1
|
Wei Y, Li H, Liu G, Wang X, Miao S. Insights into the Spectral Characteristics and Sources of Dissolved Organic Matter in a Water Supply Reservoir. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 114:17. [PMID: 39831970 DOI: 10.1007/s00128-024-03994-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.54 mg/L at the reservoir outlet primarily originating from internal release. Fluorescence indices suggested a strong autochthonous contribution of DOM and weak humus characteristics. Three DOM components were identified through parallel factor analysis. Aromatic protein substances in DOM ranged from 0.52 to 4.49%, suggesting minimal anthropogenic influence. The average fluorescence lifetime increased from 0.81 ns at the reservoir entrance to 0.91 ns at the outlet, with an average relative quantum yield of 4.99%, implying stabilization throughout the reservoir. Correlation analysis indicated positive correlations (P < 0.001) between absorption coefficients at specific wavelengths. Principal component analysis explained 67.7% of the total variance, indicating highly common DOM sources across sites.
Collapse
Affiliation(s)
- Yong Wei
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Haibin Li
- Anhui Institute of Urban-Rural Green Development and Urban Renewal, Anhui Jianzhu University, Hefei, Anhui, 230601, China.
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Shiwen Miao
- School of Mathematics and Physics, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
2
|
Liu H, Tu YN, Lei Y, Zhou D, Zhao Q, Li Y, Pan W. Photochemistry of plateau lake-derived dissolved organic matter: Reactive species generation and effects on 17β-estradiol photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134615. [PMID: 38761768 DOI: 10.1016/j.jhazmat.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Naturally strong ultraviolet irradiation at high altitudes causes photobleaching of plateau lake DOM (P-DOM) and affects its photochemical activity. However, the photoreactivity of P-DOM has remained unclear under natural photobleaching condition. Here, six P-DOM samples isolated from plateau lakes in Yunnan Province, China as well as two reference DOM as comparisons were used to explore the photogeneration of reactive species (RS) and their effects on 17β-estradiol photodegradation. Compared with SRHA/SRFA, P-DOM has lower aromaticity, average molecular weight, and electron-donating capacity. The quantum yields of triplet state P-DOM (3P-DOM*), 1O2, and ∙OH produced in P-DOM solutions were greatly higher than those of reference DOM. The RS quantum yields had positive linear correlations with E2/E3 and SR, whereas were negatively linear correlated with SUVA25. Radical quenching experiments showed that 3P-DOM* was the prominent RS for 17β-estradiol photodegradation, and its contribution exceeded 70% for each of P-DOM. 3P-DOM*-mediated photodegradation was mainly attributed to the electron-transfer reactions with an average second-order rate constant of 4.62 × 109 M-1s-1, indicating the strong photoreactivity towards 17β-estradiol. These findings demonstrate that P-DOM is an efficient photosensitizer for RS production, among which 3P-DOM* may play an important role in enhanced photodegradation for organic micropollutants in plateau lake enriched with DOM.
Collapse
Affiliation(s)
- Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yi-Na Tu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yajie Lei
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Die Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qilin Zhao
- Yunnan Environmental Monitoring Center, Kunming, Yunnan 650034, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Wenjiao Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
3
|
Zhou R, Zhang X. Effects of Tryptophan and Tyrosine on the Transformation of Monophenols in Chromophoric Dissolved Organic Matter Solutions: Enhance the Forward Transformation and Reduce the Reverse Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10108-10115. [PMID: 38813774 DOI: 10.1021/acs.est.4c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Tryptophan (Trp) and tyrosine (Tyr) are the primary precursors of protein-like components in dissolved organic matter. Phenolic compounds are ubiquitous in aquatic environments and are considered the main electron donor in chromophoric dissolved organic matter (CDOM). Our results showed that Trp and Tyr (50 μM) enhanced the transformation of six monophenols (20 μM) with varying numbers of -CH3 and -OCH3 substituent groups by a factor of 1.0-1.8. The enhancement factor increased with the ratio of Trp (Tyr) to monophenols. In four different CDOM solutions (5 mg C/L, pH 8.0), a maximum enhancement factor of 3.2-6.7 was observed at a Trp/monophenol concentration ratio of 50. Conversely, monophenols greatly inhibited the transformation of Trp or Tyr. The enhancement factor decreased as the initial pH increased from 3.0 to 10.0. Additionally, the enhancement factor was not directly proportional to the oxidation potential of monophenol. We propose that the promotion effects are generated through the direct oxidation of monophenols by Trp (Tyr) radicals as well as through the reaction between Trp (Tyr) radicals and the one-electron reductant of CDOM.
Collapse
Affiliation(s)
- Ruiya Zhou
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Xu Zhang
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
4
|
Yuan B, Lin L, Hong H, Li H, Liu S, Tang S, Lu H, Liu J, Yan C. Enhanced Cr(VI) stabilization by terrestrial-derived soil protein: Photoelectrochemical properties and reduction mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133153. [PMID: 38056268 DOI: 10.1016/j.jhazmat.2023.133153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Glomalin-related soil protein (GRSP) is a stable iron-organic carbon mixture that can enhance heavy metal sequestration in soils. However, the roles of GRSP in the transformation and fate of Cr(VI) have been rarely reported. Herein, we investigated the electrochemical and photocatalytic properties of GRSP and its mechanisms in Cr(VI) adsorption and reduction. Results showed that GRSP had a stronger ability for Cr(VI) adsorption and reduction than other biomaterials, with the highest adsorption amount of up to 0.126 mmol/g. The removal efficiency of Cr(VI) by GRSP was enhanced (4-7%) by ultraviolet irradiation due to the hydrated electrons produced by GRSP. Fe(II) ions, persistent free radicals, and oxygen-containing functional groups on the GRSP surface as electron donors participated in the reduction of Cr(VI) under dark condition. Moreover, Cr(III) was mainly adsorbed on the -COOH groups of GRSP via electrostatic interactions. Based on 2D correlation spectroscopy, the preferential adsorption occurred on the GRSP surface for Cr(VI) in the sequential order of CO → COO- → O-H → C-O. This work provides new insights into the Cr(VI) adsorption and reduction mechanism by GRSP. Overall, GRSP can serve as a natural iron-organic carbon for the photo-reduction of Cr(VI) pollution in environments.
Collapse
Affiliation(s)
- Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shanle Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Institute of Eco-Chongming, and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Chongling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
5
|
Jiang H, Zhao M, Hong W, Song W, Yan S. Mechanistic and Kinetic Consideration of the Photochemically Generated Oxidative Organic Radicals in Dissolved Black Carbon Solutions under Simulated Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:760-770. [PMID: 38149879 DOI: 10.1021/acs.est.3c07216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The photochemically generated oxidative organic radicals (POORs) in dissolved black carbon (DBC) was investigated and compared with that in dissolved organic matter (DOM). POORs generated in DBC solutions exhibited higher one-electron reduction potential values (1.38-1.56 V) than those in DOM solutions (1.22-1.38 V). We found that the photogeneration of POORs from DBC is enhanced with dissolved oxygen (DO) increasing, while the inhibition of POORs is observed in reference to DOM solution. The behavior of the one-electron reducing species (DBC•-/DOM•-) was employed to explain this phenomenon. The experimental results revealed that the DO concentration had a greater effect on DBC•- than on DOM•-. Low DO levels led to a substantial increase in the steady-state concentration of DBC•-, which quenched the POORs via back-electron reactions. Moreover, the contribution of POORs to the degradation of 19 emerging organic contaminants (EOCs) in sunlight-exposed DBC and DOM solutions was estimated. The findings indicate that POORs play an important role in the photodegradation of EOCs previously known to react with triplets, especially in DBC solutions. Compared to DOM solutions, POOR exhibits a lower but considerable contribution to EOC attenuation. This study enhances the understanding of pollutant fate in aquatic environments by highlighting the role of DBC in photochemical pollutant degradation and providing insights into pollutant transformation mechanisms involving POORs.
Collapse
Affiliation(s)
- Hongyu Jiang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Mengzhe Zhao
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Wenjie Hong
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| | - Weihua Song
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Shuwen Yan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
6
|
Le Roux DM, Powers LC, Blough NV. Direct Evidence of a Light-Dependent Sink of Superoxide within Chromophoric Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20627-20635. [PMID: 38044674 DOI: 10.1021/acs.est.3c08254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Superoxide (O2• -) is produced photochemically in natural waters by chromophoric dissolved organic matter (CDOM) via the reaction of molecular oxygen with photoproduced one-electron reductants (OERs) within CDOM. In the absence of other sinks (metals or organic radicals), O2• - is believed to undergo primarily dismutation to produce hydrogen peroxide (H2O2). However, past studies have implicated the presence of an additional light-dependent sink of O2• - that does not lead to H2O2 production. Here, we provide direct evidence of this sink through O2• - injection experiments. During irradiations, spikes of O2• - are consumed to a greater extent (∼85-30% loss) and are lost much faster (up to ∼0.09 s-1) than spikes introduced post-irradiation (∼50-0% loss and ∼0.03 s-1 rate constant). The magnitude of the loss during irradiation and the rate constant are wavelength-dependent. Analysis of the H2O2 concentration post-spike indicates that this light-dependent sink does not produce H2O2 at low spike concentrations. This work further demonstrates that simply assuming that the O2• - production is twice the H2O2 production is not accurate, as previously believed.
Collapse
Affiliation(s)
- Danielle M Le Roux
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leanne C Powers
- Department of Chemistry, State University of New York (SUNY) College of Environmental Science and Forestry, Syracuse, New York 13210, United States
| | - Neil V Blough
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Zhou R, Liu J, Zhou C, Zhang X. Phototransformation of Lignin-related Compounds in Chromophoric Dissolved Organic Matter Solutions. WATER RESEARCH 2023; 245:120586. [PMID: 37717330 DOI: 10.1016/j.watres.2023.120586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Lignin is a major terrestrial source of chromophoric dissolved organic matter (CDOM), and studying the phototransformation of lignin monomers and their related compounds can enhance our understanding of CDOM intramolecular interactions. Coniferyl aldehyde (Coni) and sinapaldehyde (Sina) form ground-state complexes with CDOM, with equilibrium constants of 7,800 (± 1,800) and 20,000 (± 2,000) M-1, respectively. In comparison, vanillin (Van) exhibits minimal affinity for CDOM complexation. The bimolecular reaction rate constants between singlet oxygen (1O2) and these phenolic carbonyl compounds ranged from 0.46 (± 0.02) to 1.8 (± 0.1) × 107 M-1s-1, which is approximately one order of magnitude lower than their reaction rate constants (0.51 (± 0.02)-1.25 (± 0.02) × 108 M-1s-1) with the triplet excited state of CDOM (3CDOM*). In acidic CDOM solutions (pH 5.0), 1O2, H2O2, and organic peroxyl radicals had negligible impact on the transformation. Comparing the initial transformation rate in the presence and in the absence of NaN3 or furfuryl alcohol led to an overestimation of the contribution of 1O2 to the transformation of Van, Coni, or Sina. 3CDOM* scavengers could not fully inhibit the transformation of Coni or Sina. The remaining transformation is considered to arise from either the unquenched intra-CDOM phase 3CDOM* or a fraction of Coni⊂CDOM or Sina⊂CDOM complex, which underwent intramolecular photoinduced chemical reactions.
Collapse
Affiliation(s)
- Ruiya Zhou
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, P.R. China
| | - Juan Liu
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, P.R. China
| | - Chi Zhou
- Hubei Water Resources Research Institute, Wuhan, 430070, P.R. China.
| | - Xu Zhang
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, P.R. China.
| |
Collapse
|
8
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
9
|
Pan Y, Garg S, Ouyang Y, Yang X, Waite TD. Inhibition of photosensitized degradation of organic contaminants by copper under conditions typical of estuarine and coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131812. [PMID: 37331060 DOI: 10.1016/j.jhazmat.2023.131812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Dissolved organic matter (DOM) driven-photochemical processes play an important role in the redox cycling of trace metals and attenuation of organic contaminants in estuarine and coastal ecosystems. In this study, we evaluate the effect of Cu on 4-carboxybenzophenone (CBBP) and Suwannee River natural organic matter (SRNOM)-photosensitized degradation of seven target contaminants (TCs) including phenols and amines under pH conditions and salt concentrations typical of those encountered in estuarine and coastal waters. Our results show that trace amounts of Cu(II) (25 -500 nM) induce strong inhibition of the photosensitized degradation of all TCs in solutions containing CBBP. The influence of TCs on the photo-formation of Cu(I) and the decrease in the lifetime of transformation intermediates of contaminants (TC•+/ TC•(-H)) in the presence of Cu(I) indicated that the inhibition effect of Cu was mainly due to the reduction of TC•+/ TC•(-H) by the photo-produced Cu(I). The inhibitory effect of Cu on the photodegradation of TCs decreased with the increase in Cl- concentration since less reactive Cu(I)-Cl complexes dominate at high Cl- concentrations. The impact of Cu on the SRNOM-sensitized degradation of TCs is less pronounced compared to that observed in CBBP solution since the redox active moieties present in SRNOM competes with Cu(I) to reduce TC•+/ TC•(-H). A detailed mathematical model is developed to describe the photodegradation of contaminants and Cu redox transformations in irradiated SRNOM and CBBP solutions.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiming Ouyang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
10
|
Wang Y, Dong X. PMS activation by natural pyrite for APAP degradation: Underlying mechanism and long-term removal of APAP. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
11
|
Kong Q, Pan Y, Lei X, Zhou Y, Lei Y, Peng J, Zhang X, Yin R, Shang C, Yang X. Reducing properties of triplet state organic matter ( 3DOM*) probed via the transformation from chlorine dioxide to chlorite. WATER RESEARCH 2022; 225:119120. [PMID: 36126426 DOI: 10.1016/j.watres.2022.119120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The triplet states of dissolved organic matter (3DOM*) have been well known to oxidize various organic contaminants, but evidence of their reducing properties are largely scarce. In this work, chlorine dioxide (ClO2) as a single-electron oxidant was used as a probe to evaluate the reduction property of 3DOM*. The reduction of ClO2 to chlorite was observed in the solutions of model photosensitizers (i.e., 4-carboxybenzophenone, benzophenone, acetophenone, 3-methoxyacetophenone, naphthalene, and xanthone) during UV irradiation with the presence of ClO2, though they are resistant to ClO2 oxidation in the dark. The reducing property of the triplet states of photosensitizers was verified and their second-order reaction rate constants with ClO2 were determined to be in the range of 1.45(± 0.03)× 109 - 2.18(± 0.06) × 109 M-1 s-1 at pH 7.0. The quenching tests excluded the role of other reactive species (e.g., HO•, O(3P), Cl•, ClO• and HOCl/OCl-, O2•- and eaq-) in ClO2 reduction to chlorite when using model photosensitizers and DOM isolates. Chlorite formation was 48.1-90.4% and 4812.8-7721.8% higher during UV irradiation with the presence of ClO2 and DOM than those without UV irradiation or without DOM present, respectively. The enhancement was attributed to the enhanced electron donating capacity (chlorite precursors) of DOM upon UV irradiation and also to 3DOM* acting as an electron donor reducing ClO2 to chlorite. This study highlighted the important role of 3DOM* as a reductant.
Collapse
Affiliation(s)
- Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xinran Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999066, China
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999066, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
12
|
Shen J, Cheng F, Chen Y, Li Z, Liu Y, Yuan Y, Zhou P, Liu W, Lai B, Zhang Y. Vanadium trioxide mediated peroxymonosulfate for fast metronidazole oxidation: Stepwise oxidation of vanadium for donating electrons. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Yang X, Rosario-Ortiz FL, Lei Y, Pan Y, Lei X, Westerhoff P. Multiple Roles of Dissolved Organic Matter in Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11111-11131. [PMID: 35797184 DOI: 10.1021/acs.est.2c01017] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.
Collapse
Affiliation(s)
- Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
14
|
Zhu M, Lu J, Dong L, Hu S, Peng S, Zhu C. Photochemical transformations of 2, 6-dichlorophenol and 2-chlorophenol with superoxide ions in the atmospheric aqueous phase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Liu M, Zhao Z, Lu Q, Yu W. Release of dissolved organic carbon from biochar and formation of humic-like component during photoreaction: Effects of Ca 2+ and pH. WATER RESEARCH 2022; 219:118616. [PMID: 35597217 DOI: 10.1016/j.watres.2022.118616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The photochemical reactivity of dissolved organic carbon from biochar (DBC) was higher than dissolved organic matter (DOM), but the photo-transformation of DBC in the presence of DOM under various conditions are poorly understood. Here, we studied the effects of Ca2+ and pH on the photo-induced changes in the optical and structural properties of DOM in source water with biochar. During DBC photobleaching, the DBC released from bulk DBC while the humic-like component formed. The release of DBC and the formation of humic-like component were inhibited by the presence of Ca2+ attributed to the inhibition of triplet excited state of DOM (3DOM*) and singlet oxygen (1O2) generation. Moreover, the 3DOM* yield increased while the 1O2 generation decreased as pH decreased from neutral, resulting in the increased formation of humic-like component and decreased release of DBC. The characterizations of ultrafiltration-isolated colloidal DOM after irradiation showed that hydrophilicity and the colloidal size of released DBC decreased in the presence of Ca2+. Additionally, the colloidal size of released DBC decreased while the hydrophilicity of DBC enhanced with increasing pH from neutral. This study not only gives insight into the DBC photo-transformation in the presence of DOM under various conditions but also reveals the influence of DBC on the variation of DOM properties during irradiation.
Collapse
Affiliation(s)
- Minmin Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiying Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of forestry, Northeast Forestry University, Harbin 150040, China
| | - Qingxuan Lu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Energy and Environment, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
16
|
Jiao X, Zeng R, Lan G, Zuo S, He J, Wang C. Mechanistic study on photochemical generation of I •/I 2•- radicals in coastal atmospheric aqueous aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154080. [PMID: 35218835 DOI: 10.1016/j.scitotenv.2022.154080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The reactive iodine species may exhibit significant impacts on many global atmospheric issues and the I•/I2•- radicals play key roles for inducing the formation of these reactive iodine species. However, the current understanding on the formation of I•/I2•- radicals in atmospheric aqueous aerosol is still quite limited. The results reported herein suggest that I•/I2•- can be produced simultaneously in aqueous aerosol by several sunlight-driven photochemical pathways including direct photo-dissociation of soluble organic iodine (SOI) at rates of 0.10-1.34 × 10-9 M ns-1 and 0.99-5.68 × 10-7 M μs-1, •OH-mediated oxidation of I- at 0.03-1.41 × 10-8 M ns-1 and 0.05-4.10 × 10-6 M μs-1, and 3DOM⁎-induced oxidation of I- at 1.57-1.65 × 10-9 M ns-1 and 0.99-5.68 × 10-7 M μs-1 for generation of I• and I2•-, respectively. Meanwhile, the pathway of eaq--initiated stepwise reduction of IO3- to I2(aq) and further photolyzed into I• plays negligible role in formation of I•/I2•- due to the low reaction rates and severe quenching effect of eaq- by dissolved O2. Our work presented the new data on mechanism and kinetics for comprehensive elucidation of I•/I2•- formation in coastal atmospheric aqueous aerosol and would help to better understand the transformation mechanism of iodine species, pathways of iodine cycling and the associated environmental impacts involving atmospheric reactive iodine radicals.
Collapse
Affiliation(s)
- Xiaoyu Jiao
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Rui Zeng
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Guangcai Lan
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Siyu Zuo
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham-Ningbo China, Ningbo 315100, China; The Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315100, China
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
17
|
Tian L, Chen P, Jiang XH, Chen LS, Tong LL, Yang HY, Fan JP, Wu DS, Zou JP, Luo SL. Mineralization of cyanides via a novel Electro-Fenton system generating •OH and •O 2. WATER RESEARCH 2022; 209:117890. [PMID: 34856430 DOI: 10.1016/j.watres.2021.117890] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Traditional methods of cyanides' (CN-) mineralization cannot overcome the contradiction between the high alkalinity required for the inhibition of hydrogen cyanide evolution and the low alkalinity required for the efficient hydrolysis of cyanate (CNO-) intermediates. Thus, in this study, a novel Electro-Fenton system was constructed, in which the free cyanides released from ferricyanide photolysis can be efficiently mineralized by the synergy of •OH and •O2-. The complex bonds in ferricyanide (100 mL, 0.25 mM) were completely broken within 80 min under ultraviolet radiation, releasing free cyanides. Subsequently, in combination with the heterogeneous Electro-Fenton process, •OH and •O2- were simultaneously generated and 92.9% of free cyanides were transformed into NO3- within 120 min. No low-toxic CNO- intermediates were accumulated during the Electro-Fenton process. A new conversion mechanism was proposed that CN- was activated into electron-deficient cyanide radical (•CN) by •OH, and then the •CN intermediates reacted with •O2- via nucleophilic addition to quickly form NO3-, preventing the formation of CNO- and promoting the mineralization of cyanide. Furthermore, this new strategy was used to treat the actual cyanide residue eluent, achieving rapid recovery of irons and efficient mineralization of cyanides. In conclusion, this study proposes a new approach for the mineralization treatment of cyanide-containing wastewater.
Collapse
Affiliation(s)
- Lei Tian
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Peng Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xun-Heng Jiang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Li-Sha Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Lin-Lin Tong
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Hong-Ying Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Jie-Ping Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Dai-She Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Sheng-Lian Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
18
|
Fu J, Feng L, Liu Y, Zhang L, Li S. Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation. CHEMOSPHERE 2022; 287:132094. [PMID: 34492410 DOI: 10.1016/j.chemosphere.2021.132094] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical activation of peroxymonosulfate (PMS) at carbon cloth anode (E (Carbon cloth Anode)/PMS system) was investigated for sulfamethoxazole (SMX) degradation. The results indicated that PMS could be activated at carbon cloth anode during electrolysis, resulting in the improvement of SMX degradation. The degradation efficiency of SMX was facilitated with the higher PMS concentration and current density, respectively. The degradation rate constant of SMX increased with the rising pH from 3.6 to 6.0, and reached the highest value at pH 6.0, and then decreased with further increasing pH to 8.0. The presence of chloride ion (Cl-, 5-100 mM) significantly enhanced SMX degradation, while addition of humic acid (HA, 1-5 mgC L-1) inhibited SMX degradation. Addition of carbonate (HCO3-, 5-20 mM) had a negligible impact on SMX degradation. Small amounts of phosphate (PO43-, 0-5 mM) could promote degradation, while a large amount of PO43- (10-20 mM) inhibited the degradation. Moreover, the quenching experiments demonstrated that sulfate radical (SO4·-), hydroxyl radical (·OH) and singlet oxygen (1O2) contributed to SMX degradation in E (Carbon cloth Anode)/PMS system. The degradation intermediates of SMX were identified by LC-MS/MS and the degradation pathways were deduced to be hydroxylation, the cleavage of S-N bond, and oxidation of aniline group. Moreover, the micronucleus test of Vicia faba root tips indicated that the E (Carbon Cloth Anode)/PMS system could reduce the genetic toxicity of SMX contaminated water to some extent.
Collapse
Affiliation(s)
- Jingyi Fu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China
| | - Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| |
Collapse
|
19
|
Zhou Y, Wu Y, Lei Y, Pan Y, Cheng S, Ouyang G, Yang X. Redox-Active Moieties in Dissolved Organic Matter Accelerate the Degradation of Nitroimidazoles in SO 4•--Based Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14844-14853. [PMID: 34674525 DOI: 10.1021/acs.est.1c04238] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of dissolved organic matter (DOM) is known to inhibit the degradation of trace organic contaminants (TrOCs) in SO4•--based advanced oxidation processes (AOPs) due to filtering of the photochemically active light and radical scavenging effects. This study revealed an unexpected contribution for DOM in the degradation of nitroimidazoles (NZs) in the UV/persulfate AOP. The apparent second-order rate constants of NZs with SO4•- increased by 2.05 to 4.77 times in the presence of different DOMs. The increments were linearly related to the total electron capacity of DOM. Quinone and polyphenol moieties were found to play a dominant role. The reactive species generated from SO4•-'s oxidation of DOM, including semiquinone radical (SQ•-) and superoxide (O2•-), were found to react with NZs via Michael addition and O2•- addition. The second-order rate constants of tinidazole with SQ•- is determined to be (5.69 ± 0.59) × 106 M-1 s-1 by laser flash photolysis. Reactive species potentially generated from DOM may be considered in designing processes for the abatement of different types of TrOCs.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
- Macau Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuangshuang Cheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
20
|
Le Roux DM, Powers LC, Blough NV. Photoproduction Rates of One-Electron Reductants by Chromophoric Dissolved Organic Matter via Fluorescence Spectroscopy: Comparison with Superoxide and Hydrogen Peroxide Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12095-12105. [PMID: 34383497 DOI: 10.1021/acs.est.1c04043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One-electron reductants (OER) photoproduced by chromophoric dissolved organic matter (CDOM) have been shown to be likely precursors for the formation of superoxide and subsequently hydrogen peroxide. An improved method that employs a nitroxide radical probe (3AP) has been developed and utilized to determine the photoproduction rates of OER from a diverse set of CDOM samples. 3AP reacts with OER to produce the hydroxylamine, which is then derivatized with fluorescamine and quantified spectrofluorometrically. Although less sensitive than traditional methods for measuring RO2•-, measuring RH provides a simpler and faster method of estimating RO2•- and is amenable to continuous measurement via flow injection analysis. Production rates of OER (RH), superoxide (RO2•-), and hydrogen peroxide (RH2O2) have a similar wavelength dependence, indicating a common origin. If all the OER react with molecular oxygen to produce superoxide, then the simplest mechanism predicts that RH/RH2O2 and RO2•-/RH2O2 should be equal to 2. However, our measurements reveal RH/RH2O2 values as high as 16 (5.7-16), consistent with prior results, and RO2•-/RH2O2 values as high as 8 (5.4-8.2). These results indicate that a substantial fraction of superoxide (65-88%) is not undergoing dismutation. A reasonable oxidative sink for superoxide is reaction with photoproduced phenoxy radicals within CDOM.
Collapse
Affiliation(s)
- Danielle M Le Roux
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leanne C Powers
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland 20688, United States
| | - Neil V Blough
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
21
|
Wang Y, Gong X, Dong X. Photo-oxidation of arsenite in acidic waters containing Suwannee River fulvic acid: roles of 3SRFA* and hydroxyl radical. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45144-45154. [PMID: 33864218 DOI: 10.1007/s11356-021-13900-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The photo-oxidation of arsenite (As(III)) in solution containing Suwannee River fulvic acid (SRFA) under the ultraviolet A (UVA) irradiation (λmax = 365 nm) was studied. In a solution containing 100.0 μg·L-1 As(III) and 10.0 mg·L-1 SRFA at pH 3.0, SRFA induced As(III) photo-oxidation by producing the triplet excited state of SRFA (3SRFA*) and hydroxyl radical(HO˙). Approximately 82% of As(III) oxidation was attributed to HO˙ which depended strongly on HO2˙/O2˙-. The remaining 18% of As(III) oxidation was attributed to the direct reaction between As(III) and 3SRFA*. The photo-oxidation of As(III) was significantly affected by solution pH. Excess SRFA inhibited As(III) photo-oxidation. The addition of a low concentration of ferric ions retarded the photo-oxidation of As(III) due to the poor photo-activity of Fe(III)-SRFA complexes. In contrast, the addition of ferric ions at high concentration greatly accelerated As(III) photo-oxidation because of the high photo-activity of Fe(III)-OH complexes. The fractions of SRFA with different molecular weight showed different oxidizing capacities under UV irradiation which was possibly related to the different contents of phenolic OH groups. The findings have important environmental implications for the photo-transformation behavior of As(III) in natural surface waters containing dissolved organic matter, especially acidic waters.
Collapse
Affiliation(s)
- Yajie Wang
- School of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, People's Republic of China.
| | - Xianhe Gong
- School of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, People's Republic of China
| | - Xin Dong
- School of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
22
|
Zhu M, Lu J, Zhao Y, Guo Z, Hu Y, Liu Y, Zhu C. Photochemical reactions between superoxide ions and 2,4,6-trichlorophenol in atmospheric aqueous environments. CHEMOSPHERE 2021; 279:130537. [PMID: 33862361 DOI: 10.1016/j.chemosphere.2021.130537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The superoxide anion radical (O2•-) is an important reactive oxygen species (ROS), and participates in several chemical reactions and biological processes. In this report, O2•- was produced by irradiating riboflavin in an O2-saturated solution by ultraviolet light with a maximum emission at 365 nm. And the contribution of O2•- to 2, 4, 6-trichlorophenol (2, 4, 6-TCP) was investigated by a combination of laser flash photolysis (LFP) and UV light steady irradiation technique. The results of steady-state experiments showed that the photochemical decomposition efficiency of 2, 4, 6-TCP decreased with the increase of the initial concentration of TCP, while the increase of pH and riboflavin concentration promoted the photochemical reaction. The second-order rate constant of the reaction of the superoxide anion radical with 2, 4, 6-TCP phenoxyl radical (TCP•) was (9.9 ± 0.9) × 109 L mol-1 s-1 determined by laser flash photolysis techniques. The dechlorination efficiency was 61.5% after illuminating the mixed solution with UV light for 2 h. The conversion of 2, 4, 6-trichlorophenol was accompanied by the reductive dechlorination process induced by superoxide ions. The main steady products of the photochemical reaction of 2, 4, 6-TCP with O2•- were 2, 6-dichlorophenol (DCP), 2, 6-dichloro-1, 4-benzoquinone (DCQ) and 2, 6-dichlorohydroquinone (DCHQ). The addition process was the preferred process in the total reaction of superoxide ions with 2, 4, 6-TCP phenoxyl radical. These results indicated that the reaction of 2, 4, 6-TCP with O2•- was a potential conversion pathway and contribute to atmospheric aqueous phase chemistry.
Collapse
Affiliation(s)
- Mengyu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
| | - Jun Lu
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, PR China; Center of Analysis & Measurement, Hefei University of Technology, Hefei, 230009, PR China
| | - Yijun Zhao
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhi Guo
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
| | - Yadong Hu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
| | - Ying Liu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China
| | - Chengzhu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, PR China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
23
|
Zhang K, Sun P, Khan A, Zhang Y. Photochemistry of biochar during ageing process: Reactive oxygen species generation and benzoic acid degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144630. [PMID: 33385810 DOI: 10.1016/j.scitotenv.2020.144630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
In this study, the photogeneration of OH and 1O2 and the degradation mechanism of organic pollutants in biochar suspension under the simulated solar light irradiations were investigated. Biochar derived from rice husk with 550 °C of charring temperature (R550) was selected to degrade benzoic acid. It was found that 10 g/L of R550 could degrade 78.7% of benzoic acid within 360 min at pH 3, and the degradation efficiency was promoted to 95.2% as ultraviolet (UV) presented. By checking the production of p-hydroxybenzoic acid, UV accelerated the production of OH, which was confirmed by the enhanced degradation efficiency of 59.2% caused by the evaluated OH as UV appeared. The furfuryl alcohol loss in the R550 suspension under light irradiations testified to the production of 1O2, which contributed to 9.3% of benzoic acid degradation. Oxidization treatment using gradient concentrations of H2O2 was employed to enhance the ageing process of biochar. As the ageing processed, the biochar possessed a declined performance towards OH production from O2 activation and the radical degradation of organic pollutants. As a contrast, the evaluated content of 1O2 and enhanced non-radical degradation of organic pollutants was reached as UV presented. The further study indicated that phenolic hydroxyl groups on biochar facilitated the production of OH via the electron transfer, and quinone like structures (C=O) on biochar boosted the generation of 1O2 via the energy transfer. Moreover, upon eliminating the BA degradation, persistent free radicals were formed on biochar, which was enhanced owing to the presence of UV.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Peng Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Institute of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Aimal Khan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
24
|
Leresche F, Ludvíková L, Heger D, von Gunten U, Canonica S. Quenching of an Aniline Radical Cation by Dissolved Organic Matter and Phenols: A Laser Flash Photolysis Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15057-15065. [PMID: 33200941 DOI: 10.1021/acs.est.0c05230] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aromatic amines are relevant aquatic organic contaminants whose photochemical transformation is affected by dissolved organic matter (DOM). The goal of this study is to elucidate the underlying mechanism of the inhibitory effect of DOM on such reactions. The selected model aromatic amine, 4-(dimethylamino)benzonitrile (DMABN), was subjected to laser flash photolysis in the presence and absence of various model photosensitizers. The produced radical cation (DMABN•+) was observed to react with several phenols and different types of DOM on a time scale of ∼100 μs. The determined second-order rate constants for the quenching of DMABN•+ by phenols were in the range of (1.4-26) × 108 M-1 s-1 and increased with increasing electron donor character of the aromatic ring substituent. For DOM, quenching rate constants increased with the phenolic content of the DOM. These results indicate the reduction of DMABN•+ to re-form its parent compound as the basic reaction governing the inhibitory effect. In addition, the photosensitized oxidation of the sulfonamide antibiotic sulfadiazine (SDZ) was studied. The observed radical intermediate of SDZ was quenched by 4-methoxyphenol less effectively than DMABN•+, which was attributed to the lower reduction potential of the SDZ-derived radical compared to DMABN•+.
Collapse
Affiliation(s)
- Frank Leresche
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lucie Ludvíková
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Silvio Canonica
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
25
|
Fizer M, Sidey V, Milyovich S, Fizer O. A DFT study of fulvic acid binding with bivalent metals: Cd, Cu, Mg, Ni, Pb, Zn. J Mol Graph Model 2020; 102:107800. [PMID: 33197854 DOI: 10.1016/j.jmgm.2020.107800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
3,7,8-Trihydroxy-3-methyl-10-oxo-4,10-dihydro-1H,3H-pyrano [4,3-b]chromene-9-carboxylic acid is a structurally well-characterized fulvic acid (FA) capable to act as a polyfunctional bidentate ligand in the complexes with metal ions. Investigations of the formation mechanisms and structure of the above-mentioned FA complexes with bivalent metals [Cd(II), Cu(II), Mg(II), Ni(II), Pb(II) and Zn(II)] are presently an actual and trending topic in the modern chemistry of humic and fulvic acids. Furthermore, the importance of the theoretical DFT investigations of binding of metals with fulvic acids is stipulated by the lack of the relevant experimental structural data for such complexes. The quantum chemical calculations have shown that, of the four possible FA tautomers, the two FA forms are more stable. The wavefunction analysis and computed reactivity descriptors (electrostatic potential, Hirshfeld surface analysis, natural population analysis charges, and condensed Fukui indexes) give the insight on the properties and reactive ability of these two different forms of the FA. The computed thermochemical parameters of the ion-exchange reaction explain the metal binding affinity and selectivity of the FA forms.
Collapse
Affiliation(s)
- Maksym Fizer
- Faculty of Chemistry, Uzhhorod National University, Pidhirna Str., 46, 88000, Uzhhorod, Ukraine.
| | - Vasyl Sidey
- Research Institute for Physics and Chemistry of Solid State, Uzhhorod National University, Pidhirna Str., 46, 88000, Uzhhorod, Ukraine
| | - Stepan Milyovich
- Faculty of Chemistry, Uzhhorod National University, Pidhirna Str., 46, 88000, Uzhhorod, Ukraine
| | - Oksana Fizer
- Faculty of Chemistry, Uzhhorod National University, Pidhirna Str., 46, 88000, Uzhhorod, Ukraine
| |
Collapse
|
26
|
Chen Y, Liu J, Zhang X, Blough NV. Time-Resolved Fluorescence Spectra of Untreated and Sodium Borohydride-Reduced Chromophoric Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12109-12118. [PMID: 32845124 DOI: 10.1021/acs.est.0c03135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Time-resolved fluorescence spectra of chromophoric dissolved organic matter (CDOM) from different sources were acquired using UV (280 and 375 nm) and visible light (440 and 640 nm) excitation to probe the structural basis of the emission properties of CDOM. Emission decays were faster at the blue and red edges, particularly at the red edge, relative to those acquired from 480 to 550 nm. Based on the lifetime distribution and multiexponential analysis of the emission decays recorded at different time resolution, current findings demonstrate that the components recovered based on a superposition model have no defined physical meaning. A substantial increase in steady-state fluorescence intensity and only small changes (<30%) of amplitude-weighted average lifetime caused by sodium borohydride reduction suggest that intramolecular fluorescence quenching occurs mainly through formation of ground state charge-transfer interactions. Short-lived species (lifetime < 100 ps) dominate the emission decays over wavelengths from 400 to 800 nm, particularly under excitation at long wavelengths (440 and 640 nm). Compared to locally excited (LE) states, the contribution of charge-transfer excited (ECT) states and other short-lived species to the steady-state emission is small because of their very rapid nonradiative relaxation. This study suggests that a careful choice of observation wavelength is needed to distinguish LE states from ECT states.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Juan Liu
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Xu Zhang
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | - Neil V Blough
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
27
|
Hopanna M, Kelly L, Blaney L. Photochemistry of the Organoselenium Compound Ebselen: Direct Photolysis and Reaction with Active Intermediates of Conventional Reactive Species Sensitizers and Quenchers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11271-11281. [PMID: 32803943 DOI: 10.1021/acs.est.0c03093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ebselen (EBS), 2-phenyl-1,2-benzisoselenazol-3(2H)-one, is an organoselenium pharmaceutical with antioxidant and anti-inflammatory properties. Furthermore, EBS is an excellent scavenger of reactive oxygen species. This property complicates conventional protocols for sensitizing and quenching reactive species because of potential generation of active intermediates that quickly react with EBS. In this study, the photochemical reactivity of EBS was investigated in the presence of (1) 1O2 and •OH sensitizers [rose Bengal (RB), perinaphthanone, and H2O2] and (2) reactive species scavenging and quenching agents (sorbic acid, isopropanol, sodium azide, and tert-butanol) that are commonly employed to study photodegradation mechanisms and kinetics. The carbon analogue of EBS, namely, 2-phenyl-3H-isoindol-1-one, was included as a reference compound to confirm the impact of the selenium atom on EBS photochemical reactivity. EBS does not undergo acid dissociation, but pH-dependent kinetics were observed in RB-sensitized solutions, suggesting EBS reaction with active intermediates (3RB2-*, O2•-, and H2O2) that are not kinetically relevant for other compounds. In addition, the observed rate constant of EBS increased in the presence of sorbic acid, isopropanol, and sodium azide. These findings suggest that conventional reactive species sensitizers, scavengers, and quenchers need to be carefully applied to highly reactive organoselenium compounds to account for reactions that are typically slow for other organic contaminants.
Collapse
Affiliation(s)
- Mamatha Hopanna
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building 314, Baltimore, Maryland 21250 United States
| | - Lisa Kelly
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250 United States
| | - Lee Blaney
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Engineering Building 314, Baltimore, Maryland 21250 United States
| |
Collapse
|
28
|
Orsi DL, Douglas JT, Sorrentino JP, Altman RA. Cobalt-Catalyzed Selective Unsymmetrical Dioxidation of gem-Difluoroalkenes. J Org Chem 2020; 85:10451-10465. [PMID: 32697905 DOI: 10.1021/acs.joc.0c00415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
gem-Difluoroalkenes represent valuable synthetic handles for organofluorine chemistry; however, most reactions of this substructure proceed through reactive intermediates prone to eliminate a fluorine atom and generate monofluorinated products. Taking advantage of the distinct reactivity of gem-difluoroalkenes, we present a cobalt-catalyzed regioselective unsymmetrical dioxygenation of gem-difluoroalkenes using phenols and molecular oxygen, which retains both fluorine atoms and provides β-phenoxy-β,β-difluorobenzyl alcohols. Mechanistic studies suggest that the reaction operates through a radical chain process initiated by Co(II)/O2/phenol and quenched by the Co-based catalyst. This mechanism enables the retention of both fluorine atoms, which contrasts most transition-metal-catalyzed reactions of gem-difluoroalkenes that typically involve defluorination.
Collapse
Affiliation(s)
- Douglas L Orsi
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Justin T Douglas
- Molecular Structures Group, Nuclear Magnetic Resonance Laboratory, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Jacob P Sorrentino
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Ryan A Altman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Zhou Q, Zhang X, Zhou C. Transformation of amino acid tyrosine in chromophoric organic matter solutions: Generation of peroxide and change of bioavailability. CHEMOSPHERE 2020; 245:125662. [PMID: 31864059 DOI: 10.1016/j.chemosphere.2019.125662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/07/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Studying the photochemical transformation mechanism of dissolved free amino acids (DFAA) in chromophoric dissolved organic matter (CDOM) solution facilitates the understanding of DFAA's environmental fate and bioavailability change upon solar irradiation in natural surface waters. Tyrosine oxidation product (Tyr-OH) was synthesized to quantify the primary transformation product (tyrosine peroxide, Tyr-OOH) in CDOM solution. Both reactions between superoxide radical anion (O2-) and tyrosine radical (Tyr) and between singlet oxygen (1O2) and tyrosine (Tyr) yield Tyr-OOH, which is subsequently transformed into Tyr-OH. The reaction between O2- and Tyr not only generated Tyr-OOH but also caused the regeneration of Tyr. O2- and 1O2 contributed 30-44% to Tyr's transformation in CDOM solutions at pH 8.0, in which 1O2 oxidation accounted for 6-11%. The contribution of O2- to Tyr's phototransformation process was the difference between the total contribution of O2- and 1O2 and the individual contribution of 1O2. Compared with the fast assimilation of Tyr, Tyr-OH was stable in natural water under dark incubation, indicating that phototransformation decreased the bioavailability of Tyr.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China.
| | - Xu Zhang
- Department of Environmental Science, School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China.
| | - Chi Zhou
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Promotion Center Wuhan, 430070, PR China.
| |
Collapse
|
30
|
Ren D, Ren Z, Chen F, Wang B, Huang B. Predictive role of spectral slope ratio towards 17α-ethynylestradiol photodegradation sensitized by humic acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112959. [PMID: 31377327 DOI: 10.1016/j.envpol.2019.112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Humic acids (HAs) have been shown to dominate the photodegradation of steroid estrogens in natural waters. Nevertheless, how the photosensitizing ability of HAs relates to their structural and optical characteristics remains largely unknown. In this study, 17α-ethynylestradiol (EE2) was selected as a model compound to study to what extent easily-measurable characteristics of HAs might be used to predict their photosensitization potency. HAs were extracted from sediments of two different sources, and then subjected to structural and optical properties characterization using elemental analyzer, UV-vis spectroscopy and fluorescence spectroscopy. Photochemical experiments show that the HAs from the two sources can effectively meditate EE2 photodegradation. Although with drastically different structural and optical properties, the photosensitizing ability of these HAs towards EE2 can be well described by simple linear regressions using a spectroscopic index, the spectral slope ratio (SR). This optical indicator is correlated with various physicochemical properties of HAs, including the molecular weight, lignin content, charge-transfer interaction potential, photobleaching extent and sources. No universal prediction model could be established for predicting EE2 photodegradation kinetics on the basis of SR, but in specific waters SR could be a powerful indictor for predicting the EE2 photodegradation sensitized by HAs.
Collapse
Affiliation(s)
- Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Fang Chen
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
31
|
Ossola R, Schmitt M, Erickson PR, McNeill K. Furan Carboxamides as Model Compounds To Study the Competition between Two Modes of Indirect Photochemistry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9594-9603. [PMID: 31335132 DOI: 10.1021/acs.est.9b02895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Singlet oxygen (1O2) and triplet chromophoric dissolved organic matter (3CDOM*) are photochemically produced reactive intermediates responsible for the photodegradation of several micropollutants in the sunlit surface waters. However, elucidating the mechanism of reactions involving both 1O2 and 3CDOM* can be complicated by the deeply interconnected nature of these two reactive species. In this work, we synthesized a series of model compounds inspired by the chemical structure of fenfuram, a fungicide used in the 1980s, and used them to investigate structure-reactivity relationships in photodegradation reactions involving 1O2 and 3CDOM*. A combination of steady-state and time-resolved approaches was employed to successfully predict the extent of 1O2-induced degradation. Conversely, the prediction of triplet-induced reactivity was complicated by the presence of repair mechanisms whose extent and relative importance were difficult to predict. The results of our work indicate that bimolecular rate constants measured via time-resolved techniques alone are not sufficient to accurately predict environmental half-lives, as intrinsic differences in the reaction mechanism can amplify the importance of secondary degradation pathways.
Collapse
Affiliation(s)
- Rachele Ossola
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Markus Schmitt
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
32
|
Zhou L, Sleiman M, Fine L, Ferronato C, de Sainte Claire P, Vulliet E, Chovelon JM, Xiu G, Richard C. Contrasting photoreactivity of β2-adrenoceptor agonists Salbutamol and Terbutaline in the presence of humic substances. CHEMOSPHERE 2019; 228:9-16. [PMID: 31015039 DOI: 10.1016/j.chemosphere.2019.04.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
The photodegradation reactions of two typical β2-adrenoceptor agonists, salbutamol (SAL) and terbutaline (TBL), alone, and in the presence of Aldrich humic acid (AHA) or Suwannee River fulvic acid (SRFA) were investigated by steady-state photolysis experiments, laser flash photolysis (LFP), kinetic modeling and quantum calculation. AHA and SRFA (2-20 mgC L-1) accelerated the phototransformation of both SAL and TBL. For SAL, an inhibiting effect of oxygen on the photodegradation was observed that is fully consistent with the main involvement of excited triplet states of HS (3HS*). On the contrary, oxygen drastically enhanced the photodegradation of TBL showing that 3HS* were negligibly involved in the reaction. The involvement of singlet oxygen was also ruled out because of the low reaction rate constant measured between TBL and singlet oxygen. Quantum calculations were therefore performed to explore whether oxygenated radicals could through addition reactions explain the differences of reactivity of TBL and SAL in oxygen medium. Interestingly, calculations showed that in the presence of oxygen, the addition of phenoxyl on TBL led to the formation of adducts and to the loss of TBL while the same addition reaction on SAL partly regenerated the starting compound and at the end degraded SAL less efficiently. This study is of high relevance to understand the processes involved in SAL and TBL phototransformation and the photoreactivity of HS. Moreover, our findings suggest that TBL might be a promising probe molecule to delineate the role of oxygenated radicals.
Collapse
Affiliation(s)
- Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Mohamad Sleiman
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France
| | - Ludovic Fine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Pascal de Sainte Claire
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon - Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, 69100, Villeurbanne, France
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes. School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Claire Richard
- Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de Chimie de Clermont-Ferrand, F-63178, Aubière, France.
| |
Collapse
|
33
|
Zhou C, Zhou Q, Zhang X. Transformation of acetaminophen in natural surface water and the change of aquatic microbes. WATER RESEARCH 2019; 148:133-141. [PMID: 30359943 DOI: 10.1016/j.watres.2018.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/07/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The kinetics and transformation pathway of acetaminophen (APAP) in natural surface water (one sample from the Yangtze River and three others from different lakes), and the changes of aquatic microbes in surface water were revealed in this study. Both photochemical and microbial reactions contributed to the transformation of APAP under irradiance of 1.0-250 mW/cm2. Microbial compositions were significantly different among surface water, and same microbial transformation product (1,4-bezoquinone) was detected as the predominant biotransformation intermediate in four studied surface water, but the lag phase (12-50-h) for the transformation was highly dependent on the aquatic microbial abundance and composition. The lag phase no longer existed with irradiance increased to 5.9 mW/cm2. Aquatic microbial abundance and composition were influenced by the presence of APAP and radiation, and the influence extent was dependent on microbial species. The findings demonstrated that the individual contribution of biotic and abiotic process to the overall transformation of APAP and maybe other phenol in surface water varied as the background composition of surface water and the external environment changed, and biotransformation dominated (>73%) the overall transformation of APAP in surface water.
Collapse
Affiliation(s)
- Chi Zhou
- Hubei Water Resources Research Institute, Wuhan, 430070, PR China; School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China
| | - Qing Zhou
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China
| | - Xu Zhang
- School of Resources and Environmental Science, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|