1
|
Igarashi J, Ninomiya K, Zheng J, Zhang Z, Fukuda M, Aono T, Minowa H, Yoshikawa H, Sueki K, Satou Y, Shinohara A. Fukushima Daiichi Nuclear Power Plant Accident: Understanding Formation Mechanism of Radioactive Particles through Sr and Pu Quantities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14823-14830. [PMID: 39129255 DOI: 10.1021/acs.est.4c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The Fukushima Daiichi Nuclear Power Plant accident released considerable radionuclides into the environment. Radioactive particles, composed mainly of SiO2, emerged as distinctive features, revealing insights into the accident's dynamics. While studies extensively focused on high-volatile radionuclides like Cs, investigations into low-volatile nuclides such as 90Sr and Pu remain limited. Understanding their abundance in radioactive particles is crucial for deciphering the accident's details, including reactor temperatures and injection processes. Here, we aimed to determine 90Sr and Pu amounts in radioactive particles and provide essential data for understanding the formation processes and conditions within the reactor during the accident. We employed radiochemical analysis on nine radioactive particles and determined the amounts of 90Sr and Pu in these particles. 90Sr and Pu quantification in radioactive particles showed that the 90Sr/137Cs radioactivity ratio (corrected to March 11, 2011) aligned with core temperature expectations. However, the 239+240Pu/137Cs activity ratio indicated nonvolatile Pu introduction, possibly through fuel fragments. Analyzing 90Sr and Pu enhances our understanding of the Fukushima Daiichi accident. Deviations in 239+240Pu/137Cs activity ratios underscore nonvolatile processes, emphasizing the accident's complexity. Future research should expand this data set for a more comprehensive understanding of the accident's nuances.
Collapse
Affiliation(s)
- Junya Igarashi
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhiko Ninomiya
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Jian Zheng
- Institute for Radiological Science, National Institute for Quantum Science and Technology (QST), 491 Anagawa, Inage, Chiba 263-8555, Japan
| | - Zijian Zhang
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Miho Fukuda
- Institute for Radiological Science, National Institute for Quantum Science and Technology (QST), 491 Anagawa, Inage, Chiba 263-8555, Japan
- Research Department, Fukushima Prefectural Centre for Environmental Creation, 10-2 Fukasaku, Miharu Town, Fukushima 963-7700, Japan
| | - Tatsuo Aono
- Institute for Radiological Science, National Institute for Quantum Science and Technology (QST), 491 Anagawa, Inage, Chiba 263-8555, Japan
| | - Haruka Minowa
- The Jikei University School of Medicine, 3-25 Nishishinbashi, Minato Ward, Tokyo 105-0003, Japan
| | - Hideki Yoshikawa
- The Jikei University School of Medicine, 3-25 Nishishinbashi, Minato Ward, Tokyo 105-0003, Japan
| | - Keisuke Sueki
- Graduate School of Pure and Material, Tsukuba University, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yukihiko Satou
- Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency, 790-1 Otsuka, Motooka, Tomioka, Futaba, Fukushima 979-1151, Japan
| | - Atsushi Shinohara
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Faculty of Health Science, Osaka Aoyama University, 2-11-1 Niina, Minoh, Osaka 562-8580, Japan
| |
Collapse
|
2
|
Miyazaki K, Takehara M, Minomo K, Horie K, Takehara M, Yamasaki S, Saito T, Ohnuki T, Takano M, Shiotsu H, Iwata H, Vettese GF, Sarparanta MP, Law GTW, Grambow B, Ewing RC, Utsunomiya S. "Invisible" radioactive cesium atoms revealed: Pollucite inclusion in cesium-rich microparticles (CsMPs) from the Fukushima Daiichi Nuclear Power Plant. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134104. [PMID: 38569336 DOI: 10.1016/j.jhazmat.2024.134104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Understanding radioactive Cs contamination has been a central issue at Fukushima Daiichi and other nuclear legacy sites; however, atomic-scale characterization of radioactive Cs in environmental samples has never been achieved. Here we report, for the first time, the direct imaging of radioactive Cs atoms using high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In Cs-rich microparticles collected from Japan, we document inclusions that contain 27 - 36 wt% of Cs (reported as Cs2O) in a zeolite: pollucite. The compositions of three pollucite inclusions are (Cs1.86K0.11Rb0.19Ba0.22)2.4(Fe0.85Zn0.84X0.31)2.0Si4.1O12, (Cs1.19K0.05Rb0.19Ba0.22)1.7(Fe0.66Zn0.32X0.41)1.4Si4.6O12, and (Cs1.27K0.21Rb0.29Ba0.15)1.9(Fe0.60Zn0.32X0.69)1.6Si4.4O12 (X includes other cations). HAADF-STEM imaging of pollucite, viewed along the [111] zone axis, revealed an array of Cs atoms, which is consistent with a simulated image using the multi-slice method. The occurrence of pollucite indicates that locally enriched Cs reacted with siliceous substances during the Fukushima meltdowns, presumably through volatilization and condensation. Beta radiation doses from the incorporated Cs are estimated to reach 106 - 107 Gy, which is more than three orders of magnitude less than typical amorphization dose of zeolite. The atomic-resolution imaging of radioactive Cs is an important advance for better understanding the fate of radioactive Cs inside and outside of nuclear reactors damaged by meltdown events.
Collapse
Affiliation(s)
- Kanako Miyazaki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masato Takehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenta Minomo
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Horie
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan; Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan, Hayama, Kanagawa 240-0193, Japan
| | - Mami Takehara
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
| | - Shinya Yamasaki
- Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takumi Saito
- Nuclear Professional School, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahide Takano
- Japan Atomic Energy Agency, Nuclear Science Research Institute, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Hiroyuki Shiotsu
- Japan Atomic Energy Agency, Nuclear Science Research Institute, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Hajime Iwata
- Japan Atomic Energy Agency, Nuclear Fuel Cycle Engineering Laboratories, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan
| | - Gianni F Vettese
- Radiochemistry Unit, Department of Chemistry, University of Helsinki, Finland
| | - Mirkka P Sarparanta
- Radiochemistry Unit, Department of Chemistry, University of Helsinki, Finland
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, University of Helsinki, Finland
| | - Bernd Grambow
- SUBATECH, IMT Atlantique, CNRS-IN2P3, the Nantes University, Nantes 44307, France
| | - Rodney C Ewing
- Earth & Planetary Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA 94305-2115 USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Laffolley H, Journeau C, Grambow B. Simulant molten core-concrete interaction experiments in view of understanding Fukushima Daiichi Nuclear Power Station Cs-bearing particles generation mechanism. Sci Rep 2024; 14:6611. [PMID: 38504092 PMCID: PMC11344152 DOI: 10.1038/s41598-024-56972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
The Fukushima Daiichi accident resulted in the release of a novel form of radioactive Cs contamination into the environment, called Cs-bearing microparticles (CsMP). CsMPs constitute a substantial portion of the radioactive pollution near the nuclear power station and traveled beyond several hundred kilometers. Extensive characterization of the CsMPs revealed an amorphous silica matrix, along with Cs and other minor or trace elements such as Fe and Zn. This study explores the unclear generation mechanism of CsMPs by conducting experimental molten core concrete interactions (MCCI) as a source of Si and analyzing the resultant aerosols. The findings demonstrate that MCCI is in capacity to produce spherical submicronic and micronic particles, primarily composed of amorphous silica and incorporating elements akin to CsMPs. A humid atmosphere is found to favour an even closer chemical composition. Examination of the internal structure of the synthesized particles unveils pores and numerous crystalline nanoinclusions possibly serving as nucleation sites for CsMP formation through the condensation of Si-rich vapors.
Collapse
Affiliation(s)
- Hugo Laffolley
- CEA, DES, IRESNE, DTN, Severe Accident Experimental Laboratory, Cadarache, 13108, St-Paul-lez-Durance, France
| | - Christophe Journeau
- CEA, DES, IRESNE, DTN, Severe Accident Experimental Laboratory, Cadarache, 13108, St-Paul-lez-Durance, France.
| | - Bernd Grambow
- SUBATECH (IMT Atlantique, CNRS-IN2P3, University of Nantes), 44307, Nantes, France
| |
Collapse
|
4
|
Ang JWL, Bongrand A, Duval S, Donnard J, Jolis EM, Utsunomiya S, Minomo K, Koivula R, Siitari-Kauppi M, Law GTW. Detecting radioactive particles in complex environmental samples using real-time autoradiography. Sci Rep 2024; 14:5413. [PMID: 38443397 PMCID: PMC10915129 DOI: 10.1038/s41598-024-52876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Radioactive particles often contain very high radioactivity concentrations and are widespread. They pose a potential risk to human health and the environment. Their detection, quantification, and characterization are crucial if we are to understand their impact. Here, we present the use of a real-time autoradiography gaseous detector (using parallel ionization multiplier) to expedite and improve the accuracy of radioactive particle screening in complex environmental samples. First, standard particles were used to assess the detector capabilities (spatial resolution, spectrometry, and artefact contributions), then, we applied the technique to more complex and environmentally relevant samples. The real-time autoradiography technique provides data with a spatial resolution (≲100 µm) suitable for particle analysis in complex samples. Further, it can differentiate between particles predominantly emitting alpha and beta radiation. Here, the technique is applied to radioactive cesium-rich microparticles collected from the Fukushima Daiichi nuclear exclusion zone, showing their accurate detection, and demonstrating the viability of real-time autoradiography in environmental scenarios. Indeed, for more complex samples (radioactive particles in a less radioactive heterogeneous background mix of minerals), the technique permits relatively high selectivity for radioactive particle screening (up to 61.2% success rate) with low false positive percentages (~ 1%).
Collapse
Affiliation(s)
- Joyce W L Ang
- Department of Chemistry, Radiochemistry Unit, The University of Helsinki, 00014, Helsinki, Finland.
- Singapore Nuclear Safety and Research Initiative, National University of Singapore, Singapore, 138602, Singapore.
| | - Arthur Bongrand
- AI4R, 2 Rue Alfred Kastler, 44307, Nantes, France
- IMT Atlantique, Nantes Université, CNRS, 44000, Nantes, SUBATECH, France
| | - Samuel Duval
- AI4R, 2 Rue Alfred Kastler, 44307, Nantes, France
| | | | - Ester M Jolis
- Circular Economy Solutions Research Laboratory, Geological Survey of Finland GTK, 02151, Espoo, Finland
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Kenta Minomo
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Risto Koivula
- Department of Chemistry, Radiochemistry Unit, The University of Helsinki, 00014, Helsinki, Finland
| | - Marja Siitari-Kauppi
- Department of Chemistry, Radiochemistry Unit, The University of Helsinki, 00014, Helsinki, Finland
| | - Gareth T W Law
- Department of Chemistry, Radiochemistry Unit, The University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Takaku Y, Higaki S, Hirota M, Kagi H. Radiocesium-bearing microparticles found in dry deposition fallout samples immediately after the Fukushima nuclear accident in the Kanto region, Japan. Sci Rep 2023; 13:21826. [PMID: 38071366 PMCID: PMC10710400 DOI: 10.1038/s41598-023-49158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Radiocesium released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident still exists in the environment in two forms: adsorbed species on mineral particles in the soil and microparticles containing radiocesium mainly composed of silicate glass (CsMPs). CsMPs are dispersed not only around the FDNPP but also over a wide area of the Kanto region. The behavior and characteristics of CsMPs must be investigated to evaluate the impact of the FDNPP accident. Deposited particles including radiocesium were wiped from metal handrails on balconies and car hoods using tissue papers at six locations in the Kanto region (Tokai village, Ushiku City, Abiko City, Chiba City, Kawaguchi City, and Arakawa Ward) between March 15 and 21, 2011. CsMPs were isolated from the samples, and their characteristics were investigated. In total, 106 CsMPs derived from Unit 2 were successfully separated from 13 tissue paper samples. The radiation images of the two types of CsMPs discovered in Ushiku City demonstrate that CsMPs can easily become susceptible to fragmentation over time, even in the absence of weathering effects.
Collapse
Affiliation(s)
- Yuki Takaku
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Shogo Higaki
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| | - Masahiro Hirota
- Research Center for Supports to Advanced Sciences, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Fueda K, Komiya T, Minomo K, Horie K, Takehara M, Yamasaki S, Shiotsu H, Ohnuki T, Grambow B, Law GW, Ewing R, Utsunomiya S. Occurrence of radioactive cesium-rich micro-particles (CsMPs) in a school building located 2.8 km south-west of the Fukushima Daiichi Nuclear Power Plant. CHEMOSPHERE 2023; 328:138566. [PMID: 37011818 DOI: 10.1016/j.chemosphere.2023.138566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Radioactive Cs-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) are a potential health risk through inhalation. Little has been documented on the occurrence of CsMPs, particularly their occurrence inside buildings. In this study, we quantitatively analyze the distribution and number of CsMPs in indoor dust samples collected from an elementary school located 2.8 km to the southwest of FDNPP. The school had remained deserted until 2016. Then, using a modified version of the autoradiography-based "quantifying CsMPs (mQCP) method," we collected samples and determined the number of CsMPs and Cs radioactive fraction (RF) values of the microparticles (defined as total Cs activity from CsMPs/bulk Cs activity of the entire sample). The numbers of CsMPs ranged from 653 to 2570 particles/(g dust) and 296-1273 particles/(g dust) on the first and second floors of the school, respectively. The corresponding RFs ranged between 6.85 - 38.9% and 4.48-6.61%, respectively. The number of CsMPs and RF values in additional outdoor samples collected near the school building were 23-63 particles/(g dust or soil) and 1.14-1.61%, respectively. The CsMPs were most abundant on the school's first floor near to the entrance, and the relative abundance was higher near the stairs on the second floor, indicating a likely CsMP dispersion path through the building. Additional wetting of the indoor samples combined with autoradiography revealed that indoor dusts had a distinct absence of intrinsic, soluble Cs species, such as CsOH. These combined observations indicate that a significant amount of poorly soluble CsMPs were likely contained in initial radioactive airmass plumes from the FDNPP and that the microparticles penetrated buildings. CsMPs could still be abundant at the location, with locally high Cs activity in indoor environments near to openings.
Collapse
Affiliation(s)
- Kazuki Fueda
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsuki Komiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenta Minomo
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Horie
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo, 190-8518, Japan; Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Mami Takehara
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo, 190-8518, Japan
| | - Shinya Yamasaki
- Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577 Japan
| | - Hiroyuki Shiotsu
- Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4, Shirakata-shirane, Tokai-Mura, Naka-Gun, Ibaraki, 319-1195, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Bernd Grambow
- SUBATECH, IMT Atlantique, CNRS-IN2P3, The University of Nantes, Nantes, 44307, France
| | - GarethT W Law
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki, 00014, Finland
| | - RodneyC Ewing
- Department of Earth and Planetary Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA, 94305-2115, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Ang JWL, Bongrand A, Duval S, Donnard J, Parkkonen J, Utsunomiya S, Koivula R, Siitari-Kauppi M, Law GTW. Improved Radio-Cesium Detection Using Quantitative Real-Time Autoradiography. ACS OMEGA 2023; 8:22523-22535. [PMID: 37396268 PMCID: PMC10308591 DOI: 10.1021/acsomega.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Cesium-134 and -137 are prevalent, long-lived, radio-toxic contaminants released into the environment during nuclear accidents. Large quantities of insoluble, respirable Cs-bearing microparticles (CsMPs) were released into the environment during the Fukushima Daiichi nuclear accident. Monitoring for CsMPs in environmental samples is essential to understand the impact of nuclear accidents. The current detection method used to screen for CsMPs (phosphor screen autoradiography) is slow and inefficient. We propose an improved method: real-time autoradiography that uses parallel ionization multiplier gaseous detectors. This technique permits spatially resolved measurement of radioactivity while providing spectrometric data from spatially heterogeneous samples-a potential step-change technique for use after nuclear accidents for forensic analysis. With our detector configuration, the minimum detectable activities are sufficiently low for detecting CsMPs. Further, for environmental samples, sample thickness does not detrimentally affect detector signal quality. The detector can measure and resolve individual radioactive particles ≥465 μm apart. Real-time autoradiography is a promising tool for radioactive particle detection.
Collapse
Affiliation(s)
- Joyce W. L. Ang
- Radiochemistry
Unit, Department of Chemistry, The University
of Helsinki, Helsinki 00014, Finland
- Singapore
Nuclear Safety and Research Initiative, National University of Singapore, 138602 Singapore
| | - Arthur Bongrand
- AI4R, 2 rue Alfred Kastler, 44307 Nantes, France
- IMT
Atlantique, Nantes Université, CNRS, SUBATECH, F-44000 Nantes, France
| | - Samuel Duval
- AI4R, 2 rue Alfred Kastler, 44307 Nantes, France
| | | | - Joni Parkkonen
- Department
of Physics, University of Jyväskylä, Jyväskylä 40500, Finland
| | - Satoshi Utsunomiya
- Department
of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Risto Koivula
- Radiochemistry
Unit, Department of Chemistry, The University
of Helsinki, Helsinki 00014, Finland
| | - Marja Siitari-Kauppi
- Radiochemistry
Unit, Department of Chemistry, The University
of Helsinki, Helsinki 00014, Finland
| | - Gareth T. W. Law
- Radiochemistry
Unit, Department of Chemistry, The University
of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
8
|
Kavasi N, Arae H, Aono T, Sahoo SK. Distribution of strontium-90 in soils affected by Fukushima dai-ichi nuclear power station accident in the context of cesium-137 contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121487. [PMID: 36958665 DOI: 10.1016/j.envpol.2023.121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
90Sr and 137Cs activity concentrations were determined by radiometric methods in 76 soil samples (soil, litter, rain gutter deposit, and roadside sediment samples) affected by the Fukushima Dai-ichi Nuclear Power Station (FDNPS) accident and collected from the Fukushima exclusion zone. The 90Sr and 137Cs activity concentrations were in the range of 3 to 1050 Bq kg-1 (median 82 Bq·kg-1) and 0.7 to 6770 kBq·kg-1 (median 890 kBq·kg-1), respectively (decay correction date: March 15, 2011). A strong positive correlation was found between 90Sr and 137Cs activity concentration and higher mobility of 90Sr was confirmed in Japanese soil samples. The activity ratio of 90Sr/137Cs in 85% of all samples was in the range of 5.0 × 10-5 to 5.0 × 10-4 with a median of 1.2 × 10-4. From the activity ratio values it was concluded that the 90Sr released to the atmosphere was only around 0.0003-0.02 PBq which is negligible compared to the Chernobyl accident (∼10 PBq) or other nuclear accident contaminations. From the standpoints of radioecology and radiation safety, 137Cs remains the primary pollutant of the FDNPS accident.
Collapse
Affiliation(s)
- Norbert Kavasi
- Department of Radioecology and Fukushima Project, National Institute of Radiological Sciences, National Institutes for Quantum Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Laboratory for Radiochemistry, Department of Environmental Sciences, Jožef Stefan Institute, 39 Jamova, Ljubljana, 1000, Slovenia
| | - Hideki Arae
- Department of Radioecology and Fukushima Project, National Institute of Radiological Sciences, National Institutes for Quantum Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tatsuo Aono
- Department of Radioecology and Fukushima Project, National Institute of Radiological Sciences, National Institutes for Quantum Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Sarata Kumar Sahoo
- Department of Radioecology and Fukushima Project, National Institute of Radiological Sciences, National Institutes for Quantum Sciences and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
9
|
Tatsuno T, Waki H, Kakuma M, Nihei N, Takase T, Wada T, Yoshimura K, Nakanishi T, Ohte N. Effect of radioactive cesium-rich microparticles on radioactive cesium concentration and distribution coefficient in rivers flowing through the watersheds with different contaminated condition in Fukushima. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116983. [PMID: 36565500 DOI: 10.1016/j.jenvman.2022.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Radioactive cesium-rich microparticles (CsMPs) derived from the Fukushima Daiichi Nnuclear Power Plant accident were detected from soils and river water around Fukushima Prefecture, Japan. Because CsMPs are insoluble and rich in radioactive cesium (RCs), they may cause the overestimation of solid-water distribution coefficient (Kd) for RCs in the water. Previous studies showed the proportion of RCs derived from CsMPs on RCs concentration in soils collected from areas with different contaminated levels. Because the proportion of RCs concentration derived CsMPs to the RCs concentration of soils in the less contaminated areas is higher than that in the highly contaminated areas, the effect of CsMPs on particulate RCs concentration in river water may be larger in the less contaminated areas. However, the difference in the effects of CsMPs on the particulate RCs concentration and Kd in river water flowing through watersheds with different contaminated levels has not been clarified. In this study, we investigated the effect of CsMPs on the particulate RCs concentration and Kd in two rivers, Takase River and Kami-Oguni River, flowing through the watersheds with different RCs contaminated levels in Fukushima Prefecture. CsMPs might enter rivers due to soil erosion because they were detected only in some samples collected from both rivers during flood events. CsMPs accounted for more than half of particulate RCs concentration in some water samples collected in the flood condition. In particular, the proportion of CsMPs in particulate RCs for the Kami-Oguni River was greater than that for the Takase River. However, when evaluating for the entire water sampling in the flood condition, a proportion of RCs concentration derived from CsMPs in the average RCs concentrations per unit mass of SS in both river waters collected in the flood condition was not large. CsMPs might temporarily increase the particulate RCs concentration and Kd in the flood event, but CsMPs did not significantly affect them when evaluated throughout the event.
Collapse
Affiliation(s)
- Takahiro Tatsuno
- Institute of Environment Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Hiromichi Waki
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Minato Kakuma
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Naoto Nihei
- Faculty of Food and Agricultural Science, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Tsugiko Takase
- Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima, 960-1248, Japan.
| | - Toshihiro Wada
- Institute of Environment Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan.
| | - Kazuya Yoshimura
- Sector of Fukushima Research and Development, Japan Atomic Energy Agency, 45-169 Sukakeba, Kaibama, Haramachi-ku, Minamisoma City, Fukushima, 975-0036, Japan.
| | - Takahiro Nakanishi
- Sector of Fukushima Research and Development, Japan Atomic Energy Agency, 45-169 Sukakeba, Kaibama, Haramachi-ku, Minamisoma City, Fukushima, 975-0036, Japan; Nuclear Science Research Institute, Japan Atomic Energy Agency, 2-4 Shirakata,Tokai-mura,Naka-gun, Ibaraki, 319-1195, Japan.
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Identification, isolation, and characterization of a novel type of Fukushima-derived microparticle. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractIn the course of the Fukushima nuclear accident, radionuclides were released in various forms, including so-called radiocesium-bearing microparticles (CsMP). So far, four types of CsMP were described: Type A is smaller in size (< 10 μm), Types B, C, and D are larger (> 100 μm). In this work, we present a novel type of CsMP (proclaimed Type E). Three particles of Type E were extracted from a contaminated blade of grass that was sampled 1.5 km from the Fukushima Daiichi nuclear power plant in late 2011. They were located using autoradiography, isolated using an optical microscope and micromanipulator, and characterized using scanning electron microscopy, energy dispersive x-ray spectroscopy, and low-level gamma-ray spectrometry. Type E CsMPs are 10–20 μm in size and exhibit an unusually low and barely detectable 137Cs activity of only ≤ 10 mBq per particle. Their brittle and fragile character may indicate a high surface tension.
Collapse
|
11
|
Baruah B, Phillips GD, Ferreira DR, Boone NJ, Mcnutt DA. Comparing Cs + binding affinity of Keggin type polyoxometalate and sodium Tetrakis(4-florophenyl)borate in solution and from Cs-doped pure phase vermiculite. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 253-254:107008. [PMID: 36095854 DOI: 10.1016/j.jenvrad.2022.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We assessed the aptitude of cesium (Cs+) binding by Keggin type polyoxometalates (POMs) and compared the results with the Cs+ binding by sodium tetrakis(4-fluorophenyl)-borate (Na-TFPB). In this work, we aimed to establish a system to treat radioactive Cs+ contaminated soil with POMs economically. We evaluated the effect of initial Cs+ concentration (0.1M) and precipitant (POMs and TFPB) concentrations (0.01M) on Cs+ precipitation. Our comparison of Cs+ precipitation by three different POMs and TFPB was obtained by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). We synthesized POMs molybdovanadophosphoric acid, H5PMo10V2O40 (MVPA), and silicotungstic acid, H4SiW12O40 (STA), and used commercially available phosphotungstic acid, H3PW12O40 (PTA), and TFPB. Cs-doped pure phase vermiculite was also used to demonstrate the extraction potential of Cs+ by TFPB, STA, and PTA. All the POMs and corresponding Cs-bound POMs were characterized by UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray powder diffraction (XRD). In this simulation study, we demonstrated that the Cs+ removal by POMs is much more effective than TFPB and could be a promising method for the treatment of radiocesium contaminated soil.
Collapse
Affiliation(s)
- Bharat Baruah
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144-5591, USA.
| | - Grayson D Phillips
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144-5591, USA
| | - Daniel R Ferreira
- Department of Ecology, Evolution, & Organismal Biology Kennesaw State University, Kennesaw, GA, 30144, USA
| | - Nathan J Boone
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, 30144-5591, USA
| | - Derek A Mcnutt
- Department of Ecology, Evolution, & Organismal Biology Kennesaw State University, Kennesaw, GA, 30144, USA
| |
Collapse
|
12
|
Konoplev A. Fukushima and Chernobyl: Similarities and Differences of Radiocesium Behavior in the Soil-Water Environment. TOXICS 2022; 10:toxics10100578. [PMID: 36287858 PMCID: PMC9608664 DOI: 10.3390/toxics10100578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 05/29/2023]
Abstract
In the wake of Chernobyl and Fukushima accidents, radiocesium has become a radionuclide of most environmental concern. The ease with which this radionuclide moves through the environment and is taken up by plants and animals is governed by its chemical forms and site-specific environmental characteristics. Distinctions in climate and geomorphology, as well as 137Cs speciation in the fallout, result in differences in the migration rates of 137Cs in the environment and rates of its natural attenuation. In Fukushima areas, 137Cs was strongly bound to soil and sediment particles, with its bioavailability being reduced as a result. Up to 80% of the deposited 137Cs on the soil was reported to be incorporated in hot glassy particles (CsMPs) insoluble in water. Disintegration of these particles in the environment is much slower than that of Chernobyl-derived fuel particles. The higher annual precipitation and steep slopes in Fukushima-contaminated areas are conducive to higher erosion and higher total radiocesium wash-off. Among the common features in the 137Cs behavior in Chernobyl and Fukushima are a slow decrease in the 137Cs activity concentration in small, closed, and semi-closed lakes and its particular seasonal variations: increase in the summer and decrease in the winter.
Collapse
Affiliation(s)
- Alexei Konoplev
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
13
|
Tatsuno T, Waki H, Kakuma M, Nihei N, Wada T, Yoshimura K, Nakanishi T, Ohte N. CESIUM-RICH MICROPARTICLES RUNOFF DURING RAINFALL: A CASE STUDY IN THE TAKASE RIVER. RADIATION PROTECTION DOSIMETRY 2022; 198:1052-1057. [PMID: 36083755 DOI: 10.1093/rpd/ncac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Cesium-rich microparticles (CsMPs) with high cesium-137 (137Cs) concentrations were released and deposited in surface soil after the Fukushima Daiichi Nuclear Power Plant accident. Radioactive materials on the soil surface layer enter rivers owing to soil erosion during rainfall. In this study, we investigated CsMPs runoff through the river via soil erosion during rainfall in the Takase River watershed in Namie Town, Fukushima Prefecture, Japan. CsMPs were rarely detected in suspended solids (SS) in water samples collected during four rainfalls between February and July 2021. Furthermore, the proportion of 137Cs concentration derived from CsMPs to 137Cs concentration in the form of SS (particulate 137Cs) in the water was ~6% on average, which suggests that 137Cs runoff in the form of CsMPs from the forest to the Takase River was not large.
Collapse
Affiliation(s)
- Takahiro Tatsuno
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Hiromichi Waki
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Minato Kakuma
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoto Nihei
- Faculty of Food and Agricultural Science, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Kazuya Yoshimura
- Japan Atomic Energy Agency, 45-169 Kaihama-Sukakeba, Haramachi, Minamisoma, Fukushima, 975-0036, Japan
| | - Takahiro Nakanishi
- Japan Atomic Energy Agency, 45-169 Kaihama-Sukakeba, Haramachi, Minamisoma, Fukushima, 975-0036, Japan
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
14
|
Rizaal M, Nakajima K, Saito T, Osaka M, Okamoto K. High-Temperature Gaseous Reaction of Cesium with Siliceous Thermal Insulation: The Potential Implication to the Provenance of Enigmatic Fukushima Cesium-Bearing Material. ACS OMEGA 2022; 7:29326-29336. [PMID: 36033724 PMCID: PMC9404493 DOI: 10.1021/acsomega.2c03525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Here, we report an investigation of the gas-solid reaction between cesium hydroxide (CsOH) and siliceous (calcium silicate) thermal insulation at high temperature, which is postulated as the origin for the formation mechanism of cesium-bearing material emitted from the Fukushima Daiichi nuclear power plant. A developed reaction furnace consisting of two heating compartments was used to study the reaction at temperatures of 873, 973, and 1073 K. Under the influence of hydrogen-steam atmospheric conditions (H2/H2O = 0.2), the reaction between cesium hydroxide vapor and solid thermal insulation was confirmed to occur at temperatures of 973 and 1073 K with the formation of dicalcium silicate (Ca2SiO4) and cesium aluminum silicate (CsAlSiO4). Water-dissolution analyses of the reaction products have demonstrated their stability, in particular, CsAlSiO4. Constituent similarity of the field-observed cesium-bearing materials near the Fukushima Daiichi nuclear power plants with CsAlSiO4 suggests for the first time that gaseous reaction between CsOH with calcium silicate thermal insulation could be one of the original formation mechanisms of the cesium-bearing materials.
Collapse
Affiliation(s)
- Muhammad Rizaal
- Nuclear
Science and Engineering Center, Japan Atomic
Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Kunihisa Nakajima
- Nuclear
Science and Engineering Center, Japan Atomic
Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Takumi Saito
- Nuclear
Professional School, School of Engineering, The University of Tokyo, 2-22 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| | - Masahiko Osaka
- Nuclear
Science and Engineering Center, Japan Atomic
Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan
| | - Koji Okamoto
- Nuclear
Professional School, School of Engineering, The University of Tokyo, 2-22 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| |
Collapse
|
15
|
Ishii Y, Miura H, Jo J, Tsuji H, Saito R, Koarai K, Hagiwara H, Urushidate T, Nishikiori T, Wada T, Hayashi S, Takahashi Y. Radiocesium-bearing microparticles cause a large variation in 137Cs activity concentration in the aquatic insect Stenopsyche marmorata (Tricoptera: Stenopsychidae) in the Ota River, Fukushima, Japan. PLoS One 2022; 17:e0268629. [PMID: 35594311 PMCID: PMC9122184 DOI: 10.1371/journal.pone.0268629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022] Open
Abstract
After the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant accident in Japan, freshwater ecosystems near the site remained contaminated by radiocesium (RCs). Clarifying RCs concentrations in aquatic insects is crucial because fishes consume these insects that transfer RCs into freshwater ecosystems. As aquatic insects are usually measured for radioactivity in bulk samples of several tens of insects, variation in RCs concentration among individuals is not captured. In this study, we investigated the variability in 137Cs activity concentration in individual aquatic insects in detritivorous caddisfly (Stenopsyche marmorata) and carnivorous dobsonfly (Protohermes grandis) larvae from the Ota River, Fukushima. Caddisfly larvae showed sporadically higher radioactivity in 4 of the 46 caddisfly larvae, whereas no such outliers were observed in 45 dobsonfly larvae. Autoradiography and scanning electron microscopy analyses confirmed that these caddisfly larvae samples contained radiocesium-bearing microparticles (CsMPs), which are insoluble Cs-bearing silicate glass particles. CsMPs were also found in potential food sources of caddisfly larvae, such as periphyton and drifting particulate organic matter, indicating that larvae may ingest CsMPs along with food particles of similar size. Although CsMP distribution and uptake by organisms in freshwater ecosystems is relatively unknown, our study demonstrates that CsMPs can be taken up by aquatic insects.
Collapse
Affiliation(s)
- Yumiko Ishii
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Tamura, Fukushima, Japan
| | - Hikaru Miura
- Meteorology and Fluid Science Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Jaeick Jo
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Tamura, Fukushima, Japan
| | - Hideki Tsuji
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Tamura, Fukushima, Japan
| | - Rie Saito
- Fukushima Prefectural Centre for Environmental Creation, Tamura, Fukushima, Japan
| | - Kazuma Koarai
- Japan Atomic Energy Agency, Sector of Fukushima Research and Development, Fukushima, Japan
| | - Hiroki Hagiwara
- Japan Atomic Energy Agency, Sector of Fukushima Research and Development, Fukushima, Japan
| | - Tadayuki Urushidate
- Japan Atomic Energy Agency, Sector of Fukushima Research and Development, Fukushima, Japan
| | - Tatsuhiro Nishikiori
- Agricultural Radiation Research Center, Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, Fukushima-shi, Fukushima, Japan
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan
| | - Seiji Hayashi
- Environmental Impact Assessment Section, Fukushima Branch, National Institute for Environmental Studies, Tamura, Fukushima, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Yamasaki S, Saito H, Nakamura T, Morooka K, Sueki K, Utsunomiya S. Gravitational separation of 137Cs contaminated soil in Fukushima environment: Density dependence of 137Cs activity and application to volume reduction. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2022; 246:106846. [PMID: 35240395 DOI: 10.1016/j.jenvrad.2022.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Behavior of radiocesium in Fukushima after its deposition is mainly controlled by mobility of soil components, of which the density is one of the parameters governing the mobility; however, little information is available on the density of soil components associated with radiocesium in environment. Furthermore, the reduction of the volume of radiocesium-contaminated soil in the interim storage is highly demanded. In this study, we developed a gravitational separation method using a sodium polytungstate (SPT) solution combined with size fractionation to understand the relation between 137Cs activity and the density of surface soil components and evaluate the feasibility of the method for the volume reduction of the contaminated soil. In all soil samples examined, 137Cs concentration of the small size (<0.063 mm) and high-density (2.4-2.8 g cm-3) fraction was the highest among the separated fractions, whereas most of the radiocesium-rich micro-particles were distributed in the small size (<0.063 mm) and low density (<2.4 g cm-3) fraction. Although ultrasonication improved the size separation efficiency, a single-step gravitational separation method using an SPT solution with a density of 2.4 g cm-3 without size separation and ultrasonication revealed that the 137Cs concentration on 50°C-dry weight basis in the dense (>2.4 g cm-3) fraction was 25.6-82.7% lower than that of the bulk sample for all soil samples. In particular, for the samples with a bulk 137Cs concentration of 29.6 Bq g-1 50°C-dry weight, the 137Cs concentration in the fraction was below the safety treatment requirement (i.e., 8 Bq g-1). Therefore, single-step gravitational separation may be used for the volume reduction of contaminated soils.
Collapse
Affiliation(s)
- Shinya Yamasaki
- Department of Chemistry, Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Hikaru Saito
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tsukasa Nakamura
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazuya Morooka
- Department of Chemistry, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Keisuke Sueki
- Department of Chemistry, Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, Motooka 744, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
17
|
Fueda K, Takami R, Minomo K, Morooka K, Horie K, Takehara M, Yamasaki S, Saito T, Shiotsu H, Ohnuki T, Law GTW, Grambow B, Ewing RC, Utsunomiya S. Volatilization of B 4C control rods in Fukushima Daiichi nuclear reactors during meltdown: B-Li isotopic signatures in cesium-rich microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128214. [PMID: 35042164 DOI: 10.1016/j.jhazmat.2022.128214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Boron carbide control rods remain in the fuel debris of the damaged reactors in the Fukushima Daiichi Nuclear Power Plant, potentially preventing re-criticality; however, the state and stability of the control rods remain unknown. Sensitive high-resolution ion microprobe analyses have revealed B-Li isotopic signatures in radioactive Cs-rich microparticles (CsMPs) that formed by volatilization and condensation of Si-oxides during the meltdowns. The CsMPs contain 1518-6733 mg kg-1 of 10+11B and 11.99-1213 mg kg-1 of 7Li. The 11B/10B (4.15-4.21) and 7Li/6Li (213-406) isotopic ratios are greater than natural abundances (~4.05 and ~12.5, respectively), indicating that 10B(n,α)7Li reactions occurred in B4C prior to the meltdowns. The total amount of B released with CsMPs was estimated to be 0.024-62 g, suggesting that essentially all B remains in reactor Units 2 and/or 3 and is enough to prevent re-criticality; however, the heterogeneous distribution of B needs to be considered during decommissioning.
Collapse
Affiliation(s)
- Kazuki Fueda
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryu Takami
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenta Minomo
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuya Morooka
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Horie
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan; Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Mami Takehara
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
| | - Shinya Yamasaki
- Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Takumi Saito
- Nuclear Professional School, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroyuki Shiotsu
- Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4, Shirakata-shirane, Tokai-Mura, Naka-Gun, Ibaraki 319-1195, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
| | - Bernd Grambow
- SUBATECH, IMT Atlantique, CNRS-IN2P3, the University of Nantes, Nantes 44307, France
| | - Rodney C Ewing
- Department of Geological Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA 94305-2115, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
18
|
Osaka M, Gouëllo M, Nakajima K. Cesium Chemistry in the LWR severe accident and towards the decommissioning of Fukushima Daiichi Nuclear Power Station. J NUCL SCI TECHNOL 2021. [DOI: 10.1080/00223131.2021.1997664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Masahiko Osaka
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Mélany Gouëllo
- Severe Accident Analysis, VTT Technical Research Centre of Finland Ltd, Finland
| | - Kunihisa Nakajima
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki, Japan
| |
Collapse
|
19
|
Yamasaki S, Utsunomiya S. A review of efforts for volume reduction of contaminated soil in the ten years after the accident at the Fukushima Daiichi Nuclear Power Plant. J NUCL SCI TECHNOL 2021. [DOI: 10.1080/00223131.2021.1974596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shinya Yamasaki
- Department of Chemistry, Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
20
|
Grambow B, Nitta A, Shibata A, Koma Y, Utsunomiya S, Takami R, Fueda K, Ohnuki T, Jegou C, Laffolley H, Journeau C. Ten years after the NPP accident at Fukushima : review on fuel debris behavior in contact with water. J NUCL SCI TECHNOL 2021. [DOI: 10.1080/00223131.2021.1966347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bernd Grambow
- SUBATECH (IMT Atlantique, CNRS-IN2P3, University De Nantes), Nantes, France
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Ayako Nitta
- Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency(JAEA), Ibaraki, Japan
| | - Atsuhiro Shibata
- Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency(JAEA), Ibaraki, Japan
| | - Yoshikazu Koma
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Ibaraki, Japan
| | | | - Ryu Takami
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Kazuki Fueda
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Toshihiko Ohnuki
- NPO Environmental Sustainable Research Laboratory, Tokyo Institute of Technology, Meguro-ku, Japan
| | - Christophe Jegou
- CEA, DES, ISEC, DE2D, University of Montpellier, Marcoule, France
| | - Hugo Laffolley
- SUBATECH (IMT Atlantique, CNRS-IN2P3, University De Nantes), Nantes, France
- CEA, DES, IRESNE, DTN, Severe Accident Experimental Laboratory, Saint-Paul-Lez-Durance, France
| | - Christophe Journeau
- CEA, DES, IRESNE, DTN, Severe Accident Experimental Laboratory, Saint-Paul-Lez-Durance, France
| |
Collapse
|
21
|
Mishra G, Tripathi SN, Saud T, Joshi M, Khan A, Sapra BK. Interaction of cesium bound fission product compounds (CsI and CsOH) with abundant inorganic compounds of atmosphere: Effect on hygroscopic growth properties. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126356. [PMID: 34329010 DOI: 10.1016/j.jhazmat.2021.126356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Cesium compounds if present in atmosphere, can affect human health as well as the ecosystem due to their highly hazardous nature. Interaction of cesium compounds with abundantly available atmospheric salts can modify the hygroscopic behavior in sub-saturation relative humidity (RH) domain. Any marked modification in growth factor (GF) for the mixed particle state in comparison to the single particles ultimately affects the settling rates and hence the deposition flux. This work studies the hygroscopic behavior of two important cesium bound fission product aerosols (CsI, CsOH) internally mixed with some common atmospheric particles viz. [Formula: see text] and NaNO3 for a fixed dry particle size of 100 nm. Experimental measurements, performed with Hygroscopic tandem differential mobility analyzer in the range of 20-94% RH, have been compared with the predictions made from Zdanovskii-Stokes-Robinson (ZSR) approach. Apart from the single/pure particle state for the constituents (i.e. mixing ratios 1:0 and 0:1), three other mixing ratios 1:4, 1:1 and 4:1 have been considered. The results show that the GF vs RH pattern for mixed particles is different from that for single CsI and CsOH particles. The intrinsic water uptake behavior for these cesium compounds was found to be perturbed for some of the chosen combinations as well. Deliquescent transition for the mixed particles was observed at lower RH compared to the single electrolytes. Relative differences noticeable for the chosen mixing ratios could be related to the available fractions in the mixed state. Overall, ZSR method was found to be capturing the trend of increasing GFs with increasing RH. Terminal gravitational settling velocities calculated from the measured GFs were also found to be different for single and mixed particles. The relative difference was significant for some combinations and test conditions. Any modification in settling velocity ultimately impacts the deposition flux estimations. Hence neglecting the presence of atmospheric salts affects the accuracy of the source term estimates for a postulated nuclear reactor accident scenario.
Collapse
Affiliation(s)
- Gaurav Mishra
- Nuclear Engineering and Technology Programme, Department of Mechanical Engineering, IIT, Kanpur 208016, India; National Aerosol Facility, IIT, Kanpur 208016, India
| | - S N Tripathi
- Department of Civil Engineering, IIT, Kanpur 208016, India; Centre for Environmental Science and Engineering, IIT, Kanpur 208016, India.
| | - T Saud
- National Aerosol Facility, IIT, Kanpur 208016, India
| | - Manish Joshi
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Arshad Khan
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - B K Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
22
|
Morooka K, Kurihara E, Takehara M, Takami R, Fueda K, Horie K, Takehara M, Yamasaki S, Ohnuki T, Grambow B, Law GTW, Ang JWL, Bower WR, Parker J, Ewing RC, Utsunomiya S. New highly radioactive particles derived from Fukushima Daiichi Reactor Unit 1: Properties and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145639. [PMID: 33940743 DOI: 10.1016/j.scitotenv.2021.145639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
A contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor Unit 1. There are uncertainties associated with the physio-chemical properties and environmental impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils collected 3.9 km north-northwest of the FDNPP. Two of these particles have the highest particle-associated 134+137Cs activity ever reported for Fukushima (6.1 × 105 and 2.5 × 106 Bq per particle after decay-correction to March 2011). The new, highly-radioactive particle labeled FTB1 is an aggregate of flaky silicate nanoparticles with an amorphous structure containing ~0.8 wt% Cs, occasionally associated with SiO2 and TiO2 inclusions. FTB1 likely originates from the reactor building, which was damaged by a H2 explosion, after adsorbing volatilized Cs. The 134+137Cs activity in the other highly radioactive particle labeled FTB26 exceeded 106 Bq. FTB26 has a glassy carbon core and a surface that is embedded with numerous micro-particles: Pb-Sn alloy, fibrous Al-silicate, Ca-carbonate or hydroxide, and quartz. The isotopic signatures of the micro-particles indicate neutron capture by B, Cs volatilization, and adsorption of natural Ba. The composition of the micro-particles on FTB26 reflects the composition of airborne particles at the moment of the H2 explosion. Owing to their large size, the health effects of the highly radioactive particles are likely limited to external radiation during static contact with skin; the highly radioactive particles are thus expected to have negligible health impacts for humans. By investigating the mobility of the highly radioactive particles, we can better understand how the radiation dose transfers through environments impacted by Unit 1. The highly radioactive particles also provide insights into the atmospheric conditions at the time of the Unit 1 explosion and the physio-chemical phenomena that occurred during reactor meltdown.
Collapse
Affiliation(s)
- Kazuya Morooka
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Eitaro Kurihara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masato Takehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryu Takami
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Fueda
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Horie
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan; Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Mami Takehara
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
| | - Shinya Yamasaki
- Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Bernd Grambow
- SUBATECH, IMT Atlantique, CNRS-IN2P3, the University of Nantes, Nantes 44307, France
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - Joyce W L Ang
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - William R Bower
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - Julia Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Rodney C Ewing
- Department of Geological Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA 94305-2115, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
23
|
Takahashi A, Chiba M, Tanahara A, Aida J, Shimizu Y, Suzuki T, Murakami S, Koarai K, Ono T, Oka T, Ikeyama J, Kaneko O, Unno M, Hirose K, Ohno T, Kino Y, Sekine T, Osaka K, Sasaki K, Shinoda H. Radioactivity and radionuclides in deciduous teeth formed before the Fukushima-Daiichi Nuclear Power Plant accident. Sci Rep 2021; 11:10335. [PMID: 33990650 PMCID: PMC8121844 DOI: 10.1038/s41598-021-89910-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/04/2021] [Indexed: 11/09/2022] Open
Abstract
The Fukushima-Daiichi Nuclear Power Plant (FNPP) accident in March of 2011 released substantial amounts of radionuclides into the environment. We collected 4,957 deciduous teeth formed in children before the Fukushima accident to obtain precise control data for teeth formed after the accident. Radioactivity was measured using imaging plates (IP) and epidemiologically assessed using multivariate regression analysis. Additionally, we measured 90Sr, 137Cs, and natural radionuclides which might be present in teeth. Epidemiological studies of IP showed that the amount of radioactivity in teeth from Fukushima prefecture was similar to that from reference prefectures. We found that artificial radionuclides of 90Sr and 137Cs, which were believed to have originated from past nuclear disasters, and natural radionuclides including 40 K and daughter nuclides in the 238U and 232Th series contributed to the generation of radioactivity in teeth. We also found no evidence to suggest that radionuclides originating from the FNPP accident significantly contaminated pre-existing teeth. This is the first large-scale investigation of radioactivity and radionuclides in teeth. The present findings will be indispensable for future studies of teeth formed after the FNPP accident, which will fall out over the next several years and might be more contaminated with radionuclides.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Tohoku University Hospital, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Mirei Chiba
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Akira Tanahara
- Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Nakagami, Okinawa, 903-0129, Japan
| | - Jun Aida
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yoshinaka Shimizu
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiko Suzuki
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shinobu Murakami
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kazuma Koarai
- Collaborative Laboratories for Advanced Decommissioning Science, Japan Atomic Energy Agency, 10-2 Fukasaku, Miharu, Fukushima, 963-7700, Japan
| | - Takumi Ono
- Department of Chemistry, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Toshitaka Oka
- Sector of Nuclear Science Research, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka, Ibaraki, 319-1195, Japan
| | - Joji Ikeyama
- The Fukushima Prefecture Dental Association, 6-6 Chugen-cho, Fukushima, Fukushima, 960-8105, Japan
| | - Osamu Kaneko
- The Fukushima Prefecture Dental Association, 6-6 Chugen-cho, Fukushima, Fukushima, 960-8105, Japan
| | - Makoto Unno
- The Fukushima Prefecture Dental Association, 6-6 Chugen-cho, Fukushima, Fukushima, 960-8105, Japan
| | - Kimiharu Hirose
- Faculty of Dentistry, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Takashi Ohno
- Faculty of Dentistry, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima, 963-8611, Japan
| | - Yasushi Kino
- Department of Chemistry, Tohoku University, 6-3 Aramaki-aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Tsutomu Sekine
- Institute for Excellence in Higher Education, Tohoku University, 41 Kawauchi, Aoba-ku, Sendai, Miyagi, 980-8576, Japan
| | - Ken Osaka
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Keiichi Sasaki
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
24
|
Miura H, Ishimaru T, Ito Y, Kurihara Y, Otosaka S, Sakaguchi A, Misumi K, Tsumune D, Kubo A, Higaki S, Kanda J, Takahashi Y. First isolation and analysis of caesium-bearing microparticles from marine samples in the Pacific coastal area near Fukushima Prefecture. Sci Rep 2021; 11:5664. [PMID: 33707572 PMCID: PMC7952385 DOI: 10.1038/s41598-021-85085-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/19/2021] [Indexed: 11/22/2022] Open
Abstract
A part of the radiocaesium from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident was emitted as glassy, water-resistant caesium-bearing microparticles (CsMPs). Here, we isolated and investigated seven CsMPs from marine particulate matter and sediment. From the elemental composition, the 134Cs/137Cs activity ratio, and the 137Cs activity per unit volume results, we inferred that the five CsMPs collected from particulate matter were emitted from Unit 2 of the FDNPP, whereas the two CsMPs collected from marine sediment were possibly emitted from Unit 3, as suggested by (i) the presence of calcium and absence of zinc and (ii) the direction of the atmospheric plume during the radionuclide emission event from Unit 3. The presence of CsMPs can cause overestimation of the solid-water distribution coefficient of Cs in marine sediments and particulate matter and a high apparent radiocaesium concentration factor for marine biota. CsMPs emitted from Unit 2, which were collected from the estuary of a river that flowed through a highly contaminated area, may have been deposited on land and then transported by the river. By contrast, CsMPs emitted from Unit 3 were possibly transported eastward by the wind and deposited directly onto the ocean surface.
Collapse
Affiliation(s)
- Hikaru Miura
- Atmospheric and Marine Environmental Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba, 270-1194, Japan.
| | - Takashi Ishimaru
- Department of Ocean Sciences, Graduate Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yukari Ito
- Department of Ocean Sciences, Graduate Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yuichi Kurihara
- Ningyo-Toge Environmental Engineering Centre, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama, 708-0698, Japan
| | - Shigeyoshi Otosaka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8564, Japan
| | - Aya Sakaguchi
- Centre for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kazuhiro Misumi
- Atmospheric and Marine Environmental Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba, 270-1194, Japan
| | - Daisuke Tsumune
- Atmospheric and Marine Environmental Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba, 270-1194, Japan
| | - Atsushi Kubo
- Department of Geosciences, Faculty of Science College of Science, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shogo Higaki
- Isotope Science Centre, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Jota Kanda
- Department of Ocean Sciences, Graduate Faculty of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
25
|
Ikenoue T, Takehara M, Morooka K, Kurihara E, Takami R, Ishii N, Kudo N, Utsunomiya S. Occurrence of highly radioactive microparticles in the seafloor sediment from the pacific coast 35 km northeast of the Fukushima Daiichi nuclear power plant. CHEMOSPHERE 2021; 267:128907. [PMID: 33220981 DOI: 10.1016/j.chemosphere.2020.128907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
To understand the properties and significance of highly radioactive particles in the marine environment, we have examined seafloor sediment with a radioactivity of ∼1200 Bq/kg (dry weight; after decay correction to March 2011) collected 35 km northeast of the Fukushima Daiichi Nuclear Power Plant (FDNPP). Among the 697 highly radioactive particles separated from the sediment, two particles, D1-MAX and D1-MID, had a total Cs radioactivity of ∼56 and 0.67 Bq (after decay correction to March 2011), respectively. These particles were characterized with a variety of electron microscopic techniques, including transmission electron microscopy. The 134Cs/137Cs radioactivity ratio of D1-MAX, 1.04, was comparable to that calculated for Unit 2 or 3. D1-MAX consisted mainly of a Cs-rich microparticle (CsMP) with a silica glass matrix. The data clearly suggested that D1-MAX resulted from a molten core-concrete interaction during meltdowns. In contrast, D1-MID was an aggregate of plagioclase, quartz, anatase, and Fe-oxide nanoparticles as well as clay minerals, which had adsorbed soluble Cs. D1-MID was likely a terrestrial particle that had been transported by wind and/or ocean currents to a site 35 km from the FDNPP. The radioactive fractions of D1-MAX and D1-MID were 15% and 0.36%, respectively, of the total radioactivity in the bulk sediment. These highly radioactive particles have a great impact on the movement of radioactive Cs in the marine environment by carrying condensed Cs radioactivity with various colloidal and desorption properties depending on the host phase.
Collapse
Affiliation(s)
- Takahito Ikenoue
- Central Laboratory, Marine Ecology Research Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba, Japan.
| | - Masato Takehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazuya Morooka
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eitaro Kurihara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryu Takami
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuyoshi Ishii
- Biospheric Assessment for Waste Disposal Team & Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba, Japan
| | - Natsumi Kudo
- Central Laboratory, Marine Ecology Research Institute, 300 Iwawada, Onjuku-machi, Isumi-gun, Chiba, Japan
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
26
|
Konoplev A, Wakiyama Y, Wada T, Udy C, Kanivets V, Ivanov MM, Komissarov M, Takase T, Goto A, Nanba K. Radiocesium distribution and mid-term dynamics in the ponds of the Fukushima Dai-ichi nuclear power plant exclusion zone in 2015-2019. CHEMOSPHERE 2021; 265:129058. [PMID: 33250230 DOI: 10.1016/j.chemosphere.2020.129058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
This study analyzes the 137Cs behavior in the ponds of Okuma Town from 2015 to 2019 in the Fukushima Dai-ichi nuclear power plant (FDNPP) exclusion zone. A decline in both particulate and dissolved 137Cs activity concentrations was revealed. The decline rate constants for the particulate 137Cs activity concentration were found to be higher than for the dissolved 137Cs activity concentration. In terms of seasonality the dissolved 137Cs concentrations were higher from June to October, depending on the specific pond and year, most likely due to temperature dependence of 137Cs desorption from frayed edge sites of micaceous clay minerals. The apparent Kd(137Cs) in the studied ponds, in absolute value, appeared to be much higher than that for closed and semi-closed lakes of the Chernobyl contaminated area; however, these were comparable to the values characteristic of the rivers and reservoirs of the FDNPP contaminated area. The apparent Kd(137Cs) in the suspended sediment-water system was observed to decrease over time. It was hypothesized that this trend was associated with the decomposition of glassy hot particles. Relying on the theory of selective sorption and fixation, the exchangeable radiocesium interception potential, RIPex(K) was estimated using data on 137Cs speciation in the surface bottom-sediment layer and its distribution in the sediment-water system. For the studied ponds, RIPex(K) was on the average 2050 mEq/kg, which is within the range of values measured in laboratory studies reported in the literature.
Collapse
Affiliation(s)
- Alexei Konoplev
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima, 960-1296, Japan.
| | - Yoshifumi Wakiyama
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima, 960-1296, Japan
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima, 960-1296, Japan
| | - Cameron Udy
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Volodymyr Kanivets
- Ukrainian Hydrometeorological Institute, Nauki Av., 37, Kiev, 03028, Ukraine
| | - Maxim M Ivanov
- Faculty of Geography, Moscow State University, Moscow, 119991, Russia
| | | | - Tsugiko Takase
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima, 960-1296, Japan
| | - Azusa Goto
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima, 960-1296, Japan
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1, Fukushima, 960-1296, Japan
| |
Collapse
|
27
|
Kurihara E, Takehara M, Suetake M, Ikehara R, Komiya T, Morooka K, Takami R, Yamasaki S, Ohnuki T, Horie K, Takehara M, Law GTW, Bower W, W Mosselmans JF, Warnicke P, Grambow B, Ewing RC, Utsunomiya S. Particulate plutonium released from the Fukushima Daiichi meltdowns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140539. [PMID: 32663681 DOI: 10.1016/j.scitotenv.2020.140539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Traces of Pu have been detected in material released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March of 2011; however, to date the physical and chemical form of the Pu have remained unknown. Here we report the discovery of particulate Pu associated with cesium-rich microparticles (CsMPs) that formed in and were released from the reactors during the FDNPP meltdowns. The Cs-pollucite-based CsMP contained discrete U(IV)O2 nanoparticles, <~10 nm, one of which is enriched in Pu adjacent to fragments of Zr-cladding. The isotope ratios, 235U/238U, 240Pu/239Pu, and 242Pu/239Pu, of the CsMPs were determined to be ~0.0193, ~0.347, and ~0.065, respectively, which are consistent with the calculated isotopic ratios of irradiated-fuel fragments. Thus, considering the regional distribution of CsMPs, the long-distance dispersion of Pu from FNDPP is attributed to the transport by CsMPs that have incorporated nanoscale fuel fragments prior to their dispersion up to 230 km away from the Fukushima Daiichi reactor site.
Collapse
Affiliation(s)
- Eitaro Kurihara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masato Takehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mizuki Suetake
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryohei Ikehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tatsuki Komiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuya Morooka
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryu Takami
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinya Yamasaki
- Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kenji Horie
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan; Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Mami Takehara
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | - William Bower
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
| | | | - Peter Warnicke
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Bernd Grambow
- SUBATECH, IMT Atlantique, CNRS-IN2P3, The University of Nantes, Nantes 44307, France
| | - Rodney C Ewing
- Department of Geological Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA 94305-2115, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
28
|
Okumura T, Yamaguchi N, Kogure T. Distinction between Radiocesium (RCs)-bearing Microparticles and RCs-sorbing Minerals Derived from the Fukushima Nuclear Accident Using Acid Treatment. CHEM LETT 2020. [DOI: 10.1246/cl.200374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Taiga Okumura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Yamaguchi
- Institute for Agro-Environmental Sciences, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0864, Japan
| | - Toshihiro Kogure
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
29
|
Querfeld R, Hori M, Weller A, Degering D, Shozugawa K, Steinhauser G. Radioactive Games? Radiation Hazard Assessment of the Tokyo Olympic Summer Games. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11414-11423. [PMID: 32835480 DOI: 10.1021/acs.est.0c02754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We conducted a comprehensive radiation hazard assessment of the Tokyo Olympic Games (Tokyo 2020, postponed to 2021). Our combined experimental and literature study focused on both external and internal exposure to ionizing radiation for athletes and visitors of the Games. The effective dose for a visit of 2 weeks ranges from 57 to 310 μSv (including flight dose). The main contributors to the dose are cosmic radiation during the flights (approximately 10-81%), inhalation of natural radon (approximately 9-47%), and external exposure (approximately 8-42%). In this complex exposure, anthropogenic radionuclides from the Fukushima nuclear accident (2011) always play a minor role and have not caused a significant increase of the radiological risk compared to pre-Fukushima Japan. Significantly elevated air dose rates were not measured at any of the Tokyo Olympic venues. The average air dose rates at the Tokyo 2020 sites were below the average air dose rates at the sites of previous Olympic Games. The level of radiological safety of foods and water is very high in Japan, even for athletes with increased water and caloric demands, respectively.
Collapse
Affiliation(s)
- Rebecca Querfeld
- Leibniz Universität Hannover, Institute of Radioecology and Radiation Protection, D-30419 Hannover, Germany
| | - Mayumi Hori
- The University of Tokyo, Komaba Organization for Educational Excellence, Tokyo 153-8902, Japan
| | - Anica Weller
- Leibniz Universität Hannover, Institute of Radioecology and Radiation Protection, D-30419 Hannover, Germany
| | - Detlev Degering
- VKTA-Strahlenschutz, Analytik & Entsorgung Rossendorf e.V., D-01328 Dresden, Germany
| | - Katsumi Shozugawa
- The University of Tokyo, Graduate School of Arts and Sciences, Tokyo 153-8902, Japan
| | - Georg Steinhauser
- Leibniz Universität Hannover, Institute of Radioecology and Radiation Protection, D-30419 Hannover, Germany
| |
Collapse
|
30
|
Saito H, Sutton M, Zhao P, Lee SD, Magnuson M. Review of technologies for preventing secondary transport of soluble and particulate radiological contamination from roadways, roadside vegetation, and adjacent soils. ENVIRONMENTAL ADVANCES 2020; 1:1-13. [PMID: 37229463 PMCID: PMC10208302 DOI: 10.1016/j.envadv.2020.100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transport of contaminants from roadways to the environment is well known, although studies of technologies for preventing and managing this appear infrequently in the literature. This paper reviews technologies studied for radiological contaminants. In addition to nuclear facility decommissioning, nuclear power plant accidents at Chernobyl (Former Soviet Union), Fukushima (Japan) and elsewhere have provided real world situations to both develop and test technologies to remediate radiological contamination and to return roadways, along with adjacent vegetation and soil, to prior use. From publications arising from these efforts, technologies were reviewed for radioactive material with two distinct properties (water-soluble and insoluble radioactive contaminants). The reported characteristics and capabilities of technologies are summarized in this review. This review also presents logistical considerations of implementation of the technologies, including waste management which can be an extreme impediment to rapid remediation if generated quantities of hazardous waste exceed local handling capacity. The summarized literature review suggests future avenues of work, chiefly for insoluble particulates, focused on technologies which may be mechanistically applicable to their remediation. While the underlying chemical and physical mechanisms that contribute to transport differ among contaminants, the studies reviewed here might also be applicable to non-radioactive contaminants, because the presence of radioactivity is largely independent of the underlying mechanisms.
Collapse
Affiliation(s)
- Hiroshi Saito
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, United States
| | - Mark Sutton
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, United States
| | - Pihong Zhao
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, United States
| | - Sang Don Lee
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| | - Matthew Magnuson
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, United States
| |
Collapse
|
31
|
Dacre HF, Bedwell P, Hertwig D, Leadbetter SJ, Loizou P, Webster HN. Improved representation of particle size and solubility in model simulations of atmospheric dispersion and wet-deposition from Fukushima. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106193. [PMID: 32217253 DOI: 10.1016/j.jenvrad.2020.106193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Radionuclides released into the atmosphere following the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident were detected by ground-based monitoring stations worldwide. The inter-continental dispersion of radionuclides provides a unique opportunity to evaluate the ability of atmospheric dispersion models to represent the processes controlling their transport and deposition in the atmosphere. Co-located measurements of radioxenon (133Xe) and caesium (137Cs) concentrations enable individual physical processes (dispersion, dry and wet deposition) to be isolated. In this paper we focus on errors in the prediction of 137Cs attributed to the representation of particle size and solubility, in the process of modelling wet deposition. Simulations of 133Xe and 137Cs concentrations using the UK Met Office NAME (Numerical Atmospheric-dispersion Modelling Environment) model are compared with CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organisation) surface station measurements. NAME predictions of 137Cs using a bulk wet deposition parameterisation (which does not account for particle size dependent scavenging or solubility) significantly underestimate observed 137Cs. When a binned wet deposition parameterisation is implemented (which accounts for particle size dependent scavenging) the correlations between modelled and observed air concentrations improve at all 9 of the Northern Hemisphere sites studied and the respective RMSLE (root-mean-square-log-error) decreases by a factor of 7 due to a decrease in the wet-deposition of Aitken and Accumulation mode particles. Finally, NAME simulations were performed in which insoluble submicron particles are represented. Representing insoluble particles in the NAME simulations improves the RMSLE at all sites further by a factor of 7. Thus NAME is able to predict 137Cs with good accuracy (within a factor of 10 of observed 137Cs values) at distances greater than 10,000 km from FDNPP only if insoluble submicron particles are considered in the description of the source. This result provides further evidence of the presence of insoluble Cs-rich microparticles in the release following the accident at FDNPP and suggests that these small particles travelled across the Pacific Ocean to the US and further across the North Atlantic Ocean towards Europe.
Collapse
Affiliation(s)
| | | | | | | | | | - H N Webster
- Met Office, UK; College of Engineering, University of Exeter, UK
| |
Collapse
|
32
|
Ikehara R, Morooka K, Suetake M, Komiya T, Kurihara E, Takehara M, Takami R, Kino C, Horie K, Takehara M, Yamasaki S, Ohnuki T, Law GTW, Bower W, Grambow B, Ewing RC, Utsunomiya S. Abundance and distribution of radioactive cesium-rich microparticles released from the Fukushima Daiichi Nuclear Power Plant into the environment. CHEMOSPHERE 2020; 241:125019. [PMID: 31610456 DOI: 10.1016/j.chemosphere.2019.125019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
The abundance and distribution of highly radioactive cesium-rich microparticles (CsMPs) that were released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the first stage of the nuclear disaster in March 2011 are described for 20 surface soils collected around the FDNPP. Based on the spatial distribution of the numbers (particles/g) and radioactive fraction (RF) of the CsMPs in surface soil, which is defined as the sum of the CsMP radioactivity (in Bq) divided by the total radioactivity (in Bq) of the soil sample, three regions of particular interest have been identified: i.) near-northwest (N-NW), ii.) far-northwest (F-NW), and iii.) southwest (SW). In these areas, the number and RF of CsMPs were determined to be 22.1-101 particles/g and 15.4-34.0%, 24.3-64.8 particles/g and 36.7-37.4%, and 0.869-8.00 particles/g and 27.6-80.2%, respectively. These distributions are consistent with the plume trajectories of material released from the FDNPP on March 14, 2011, in the late afternoon through to the late afternoon of March 15, 2011, indicating that the CsMPs formed only during this short period. Unit 3 is the most plausible source of the CsMPs at the beginning of the release based on an analysis of the sequence of release events. The lower RF values in the N-NW region indicate a larger influence from subsequent plumes that mainly consisted of soluble Cs species formed simultaneously with precipitation. The quantitative map of the distribution of CsMPs provides an important understanding of CsMP dispersion dynamics and can be used to assess risks in inhabited regions.
Collapse
Affiliation(s)
- Ryohei Ikehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazuya Morooka
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mizuki Suetake
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsuki Komiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eitaro Kurihara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Masato Takehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryu Takami
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chiaki Kino
- The Institute of Applied Energy, 1-14-2 Nishi-shimbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kenji Horie
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa-shi, Tokyo, 190-8518, Japan; Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Mami Takehara
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa-shi, Tokyo, 190-8518, Japan
| | - Shinya Yamasaki
- Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki, 00014, Finland
| | - William Bower
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki, 00014, Finland
| | - Bernd Grambow
- SUBATECH, IMT Atlantique, CNRS-IN2P3, the University of Nantes, Nantes, 44307, France
| | - Rodney C Ewing
- Department of Geological Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA, 94305-2115, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
33
|
Reinoso-Maset E, Brown J, Pettersen MN, Steenhuisen F, Tetteh A, Wada T, Hinton TG, Salbu B, Lind OC. Linking heterogeneous distribution of radiocaesium in soils and pond sediments in the Fukushima Daiichi exclusion zone to mobility and potential bioavailability. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106080. [PMID: 31677432 DOI: 10.1016/j.jenvrad.2019.106080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
During the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 significant amounts of radiocaesium were released into the atmosphere from the reactor units 1, 2 and 3. This caused a non-uniform deposition, in composition and direction, of 134Cs and 137Cs in the near field (<30 km) from the reactors. In this work, we elucidate the influence of speciation, including radioactive particles, on mobility and potential bioavailability of radiocaesium in soils and sediments from sites located in different directions and distances from the FDNPP. Samples collected in September 2016 were characterized and subjected to sequential chemical extractions and simulated gastrointestinal fluid leaching, and the 137Cs and 134Cs activities were determined in bulk, grain-size and extracted fractions. The results show that radiocaesium was mainly irreversibly bound and in an inert form. Combined, the two forms contained >90% of the activity present in soils and ~84% in sediments. Digital autoradiography revealed that the inert fraction was predominantly associated with heterogeneities, an indication of radioactive particles. The frequency of heterogeneities was correlated with 137Cs activity concentrations, and both were in agreement with the ambient equivalent air doses measured in situ during sampling. Moreover, in situ gamma spectrometry measurements were used in the InSiCal software tool to derive 134Cs and 137Cs surface contamination. Soil activity concentrations and contamination density estimations, decay-corrected to the day of the FDNPP accident, resulted in 134Cs/137Cs ratios that match the reported release and deposition plumes from the reactor units. Overall, these results demonstrate the persistence of the particle contamination in the Fukushima near field and highlight the importance of including radioactive particles in environmental impact assessments.
Collapse
Affiliation(s)
- Estela Reinoso-Maset
- Centre for Environmental Radioactivity CoE, 1432, Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway.
| | - Justin Brown
- Centre for Environmental Radioactivity CoE, 1432, Ås, Norway; Norwegian Radiation and Nuclear Safety Authority, Grini næringspark 13, 1361, Østerås, Norway
| | - Marit N Pettersen
- Centre for Environmental Radioactivity CoE, 1432, Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Frits Steenhuisen
- Arctic Centre, University of Groningen, Aweg 30, 9718CW, Groningen, the Netherlands
| | - Abednego Tetteh
- Centre for Environmental Radioactivity CoE, 1432, Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
| | - Brit Salbu
- Centre for Environmental Radioactivity CoE, 1432, Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Ole Christian Lind
- Centre for Environmental Radioactivity CoE, 1432, Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1432, Ås, Norway
| |
Collapse
|
34
|
Salbu B, Lind OC. Analytical techniques for charactering radioactive particles deposited in the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106078. [PMID: 31677430 DOI: 10.1016/j.jenvrad.2019.106078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Since 1945, a series of nuclear and radiological sources have contributed to the release of radioactive particles containing refractory elements into the environment. Several years of research have demonstrated that the particle composition will depend on the source, while the release scenarios will influence particle properties of relevance for environmental transfer. Radioactive particles can also carry sufficient amount of radioactivity (MBq) and represent point sources of radiological concern. Most radiological assessment models, however, are based on bulk concentrations, assuming that radionuclides in the environment are evenly distributed. In contrast, radioactive particles and thereby doses are unevenly distributed, while leaching of radionuclides from particles prior to measurements can be partial, potentially leading to underestimation of inventories. For areas affected by particle contamination, information on particle characteristics controlling the particle weathering rates and remobilization of particle associated radionuclides will therefore be essential to reduce the overall uncertainties of the impact assessments. The present paper will focus on analytical strategies, from screening techniques applicable for identifying hot spots in the field, fractionation techniques and single particle extraction techniques as a preparatory mean to apply non-destructive solid state speciation techniques, till leaching techniques applied sequentially to obtain information on binding mechanisms, mobility and potential bioavailability. Thus, a combination of techniques should be utilized to characterize radioactive particles in order to improve environmental assessments for areas affected by radioactive particle fallout.
Collapse
Affiliation(s)
- Brit Salbu
- CERAD CoE, Faculty of Environmental Sciences and nature Resource Management, Norwegian University of Life Sciences, 1432, Aas, Norway
| | - Ole Christian Lind
- CERAD CoE, Faculty of Environmental Sciences and nature Resource Management, Norwegian University of Life Sciences, 1432, Aas, Norway.
| |
Collapse
|
35
|
Okumura T, Yamaguchi N, Kogure T. Finding Radiocesium-bearing Microparticles More Minute than Previously Reported, Emitted by the Fukushima Nuclear Accident. CHEM LETT 2019. [DOI: 10.1246/cl.190581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Taiga Okumura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Yamaguchi
- Institute for Agro-Environmental Sciences, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0864, Japan
| | - Toshihiro Kogure
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Suetake M, Nakano Y, Furuki G, Ikehara R, Komiya T, Kurihara E, Morooka K, Yamasaki S, Ohnuki T, Horie K, Takehara M, Law GTW, Bower W, Grambow B, Ewing RC, Utsunomiya S. Dissolution of radioactive, cesium-rich microparticles released from the Fukushima Daiichi Nuclear Power Plant in simulated lung fluid, pure-water, and seawater. CHEMOSPHERE 2019; 233:633-644. [PMID: 31195267 DOI: 10.1016/j.chemosphere.2019.05.248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
To understand the chemical durability of highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant in March 2011, we have, for the first time, performed systematic dissolution experiments with CsMPs isolated from Fukushima soils (one sample with 108 Bq and one sample with 57.8 Bq of 137Cs) using three types of solutions: simulated lung fluid, ultrapure water, and artificial sea water, at 25 and 37 °C for 1-63 days. The 137Cs was released rapidly within three days and then steady-state dissolution was achieved for each solution type. The steady-state 137Cs release rate at 25 °C was determined to be 4.7 × 103, 1.3 × 103, and 1. 3 × 103 Bq·m-2 s-1 for simulated lung fluid, ultrapure water, and artificial sea water, respectively. This indicates that the simulated lung fluid promotes the dissolution of CsMPs. The dissolution of CsMPs is similar to that of Si-based glass and is affected by the surface moisture conditions. In addition, the Cs release from the CsMPs is constrained by the rate-limiting dissolution of silicate matrix. Based on our results, CsMPs with ∼2 Bq, which can be potentially inhaled and deposited in the alveolar region, are completely dissolved after >35 years. Further, CsMPs could remain in the environment for several decades; as such, CsMPs are important factors contributing to the long-term impacts of radioactive Cs in the environment.
Collapse
Affiliation(s)
- Mizuki Suetake
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuriko Nakano
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Genki Furuki
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryohei Ikehara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsuki Komiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eitaro Kurihara
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kazuya Morooka
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shinya Yamasaki
- Faculty of Pure and Applied Sciences and Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toshihiko Ohnuki
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kenji Horie
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo, 190-8518, Japan; Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Mami Takehara
- National Institute of Polar Research, 10-3, Midori-cho, Tachikawa-shi, Tokyo, 190-8518, Japan
| | - Gareth T W Law
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki, 00014, Finland
| | - William Bower
- Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki, 00014, Finland
| | - Bernd Grambow
- SUBATECH, IMT Atlantique, CNRS-IN2P3, The University of Nantes, Nantes, 44307, France
| | - Rodney C Ewing
- Department of Geological Sciences and Center for International Security and Cooperation, Stanford University, Stanford, CA, 94305-2115, USA
| | - Satoshi Utsunomiya
- Department of Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
37
|
Igarashi Y, Kogure T, Kurihara Y, Miura H, Okumura T, Satou Y, Takahashi Y, Yamaguchi N. A review of Cs-bearing microparticles in the environment emitted by the Fukushima Dai-ichi Nuclear Power Plant accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 205-206:101-118. [PMID: 31125755 DOI: 10.1016/j.jenvrad.2019.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Scientists face challenge in identifying the radioactive materials which are found as dotted images on various imaging plate (IP) autoradiographic photos of radioactively contaminated materials by the Fukushima Dai-ichi Nuclear Power Plant (F1NPP, or FDNPP) accident, such as air filter, fugitive dust, surface soil, agricultural materials, and water-shed samples. It has been revealed that they are minute particles with distinct morphology and elemental composition with high specific radioactivity, and different from those of the so-called Chernobyl hot particles. Basically, they are glassy particles once molten, composed of Si, O, Fe, Zn etc. with highly concentrated radiocaesium, which can be called as radiocaesium-bearing microparticles (CsMP). At present, CsMP can be classified into two types, Types-A and -B, which are characterized by different specific radioactivity, 134Cs/137Cs ratio, size and morphology, and geographic distribution around F1NPP. Such studies on the CsMP from various aspects have provided valuable information about what happened in the nuclear reactors during the F1NPP accident and fates of the CsMP in the environment. This review first provides a retrospective view on the research history of the CsMP, which is helpful to understand the unique character of the CsMP. Subsequently, more details about the current understanding of the natures of these hot particles, such as origin, morphology, chemical compositions, thermal properties, water-solubility, and secondary migration of CsMP in river and ocean systems are described with future prospects.
Collapse
Affiliation(s)
- Yasuhito Igarashi
- Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, 310-8512, Japan; Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-chome, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Toshihiro Kogure
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yuichi Kurihara
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan; Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, Tomata, Okayama, 708-0698, Japan
| | - Hikaru Miura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan; Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko, Chiba, 270-1194, Japan
| | - Taiga Okumura
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yukihiko Satou
- Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic, 1151, Japan.
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Noriko Yamaguchi
- Institute for Agro-environmental Sciences, NARO, 3-1-1, Kannondai, Tsukuba, 305-8604, Japan
| |
Collapse
|
38
|
Method for detecting and characterising actinide-bearing micro-particles in soils and sediment of the Fukushima Prefecture, Japan. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06575-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Zhang Z, Igarashi J, Satou Y, Ninomiya K, Sueki K, Shinohara A. Activity of 90Sr in Fallout Particles Collected in the Difficult-to-Return Zone around the Fukushima Daiichi Nuclear Power Plant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5868-5876. [PMID: 31034221 DOI: 10.1021/acs.est.8b06769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident released abundant radioactive particles into the surrounding environment. Herein, we analyzed the activity of 90Sr in these particles to estimate the contribution of this radionuclide to the overall radiation exposure and shed light on the processes that occurred during the accident. Seven radioactive particles were isolated from the dust and soil samples collected from areas surrounding the FDNPP, and the minimum/maximum 137Cs activities were determined as 224/4,100 Bq. Based on the size, specific activity, and 134Cs/137Cs activity ratios, we concluded that six of the seven radioactive particles were released from the Unit 1 reactor, while one particle was released from the Unit 3 reactor by a hydrogen explosion. Strontium-90 was detected in all radioactive particles, and the minimal/maximal 90Sr activities were determined as 0.046/1.4 Bq. 137Cs/90Sr activity ratios above 1000 were observed for all seven particles, that is, compared to 137Cs, 90Sr had negligible contribution to the overall radiation exposure. The 137Cs/90Sr activity ratios of the radioactive particles were similar to those of terrestrial environmental samples and were higher for particles released from the Unit 1 reactor than for samples collected from the Unit 1 reactor building, which indicates possibility of additional 90Sr-rich contamination after release of the particles.
Collapse
Affiliation(s)
- Zijian Zhang
- Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Junya Igarashi
- Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Yukihiko Satou
- Collaborative Laboratories for Advanced Decommissioning Science (CLADS) , Japan Atomic Energy Agency , 790-1 Otsuka, Motooka , Tomioka , Fukushima 979-1195 , Japan
| | - Kazuhiko Ninomiya
- Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| | - Keisuke Sueki
- Center for Research in Isotopes and Environmental Dynamics (CRiED) , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Atsushi Shinohara
- Graduate School of Science , Osaka University , 1-1 Machikaneyama , Toyonaka , Osaka 560-0043 , Japan
| |
Collapse
|
40
|
|