in the atmosphere, environmental behavior and effects in the rhizosphere and phyllosphere, and plant uptake and transportation pathways. The article also summarizes the key factors controlling MPs/NPs environmental processes, including their properties, biotic and abiotic factors. Based on the sources, environmental processes and intake risks of MPs/NPs in agroecosystems, the article offers several feasible pollution prevention and risk management options. Finally, the review highlights the need for further research on MPs/NPs in agro-systems, including developing quantitative detection methods, exploring transformation and migration patterns in-situ soil, monitoring long-term field experiments, and establishing pollution prevention and control systems. This review can assist in improving our understanding of the biogeochemistry behavior of MPs/NPs in the soil-plant-atmosphere system and provide a roadmap for future research.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
10
|
Hyder S, Ul-Nisa M, Shahzadi, Shahid H, Gohar F, Gondal AS, Riaz N, Younas A, Santos-Villalobos SDL, Montoya-Martínez AC, Sehar A, Latif F, Rizvi ZF, Iqbal R. Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107960. [PMID: 37591032 DOI: 10.1016/j.plaphy.2023.107960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Sustainable ecosystem management leads to the use of eco-friendly agricultural techniques for crop production. One of them is the use of metal and metal oxide nanomaterials and nanoparticles, which have proven to be a valuable option for the improvement of agricultural food systems. Moreover, the biological synthesis of these nanoparticles, from plants, bacteria, and fungi, also contributes to their eco-friendly and sustainable characteristics. Nanoparticles, which vary in size from 1 to 100 nm have a variety of mechanisms that are safer and more efficient than conventional fertilizers. Their usage as fertilizers and insecticides in agriculture is gaining favor in the scientific community to maximize crop output. More studies in this field will increase our understanding of this new technology and its broad acceptance in terms of performance, affordability, and environmental protection, as certain nanoparticles may outperform conventional fertilizers and insecticides. Accordingly, to the information gathered in this review, nanoparticles show remarkable potential for enhancing crop production, improving soil quality, and protecting the environment, however, metal and metal oxide NPs are not widely employed in agriculture. Many features of nanoparticles are yet left over, and it is necessary to uncover them. In this sense, this review article provides an overview of various types of metal and metal oxide nanoparticles used in agriculture, their characterization and synthesis, the recent research on them, and their possible application for the improvement of crop productivity in a sustainable manner.
Collapse
Affiliation(s)
- Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Mushfaq Ul-Nisa
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Shahzadi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Humaira Shahid
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Faryal Gohar
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Nadia Riaz
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | | | - Amelia C Montoya-Martínez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, SO, Mexico.
| | - Anam Sehar
- Student Affairs and Counselling Office, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan.
| | - Fariha Latif
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
11
|
Liu B, Han Z, Pan Y, Liu X, Zhang M, Wan A, Wang Z. Synergistic Effects of Organic Ligands and Visible Light on the Reductive Dissolution of CeO 2 Nanoparticles: Mechanisms and Implications for the Transformation in Plant Surroundings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11999-12009. [PMID: 37535498 DOI: 10.1021/acs.est.3c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Cerium oxide (CeO2) nanoparticles are one of the most important engineered nanomaterials with demonstrated applications in industry. Although numerous studies have reported the plant uptake of CeO2, its fate and transformation pathways and mechanisms in plant-related conditions are still not well understood. This study investigated the stability of CeO2 in the presence of organic ligands (maleic and citric acid) and light irradiation. For the first time, we found that organic ligands and visible light had a synergistic effect on the reductive dissolution of CeO2 with up to 30% Ce releases after 3 days, which is the highest release reported so far under environmental conditions. Moreover, the photoinduced dissolution of CeO2 in the presence of citrate was much higher than that in maleate, which are adsorbed on the surface of CeO2 through inner-sphere and outer-sphere complexation, respectively. A novel ligand-dependent photodissolution mechanism was proposed and highlighted: upon electron-hole separation under light irradiation, the inner-sphere complexed citrate is more capable of consuming the hole, prolonging the life of electrons for the reduction of Ce(IV) to Ce(III). Finally, reoxidation of Ce(III) by oxygen was observed and discussed. This comprehensive work advances our knowledge of the fate and transformation of CeO2 in plant surroundings.
Collapse
Affiliation(s)
- Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zixin Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xun Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Basit F, He X, Zhu X, Sheteiwy MS, Minkina T, Sushkova S, Josko I, Hu J, Hu W, Guan Y. Uptake, accumulation, toxicity, and interaction of metallic-based nanoparticles with plants: current challenges and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4165-4179. [PMID: 37103657 DOI: 10.1007/s10653-023-01561-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The rapid development of industrialization is causing several fundamental problems in plants due to the interaction between plants and soil contaminated with metallic nanoparticles (NPs). Numerous investigations have been conducted to address the severe toxic effects caused by nanoparticles in the past few decades. Based on the composition, size, concentration, physical and chemical characteristics of metallic NPs, and plant types, it enhances or lessens the plant growth at various developmental stages. Metallic NPs are uptaken by plant roots and translocated toward shoots via vascular system based on composition, size, shape as well as plant anatomy and cause austere phytotoxicity. Herein, we tried to summarize the toxicity induced by the uptake and accumulation of NPs in plants and also we explored the detoxification mechanism of metallic NPs adopted by plants via using different phytohormones, signaling molecules, and phytochelatins. This study was intended to be an unambiguous assessment including current knowledge on NPs uptake, accumulation, and translocation in higher plants. Furthermore, it will also provide sufficient knowledge to the scientific community to understand the metallic NPs-induced inhibitory effects and mechanisms involved within plants.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Xiang He
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Xiaobo Zhu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed Salah Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344006
| | - Izabela Josko
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Jin Hu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Borgatta J, Shen Y, Tamez C, Green C, Hedlund Orbeck JK, Cahill MS, Protter C, Deng C, Wang Y, Elmer W, White JC, Hamers RJ. Influence of CuO Nanoparticle Aspect Ratio and Surface Charge on Disease Suppression in Tomato ( Solanum lycopersicum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:9644-9655. [PMID: 37321591 PMCID: PMC10312190 DOI: 10.1021/acs.jafc.2c09153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Nanoparticles (NPs) have been shown to deliver micronutrients to plants to improve health, increase biomass, and suppress disease. Nanoscale properties such as morphology, size, composition, and surface chemistry have all been shown to impact nanomaterial interactions with plant systems. An organic-ligand-free synthesis method was used to prepare positively charged copper oxide (CuO) nanospikes, negatively charged CuO nanospikes, and negatively charged CuO nanosheets with exposed (001) crystal faces. X-ray photoelectron spectroscopy measurements show that the negative charge correlates to increased surface concentration of O on the NP surface, whereas relatively higher Cu concentrations are observed on the positively charged surfaces. The NPs were then used to treat tomato (Solanum lycopersicum) grown in soil infested with Fusarium oxysporum f. sp. lycopersici under greenhouse conditions. The negatively charged CuO significantly reduced disease progression and increased biomass, while the positively charged NPs and a CuSO4 salt control had little impact on the plants. Self-assembled monolayers were used to mimic the leaf surface to understand the intermolecular interactions between the NPs and the plant leaf; the data demonstrate that NP electrostatics and hydrogen-bonding interactions play an important role in adsorption onto leaf surfaces. These findings have important implications for the tunable design of materials as a strategy for the use of nano-enabled agriculture to increase food production.
Collapse
Affiliation(s)
- Jaya Borgatta
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Yu Shen
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Carlos Tamez
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Curtis Green
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jenny K. Hedlund Orbeck
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Meghan S. Cahill
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Connor Protter
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Chaoyi Deng
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Yi Wang
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Wade Elmer
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Jason C. White
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Robert J. Hamers
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
14
|
Zhu X, Tian T, Li D, Hei S, Chen L, Song G, Lin W, Huang X. Interface interaction between silica and organic macromolecule conditioned forward osmosis membranes: Insights into quantitative thermodynamics and dynamics. WATER RESEARCH 2023; 232:119721. [PMID: 36780747 DOI: 10.1016/j.watres.2023.119721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Silica scaling is a rising concern in forward osmosis membrane-based water treatment process. The coexistence of ubiquitous organic macromolecules causes complex silica scaling. The silica scaling mechanism on the surface of the organic conditioned membrane remains unclear. An integrated multi scale thermodynamic and dynamic approach was used in this study to provide in-depth insights into the binding effect at the interface between the silica and the organic conditioned membrane at the molecular level. Sodium alginate (SA) was used as the model polysaccharide, bovine serum albumin (BSA) and lysozyme (LYZ) were chosen as two oppositely charged proteins. The results show that the silica scaling degree of different organic conditioned membranes follows the order LYZ > BSA > SA. The binding strength between silica and organic macromolecules and the membrane surface charge are the major factors governing the degree of silica scaling. Quartz crystal microbalance with dissipation (QCM-D), isothermal titration calorimetry (ITC), and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model analyses were conducted to quantify the binding capacity of silica to the organic conditioned membrane. The LYZ conditioned membrane exhibits the highest affinity for silica adsorption, and electrostatic interaction was the main molecular interaction force. This study provides fresh insights into how silica and an organic conditioned membrane interact and induce silica scaling, providing new information on potential mechanisms and control strategies to prevent membrane scaling.
Collapse
Affiliation(s)
- Xianzheng Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tuo Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengqiang Hei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangqing Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Rong L, Wang Y, Meidl P, Wang L, Sun H. Microplastics affect soybean rhizosphere microbial composition and function during vegetative and reproductive stages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114577. [PMID: 36709538 DOI: 10.1016/j.ecoenv.2023.114577] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are emerging contaminants in agricultural soil, whereas their effects on the rhizosphere microbial ecosystems and biogeochemical nitrogen cycles during plant growth remain unknown. Here, a 70-day greenhouse experiment was carried out with black and fluvo-aquic soil to evaluate the influence of polyamide (PA), polyethylene (PE), polyester (PES), and polyvinyl chloride (PVC) MPs on the bacterial communities and functions in the soybean rhizosphere. The PA treatment consistently affected the rhizobacterial alpha diversity in the fluvo-aquic soil at soybean vegetative and reproductive growth stages, whereas the PE, PES, and PVC treatments had a short-term effect on the bacterial alpha diversity. At two growth stages, 6 and 23 biomarkers were consistently abundant in the PA treatment in the black soil and fluvo-aquic soil, respectively, and order Rhizobiales was found to be a biomarker for PA MPs contamination in both soils. Additionally, PA treatment decreased bacterial network complexity and tightness, whereas the effects of the PE, PES, and PVC on bacterial co-occurrence patterns varied depending on the soil types. Furthermore, PES and PVC treatments inhibited ammonification processes in the soybean rhizosphere, and PE could temporarily inhibit ammonia oxidation and denitrification processes according to the variations of N-cycling gene abundances. These effects on soil N-cycling also varied with soil types and soybean growth stages. This study provides profound information for understanding of MPs residues on the assembly of the soybean rhizosphere communities and function during plant development.
Collapse
Affiliation(s)
- Lili Rong
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China.
| | - Peter Meidl
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China.
| |
Collapse
|
16
|
Yu Y, Dai W, Luan Y. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120784. [PMID: 36462678 DOI: 10.1016/j.envpol.2022.120784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The thriving nano-enabled agriculture facilitates the interaction of nanomaterials with plants. Recently, these interactions and their biological effects are receiving increasing attention. Upon entering plants via leaves, roots, stems, and other organs, nanoparticles adsorb numerous biomolecules inside plants and form bio-corona. In addition, nanoparticles that enter plants through roots may have formed eco-corona with root exudates in the rhizosphere environment before contacting with plant exogenous proteins. The most significant biological effects of plant protein corona include changes in protein structure and function, as well as changes in nanoparticle toxicity and targeting ability. However, the mechanisms, particularly how protein corona affects plant protein function, plant development and growth, and rhizosphere environment properties, require further investigation. Our review summarizes the current understanding of the formation and biological effects of nanoparticle-plant protein corona and provides an outlook on future research.
Collapse
Affiliation(s)
- Yanni Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
17
|
Ergönül MB, Nassouhi D, Çelik M, Dilbaz D, Sazlı D, Atasağun S. Lemna trisulca L.: a novel phytoremediator for the removal of zinc oxide nanoparticles (ZnO NP) from aqueous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90852-90867. [PMID: 35879634 DOI: 10.1007/s11356-022-22112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Several aquatic plant species have been proposed for phytoremediation of waters polluted with heavy metals and pesticides According to the limited information available, aquatic macrophytes also have a promising potential to remove NPs from aqueous media. Although there is considerable information on the remediation potential of Lemna spp., the capacity of Lemna trisulca seems to be neglected, particularly for nanoparticle removal. Therefore, in the current study, we aimed to investigate the removal efficiency of L. trisulca exposed to 3 different ZnO NP concentrations (2.5, 5, and 10 ppm) for 1, 4, and 7 days in Hoagland solutions and the removal percentage were measured on each duration and compared among groups. The accumulated zinc levels were measured in whole plant material and bioconcentration factors were calculated for each group. In addition, the effect of ZnO NPs on the photosynthetic activity of the plant was evaluated via analyzing the photosynthetic pigment (chlorophyll a and b) concentration. The removal percentage ranged between 9.3 and 72.9% and showed a gradual increase in all experimental groups based both on dose and test duration. The statistical comparisons of the removal percentage among the groups with or without the plant indicate that L. trisulca had a significant effect on removal rates particularly between 1st and 4th days of exposure, however, did not show any progress at 7th days. The only significant difference for chl-a and chl-b levels was observed in 10 ppm ZnO NP-exposed plants at 7th days.
Collapse
Affiliation(s)
- Mehmet Borga Ergönül
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey.
| | - Danial Nassouhi
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Meltem Çelik
- Faculty of Science, Department of Chemistry, Ankara University, 06100, Ankara, Turkey
| | - Dilara Dilbaz
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Duygu Sazlı
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| | - Sibel Atasağun
- Faculty of Science, Department of Biology, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
18
|
Yang YM, Naseer M, Zhu Y, Zhu SG, Wang S, Wang BZ, Wang J, Zhu H, Wang W, Tao HY, Xiong YC. Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119661. [PMID: 35750307 DOI: 10.1016/j.envpol.2022.119661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron (nZVI) might generate positive and negative effects on plant growth, since it acts as either hazardous or growth-promotion role. It is still unclear whether such dual roles can be mediated by arbuscular mycorrhizal fungi (AMF) in plant-AMF symbiosis. We first identified that in 1.5 g kg-1 nZVI (≤1.5 g kg-1 positively), maize biomass was increased by 15.83%; yet in 2.0 g kg-1 nZVI, it turned to be declined by 6.83%, relative to non-nZVI condition (CK, p < 0.05), showing a negative effect. Interestingly, the inoculation of AMF massively improved biomass by 45.18% in 1.5 g kg-1 nZVI, and relieved the growth inhibition by 2.0 g kg-1 nZVI. The event of water use efficiency followed similar trend as that of biomass. We found that proper concentration of nZVI can positively interact with rhizosphere AMF carrier, enabling more plant photosynthetic carbon to be remobilized to mycorrhiza. The scanning of transmission electron microscopy showed that excessive nZVI can infiltrate into root cortical cells and disrupt cellular homeostasis mechanism, significantly increasing iron content in roots by 76.01% (p < 0.05). Simultaneously, the images of scanning electron microscopy showed that nZVI were attached on root surface to form an insoluble iron ion (Fe3+) layer, hindering water absorption. However, they were efficiently immobilized and in situ intercepted by extraradical hyphae in mycorrhizal-nZVI symbiosis, lowering iron translocation efficiency by 6.07% (p < 0.05). Herein, the optimized structure remarkably diminished aperture blockage at root surface and improved root activities by 30.06% (p < 0.05). Particularly, next-generation sequencing demonstrated that appropriate amount of nZVI promoted the colonization and development of Funneliformis mosseae as dominant species in rhizosphere, confirming the positive interaction between AMF and nZVI, and its regulatory mechanism. Therefore, dual effects of nZVI can be actively mediated by AMF via rhizosphere interactions. The findings provided new insights into the safe and efficient application of nanomaterials in agriculture.
Collapse
Affiliation(s)
- Yu-Miao Yang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Minha Naseer
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou, 730000, China
| | - Shuang-Guo Zhu
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Song Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Zhong Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jing Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hao Zhu
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Wei Wang
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Yan Tao
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Xiao Y, Tang W, Peijnenburg WJGM, Zhang X, Wu J, Xu M, Xiao H, He Y, Luo L, Yang G, Chen C, Tu L. Aggregation, solubility and cadmium-adsorption capacity of CuO nanoparticles in aquatic environments: Effects of pH, natural organic matter and component addition sequence. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114770. [PMID: 35202947 DOI: 10.1016/j.jenvman.2022.114770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs), heavy metals and natural organic matter may co-exist in the water bodies. Currently, knowledge on their interaction effects on the behaviors and fates of NPs and heavy metal ions is rather limited, which is critical to comprehensively understand their environmental risk. In this study, the aggregation, solubility and Cd-adsorption of CuO NPs co-existing with humic acid (HA) and Cd2+ upon different solution pH and contact sequences were determined. In the ternary systems of CuO NPs, HA and Cd2+, pH was more important than the contact sequence of the components in affecting the NP aggregation, while the contact sequence was a predominant factor in determining the NP solubility. Pre-equilibration of CuO NPs and HA before addition of Cd2+ resulted in the highest solubility and lowest aggregation of the NPs, relative to other sequences of addition of the components. The adsorption capacity of CuO NPs for Cd-ions increased with an increasing pH value from 5 to 9. HA significantly enhanced the Cd-adsorption capacity of CuO NPs at pH 7 and 9, while at pH 5 a non-significant effect was observed. The results are helpful to better estimate the behaviors and fates of CuO NPs and Cd2+ when they coexisting in natural waters.
Collapse
Affiliation(s)
- Yinlong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Wei Tang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720, BA, Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, P. O. Box 9518, 2300, RA, Leiden, the Netherlands
| | - Xiaohong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jun Wu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Min Xu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
20
|
Chen X, Hu Z, Xie H, Zhang J, Liang S, Wu H, Zhuang L. Priming effects of root exudates on the source-sink stability of benzo[a]pyrene in wetlands: A microcosm experiment. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128364. [PMID: 35114457 DOI: 10.1016/j.jhazmat.2022.128364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Although wetland is acknowledged as an effective ecosystem to remove persistent organic pollutants (POPs), the change of environmental factors would switch wetland from transient sink to permanent source. Thus, it is worthwhile to meticulously study its source-sink dynamics. In this study, root exudates' effect on the source-sink dynamics of benzo[a]pyrene (BaP) in a simulated wetland sediment system was investigated, and the identification results of labile, stable-adsorbed, and bound-residue fraction highlighted that root exudates' priming effects could accelerate fraction transformation and depuration of BaP in wetlands. The priming effects are the combination results of three different pathways, including decrease in the interfacial tension of BaP (1.21-4.19%), occurrence of co-metabolism processes (2.47-12.51%), and liberation of mineral-bound pathways (1.82-83.14%). All these pathways promoted the abiotic and biotic BaP removal processes, which reduced the half-life of BaP from 42 days to 13 days, and subsequently reduced the hazard potential of BaP in the wetland. Root exudates' priming effects accounted for over 99.84% in total dissipation of BaP, regulated the source-sink stability of the wetlands contaminated by BaP. The source-sink dynamics provides a conceptual framework for understanding environmental fate, risk assessment and further storage management of POPs in wetlands.
Collapse
Affiliation(s)
- Xinhan Chen
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Zhen Hu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China.
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jian Zhang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Shuang Liang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| | - Linlan Zhuang
- School of Environmental Science & Engineering, Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
21
|
Imperiale D, Lencioni G, Marmiroli M, Zappettini A, White JC, Marmiroli N. Interaction of hyperaccumulating plants with Zn and Cd nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152741. [PMID: 34990684 DOI: 10.1016/j.scitotenv.2021.152741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/27/2023]
Abstract
Metal hyperaccumulating plant species are an interesting example of natural selection and environmental adaptation but they may also be useful to developing new technologies of environmental monitoring and remediation. Noccaea caerulescens and Arabidopsis halleri are both Brassicaceae and are known metal hyperaccumulators. This study evaluated tolerance, uptake and translocation of zinc sulfide quantum dots by N. cearulescens and cadmium sulfide quantum dots by A. halleri in direct comparison with the non-hyperaccumulator, genetically similar T. perfoliatum and A. thaliana. Growth media were supplied with two different concentrations of metal in either salt (ZnSO4 and CdSO4) or nanoscale form (ZnS QDs and CdS QDs). After 30 days of exposure, the concentration of metals in the soil, roots and leaves was determined. Uptake and localization of the metal in both nanoscale and non-nanoscale form inside plant tissues was investigated by Environmental Scanning Electron Microscopy (ESEM) equipped with an X-ray probe. Specifically, the hyperaccumulators in comparison with the non-hyperaccumulators accumulate ionic and nanoscale Zn and Cd in the aerial parts with a BCF ratio of 45.9 for Zn ion, 49.6 for nanoscale Zn, 2.64 for Cd ion and 2.54 for nanoscale Cd. Results obtained with a differential extraction analytical procedure also showed that a significant fraction of nanoscale metals remained inside the plants in a form compatible with the retention of at least a partial initial structure. The molecular consequences of the hyperaccumulation of nanoscale materials are discussed considering data obtained with hyperaccumulation of ionic metal. This is the first report of conventional hyperaccumulating plants demonstrating an ability to hyperaccumulate also engineered nanomaterials (ENMs) and suggests a potential novel strategy for not only understanding plant-nanomaterial interactions but also for potential biomonitoring in the environment to avoid their entering into the food chains.
Collapse
Affiliation(s)
- Davide Imperiale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parma, Italy; Interdepartmental Center Siteia Parma, University of Parma, Parma, Italy
| | - Giacomo Lencioni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Zappettini
- IMEM-CNR Istituto dei Materiali per l'Elettronica ed il Magnetismo, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parma, Italy.
| |
Collapse
|
22
|
Yang J, Duan H, Wang X, Zhang H, Zhang Z. Effects of rice root exudates on aggregation, dissolution and bioaccumulation of differently-charged Ag nanoparticles. RSC Adv 2022; 12:9435-9444. [PMID: 35424848 PMCID: PMC8985187 DOI: 10.1039/d2ra00229a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/19/2022] [Indexed: 12/01/2022] Open
Abstract
The biological toxicity and eco-environmental risk of metal nanoparticles (MNPs) is closely related to their stability. The stability of MNPs not only depends on their own properties but also on the effects of biological and environmental factors. To better understand the interaction between biological factors and MNPs in aquatic environments, the effects of total rice root exudates (T-RRE) on the aggregation, dissolution and bioaccumulation of Ag nanoparticles (AgNPs) with different surface charges were investigated in detail. Results indicated that T-RRE can induce the aggregation and sedimentation, and hinder the dissolution of polyethyleneimine-coated AgNPs (AgNPs@PEI) with positive surface charges as well as reducing the bioaccumulation of Ag in rice roots. T-RRE had no obvious effect on the dispersion stability of AgNPs@Cit (negatively charged citrate-coated AgNPs) and AgNPs@PVP (near electrically neutral polyvinylpyrrolidone-coated AgNPs), although T-RRE could induce the dissolution of AgNPs@Cit and AgNPs@PVP. In the molecular fractions of T-RRE, high-molecular-weight root exudates (H-RRE) play a key role in inducing the aggregation of AgNPs@PEI and hindering the bioaccumulation of Ag in rice roots. Compared with H-RRE, low-molecular-weight root exudates (L-RRE) can promote the dissolution of AgNPs@Cit and AgNPs@PVP, but it can obviously promote silver accumulation in rice roots. The difference in charge intensity between L-RRE and T-RRE plays a key role in inducing the aggregation and dissolution of AgNPs with different charges. These findings provide a foundation for investigation of the interactions between rice root exudates and nanoparticles with different surface charges in complex environmental systems. The biological toxicity and eco-environmental risk of metal nanoparticles (MNPs) is closely related to their stability.![]()
Collapse
Affiliation(s)
- Jiajia Yang
- School of Life Science, Shanxi Normal University Taiyuan 030000 China +86-0351-2051196
| | - Hongyu Duan
- School of Life Science, Shanxi Normal University Taiyuan 030000 China +86-0351-2051196
| | - Xiya Wang
- School of Life Science, East China Normal University Shanghai 200241 China
| | - Huan Zhang
- School of Life Science, Shanxi Normal University Taiyuan 030000 China +86-0351-2051196
| | - Zhifeng Zhang
- School of Life Science, Shanxi Normal University Taiyuan 030000 China +86-0351-2051196
| |
Collapse
|
23
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. CHEMOSPHERE 2022; 288:132533. [PMID: 34655646 DOI: 10.1016/j.chemosphere.2021.132533] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The unprecedented setbacks and environmental complications, faced by global agro-farming industry, have led to the advent of nanotechnology in agriculture, which has been recognized as a novel and innovative approach in development of sustainable farming practices. The agricultural regimen is the "head honcho" of the world, however presently certain approaches have been imposing grave danger to the environment and human civilization. The nano-farming paradigm has successfully elevated the growth and development of plants, parallel to the production, quality, germination/transpiration index, photosynthetic machinery, genetic progression, and so on. This has optimized the traditional farming into precision farming, utilising nano-based sensors and nanobionics, smart delivery tools, nanotech facets in plant disease management, nanofertilizers, enhancement of plant adaptive potential to external stress, role in bioenergy conservation and so on. These applications portray nanorevolution as "the big cheese" of global agriculture, mitigating the bottlenecks of conventional practices. Besides the applications of nanotechnology, the review identifies the limitations, like possible harmful impact on environment, mankind and plants, as the "Achilles heel" in agro-industry, aiming to establish its defined role in agriculture, while simultaneously considering the risks, in order to resolve them, thus abiding by "technology-yes, but safety-must". The authors aim to provide a significant opportunity to the nanotech researchers, Botanists and environmentalists, to promote judicial use of nanoparticles and establish a secure and safe environment.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| |
Collapse
|
24
|
Wang X, Wang WX. Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118296. [PMID: 34627961 DOI: 10.1016/j.envpol.2021.118296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
25
|
Huang X, Keller AA. Metabolomic Response of Early-Stage Wheat ( Triticum aestivum) to Surfactant-Aided Foliar Application of Copper Hydroxide and Molybdenum Trioxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3073. [PMID: 34835836 PMCID: PMC8622224 DOI: 10.3390/nano11113073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Surfactants are commonly used in foliar applications to enhance interactions of active ingredients with plant leaves. We employed metabolomics to understand the effects of TritonTM X-100 surfactant (SA) and nanomaterials (NMs) on wheat (Triticum aestivum) at the molecular level. Leaves of three-week-old wheat seedlings were exposed to deionized water (DI), surfactant solution (SA), NMs-surfactant suspensions (Cu(OH)2 NMs and MoO3 NMs), and ionic-surfactant solutions (Cu IONs and Mo IONs). Wheat leaves and roots were evaluated via physiological, nutrient distribution, and targeted metabolomics analyses. SA had no impact on plant physiological parameters, however, 30+ dysregulated metabolites and 15+ perturbed metabolomic pathways were identified in wheat leaves and roots. Cu(OH)2 NMs resulted in an accumulation of 649.8 μg/g Cu in leaves; even with minimal Cu translocation, levels of 27 metabolites were significantly changed in roots. Due to the low dissolution of Cu(OH)2 NMs in SA, the low concentration of Cu IONs induced minimal plant response. In contrast, given the substantial dissolution of MoO3 NMs (35.8%), the corresponding high levels of Mo IONs resulted in significant metabolite reprogramming (30+ metabolites dysregulated). Aspartic acid, proline, chlorogenic acid, adenosine, ascorbic acid, phenylalanine, and lysine were significantly upregulated for MoO3 NMs, yet downregulated under Mo IONs condition. Surprisingly, Cu(OH)2 NMs stimulated wheat plant tissues more than MoO3 NMs. The glyoxylate/dicarboxylate metabolism (in leaves) and valine/leucine/isoleucine biosynthesis (in roots) uniquely responded to Cu(OH)2 NMs. Findings from this study provide novel insights on the use of surfactants to enhance the foliar application of nanoagrochemicals.
Collapse
Affiliation(s)
- Xiangning Huang
- Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA;
| | - Arturo A. Keller
- Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA;
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
26
|
Cervantes-Avilés P, Huang X, Keller AA. Dissolution and Aggregation of Metal Oxide Nanoparticles in Root Exudates and Soil Leachate: Implications for Nanoagrochemical Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13443-13451. [PMID: 34029070 DOI: 10.1021/acs.est.1c00767] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Knowledge of dissolution, aggregation, and stability of nanoagrochemicals in root exudates (RE) and soil leachate will contribute to improving delivery mechanisms, transport in plants, and bioavailability. We characterized aggregation, stability, and dissolution of four nanoparticles (NPs) in soybean RE and soil leachate: nano-CeO2, nano-Mn3O4, nano-Cu(OH)2, and nano-MoO3. Aggregation differed considerably in different media. In RE, nano-Cu(OH)2, and nano-MoO3 increased their aggregate size for 5 days; their mean sizes increased from 518 ± 43 nm to 938 ± 32 nm, and from 372 ± 14 nm to 690 ± 65 nm, respectively. Conversely, nano-CeO2 and nano-Mn3O4 disaggregated in RE with time, decreasing from 289 ± 5 nm to 129 ± 10 nm, and from 761 ± 58 nm to 143 ± 18 nm, respectively. Organic acids in RE and soil leachate can be adsorbed onto particle surfaces, influencing aggregation. Charge of the four NPs was negative in contact with RE and soil leachate, due to organic matter present in RE and soil leachate. Dissolution in RE after 6 days was 38%, 1.2%, 0.5%, and <0.1% of the elemental content of MoO3, Cu(OH)2, Mn3O4, and CeO2 NPs. Thus, the bioavailability and efficiency of delivery of the NPs or their active ingredients will be substantially modified soon after they are in contact with RE or soil leachate.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Reserva Territorial Atlixcáyotl, Puebla CP 72453, México
- University of California, Center for Environmental Implications of Nanotechnology, Santa Barbara, California 93106, United States
| | - Xiangning Huang
- Bren School of Environmental Science and Management, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- University of California, Center for Environmental Implications of Nanotechnology, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Marmiroli M, Pagano L, Rossi R, De La Torre-Roche R, Lepore GO, Ruotolo R, Gariani G, Bonanni V, Pollastri S, Puri A, Gianoncelli A, Aquilanti G, d'Acapito F, White JC, Marmiroli N. Copper Oxide Nanomaterial Fate in Plant Tissue: Nanoscale Impacts on Reproductive Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10769-10783. [PMID: 34308629 DOI: 10.1021/acs.est.1c01123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A thorough understanding of the implications of chronic low-dose exposure to engineered nanomaterials through the food chain is lacking. The present study aimed to characterize such a response in Cucurbita pepo L. (zucchini) upon exposure to a potential nanoscale fertilizer: copper oxide (CuO) nanoparticles. Zucchini was grown in soil amended with nano-CuO, bulk CuO (100 mg Kg-1), and CuSO4 (320 mg Kg-1) from germination to flowering (60 days). Nano-CuO treatment had no impact on plant morphology or growth nor pollen formation and viability. The uptake of Cu was comparable in the plant tissues under all treatments. RNA-seq analyses on vegetative and reproductive tissues highlighted common and nanoscale-specific components of the response. Mitochondrial and chloroplast functions were uniquely modulated in response to nanomaterial exposure as compared with conventional bulk and salt forms. X-ray absorption spectroscopy showed that the Cu local structure changed upon nano-CuO internalization, suggesting potential nanoparticle biotransformation within the plant tissues. These findings demonstrate the potential positive physiological, cellular, and molecular response related to nano-CuO application as a plant fertilizer, highlighting the differential mechanisms involved in the exposure to Cu in nanoscale, bulk, or salt forms. Nano-CuO uniquely stimulates plant response in a way that can minimize agrochemical inputs to the environment and therefore could be an important strategy in nanoenabled agriculture.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Roberto De La Torre-Roche
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | | | - Roberta Ruotolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Gianluca Gariani
- Elettra, Sincrotrone Trieste, Strada Statale 14 km 1635 in AREA Science Park, Trieste 34149, Italy
| | - Valentina Bonanni
- Elettra, Sincrotrone Trieste, Strada Statale 14 km 1635 in AREA Science Park, Trieste 34149, Italy
| | - Simone Pollastri
- Elettra, Sincrotrone Trieste, Strada Statale 14 km 1635 in AREA Science Park, Trieste 34149, Italy
| | - Alessandro Puri
- CNR-IOM-OGG c/o ESRF-The European Synchrotron, 71 Avenue des Martyrs CS 40220, Grenoble Cédex 9 F-38043, France
| | - Alessandra Gianoncelli
- Elettra, Sincrotrone Trieste, Strada Statale 14 km 1635 in AREA Science Park, Trieste 34149, Italy
| | - Giuliana Aquilanti
- Elettra, Sincrotrone Trieste, Strada Statale 14 km 1635 in AREA Science Park, Trieste 34149, Italy
| | - Francesco d'Acapito
- CNR-IOM-OGG c/o ESRF-The European Synchrotron, 71 Avenue des Martyrs CS 40220, Grenoble Cédex 9 F-38043, France
| | - Jason C White
- The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504, United States
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, Parma 43124, Italy
| |
Collapse
|
28
|
Li X, Gao B, Xu H, Sun Y, Shi X, Wu J. Effect of root exudates on the stability and transport of graphene oxide in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125362. [PMID: 33930947 DOI: 10.1016/j.jhazmat.2021.125362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Root exudates are a major source of dissolved organic matters that strongly affect the stability and transport behaviors of nanomaterials in porous media. This study investigated the effect of citric acid (CA) and oxalic acid (OA), two common low molecular weight root exudates, on the stability and transport of graphene oxide (GO) in saturated sand columns under different combinations of pH (4.5, 7.0), ionic strength (IS: 10, 50 mM), and organic acid concentrations (10, 25 mM). Both OA and CA accelerated GO aggregation, especially under high IS and acid concentration conditions. With the presence of OA/CA (≥ 10 mM), the transport of GO was higher at pH of 7.0 than 4.5, and the GO mobility decreased with increasing IS and OA/CA concentrations, whereas, enhanced GO transport was observed at a low concentration of OA/CA (0.1 mM), indicating that the influence of organic acid was concentration-dependent. All the results suggest that perturbations of surface potential of GO and sand, as well as the chemical structure of organic acids under different solution chemistry conditions are crucial in controlling GO stability and transport behaviors. Mathematical models based on the advection-dispersion equation with one-site kinetics simulated the experimental breakthrough curves of GO very well.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Nan G, Meng X, Song N, Liu Z, Liu Y, Li Y, Yang G, Zheng S. Uptake and Distribution Characteristic and Health Risk Assessment of Heavy Metal(loid)s in Platycodon Grandiflorum (Jacq.) A.DC. with Growth from a Medicinal Herb Garden of Xi'an, China. Biol Trace Elem Res 2021; 199:2770-2778. [PMID: 32875541 DOI: 10.1007/s12011-020-02364-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
The different parts of Platycodon grandiflorum were collected from a medicinal herb garden to determine five heavy metal(loid)s (Pb, Cd, As, Hg, and Cu) contents at different growth stages. The data showed that the plant accumulated varying amounts of metal(loid)s in the order Cu > Hg > Pb > As > Cd. Five heavy metal(loid) concentrations decreased in the early growth stage and then increased in the flowering season. The contents of heavy metal(loid)s except Hg in the stem were relatively lower than other tissues. The flower of Platycodon grandiflorum can highly accumulate heavy metal(loid)s, especially for Cu in the flowering period. Pb, Cd, and Cu contents in stem generally increased with growth time, while Cd and Cu in root decreased during growth time. The average daily intake doses of five heavy metal(loid)s in the root of Platycodon grandiflorum were all below the safety guideline and the target hazard quotient was less than 1.
Collapse
Affiliation(s)
- Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xianxin Meng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ning Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhengzheng Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunzhe Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Shaohua Zheng
- Department of Anesthesiology and Operation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
30
|
Dong C, Jiao C, Xie C, Liu Y, Luo W, Fan S, Ma Y, He X, Lin A, Zhang Z. Effects of ceria nanoparticles and CeCl 3 on growth, physiological and biochemical parameters of corn (Zea mays) plants grown in soil. NANOIMPACT 2021; 22:100311. [PMID: 35559968 DOI: 10.1016/j.impact.2021.100311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 06/15/2023]
Abstract
The release of toxic ions from metal-based nanoparticles (NPs) may play an important role in biological effects of NPs. In this life cycle study, physiological and biochemical responses of soil-grown corn (Zea mays) plants exposed to ceria NPs and its ionic counterparts Ce3+ ions at 0, 25, 75 and 225 mg Ce/kg were investigated. Both treatments tended to reduce the fresh weight and height of the plants at 28 days after sowing (DAS), and delay silk appearance and finally decrease fruit weight at harvest. Uptake and distribution of some mineral nutrients, Ca, P, Fe, B, Zn and Mn in the plants were disturbed. None of the treatments significantly affected activities of antioxidant enzymes and MDA contents in the roots and leaves at 28 DAS. At 90 DAS, ceria NPs and Ce3+ ions disturbed the homeostasis of antioxidative systems in the plants, Ce3+ ions at all concentrations provoked significant oxidative damage in the roots and significantly increased MDA levels as compare to the control. The results indicate that the effects of ceria NPs and Ce3+ ions on corn plants varied with different growth stages and ceria NPs had similar but less severe impacts than Ce3+ ions. Speciation analysis revealed there was mutual transformation between CeO2 and Ce3+ in the soil-plant system. It is speculated that Ce3+ ions play a key role in toxicity. To the authors' knowledge, this is the first report of a life cycle study on comparative toxicity of CeO2 NPs and Ce3+ ions on corn plants.
Collapse
Affiliation(s)
- Chaonan Dong
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Jiao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changjian Xie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhe Luo
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shixian Fan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhiyong Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Liu Y, Pan B, Li H, Lang D, Zhao Q, Zhang D, Wu M, Steinberg CEW, Xing B. Can the properties of engineered nanoparticles be indicative of their functions and effects in plants? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111128. [PMID: 32827963 DOI: 10.1016/j.ecoenv.2020.111128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The extensive applicability of engineered nanoparticles (ENPs) in various fields such as environment, agriculture, medicine or biotechnology has mostly been attributed to their better physicochemical properties as compared with conventional bulk materials. However, functions and biological effects of ENPs change across different scenarios which impede the progress in their risk assessment and safety management. This review thus intends to figure out whether properties of ENPs can be indicators of their behavior through summarizing and analyzing the available literature and knowledge. The studies have indicated that size, shape, solubility, specific surface area, surface charge and surface reactivity constitute a more accurate measure of ENPs functions and toxic effects in addition to mass concentration. Effects of ENPs are also highly dependent on dose metrics, species and strains of organisms, environmental conditions, exposure route and duration. Searching correlations between properties and functions or biological effects may serve as an effective way in understanding positive and negative impacts of ENPs. This will ensure safe design and sustainable future use of ENPs.
Collapse
Affiliation(s)
- Yang Liu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Bo Pan
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Hao Li
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Di Lang
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Qing Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Di Zhang
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Min Wu
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Christian E W Steinberg
- Yunnan Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China; Institute of Biology, Freshwater & Stress Ecology, Humboldt University, Berlin, 12437, Germany
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
32
|
Kanbar HJ, Matar Z, Safa GAA, Kazpard V. Selective metal leaching from technosols based on synthetic root exudate composition. J Environ Sci (China) 2020; 96:85-92. [PMID: 32819702 DOI: 10.1016/j.jes.2020.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
This study focused on metal release from technosols induced by synthetic root exudate (SRE). The effect of SRE composition on metal release was studied using six technosols. This was done by treating the technosols with SRE solutions having varying concentrations of low molecular weight organic acids (LMWOAs), namely oxalic, citric, and malic acids. Consequently, the physico-chemical parameters (pH and electric conductivity), Ca, Mg, Fe, Zn, and Cu release (by atomic absorption spectroscopy, AAS), chemical changes (by Fourier transform infrared, FT-IR), and organic parameters (by fluorescence) were investigated. Metal release showed to be dependent on the SRE composition and technosol characteristics. Citric acid selectively released Ca, Mg, Zn, and Cu from technosols in a concentration-dependent manner; oxalic acid showed a significant role in the release of Mg and Fe. Under relatively high LMWOA concentrations, particulate organo-mineral complexes precipitated. Additionally, technosol weathering was seen by the dissolution of humic substances and ferriallophanes, which in turn caused metal release. However, re-precipitation of these phases showed to re-sorb metals, thus underestimating the role of LMWOAs in metal release. Therefore, the selective metal leaching was highly dependent on the SRE composition and LMWOA concentrations on one hand, and on the mineral, organic, and organo-mineral components of the technosols on the other. The understanding of such processes is crucial for proposing and implementing environmental management strategies to reduce metal leaching or for the beneficial re-usage of metals (e.g., for agromining) from technosols.
Collapse
Affiliation(s)
- Hussein Jaafar Kanbar
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Zeinab Matar
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Earth and Life Sciences, Faculty of Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon; Laboratory of Georesources, Geosciences and Environment (L2GE), Faculty of Sciences, The Lebanese University, Fanar, Lebanon.
| | - Ghina Abed-AlHadi Safa
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Earth and Life Sciences, Faculty of Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon
| | - Veronique Kazpard
- Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Earth and Life Sciences, Faculty of Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon; Laboratory of Georesources, Geosciences and Environment (L2GE), Faculty of Sciences, The Lebanese University, Fanar, Lebanon
| |
Collapse
|
33
|
Qian Y, Qin C, Chen M, Lin S. Nanotechnology in soil remediation - applications vs. implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110815. [PMID: 32559688 DOI: 10.1016/j.ecoenv.2020.110815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 05/12/2023]
Abstract
Engineered nanomaterials (ENMs) and nanotechnology have shown great potential in addressing complex problems and creating innovative approaches in soil remediation due to their unique features of high reactivity, selectivity and versatility. Meanwhile, valid concerns exist with regard to their implications towards the terrestrial environment and the ecosystem. This review summarizes: (i) the applications and the corresponding mechanisms of various types of ENMs for soil remediation; (ii) the environmental behavior of ENMs in soils and their interactions with the soil content; (iii) the environmental implications of ENMs during remedial applications. The overall objective is to promote responsible innovations so as to take optimal advantage of ENMs and nanotechnology while minimizing their adverse effects to the ecological system. It is critical to establish sustainable remediation methods that ensure a healthy and safe environment without bringing additional risk.
Collapse
Affiliation(s)
- Yuting Qian
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Caidie Qin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mengmeng Chen
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Sijie Lin
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
34
|
Wang Z, Yue L, Dhankher OP, Xing B. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. ENVIRONMENT INTERNATIONAL 2020; 142:105831. [PMID: 32540628 DOI: 10.1016/j.envint.2020.105831] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 05/12/2023]
Abstract
With the rising global population growth and limitation of traditional agricultural technology, global crop production could not provide enough nutrients to assure adequate intake for all people. Nano-fertilizers and nano-pesticides have 20-30% higher efficacy than conventional products, which offer an effective solution to the above-mentioned problem. Rhizosphere is where plant roots, soil, and soil biota interact, and is the portal of nutrients transporting from soil into plants. The rhizosphere processes could modify the bioavailability of all nutrients and nanomaterials (NMs) before entering the food plants. However, to date, the overall rhizosphere processes regulating the behaviors and bioavailability of NMs to enhance the nutritional quality are still uncertain. In this review, a meta-analysis is conducted to quantitatively assess NMs-mediated changes in nutritional quality from food plants. Furthermore, the current knowledge and related mechanisms of the behavior and bioavailability of NMs driven by rhizosphere processes, e.g., root secretions, microbial and earthworm activities, are summarized. A series of rhizosphere processes can influence how NMs enter plants and change the biological responses, including signal transduction and nutrient absorption and transport. Moreover, future perspectives are presented to maximize the potentials of NMs applications for the enhancement of food crop production and global food security.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Om P Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
35
|
Zhang P, Guo Z, Zhang Z, Fu H, White JC, Lynch I. Nanomaterial Transformation in the Soil-Plant System: Implications for Food Safety and Application in Agriculture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000705. [PMID: 32462786 DOI: 10.1002/smll.202000705] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 05/08/2023]
Abstract
Engineered nanomaterials (ENMs) have huge potential for improving use efficiency of agrochemicals, crop production, and soil health; however, the behavior and fate of ENMs and the potential for negative long-term impacts to agroecosystems remain largely unknown. In particular, there is a lack of clear understanding of the transformation of ENMs in both soil and plant compartments. The transformation can be physical, chemical, and/or biological, and may occur in soil, at the plant interface, and/or inside the plant. Due to these highly dynamic processes, ENMs may acquire new properties distinct from their original profile; as such, the behavior, fate, and biological effects may also differ significantly. Several essential questions in terms of ENMs transformation are discussed, including the drivers and locations of ENM transformation in the soil-plant system and the effects of ENM transformation on analyte uptake, translocation, and toxicity. The main knowledge gaps in this area are highlighted and future research needs are outlined so as to ensure sustainable nanoenabled agricultural applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhiyong Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualing Fu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
36
|
Mortimer M, Li D, Wang Y, Holden PA. Physical Properties of Carbon Nanomaterials and Nanoceria Affect Pathways Important to the Nodulation Competitiveness of the Symbiotic N 2 -Fixing Bacterium Bradyrhizobium diazoefficiens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906055. [PMID: 31899607 DOI: 10.1002/smll.201906055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 05/07/2023]
Abstract
The pathogenicity and antimicrobial properties of engineered nanomaterials (ENMs) are relatively well studied. However, less is known regarding the interactions of ENMs and agriculturally beneficial microorganisms that affect food security. Nanoceria (CeO2 nanoparticles (NPs)), multiwall carbon nanotubes (MWCNTs), graphene nanoplatelets (GNPs), and carbon black (CB) have been previously shown to inhibit symbiotic N2 fixation in soybeans, but direct rhizobial susceptibility is uncertain. Here, Bradyrhizobium diazoefficiens associated with symbiotic N2 fixation in soybeans is assessed, evaluating the role of soybean root exudates (RE) on ENM-bacterial interactions and the effects of CeO2 NPs, MWCNTs, GNPs, and CB on bacterial growth and gene expression. Although bacterial growth is inhibited by 50 mg L-1 CeO2 NPs, MWCNTs, and CB, all ENMs at 0.1 and 10 mg L-1 cause a global transcriptomic response that is mitigated by RE. ENMs may interfere with plant-bacterial signaling, as evidenced by suppressed upregulation of genes induced by RE, and downregulation of genes encoding transport RNA, which facilitates nodulation signaling. MWCNTs and CeO2 NPs inhibit the expression of genes conferring B. diazoefficiens nodulation competitiveness. Surprisingly, the transcriptomic effects on B. diazoefficiens are similar for these two ENMs, indicating that physical, not chemical, ENM properties explain the observed effects.
Collapse
Affiliation(s)
- Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| | - Dong Li
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Ying Wang
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management and Earth Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
37
|
Rajput V, Minkina T, Ahmed B, Sushkova S, Singh R, Soldatov M, Laratte B, Fedorenko A, Mandzhieva S, Blicharska E, Musarrat J, Saquib Q, Flieger J, Gorovtsov A. Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 252:51-96. [PMID: 31286265 DOI: 10.1007/398_2019_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the past two decades, increased production and usage of metallic nanoparticles (NPs) have inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and have become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms is poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants have also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment.
Collapse
Affiliation(s)
- Vishnu Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Bilal Ahmed
- Department of Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mikhail Soldatov
- The Smart Materials Research Center, Southern Federal University, Rostov-on-Don, Russia
| | - Bertrand Laratte
- Département de Conception, Industrialisation, Risque, Décision, Ecole Nationale Supérieure d'Arts et Métiers, Paris, France
| | - Alexey Fedorenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Eliza Blicharska
- Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Javed Musarrat
- Department of Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Andrey Gorovtsov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
38
|
Kanbar HJ, Kaouk M. Mineral and chemical changes of sediments after Cu sorption and then desorption induced by synthetic root exudate. CHEMOSPHERE 2019; 236:124393. [PMID: 31545196 DOI: 10.1016/j.chemosphere.2019.124393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Understanding the fate of anthropogenically introduced copper in sediments is important to comprehend the biogeochemical processes; consequently, beneficial utilization of Cu-rich materials can be proposed (e.g. soil amendment). Therefore, we address the behavior of copper and other metals at the liquid-solid interface of different grain sizes in lake sediments. Initially, the sediment fractions were characterized for mineralogy (XRD), chemical structure (FTIR), physicochemical parameters (mainly pH, cation exchange capacity, and electric conductivity), organic content, and chemical composition (AAS). Then, solutions of varying Cu concentrations were added to the fractions; the Cu concentrations of the sorption experiment were chosen according to the exchangeable cations of each fraction. A desorption experiment by synthetic root exudate was followed. The physicochemical parameters, functional groups, and mineralogy were noted before and after the two experiments. The sorption and desorption of Cu, Ca, Mg, K, and Na were also studied. The sediment fractions had similar mineralogy and chemical structure, yet the physicochemical composition and metal contents were different. The Cu sorption experiment showed that surface Ca and embedded Mg were the main cations that were exchanged with Cu, as shown by linear and logarithmic trends, respectively. The copper-sediment interaction mainly occurred at the organic interface. Finally, synthetic root exudate was able to restore part of the initial chemical structure of the sediments, indicating exchangeable Cu sorption on the organic part of the sediments. The various grain sizes had an insignificant influence on the behavior of metal sorption and desorption.
Collapse
Affiliation(s)
- Hussein Jaafar Kanbar
- Applied Plant Biotechnology Laboratory (APBL), Faculty of Sciences, Department of Earth and Life Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon; Research and Analysis Platform for Environmental Sciences (PRASE), Doctoral School of Sciences and Technology (EDST), Faculty of Sciences, The Lebanese University, P.O. 5, Rafic Hariri Campus, Hadat, Lebanon; Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Malak Kaouk
- Applied Plant Biotechnology Laboratory (APBL), Faculty of Sciences, Department of Earth and Life Sciences, The Lebanese University, Rafic Hariri Campus, Hadat, Lebanon
| |
Collapse
|
39
|
Li X, Peng T, Mu L, Hu X. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109602. [PMID: 31493589 DOI: 10.1016/j.ecoenv.2019.109602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Given the wide applications of engineered nanomaterials (ENMs) in various fields, the ecotoxicology of ENMs has attracted much attention. The traditional plant physiological activity (e.g., reactive oxygen species and antioxidant enzymes) are limited in that they probe one specific process of nanotoxicity, which may result in the loss of understanding of other important biological reactions. Metabolites, which are downstream of gene and protein expression, are directly related to biological phenomena. Metabolomics is an easily performed and efficient tool for solving the aforementioned problems because it involves the comprehensive exploration of metabolic profiles. To understand the roles of metabolomics in phytotoxicity, the analytical methods for metabolomics should be organized and discussed. Moreover, the dominant metabolites and metabolic pathways are similar in different plants, which determines the universal applicability of metabolomics analysis. The analysis of regulated metabolism will globally and scientifically help determine the ecotoxicology that is induced by ENMs. In the past several years, great developments in nanotoxicology have been achieved using metabolomics. However, many knowledge gaps remain, such as the relationships between biological responses that are induced by ENMs and the regulation of metabolism (e.g., carbohydrate, energy, amino acid, lipid and secondary metabolism). The phytotoxicity that is induced by ENMs has been explored by metabolomics, which is still in its infancy. The detrimental and defence mechanisms of plants in their response to ENMs at the level of metabolomics also deserve much attention. In addition, owing to the regulation of metabolism in plants by ENMs affected by multiple factors, it is meaningful to uniformly identify the key influencing factor.
Collapse
Affiliation(s)
- Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ting Peng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
40
|
Kranjc E, Drobne D. Nanomaterials in Plants: A Review of Hazard and Applications in the Agri-Food Sector. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1094. [PMID: 31366106 PMCID: PMC6723683 DOI: 10.3390/nano9081094] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
Abstract
Agricultural food crop plants interact with engineered nanomaterials (ENMs) from the application of agri-food nanotechnologies and from unintentional emissions originating from other nanotechnologies. Both types of exposure present implications for agricultural yield and quality, food chain transfer, and environmental and human health. In this review, the most recent findings from agricultural plant-ENM studies published in 2017 and 2018 are summarized. The aim of this is to identify the current hazard potential of ENMs for plants grown under typical field conditions that originate from both intentional and unintentional exposures and to contribute to knowledge-based decisions on the application of ENMs in food-agriculture. We also address recent knowledge on ENM adsorption, internalization, translocation, and bioaccumulation by plants, ENM impacts on agricultural crop yield and nutrition, and ENM biotransformation. Using adverse effect level concentrations and data on ENM accumulation in environmental matrices, the literature analyses revealed that C-, Ag-, Ce-, and Ti-based ENMs are unlikely to pose a risk to plants grown under typical field conditions, whereas Cu- and Zn-based ENMs require surveillance. Since multiple factors (e.g., ENM concentration, route of exposure, and plant type) influence the effects of ENMs on plants, biomonitoring is recommended for tracking ENM environmental exposure in the future.
Collapse
Affiliation(s)
- Eva Kranjc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
da Cruz TNM, Savassa SM, Montanha GS, Ishida JK, de Almeida E, Tsai SM, Lavres Junior J, Pereira de Carvalho HW. A new glance on root-to-shoot in vivo zinc transport and time-dependent physiological effects of ZnSO 4 and ZnO nanoparticles on plants. Sci Rep 2019; 9:10416. [PMID: 31320668 PMCID: PMC6639404 DOI: 10.1038/s41598-019-46796-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/02/2019] [Indexed: 11/25/2022] Open
Abstract
Understanding nanoparticle root uptake and root-to-shoot transport might contribute to the use of nanotechnology in plant nutrition. This study performed time resolved experiments to probe Zn uptake, biotransformation and physiological effects on Phaseolus vulgaris (L.). Plants roots were exposed to ZnO nanoparticles (40 and 300 nm) dispersions and ZnSO4(aq) (100 and 1000 mg Zn L−1) for 48 h. Near edge X-ray absorption spectroscopy showed that 40 nm ZnO was more easily dissolved by roots than 300 nm ZnO. It also showed that in the leaves Zn was found as a mixture Zn3(PO4)2 and Zn-histidine complex. X-ray fluorescence spectroscopy showed that root-to-shoot Zn-translocation presented a decreasing gradient of concentration and velocity, it seems radial Zn movement occurs simultaneously to the axial xylem transport. Below 100 mg Zn L−1, the lower stem tissue section served as a buffer preventing Zn from reaching the leaves. Conversely, it was not observed for 1000 mg Zn L−1 ZnSO4(aq). Transcriptional analysis of genes encoding metal carriers indicated higher expression levels of tonoplast-localized transporters, suggesting that the mechanism trend to accumulate Zn in the lower tissues may be associated with an enhanced of Zn compartmentalization in vacuoles. The photosynthetic rate, transpiration, and water conductance were impaired by treatments.
Collapse
Affiliation(s)
- Tatiana N M da Cruz
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Susilaine M Savassa
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Gabriel S Montanha
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Juliane K Ishida
- University of São Paulo, Cellular and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Eduardo de Almeida
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - Siu M Tsai
- University of São Paulo, Cellular and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil
| | - José Lavres Junior
- University of Sao Paulo, Center for Nuclear Energy in Agriculture, Plant Nutrition Laboratory, Piracicaba, 13416000, Brazil
| | - Hudson W Pereira de Carvalho
- University of São Paulo, Nuclear Instrumentation Laboratory, Center for Nuclear Energy in Agriculture, Piracicaba, 13416000, Brazil.
| |
Collapse
|
42
|
Aggregation, Sedimentation, and Dissolution of Copper Oxide Nanoparticles: Influence of Low-Molecular-Weight Organic Acids from Root Exudates. NANOMATERIALS 2019; 9:nano9060841. [PMID: 31159452 PMCID: PMC6630225 DOI: 10.3390/nano9060841] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022]
Abstract
The rhizosphere is an essential pathway for the uptake of metal-based nanoparticles (MNPs) by plant roots. However, the interaction between root exudates and MNPs is still unclear. In this study, we initially identified the major low-molecular-weight organic acids (LMWOAs) in the rice root exudates using hydroponics. Then, the individual LMWOAs were added to CuO nanoparticle suspensions to investigate their effects on the environmental behavior of the MNPs. The results showed that both the variety and the concentration of LMWOAs impacted the aggregation, sedimentation, and dissolution of CuO nanoparticles (NPs). Almost all LMWOAs except succinic acid inhibited the aggregation of CuO NPs by enhancing the electrostatic repulsive force between NPs. The presence of citric and oxalic acids rather than lactic acid greatly improved the stability of CuO NP suspensions, but other acids showed a low promoting and high inhibiting effect on NP sedimentation. Moreover, all the LMWOAs from root exudates facilitated the dissolution of CuO NPs with a positive dose-dependent correlation, especially formic acid. Notably, citric acid, as the most abundant LMWOAs in rice root exudates, largely determined the aggregation, sedimentation, and dissolution of CuO NPs. This study provides a better understanding on NP-plant interactions in the rhizosphere.
Collapse
|
43
|
Wang Y, Wang S, Xu M, Xiao L, Dai Z, Li J. The impacts of γ-Fe 2O 3 and Fe 3O 4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:1011-1018. [PMID: 31146307 DOI: 10.1016/j.envpol.2019.03.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Iron fertilizers are worthy to be studied due to alleviate the Fe deficiency. Different forms of iron oxide nanoparticles are selected to better understand possible particle applications as an Fe source for crop plants. In this study, we assessed the different effects of γ-Fe2O3 and Fe3O4 NPs on the physiology and fruit quality of muskmelon plants in a pot experiment for five weeks. Results showed that no increased iron content was found under NPs treatment in root, stem, leaf and fruit, except 400 mg/L Fe3O4 NPs had a higher iron content in muskmelon root. With the extension of NPs exposure, both γ-Fe2O3 and Fe3O4 NPs began to promote plant growth. In addition, γ-Fe2O3 and Fe3O4 NPs could increase chlorophyll content at a certain stage of exposure. Happily, 200 mg/L γ-Fe2O3 NPs and 100, 200 mg/L Fe3O4 NPs significantly increased fruit weight of muskmelon by 9.1%, 9.4% and 11.5%. It is noteworthy that both γ-Fe2O3 and Fe3O4 NPs caused positive effects on VC content, particularly 100 mg/L Fe3O4 NPs increased the VC content by 46.95%. To the best of our knowledge, little research has been done on the effect of nanoparticles on the whole physiological cycle and fruit quality of melon. The assessment of physiology and fruit quality of muskmelon plants in vitro upon γ-Fe2O3 and Fe3O4 NPs exposure could lay a foundation for NPs potential impact at every growth period of muskmelon plants.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China
| | - Shouxia Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Mengxuan Xu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lian Xiao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan, 430064, PR China
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
44
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
45
|
Zhang H, Huang Y, Gu J, Keller A, Qin Y, Bian Y, Tang K, Qu X, Ji R, Zhao L. Single particle ICP-MS and GC-MS provide a new insight into the formation mechanisms during the green synthesis of AgNPs. NEW J CHEM 2019. [DOI: 10.1039/c8nj06291a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For the first time, the formation kinetics and responsible metabolites during the green synthesis of AgNPs were elucidated by sp-ICP-MS and GC-MS.
Collapse
|
46
|
Nath J, Dror I, Landa P, Vanek T, Kaplan-Ashiri I, Berkowitz B. Synthesis and characterization of isotopically-labeled silver, copper and zinc oxide nanoparticles for tracing studies in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1827-1837. [PMID: 30076052 DOI: 10.1016/j.envpol.2018.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 05/21/2023]
Abstract
In parallel to technological advances and ever-increasing use of nanoparticles in industry, agriculture and consumer products, the potential ecotoxicity of nanoparticles and their potential accumulation in ecosystems is of increasing concern. Because scientific reports raise a concern regarding nanoparticle toxicity to plants, understanding of their bioaccumulation has become critical and demands more research. Here, the synthesis of isotopically-labeled nanoparticles of silver, copper and zinc oxide is reported; it is demonstrated that while maintaining the basic properties of the same unlabeled ("regular") nanoparticles, labeled nanoparticles enable more sensitive tracing of nanoparticles within plants that have background elemental levels. This technique is particularly useful for working with elements that are present in high abundance in natural environments. As a benchmark, labeled and unlabeled metal nanoparticles (Ag-NP, Cu-NP, ZnO-NP) were synthesized and compared, and then exposed in a series of growth experiments to Arabidopsis thaliana; the NPs were traced in different parts of the plant. All of the synthesized nanoparticles were characterized by TEM, EDS, DLS, ζ-potential and single particle ICP-MS, which provided essential information regarding size, composition, morphology and surface charge of nanoparticles, as well as their stability in suspensions. Tracing studies with A. thaliana showed uptake/retention of nanoparticles that is more significant in roots than in shoots. Single particle ICP-MS, and scanning electron micrographs and EDS of plant roots showed presence of Ag-NPs in particular, localized areas, whereas copper and zinc were found to be distributed over the root tissues, but not as nanoparticles. Thus, nanoparticles in any natural matrix can be replaced easily by their labeled counterparts to trace the accumulation or retention of NPs. Isotopically-labeled nanoparticles enable acquisition of specific results, even if there are some concentrations of the same elements that originate from other (natural or anthropogenic) sources.
Collapse
Affiliation(s)
- Jayashree Nath
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Ishai Dror
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Premysl Landa
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany the CAS, v.v.i., Prague, Czech Republic
| | - Tomas Vanek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany the CAS, v.v.i., Prague, Czech Republic
| | - Ifat Kaplan-Ashiri
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Brian Berkowitz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Chen H. Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. CHEMICAL SPECIATION & BIOAVAILABILITY 2018. [DOI: 10.1080/09542299.2018.1520050] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Hao Chen
- Department of Agriculture, University of Arkansas at Pine Bluff, Pine Bluff, AR, USA
| |
Collapse
|
48
|
Wu S, Vosátka M, Vogel-Mikus K, Kavčič A, Kelemen M, Šepec L, Pelicon P, Skála R, Valero Powter AR, Teodoro M, Michálková Z, Komárek M. Nano Zero-Valent Iron Mediated Metal(loid) Uptake and Translocation by Arbuscular Mycorrhizal Symbioses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7640-7651. [PMID: 29894629 DOI: 10.1021/acs.est.7b05516] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nano zero-valent iron (nZVI) has great potential in the remediation of metal(loid)-contaminated soils, but its efficiency in metal(loid) stabilization in the plant-microbe continuum is unclear. This study investigated nZVI-mediated metal(loid) behavior in the arbuscular mycorrhizal (AM) fungal-maize ( Zea mays L.) plant association. Plants with AM fungal inoculation were grown in metal(loid)- (mainly Zn and Pb) contaminated soils (Litavka River, Czech Republic) amended with/without 0.5% (w/w) nZVI. The results showed that nZVI decreased plant metal(loid) uptake but inhibited AM development and its function in metal(loid) stabilization in the rhizosphere. AM fungal inoculation alleviated the physiological stresses caused by nZVI and restrained nZVI efficiency in reducing plant metal(loid) uptake. Micro proton-induced X-ray emission (μ-PIXE) analysis revealed the sequestration of Zn (possibly through binding to thiols) by fungal structures in the roots and the precipitation of Pb and Cu in the mycorrhizal root rhizodermis (possibly by Fe compounds originated from nZVI). XRD analyses further indicated that Pb/Fe mineral transformations in the rhizosphere were influenced by AM and nZVI treatments. The study revealed the counteractive effects of AM and nZVI on plant metal(loid) uptake and uncovered details of metal(loid) behavior in the AM fungal-root-nZVI system, calling into question about nZVI implementation in mycorrhizospheric systems.
Collapse
Affiliation(s)
- Songlin Wu
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Miroslav Vosátka
- Department of Mycorrhizal Symbioses, Institute of Botany , Czech Academy of Sciences , 272 53 Pruhonice , Czech Republic
| | - Katarina Vogel-Mikus
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , SI-1000 Ljubljana , Slovenia
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Anja Kavčič
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , SI-1000 Ljubljana , Slovenia
| | - Mitja Kelemen
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Luka Šepec
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Primož Pelicon
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Roman Skála
- Institute of Geology of the Czech Academy of Sciences , Rozvojová 269 , CZ-165 00 Prague 6 , Czech Republic
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science , Charles University in Prague , Albertov 6 , CZ-128 43 Prague 2 , Czech Republic
| | - Antonio Roberto Valero Powter
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Manuel Teodoro
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Zuzana Michálková
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| |
Collapse
|
49
|
Ge Y, Shen C, Wang Y, Sun YQ, Schimel JP, Gardea-Torresdey JL, Holden PA. Carbonaceous Nanomaterials Have Higher Effects on Soybean Rhizosphere Prokaryotic Communities During the Reproductive Growth Phase than During Vegetative Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6636-6646. [PMID: 29719150 DOI: 10.1021/acs.est.8b00937] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbonaceous nanomaterials (CNMs) can affect agricultural soil prokaryotic communities, but how the effects vary with the crop growth stage is unknown. To investigate this, soybean plants were cultivated in soils amended with 0, 0.1, 100, or 1000 mg kg-1 of carbon black, multiwalled carbon nanotubes (MWCNTs), or graphene. Soil prokaryotic communities were analyzed by Illumina sequencing at day 0 and at the soybean vegetative and reproductive stages. The sequencing data were functionally annotated using the functional annotation of prokaryotic taxa (FAPROTAX) database. The prokaryotic communities were unaffected at day 0 and were altered at the plant vegetative stage only by 0.1 mg kg-1 MWCNTs. However, at the reproductive stage, when pods were filling, most treatments (except 1000 mg kg-1 MWCNTs) altered the prokaryotic community composition, including functional groups associated with C, N, and S cycling. The lower doses of CNMs, which were previously shown to be less agglomerated and thus more bioavailable in soil relative to the higher doses, were more effective toward both overall communities and individual functional groups. Taken together, prokaryotic communities in the soybean rhizosphere can be significantly phylogenetically and functionally altered in response to bioavailable CNMs, especially when soybean plants are actively directing resources to seed production.
Collapse
Affiliation(s)
- Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- Bren School of Environmental Science and Management , University of California , Santa Barbara , California 93106 , United States
- Earth Research Institute , University of California , Santa Barbara , California 93106 , United States
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , University of California , Santa Barbara , California 93106 , United States
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Ying Wang
- Bren School of Environmental Science and Management , University of California , Santa Barbara , California 93106 , United States
- Earth Research Institute , University of California , Santa Barbara , California 93106 , United States
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , University of California , Santa Barbara , California 93106 , United States
| | - Yao-Qin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Joshua P Schimel
- Earth Research Institute , University of California , Santa Barbara , California 93106 , United States
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , University of California , Santa Barbara , California 93106 , United States
- Department of Ecology, Evolution and Marine Biology , University of California , Santa Barbara , California 93106 , United States
| | - Jorge L Gardea-Torresdey
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , University of California , Santa Barbara , California 93106 , United States
- Department of Chemistry , University of Texas at El Paso , El Paso , Texas 79968 , United States
| | - Patricia A Holden
- Bren School of Environmental Science and Management , University of California , Santa Barbara , California 93106 , United States
- Earth Research Institute , University of California , Santa Barbara , California 93106 , United States
- University of California Center for the Environmental Implications of Nanotechnology (UC CEIN) , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|