1
|
Wu G, Wan Q, Lu J, Wen G. Impact of metal ions on PMS/Cl - disinfection efficacy: Enhancing or impeding microbial inactivation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176087. [PMID: 39255943 DOI: 10.1016/j.scitotenv.2024.176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Peroxymonosulfate (PMS) is an eco-friendly disinfectant gaining attention. This study examined the influence of metal ions (Co(II), Cu(II), Fe(II)) on PMS disinfection with chloride ions (Cl-) against waterborne microorganisms, encompassing both bacteria and fungal spores. The findings elucidated that metal ions augment the inactivation of bacteria in the PMS/Cl- system while concurrently impeding the inactivation of fungal spores. Specifically, the PMS/Co(II)/Cl- process increased E. coli inactivation rates by 2.25 and 2.75 times compared to PMS/Co(II) and PMS/Cl-, respectively. Conversely, PMS/Me(II)/Cl- generally exhibited a diminished inactivation capacity against the three fungal spores compared to PMS/Cl-, albeit surpassing the efficacy of PMS/Me(II). For instance, the inactivation levels of A. niger by PMS/Cl-, PMS/Cu(II)/Cl-, and PMS/Cu(II) are 4.47-log, 1.92-log, and 0.11-log, respectively. Notably, fungal spores demonstrated a substantially higher resistance to disinfectants compared to bacteria. Differences in microbial susceptibility were linked to cell wall structure, composition, antioxidant defenses, and reactive species generation, such as hydroxyl radicals (•OH), sulfate radicals (SO4•-), and reactive chlorine species (RCS). This study demonstrated the novel and unique phenomenon of metal ions' dual role in modulating the PMS/Cl- disinfection process, which has not been reported before and has important implications for the field of water treatment.
Collapse
Affiliation(s)
- Gehui Wu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Xiao S, Liu T, Li N, Ding J, Chen J, Xu Y, Zhang L, Yang L, Zhou X, Ren N, Zhang Y. Chloride-mediated enhancement in Cu(II)-catalyzed Fenton-like reaction: The overlooked reactive chlorine species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124586. [PMID: 39033841 DOI: 10.1016/j.envpol.2024.124586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
The practical application of Cu(II)-catalyzed Fenton-like reaction (Cu(II)/H2O2) exhibits a low efficiency in the degradation of refractory compounds of wastewater. The impact of chloride ions (Cl-) on Fenton-like reactions have been investigated, but the influence mechanism is still unclear. Herein, the presence of Cl- (5 mM) significantly accelerated the degradation of benzoic acid (BA) under neutral conditions. The degradation of BA follows pseudo-first-order kinetics, with a degradation rate 7.3 times higher than the Cu(II)/H2O2 system. Multiple evidences strongly demonstrated that this reaction enables the production of reactive chlorine species (RCS) rather than HO• and high-valent copper (Cu(III)). The kinetic model revealed that Cl- could shift reactive species from the key intermediate (Cu(III)-chloro complexes) to RCS. Dichlorine radicals (Cl2•-) was discovered to play a crucial role in BA degradation, which was largely overlooked in previous reports. Although the reaction rate of Cl2•- with BA (k = 2.0 × 106 M-1 s-1) is lower than that of other species, its concentration is 10 orders of magnitude higher than that of Cu(III) and HO•. Furthermore, the exceptional efficacy of the Cu(II)/H2O2 system in BA degradation was observed in saline aquatic environments. This work sheds light on the previously unrecognized role of the metal-chloro complexes in production the RCS and water purification.
Collapse
Affiliation(s)
- Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Zhou D, Liu H, Huang Y, Li Y, Wang N, Wang J. Overlooked role of CO 3· - reactivity with different dissociation forms of organic micropollutants in degradation kinetics modeling: A case study of fluoxetine degradation in a UV/peroxymonosulfate system. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135538. [PMID: 39173383 DOI: 10.1016/j.jhazmat.2024.135538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Selective oxidizing agent carbonate radical (CO3•-) is an important secondary radical in radical-based advanced oxidation technology for wastewater treatment. However, the role of CO3•- in removing ionizable organic micropollutants (OMs) under environmentally relevant conditions remains unclear. Herein we investigated CO3•- effect on degradation kinetics of fluoxetine in UV/peroxymonosulfate (PMS) system based on a built radical model considering CO3•- reactivity differences with its different dissociation forms. Results revealed that the model, which incorporated CO3•- selective reactivity (with determined second-order rate constants, ksrc,CO3·-, of 7.33 ×106 and 2.56 ×108 M-1s-1 for cationic and neutral fluoxetine, respectively) provided significantly more accurate predictions of fluoxetine degradation rates (k). A good linear correlation was observed between ksrc,CO3·- from experiments and literatures for 24 ionizable OMs and their molecular orbital energy gaps and oxidation potentials, suggesting the possible electron transfer reaction mechanism. Cl- slightly reduced the degradation rates of fluoxetine owing to rapid transformation of Cl• with HCO3- into CO3•-, which partially compensated for the quenching effects of Cl- on HO• and SO4•-. Dissolved organic matter significantly quenched reactive radicals. The constructed kinetic model successfully predicted fluoxetine degradation rates in real waters, with CO3•- being the dominant contributor (∼90 %) to this degradation process.
Collapse
Affiliation(s)
- Die Zhou
- School of Resources and Environment, Linyi University, Linyi, Shandong 276000, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yixi Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yingjie Li
- School of Resources and Environment, Linyi University, Linyi, Shandong 276000, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Nian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
4
|
Li Z, Wang X, Peng F, Chen N, Fang G. Organic radicals driving polycyclic aromatic hydrocarbon polymerization with peracetic acid activation in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134839. [PMID: 38878430 DOI: 10.1016/j.jhazmat.2024.134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
The use of peracetic acid (PAA) in advanced oxidation processes has gained significant attention recently, but the knowledge of activating PAA to degrade polycyclic aromatic hydrocarbons (PAHs) is limited due to the variety and selectivity of reactive substances in PAA oxidation system. This paper presented the first systemically study on the degradation of PAHs by PAA activation in soil. It was found that heat-activated peracetic acid (heat/PAA) was capable of degrading phenanthrene (PHE) efficiently with degradation efficiency > 90 % within 30 min. Experimental results demonstrated that a series of reactive oxygen species (ROS) including organic radicals (RO•), hydroxyl radicals (HO•) and singlet oxygen (1O2) were generated, while acetylperoxyl (CH3C(O)OO•) and acetyloxyl (CH3C(O)O•) radicals were primarily responsible for PHE degradation in soil. Further analysis shows that polymerization products such as diphenic acid, 2'-formyl-2-biphenylcarboxylic acid and other macromolecules were dominant products of PHE degradation, suggesting polymerization driving PHE degradation instead of the conventional mineralization process. Toxicity analysis shows that most of the polymerization products had less toxicity than that of PHE. These results indicate that PAA activation was a highly effective remediation method for PAHs contaminated soil, which also provided a novel mechanism for pollutant degradation with the PAA activation process for environmental remediation.
Collapse
Affiliation(s)
- Ziyue Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaolei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fei Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
5
|
Zhang G, Li Y, Zhao C, Gu J, Zhou G, Shi Y, Zhou Q, Xiao F, Fu WJ, Chen Q, Ji Q, Qu J, Liu H. Redox-neutral electrochemical decontamination of hypersaline wastewater with high technology readiness level. NATURE NANOTECHNOLOGY 2024; 19:1130-1140. [PMID: 38724611 DOI: 10.1038/s41565-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/01/2024] [Indexed: 08/18/2024]
Abstract
Industrial hypersaline wastewaters contain diverse pollutants that harm the environment. Recovering clean water, alkali and acid from these wastewaters can promote circular economy and environmental protection. However, current electrochemical and advanced oxidation processes, which rely on hydroxyl radicals to degrade organic compounds, are inefficient and energy intensive. Here we report a flow-through redox-neutral electrochemical reactor (FRER) that effectively removes organic contaminants from hypersaline wastewaters via the chlorination-dehalogenation-hydroxylation route involving radical-radical cross-coupling. Bench-scale experiments demonstrate that the FRER achieves over 75% removal of total organic carbon across various compounds, and it maintains decontamination performance for over 360 h and continuously treats real hypersaline wastewaters for two months without corrosion. Integrating the FRER with electrodialysis reduces operating costs by 63.3% and CO2 emissions by 82.6% when compared with traditional multi-effect evaporation-crystallization techniques, placing our system at technology readiness levels of 7-8. The desalinated water, high-purity NaOH (>95%) and acid produced offset industrial production activities and thus support global sustainable development objectives.
Collapse
Affiliation(s)
- Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yongqi Li
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Chenxuan Zhao
- Shanghai Key Laboratory of Magnetic Resonance, State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Jiabao Gu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Yanfeng Shi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qi Zhou
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Feng Xiao
- School of Hydraulic and Hydropower Engineering, North China Electric Power University, Beijing, China
| | - Wen-Jie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Qingbai Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qinghua Ji
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Peng Z, Xi Y, Zhang Z, Su Z, Xu W, Zhang C, Li X. Removal of ciprofloxacin by biosulfurized nano zero-valent iron (BP-S-nZVI) activated peroxomonosulfate: Influencing factors and degradation mechanism. CHEMOSPHERE 2024; 362:142557. [PMID: 38852632 DOI: 10.1016/j.chemosphere.2024.142557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Agglomeration and passivation restrict the using zero-valent iron nanoparticles (nZVI). Enhancing the reactivity of nZVI is often accomplished by sulfurization. In this work, nZVI was sulfurized using SRB to produce biosulfurized nano zero-valent iron (BP-S-nZVI), which was then utilized as a catalyst to investigating its performance in an advanced oxidation process based on activated peroxomonosulfate (PMS). When the S/Fe was 0.05, 0.4 g/L of catalyst and 0.5 mM PMS were added to a 20 mg/L ciprofloxacin solution. In 120 min, a 90.4% clearance rate was reached. When the initial pH of the solution was within the range of 3-11, all exhibited acceptable degradation performance and were minimally affected by co-existing anions. In this activation system, hydroxyl, superoxide and sulfate radicals (•OH, O2•- and SO4•-, respectively) have been proven to be the main active species. Seven intermediates in the degradation process of CIP were identified by LC-MS analysis and two possible degradation pathways were proposed. In addition, the degradation rate of CIP was still able to reach 87.0% after five cycles, and the removal rate remained unchanged in the CIP solution with actual water samples as background. This study demonstrated that BP-S-nZVI as a catalyst for the activation of PMS for CIP degradation can still show good reactivity, which provides more possibilities for the practical application of BP-S-nZVI in the degradation of pollutants.
Collapse
Affiliation(s)
- Zheng Peng
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanni Xi
- Hunan Provincial Key Laboratory of Water Pollution Control Technology, Hunan Research Academy of Environmental Sciences, Changsha 410014, China
| | - Zhuang Zhang
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, ChangSha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
7
|
Wang X, Hou F, Zhai J, Yan J, Gong C, Li Y, Zhu W, Luo Y, Yang D, Gao X. Effective peroxymonosulfate activation by lithium cobaltite recovered from spent lithium-ion batteries for enhanced carbamazepine degradation in a wide pH range. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51673-51686. [PMID: 39117972 DOI: 10.1007/s11356-024-34643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Considering the high cost and complicated recycling process of spent lithium-ion batteries (SLIBs), transforming SLIBs into environment functional materials may be a wise approach. Herein, lithium cobaltite (LCO) cathode powders recovered from SLIBs were used to activate peroxymonosulfate (PMS) for removing carbamazepine (CBZ). The recovered LCO enables a 98.2% removal efficiency of CBZ (2.5 mg/L) within 10 min, which was effective at a broader pH range (pH = 5.0-11.0). The influence of key factors (initial pH, PMS, and catalyst dosage) and coexisting substances (SO42-, H2PO4-, NO3-, Cl-, HCO3-, and HA) on CBZ degradation were examined in detail. The primary radical species during the degradation of CBZ were proved to be 1O2, SO4-, and.OH that generated from PMS activation initiated by the valence change of Co in recovered LCO. The recovered LCO displayed excellent reusability with about 80.0% removal of CBZ after six cycles. Homogeneous activation of PMS mainly contributed to CBZ degradation in the first run, but the recovered LCO catalyst dominated the heterogeneous activation of PMS for the degradation of CBZ in the second to sixth run. Finally, the CBZ degradation pathways were presented based on the identified intermediates. This research has offered a new strategy of "treating wastes with wastes" to maximize the recycling of electronic wastes to remove emerging pollutants.
Collapse
Affiliation(s)
- Xi Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Fali Hou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Jinli Zhai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Jiali Yan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Chao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Yinghao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Wenjie Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China
| | - Daoli Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Xiaoya Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming, 650500, People's Republic of China.
- The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming, 650500, People's Republic of China.
| |
Collapse
|
8
|
Wu JH, Yang TH, Sun YJ, Min Y, Hu Y, Chen F, Chen JJ, Yu HQ. Tailoring the selective generation of oxidative organic radicals for toxic-by-product-free water decontamination. Proc Natl Acad Sci U S A 2024; 121:e2403544121. [PMID: 38805289 PMCID: PMC11161747 DOI: 10.1073/pnas.2403544121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 05/30/2024] Open
Abstract
Peracetic acid (PAA) is emerging as a versatile agent for generating long-lived and selectively oxidative organic radicals (R-O•). Currently, the conventional transition metal-based activation strategies still suffer from metal ion leaching, undesirable by-products formation, and uncontrolled reactive species production. To address these challenges, we present a method employing BiOI with a unique electron structure as a PAA activator, thereby predominantly generating CH3C(O)O• radicals. The specificity of CH3C(O)O• generation ensured the superior performance of the BiOI/PAA system across a wide pH range (2.0 to 11.0), even in the presence of complex interfering substances such as humic acids, chloride ions, bicarbonate ions, and real-world water matrices. Unlike conventional catalytic oxidative methods, the BiOI/PAA system degrades sulfonamides without producing any toxic by-products. Our findings demonstrate the advantages of CH3C(O)O• in water decontamination and pave the way for the development of eco-friendly water decontaminations based on organic peroxides.
Collapse
Affiliation(s)
- Jing-Hang Wu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Tian-Hao Yang
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Yuan Min
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yi Hu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Fei Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing400045, China
| | - Jie-Jie Chen
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Han-Qing Yu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
9
|
Zhou D, Liu H, Wang J, Li Y, Wang N, Li W. Elucidating the enhanced role of carbonate radical in propranolol degradation by UV/peroxymonosulfate system. CHEMOSPHERE 2024; 357:141985. [PMID: 38614404 DOI: 10.1016/j.chemosphere.2024.141985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Carbonate radical (CO3•-) has been proved to be an important secondary radical in advanced oxidation processes due to various radical reactions involved HCO3-/CO32-. However, the roles and contributions of CO3•- in organic micropollutant degradation have not been explored systematically. Here, we quantified the impact of CO3•- on the degradation kinetics of propranolol, a representative pollutant in the UV/peroxymonosulfate (PMS) system, by constructing a steady-state radical model. Substantially, the measured values were coincident with the predictive values, and the contributions of CO3•- on propranolol degradation were the water matrix-dependent. Propranolol degradation increased by 130% in UV/PMS system containing 10 mM HCO3-, and the contribution of CO3•- was as high as 58%. Relatively high pH values are beneficial for propranolol degradation in pure water containing HCO3-, and the contributions of CO3•- also enhanced, while an inverse phenomenon was shown for the effects of propranolol concentrations. Dissolved organic matter exhibited significant scavenging effects on HO•, SO4•-, and CO3•-, substantially retarding the elimination process. The developed model successfully predicted oxidation degradation kinetics of propranolol in actual sewage, and CO3•- contribution was up to 93%, which in indicative of the important role of CO3•- in organic micropollutant removal via AOPs treatment.
Collapse
Affiliation(s)
- Die Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Huaying Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Jin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Nian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Wenjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
10
|
Kong X, Ma J, Garg S, Waite TD. Tailored Metal-Organic Frameworks for Water Purification: Perfluorinated Fe-MOFs for Enhanced Heterogeneous Catalytic Ozonation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8988-8999. [PMID: 38725314 DOI: 10.1021/acs.est.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An industrially viable catalyst for heterogeneous catalytic ozonation (HCO) in water purification requires the characteristics of good dispersion of active species on its surface, efficient electron transfer for ozone decay, and maximum active species utilization. While metal-organic frameworks (MOFs) represent an attractive platform for HCO, the metal nodes in the unmodified MOFs exhibit low catalytic activity. Herein, we present a perfluorinated Fe-MOF catalyst by substituting H atoms on the metalated ligands with F atoms (termed 4F-MIL-88B) to induce structure evolution. The Lewis acidity of 4F-MIL-88B was enhanced via the formation of Fe nodes, tailoring the electron distribution on the catalyst surface. As a result of catalyst modification, the rate constant for degradation of the target compounds examined increased by ∼700% compared with that observed for the unmodified catalyst. Experimental evidence and theoretical calculations showed that the modulated polarity and the enhanced electron transfer between the catalyst and ozone molecules contributed to the adsorption and transformation of O3 to •OH on the catalyst surface. Overall, the results of this study highlight the significance of tailoring the metalated ligands to develop highly efficient and stable MOF catalysts for HCO and provide an in-depth mechanistic understanding of their structure-function evolution, which is expected to facilitate the applications of nanomaterial-based processes in water purification.
Collapse
Affiliation(s)
- Xiangtong Kong
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shikha Garg
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu Province 214206, P.R. China
| |
Collapse
|
11
|
Tian L, Tang ZJ, Hao LY, Dai T, Zou JP, Liu ZQ. Efficient Homolytic Cleavage of H 2O 2 on Hydroxyl-Enriched Spinel CuFe 2O 4 with Dual Lewis Acid Sites. Angew Chem Int Ed Engl 2024; 63:e202401434. [PMID: 38425264 DOI: 10.1002/anie.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Traditional H2O2 cleavage mediated by macroscopic electron transfer (MET) not only has low utilization of H2O2, but also sacrifices the stability of catalysts. We present a non-redox hydroxyl-enriched spinel (CuFe2O4) catalyst with dual Lewis acid sites to realize the homolytic cleavage of H2O2. The results of systematic experiments, in situ characterizations, and theoretical calculations confirm that tetrahedral Cu sites with optimal Lewis acidity and strong electron delocalization can synergistically elongate the O-O bonds (1.47 Å → 1.87 Å) in collaboration with adjacent bridging hydroxyl (another Lewis acid site). As a result, the free energy of H2O2 homolytic cleavage is decreased (1.28 eV → 0.98 eV). H2O2 can be efficiently split into ⋅OH induced by hydroxyl-enriched CuFe2O4 without MET, which greatly improves the catalyst stability and the H2O2 utilization (65.2 %, nearly 2 times than traditional catalysts). The system assembled with hydroxyl-enriched CuFe2O4 and H2O2 affords exceptional performance for organic pollutant elimination. The scale-up experiment using a continuous flow reactor realizes long-term stability (up to 600 mL), confirming the tremendous potential of hydroxyl-enriched CuFe2O4 for practical applications.
Collapse
Affiliation(s)
- Lei Tian
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zi-Jun Tang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Le-Yang Hao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ting Dai
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
12
|
He M, Li D, Liu Y, Li T, Li F, Fernández-Catalá J, Cao W. One-pot hydrothermal synthesis of FeNbO 4 microspheres for effective sonocatalysis. NEW J CHEM 2024; 48:6704-6713. [PMID: 38628578 PMCID: PMC11018166 DOI: 10.1039/d3nj05239g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
FeNbO4 sonocatalysts were successfully synthesized by a simple hydrothermal route at pH values of 3, 5, 7, 9 and 11. The catalysts were characterized by XRD, XPS, TEM, SEM, N2 adsorption and DRS to analyse the effect of pH parameters on the physicochemical properties of the materials during hydrothermal synthesis. The sonocatalytic activity of FeNbO4 microspheres was evaluated by using acid orange 7 (AO7) as the simulated contaminant. The experimental results showed that the best sonocatalytic degradation ratio (97.45%) of organic dyes could be obtained under the conditions of an initial AO7 concentration of 10 mg L-1, an ultrasonic power of 200 W, a catalyst dosage of 1.0 g L-1, and a pH of 3. Moreover, the sonocatalysts demonstrated consistent durability and stability across multiple test cycles. After active species capture experiments and calculation of the energy band, a possible mechanism was proposed based on the special Fenton-like mechanism and the dissociation of H2O2. This research shows that FeNbO4 microspheres can be used as sonocatalysts for the purification of organic wastewater, which has a promising application prospect.
Collapse
Affiliation(s)
- Min He
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Defa Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Yu Liu
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
| | - Taohai Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| | - Feng Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University China
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| | - Javier Fernández-Catalá
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
- Inorganic Chemistry Department, Materials Science Institute, University of Alicante Ap. 99 Alicante 03080 Spain
| | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu P.O. Box 3000 FIN-90014 Finland
| |
Collapse
|
13
|
Yin R, Zhang Y, Wang Y, Zhao J, Shang C. Far-UVC Photolysis of Peroxydisulfate for Micropollutant Degradation in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6030-6038. [PMID: 38517061 DOI: 10.1021/acs.est.3c09120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Increasing radical yields to reduce UV fluence requirement for achieving targeted removal of micropollutants in water would make UV-based advanced oxidation processes (AOPs) less energy demanding in the context of United Nations' Sustainable Development Goals and carbon neutrality. We herein demonstrate that, by switching the UV radiation source from conventional low-pressure UV at 254 nm (UV254) to emerging Far-UVC at 222 nm (UV222), the fluence-based concentration of HO• in the UV/peroxydisulfate (UV/PDS) AOP increases by 6.40, 2.89, and 6.00 times in deionized water, tap water, and surface water, respectively, with increases in the fluence-based concentration of SO4•- also by 5.06, 5.81, and 55.47 times, respectively. The enhancement to radical generation is confirmed using a kinetic model. The pseudo-first-order degradation rate constants of 16 micropollutants by the UV222/PDS AOP in surface water are predicted to be 1.94-13.71 times higher than those by the UV254/PDS AOP. Among the tested water matrix components, chloride and nitrate decrease SO4•- but increase HO• concentration in the UV222/PDS AOP. Compared to the UV254/PDS AOP, the UV222/PDS AOP decreases the formation potentials of carbonaceous disinfection byproducts (DBPs) but increases the formation potentials of nitrogenous DBPs.
Collapse
Affiliation(s)
- Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| | - Yuliang Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yongyi Wang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
14
|
Lei H, Wang J, Sun Y, Wu Z, Wang X, Wang Y, Wang X. Thermally activated persulfate (TAP)-enhanced tris(2-chloroethyl) phosphate removal in real-world waters based on a response-surface approach as well as toxicological evaluation on its degradation products. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115924. [PMID: 38171103 DOI: 10.1016/j.ecoenv.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
As a typical organophosphorus flame retardant, tris(2-chloroethyl) phosphate (TCEP) is refractory in aqueous environment. The application of TAP is a promising method for removing pollutants. Herein, the removal of TCEP using TAP was rigorously investigated, and the effects of some key variables were optimized by the one-factor-at-a-time approach. To further evaluate the interactions among variables, the response surface methodology (RSM) based on central composite design was employed. Under optimized conditions (pH 5, [PS]0: [TCEP]0 = 500:1), the maximum removal efficiency (RE) of TCEP reached up to 90.6%. In real-world waters, the RE of TCEP spanned the range of 56%- 65% in river water, pond water, lake water and sanitary sewage. The low-concentration Cl- (0.1 mM) promoted TCEP degradation, but the contrary case occurred when the high-concentration Cl-, NO3-, CO32-, HCO3-, HPO42-, H2PO4-, NH4+ and humic acid were present owing to their prominently quenching effects on SO4•-. Both EPR and scavenger experiments revealed that the main radicals in the TAP system were SO4•- and •OH, in which SO4•- played the most crucial role in TCEP degradation. GC-MS/MS analysis disclosed that two degradation products appeared, sourcing from the replacement, oxidation, hydroxylation and water-molecule elimination reactions. The other two products were inferred from the comprehensive literature. As for acute toxicity to fish, daphnid and green algae, product A displayed the slightly higher toxicity, whereas other three products exhibited the declining toxicity as compared to their parent molecule. These findings offer a theoretical/practical reference for high-efficiency removal of TCEP and its ecotoxicological risk evaluation.
Collapse
Affiliation(s)
- Huihui Lei
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou 215009, China
| | - Junxia Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou 215009, China.
| | - Yueying Sun
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou 215009, China
| | - Zhijuan Wu
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou 215009, China
| | - Xiaofei Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou 215009, China
| | - Yawei Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou 215009, China
| | - Xuedong Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou 215009, China.
| |
Collapse
|
15
|
Li J, Wang T, Liang E. Carbon and hydrogen isotopic evidence for atrazine degradation by electro-activated persulfate: Radical contributions and comparisons with heat-activated persulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122892. [PMID: 37952922 DOI: 10.1016/j.envpol.2023.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
The activation ways of persulfate (PS) were dominate for pollutant degradation and energy consumption. For the first time, this research compared electro-activated PS and heat-activated PS from the perspective of isotope fractionation, in order to "fingerprinted" and precisely interpretate reaction contributions and degradation pathways. As results, PS can be electrochemically activated with atrazine (ATZ) removal rates of 84.8% and 88.8% at pH 4 and 7. The two-dimensional isotope plots (ɅC/H) values were 6.20 at pH 4 and 7.46 at pH 7, rather different from that of SO4·- -dominated process with ɅC/H value of -4.80 at pH 4 and -23.0 at pH 7, suggesting the weak contribution of SO4·-. ATZ degradation by electro-activated PS was controlled by direct electron transfer (DET) and ·OH radical, and ·OHPS (derived from PS activation) played the crucial role with contributing rate of 63.2%-69.1%, while DET and ·OHBDD (derived from electrolysis of H2O) contributed to 4.5-7.9% and 23.0%-30.8%, respectively. This was different from heat activation of PS, of which the latter was dominated by SO4·- with contributions of 83.9%-100%. The discrepant dominating reactive oxygen species should be responsible for their different degradation capabilities and pathways. This research provided isotopic interpretations for differences of PS activation mode, and further efforts can be made to realize the selective degradation by enhancing the specific reaction process.
Collapse
Affiliation(s)
- Jie Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ting Wang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
16
|
Qu G, Jia P, Tang S, Pervez MN, Pang Y, Li B, Cao C, Zhao Y. Enhanced peroxymonosulfate activation via heteroatomic doping defects of pyridinic and pyrrolic N in 2D N‑doped carbon nanosheets for BPA degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132626. [PMID: 37769450 DOI: 10.1016/j.jhazmat.2023.132626] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
Understanding the role of intrinsic defects and nonmetallic heteroatom doping defects in activating peroxymonosulfate (PMS) and subsequently degrading endocrine-disrupting compounds is crucial for designing more efficient carbon catalysts. Therefore, we synthesized N-rich carbon nanosheets (NCs) through pyrolysis of a glutamic acid and melamine mixture and utilized them to activate PMS for bisphenol A (BPA) degradation. Different weight ratios of the above mixtures were allowed for manipulating NCs' defect level and N configuration. The reaction rate constant (k) was significantly positively correlated with the pyridinic and pyrrolic N content, and negatively and weakly positively correlated with graphite N and intrinsic defects, respectively. These findings suggest pyridinic and pyrrolic N, rather than graphitic N and intrinsic defects, enhance PMS activation to generate reactive oxygen species (specifically O•-2 and 1O2) and oxidize BPA. The NC-activated PMS system with the highest N content (17.9 atom%) demonstrated a remarkably high k (0.127 min-1) using minimal concentrations of PMS (0.4 mM) and NC (0.15 g/L), highlighting the system's efficiency. Excess halide anions led to significantly increased k with only a limited formation of trichloromethane (disinfection byproducts) in presence of 100 mM Cl-. This study offers novel perspectives on identifying catalytic sites within N-doped carbonaceous materials.
Collapse
Affiliation(s)
- Guojuan Qu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Jia
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Sea-Area Management Technology (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuai Tang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Yixiong Pang
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Bin Li
- Guangdong AWS Environment Technologies Ltd, GuangDong Province, 511400, China
| | - Chengjin Cao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area of Ministry of Natural Resources, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, Institute of Eco-Chongming and School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
17
|
Wang Z, Jia X, Sun W, Wang J, Li C, Zhao Q, Li Y, Tian S. Persulfate-based remediation of organic-contaminated soil: Insight into the impacts of natural iron ions and humic acids with complexation/redox functionality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167177. [PMID: 37730037 DOI: 10.1016/j.scitotenv.2023.167177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/19/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
The use of persulfate (PDS) for in-situ chemical oxidation of organic contaminants in soils has garnered significant interest. However, the presence of naturally occurring iron-containing substances and humic acid (HA) in environmental compartments can potentially influence the effectiveness of soil remediation. Thus, this study aimed to investigate the role of key functional groups (adjacent phenolic hydroxyl (Ar-OH) and carboxyl groups (-COOH)) in HA that interact with iron. Modified HAs were used to confirm the significance of these moieties in iron interaction. Additionally, the mechanism by which specific functional groups affect Fe complexation and redox was explored through contaminant degradation experiments, pH-dependent investigations, HA by-products analysis, and theoretical calculations using six specific hydroxybenzoic acids as HA model compounds. The results showed a strong positive correlation between accessible Ar-OH and -COOH groups and Fe3+/Fe2+ redox. This was attributed to HA undergoing a conversion process to a semiquinone-containing radical form, followed by a quinone-containing intermediate, while Fe3+ acted as an electron shuttle between HA and PDS, with Fe3+ leaching facilitated by generated H+ ions. Although the stability of HA-Fe3+ complexes with -COOH as the primary binding sites was slightly higher at neutral/alkaline conditions compared to acidic conditions, the buffering properties of the soil and acidification of the PDS solution played a greater role in determining the Ar-OH groups as the primary binding site in most cases. Therefore, the availability of Ar-OH groups on HA created a trade-off between accelerated Fe3+/Fe2+ redox and quenching reactions. Appropriate HA and iron contents were found to favor PDS activation, while excessive HA could lead to intense competition for reactive oxygen species (ROS), inhibiting pollutant degradation in soil. The findings provide valuable insights into the interaction of HA and Fe-containing substances in persulfate oxidation, offering useful information for the development of in-situ remediation strategies for organic-contaminated soil.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Xiaolei Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Wei Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Jianfei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, China
| |
Collapse
|
18
|
Li J, Chen A, Meng Q, Xue H, Yuan B. A Novel Spectrophotometric Method for Determination of Percarbonate by Using N, N-Diethyl-P-Phenylenediamine as an Indicator and Its Application in Activated Percarbonate Degradation of Ibuprofen. Molecules 2023; 28:7732. [PMID: 38067463 PMCID: PMC10708432 DOI: 10.3390/molecules28237732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Sodium percarbonate (SPC) concentration can be determined spectrophotometrically by using N, N-diethyl-p-phenylenediamine (DPD) as an indicator for the first time. The ultraviolet-visible spectrophotometry absorbance of DPD•+ measured at 551 nm was used to indicate SPC concentration. The method had good linearity (R2 = 0.9995) under the optimized experimental conditions (pH value = 3.50, DPD = 4 mM, Fe2+ = 0.5 mM, and t = 4 min) when the concentration of SPC was in the range of 0-50 μM. The blank spiked recovery of SPC was 95-105%. The detection limit and quantitative limit were 0.7-1.0 μM and 2.5-3.3 μM, respectively. The absorbance values of DPD•+ remained stable within 4-20 min. The method was tolerant to natural water matrix and low concentration of hydroxylamine (<0.8 mM). The reaction stoichiometric efficiency of SPC-based advanced oxidation processes in the degradation of ibuprofen was assessed by the utilization rate of SPC. The DPD and the wastewater from the reaction were non-toxic to Escherichia coli. Therefore, the novel Fe2+/SPC-DPD spectrophotometry proposed in this work can be used for accurate and safe measurement of SPC in water.
Collapse
Affiliation(s)
| | | | | | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (J.L.); (A.C.); (Q.M.); (B.Y.)
| | | |
Collapse
|
19
|
Qi X, Rao D, Zhang J, Sun B. The altered treatment efficiency of the bisulfite/permanganate process by chloride. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132173. [PMID: 37531765 DOI: 10.1016/j.jhazmat.2023.132173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Bisulfite-activated permanganate (S(IV)/Mn(VII)) process has proven to be a promising method for rapidly degrading micropollutants. Previous studies have shown that the treatment efficiency of the S(IV)/Mn(VII) process suffer from significant water matrix effects while the mechanism still remains unclear. This study systematically investigates the influence of chloride, which is a common water constituent, on the S(IV)/Mn(VII) process. Addition of chloride decreased the removal of methyl phenyl sulfoxide, phenol, benzoic acid and carbamazepine by the S(IV)/Mn(VII) process but increased dimethoxybenzene removal. The distribution of reactive species in the S(IV)/Mn(VII) process in the absence and presence of chloride was determined with relative rate method. The S(IV)/Mn(VII) process primarily relies on SO4•- and reactive manganese species (RMnS) for pollutant abatement while dosing chloride decreased the concentration of these reactive species. Reactive chlorine species (RCS), such as Cl2•- and ClO•, are formed through the reaction of SO4•- with chloride, and become more important at high concentrations of chloride. RMnS includes Mn(VI), Mn(V) and Mn(III), but none of these species are capable of oxidizing chloride. However, chloride retarded the consumption of bisulfite which reduced RMnS and RCS in turn. DOM inhibited pollutant removal by the S(IV)/Mn(VII) process while the impact mechanism was significantly altered by chloride. Additionally, the study observed a synergistic inhibition of DOM and chloride on the degradation of pollutants that are highly reactive towards Cl2•- and ClO•.
Collapse
Affiliation(s)
- Xianhu Qi
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Dandan Rao
- Department of Chemical & Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
20
|
Queral-Beltran A, Marín-García M, Lacorte S, Tauler R. UV-Vis absorption spectrophotometry and LC-DAD-MS-ESI(+)-ESI(-) coupled to chemometrics analysis of the monitoring of sulfamethoxazole degradation by chlorination, photodegradation, and chlorination/photodegradation. Anal Chim Acta 2023; 1276:341563. [PMID: 37573101 DOI: 10.1016/j.aca.2023.341563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 06/25/2023] [Indexed: 08/14/2023]
Abstract
Sulfamethoxazole (SMX) is one of the most widely used antibiotics worldwide and has been detected at high concentrations in wastewater treatment plant effluents and river waters. In this study, the SMX degradation process combining the simultaneous chlorine oxidation and UV photodegradation is assessed and compared with both photodegradation and chlorine oxidation processes individually. Photodegradation and Chlorine/UV tests were performed using Suntest CPS equipment. Different experimental techniques, including UV-Visible spectrophotometry and liquid chromatography coupled to a diode array detector and positive and negative ionization mass spectrometry (LC-DAD-MS-ESI(+)-ESI(-)), were used to evaluate the degradation reaction of SMX. All the analytical data generated have been processed with the Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) method to monitor, resolve, and identify the several transformation products generated during the studied degradation processes. A new data fusion analysis strategy is proposed to examine the three processes simultaneously (with only photodegradation, only chlorination, and simultaneous chlorination+photodegradation). Combined with the analysis of different analytical techniques individually (spectrophotometry, LC-DAD, and LC-MS), the fusion of all generated data improved the description of the degradation processes. Detection using DAD allowed a better correspondence among the species monitored spectrophotometrically (UV-Vis) with those analyzed chromatographically. On the other side, detection using MS in both positive and negative acquisition modes allowed resolving a larger number of chemical compounds (specially SMX degradation subproducts) that could not be detected by UV-Vis spectrometry. The results obtained permitted the comparison of the effects produced by the three different degradation processes.
Collapse
Affiliation(s)
- Aina Queral-Beltran
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| | - Marc Marín-García
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain; Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain.
| |
Collapse
|
21
|
Tian N, Madani Z, Giannakis S, Isari AA, Arjmand M, Hasanvandian F, Noorisepehr M, Kakavandi B. Peroxymonosulfate assisted pesticide breakdown: Unveiling the potential of a novel S-scheme ZnO@CoFe 2O 4 photo-catalyst, anchored on activated carbon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122059. [PMID: 37390913 DOI: 10.1016/j.envpol.2023.122059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
A ternary hetero-junction was prepared by anchoring ZnO@CoFe2O4 (ZCF) on activated carbon (AC) and employed as a UV-assisted peroxymonosulfate (PMS) activator to boost the degradation of diazinon (DZN) pesticide. The structure, morphology, and optical properties of the ZCFAC hetero-junction were characterized through a series of techniques. The highest degradation efficiency of DZN (100% in 90 min) was achieved by the PMS-mediated ZCFAC/UV system, superior to other single or binary catalytic systems due to the strong synergistic effect between ZCFAC, PMS, and UV. The operating reaction conditions, synergistic effects, and the possible pathways of DZN degradation were investigated and discussed. Optical analysis showed that the band-gap energy of the ZCFAC hetero-junction not only enhanced the absorption of UV light but also reduced the recombination of photo-induced electron/hole pairs. Both radical and non-radical species (HO•, SO4•-, O2•-, 1O2, and h+) took part in the photo-degradation of DZN, assessed by scavenging tests. It was found that AC as a carrier not only improved the catalytic activity of CF and ZnO nanoparticles and conferred high stability for the catalyst but also played a crucial role in accelerating the catalytic PMS activation mechanism. Moreover, the PMS-mediated ZCFAC/UV system showed good reusability, universality, and practical applicability potential. Overall, this work explored an efficient strategy for the best use of hetero-structure photo-catalysts towards PMS activation to achieve high performance in decontaminating organic compounds.
Collapse
Affiliation(s)
- Na Tian
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, C/ Profesor Aranguren, S/n, ES-28040, Madrid, Spain
| | - Zahra Madani
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, C/ Profesor Aranguren, S/n, ES-28040, Madrid, Spain
| | - Ali Akbar Isari
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Farzad Hasanvandian
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Noorisepehr
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
22
|
Qu J, Li Z, Bi F, Zhang X, Zhang B, Li K, Wang S, Sun M, Ma J, Zhang Y. A multiple Kirkendall strategy for converting nanosized zero-valent iron to highly active Fenton-like catalyst for organics degradation. Proc Natl Acad Sci U S A 2023; 120:e2304552120. [PMID: 37725641 PMCID: PMC10523465 DOI: 10.1073/pnas.2304552120] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Nanosized zero-valent iron (nZVI) is a promising persulfate (PS) activator, however, its structurally dense oxide shell seriously inhibited electrons transfer for O-O bond cleavage of PS. Herein, we introduced sulfidation and phosphorus-doped biochar for breaking the pristine oxide shell with formation of FeS and FePO4-containing mixed shell. In this case, the faster diffusion rate of iron atoms compared to shell components triggered multiple Kirkendall effects, causing inward fluxion of vacancies with further coalescing into radial nanocracks. Exemplified by trichloroethylene (TCE) removal, such a unique "lemon-slice-like" nanocrack structure favored fast outward transfer of electrons and ferrous ions across the mixed shell to PS activation for high-efficient generation and utilization of reactive species, as evidenced by effective dechlorination (90.6%) and mineralization (85.4%) of TCE. [Formula: see text] contributed most to TCE decomposition, moreover, the SnZVI@PBC gradually became electron-deficient and thus extracted electrons from TCE with achieving nonradical-based degradation. Compared to nZVI/PS process, the SnZVI@PBC/PS system could significantly reduce catalyst dosage (87.5%) and PS amount (68.8%) to achieve nearly complete TCE degradation, and was anti-interference, stable, and pH-universal. This study advanced mechanistic understandings of multiple Kirkendall effects-triggered nanocrack formation on nZVI with corresponding rational design of Fenton-like catalysts for organics degradation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhuoran Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiubo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Kaige Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingze Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
23
|
Wu G, Wang J, Wan Q, Cao S, Huang T, Lu J, Ma J, Wen G. Kinetics and mechanism of sulfate radical-and hydroxyl radical-induced disinfection of bacteria and fungal spores by transition metal ions-activated peroxymonosulfate. WATER RESEARCH 2023; 243:120378. [PMID: 37482005 DOI: 10.1016/j.watres.2023.120378] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Peroxymonosulfate(PMS)-based advanced oxidation process have been recognized as efficient disinfection processes. This study comprehensively investigated the role of sulfate radical (SO4•-) and hydroxyl radical (•OH)-driven disinfection of bacteria and fungal spores by the PMS/metals ions (Me(II)) systems and modeled the CT value based on the relationship between survival and ∫[Radical]dt, with the aim to provide an accurate and quantitative kinetic data of inactivation processes. The results indicated that •OH played a more central role than SO4•- in the inactivation process, and bacteria were more vulnerable to radical attack than fungal spores due to the differences in antioxidant mechanisms and external structures. The k value of •OH -induced inactivation of E. coli was approximately 3-fold higher than that of A. niger, and the shoulder length of •OH -induced inactivation of E. coli was closely 52-fold shorter than that of A. niger after treated with the PMS/Co(II) system. The morphological and biochemical changes revealed that PMS/Me(II) treatment caused membrane damage, intracellular ROS accumulation and esterase activity loss in microorganisms. This study significantly improved the understanding of the contribution of radicals in the process of microbial inactivation by PMS/Me(II) and would provide important implications for the further development of technologies to cope with the highly resistant fungal spores in drinking water.
Collapse
Affiliation(s)
- Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinsuo Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
24
|
Xue H, Li J, Zhang G, Li M, Liu B, Kang C. Hydroxyl radical dominated ibuprofen degradation by UV/percarbonate process: Response surface methodology optimization, toxicity, and cost evaluation. CHEMOSPHERE 2023; 329:138681. [PMID: 37059198 DOI: 10.1016/j.chemosphere.2023.138681] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Ibuprofen (IBP) is a typical nonsteroidal anti-inflammatory drug with a wide range of applications, large dosages, and environmental durability. Therefore, ultraviolet-activated sodium percarbonate (UV/SPC) technology was developed for IBP degradation. The results showed that IBP could be efficiently removed using UV/SPC. The IBP degradation was enhanced with prolonged UV irradiation time, with the decreasing IBP concentration and the increasing SPC dosage. The UV/SPC degradation of IBP was highly adaptable to pH ranging from 4.05 to 8.03. The degradation rate of IBP reached 100% within 30 min. The optimal experimental conditions for IBP degradation were further optimized using response surface methodology. IBP degradation rate reached 97.3% under the optimal experimental conditions: 5 μM of IBP, 40 μM of SPC, 7.60 pH, and UV irradiation for 20 min. Humic acid, fulvic acid, inorganic anions, and natural water matrix inhibited the IBP degradation to varying degrees. Scavenging experiments of reactive oxygen species indicated that hydroxyl radical played a major role in the UV/SPC degradation of IBP, while carbonate radical played a minor role. Six IBP degradation intermediates were detected, and hydroxylation and decarboxylation were proposed as the primary degradation pathways. An acute toxicity test, based on the inhibition of luminescence in Vibrio fischeri, indicated that the toxicity of IBP during UV/SPC degradation decreased by 11%. An electrical energy per order value of 3.57 kWh m-3 indicated that the UV/SPC process was cost-effective in IBP decomposition. These results provide new insights into the degradation performance and mechanisms of the UV/SPC process, which can potentially be used for practical water treatment in the future.
Collapse
Affiliation(s)
- Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Jinying Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Genbao Zhang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China; Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China.
| | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
25
|
Wang ZW, Xiao MY, Tang JF, Li MQ, Yin XY, Wang T, Zhu YZ, Pang DW, Wang HF. Surface engineering of Al 2O 3 nanotubes by ureasolysis method for activating persulfate degradation of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131844. [PMID: 37327612 DOI: 10.1016/j.jhazmat.2023.131844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Though ecofriendly, pure Al2O3 has never been used for activation of peroxodisulfate (PDS) to degrade pollutants. We report the fabrication of Al2O3 nanotubes by ureasolysis method for efficient activating PDS degradation of antibiotics. The fast ureasolysis in aqueous AlCl3 solution produces NH4Al(OH)2CO3 nanotubes, which are calcined to porous Al2O3 nanotubes, and the release of ammonia and carbon dioxide engineers the surface features of large surface area, numerous acidic-basic sites and suitable Zeta potentials. The synergy of these features facilitates the adsorption of the typical antibiotics ciprofloxacin and PDS activation, which is proved by experiment results and density functional theory simulation. The proposed Al2O3 nanotubes can catalyze 92-96% degradation of 10 ppm ciprofloxacin within 40 min, with chemical oxygen demand removal of 65-66% in aqueous, and 40-47% in whole including aqueous and catalysts. Ciprofloxacin at high concentration, other fluoroquinolones and tetracycline can also be effectively degraded. These data demonstrate the Al2O3 nanotubes prepared by the nature-inspired ureasolysis method has unique features and great potentials for antibiotics degradation.
Collapse
Affiliation(s)
- Zheng-Wu Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mei-Yun Xiao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun-Feng Tang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Qian Li
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xia-Yin Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Zhou Zhu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China; State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Dai-Wen Pang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China.
| |
Collapse
|
26
|
Qiu J, Wang J, Ren M, Yang X, Zhang J, Zhang X, Cao H, Xie Y. Comprehensive effect of water matrix on catalytic ozonation of chloride contained saline wastewater. WATER RESEARCH 2023; 234:119827. [PMID: 36889089 DOI: 10.1016/j.watres.2023.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chloride ion (Cl-) is one of the most common anions in wastewater and saline wastewater, but its elusive effects on organics degradation are not clear yet in many cases. In this paper, the effect of Cl- on organic compounds degradation is intensively studied in catalytic ozonation of different water matrix. It was found that the effect of Cl- is almost completely reflected by transforming ·OH to reactive chlorine species (RCS), which is simultaneously competitive with organics degradation. The competition between organics and Cl- for ·OH directly determines the ratio of their consumption rate of ·OH, which depends on their concentration and reactivity with ·OH. Especially, the concentration of organics and solution pH may change greatly during organics degradation process, which will correspondingly influence the transformation rate of ·OH to RCS. Therefore, the effect of Cl- on organics degradation is not immutable, and may dynamically change. As the reaction product between Cl- and ·OH, RCS was also expected to affect the degradation of organics. But we found that Cl· had no significant contribution to the degradation of organics in catalytic ozonation, which may due to its reaction with ozone. Catalytic ozonation of a series of benzoic acid (BA) with different substituents in chloride contained wastewater was also investigated, and the results showed that the electron-donating substituents can weaken the inhibition of Cl- on BAs degradation, because they increase the reactivity of organics with ·OH, O3 and RCS.
Collapse
Affiliation(s)
- Jiakai Qiu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua, 617000, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Chemistry & Chemical Engineering Data Center, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Wang
- Chemistry & Chemical Engineering Data Center, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingzhu Ren
- Chemistry & Chemical Engineering Data Center, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jianbo Zhang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua, 617000, China
| | - Xiaolong Zhang
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua, 617000, China
| | - Hongbin Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Chemistry & Chemical Engineering Data Center, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongbing Xie
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua, 617000, China; Chemistry & Chemical Engineering Data Center, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
27
|
Zhao C, Liang L, Shi Q, Xia H, Li C, Ma J. Effective degradation of tetracycline via recyclable free-standing three-dimensional copper-based graphene as a persulfate catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62410-62421. [PMID: 36941523 DOI: 10.1007/s11356-023-26407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/07/2023] [Indexed: 05/10/2023]
Abstract
Water pollution by antibiotics is a serious and growing problem. Given this challenge, a free-standing three-dimensional (3D) reduced graphene oxide foam supported copper oxide nanoparticles (3D-rGO-CuxO) was synthesized using GO as a precursor and applied as an efficient persulfate activator for tetracycline (TC) degradation. The influences of CuxO mass, solution pH, persulfate dosage, and common anions on the TC degradation were investigated in detail. Analytical techniques indicated that the 3D-rGO-CuxO showed a cross-linking three-dimensional network structure, and CuxO particles with irregular shapes were uniformly loaded on graphene pore walls. The XPS and Auger spectra of Cu confirmed that Cu2O was the main component in solid copper compounds. The addition of CuxO was vitally important for the activation of the oxidation system, and the removal rate reached 98% with a CuxO load of 7:1. The pH showed little influence on the activation effect on TC degradation. For common anions, Cl- and CO32- had little influence on the system, while humic acid had a great inhibitory effect. The EPR test and quenching experiment revealed that the active substances in the oxidative degradation process mainly include SO4-·, ·OH, 1O2, and reactive Cu(III). Additionally, the 3D-rGO-CuxO material proved highly stable according to the replicated test results and was promising for the remediation of antibiotic-contaminated water.
Collapse
Affiliation(s)
- Chuanqi Zhao
- School of Materials and Environment, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology For Carbon Neutralization, Guangxi Minzu University, Guangxi Nanning, 530006, China.
| | - Liying Liang
- School of Materials and Environment, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology For Carbon Neutralization, Guangxi Minzu University, Guangxi Nanning, 530006, China
| | - Qin Shi
- School of Materials and Environment, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and New Technology For Carbon Neutralization, Guangxi Minzu University, Guangxi Nanning, 530006, China
| | - Hui Xia
- Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, CAGS, Zhengzhou, 450006, China
| | - Chaofan Li
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Junguan Ma
- School of Artificial Intelligence, Shenyang University of Technology, Shenyang, 110870, China
| |
Collapse
|
28
|
Yang SQ, Liu ZQ, Cui YH, Wang MK. Organics abatement and recovery from wastewater by a polymerization-based electrochemically assisted persulfate process: Promotion effect of chloride ion and its mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130658. [PMID: 36580777 DOI: 10.1016/j.jhazmat.2022.130658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Ubiquitous chloride ion (Cl-) in wastewaters usually inhibits the degradation of organic contaminants and generates numerous toxic chlorinated products in conventional degradation-based advanced oxidation processes (AOPs). Herein, a more Cl- tolerant polymerization-based electrochemical AOP for organic contaminants abatement and simultaneous organic resource recovery was demonstrated with eight typical organic contaminants and two real industrial wastewaters for the first time. This process can significantly promote dissolved organic carbon (DOC) abatement in the presence of Cl-, differing greatly from conventional degradation-based processes. Compared to sulfate radical (SO4•-) (or hydroxyl radical (HO•)), dichloride radical (Cl2•-) derived from Cl- has moderate reactivity towards most contaminants, which facilitates the organics polymerization as it ensures the formation of polymerizable organic radicals while inhibiting their excessive degradation. Thus, high DOC abatement (over 75 %) and high organic resource recovery ratio (48-79 % separable organic-polymer yield) can be achieved for most contaminants. Both soluble chlorinated compounds and solid chlorinated polymers are formed in the presence of Cl-. The chlorinated products (e.g. chlorophenols) can be polymerized as new monomers, thus the concentration of dissolved organic chlorinated products is much lower than that in conventional degradation-based process. The tolerance of the present process to Cl- is tested in real coking wastewaters, and exceeding 60 % of the abated chemical oxygen demand (COD) is obtained in the form of recoverable organic-polymers.
Collapse
Affiliation(s)
- Sui-Qin Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China.
| | - Ming-Kui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, PR China
| |
Collapse
|
29
|
Xu B, Deng L, Zhang S, Luo W, Hu J, Tan C, Singh RP. Analysis of degradation kinetic modeling and mechanism of chlorinated-halonitromethanes under UV/monochloramine treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120972. [PMID: 36584856 DOI: 10.1016/j.envpol.2022.120972] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated-halonitromethanes (Cl-HNMs) including chloronitromethane (CNM), dichloronitromethane (DCNM), and trichloronitromethane (TCNM) are nitrogenous disinfection by-products, which have high cytotoxicity and genotoxicity to human. This study aimed to investigate the degradation kinetic modeling and mechanism of Cl-HNMs under monochloramine activated by ultraviolet of 254 nm (UV/NH2Cl) treatment. The first-principle kinetic model of UV/NH2Cl process was developed to simulate Cl-HNMs degradation. Of note, the second-order rate constants of Cl-HNMs reacting with HO• (∼108 M-1 s-1), Cl• (kCl•,CNM or DCNM = ∼1010 M-1 s-1, kCl•,TCNM = ∼102 M-1 s-1), Cl2•- (kCl•,CNM or DCNM = ∼109 M-1 s-1, kCl•,TCNM = ∼101 M-1 s-1), ClO• (∼105-106 M-1 s-1) and CO3•- (∼106-107 M-1 s-1) were obtained by the first-principle kinetic model. Overall, Cl-HNMs degradation under UV/NH2Cl treatment was successfully predicted by the kinetic model under various conditions. It was found that UV (>60%) was dominant in Cl-HNMs degradation, followed by HO• (3.8%-24.5%), reactive chlorine species (RCS, 0.9%-28.8%) and CO3•- (0-26.1%). Among the contributions of RCS, Cl• and Cl2•- were main radicals in the degradation of CNM and DCNM, while ClO• was responsible for the abatement of TCNM. The minimum EE/O values under UV/NH2Cl treatment were approximately 30% lower than those under UV treatment. Finally, the possible degradation pathways were proposed, including hemolytic/heterolytic cleavage of Cl-HNMs by UV irradiation, hydrogen abstraction/electron transfer of CNM and DCNM and adduct reaction of TCNM by free radicals. This study based on the kinetic model is beneficial to predict and control the concentrations of Cl-HNMs under UV/NH2Cl treatment.
Collapse
Affiliation(s)
- Bohui Xu
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China.
| | - Shizheng Zhang
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Luo
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing, 211189, China
| | | |
Collapse
|
30
|
Saha P, Zhou C, Moradi M, Rijnaarts HH, Bruning H. Heat-activated peroxydisulfate and peroxymonosulfate-mediated degradation of benzotriazole: Effects of chloride on kinetics, pathways and transformation product toxicity. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
31
|
Jin X, Yao S, Liu Y, Tang J, Zhu M, Liu H, Yu Y, Yu X, Sun J. Photocatalysis of carbamazepine via activating bisulfite by ultraviolet: Performance, transformation mechanism, and residual toxicity assessment of intermediates products. CHEMOSPHERE 2023; 315:137741. [PMID: 36610515 DOI: 10.1016/j.chemosphere.2023.137741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Carbamazepine (CBZ) as an extensively distributed emerging pollutant has menaced ecological security. The degradation performance of CBZ by UV driven bisulfite process was investigated in this work. The kinetics results indicated that CBZ was high-efficiently degraded by UV/bisulfite following a pseudo first-order kinetic model (Kobs = 0.0925 min-1). SO4•- and •OH were verified as the reactive oxidants by EPR test and the radicals scavenging experiment using MeOH and TBA. SO4•- played a dominant role for CBZ degradation. The Density functional theory (DFT) and LC-qTOF-MS/MS clarified that hydroxylation, ketonation, ring opening reaction, and ring contraction were main transformation patterns of CBZ. As to influence factors, CBZ degradation was significantly hindered in presence of CO32-, HPO42- and NOM. Toxicological analysis derived from metabonomics suggested that the remarkable alteration of metabolic profile was triggered by exposure to intermediates mixture. CBZ intermediates interfered in several key metabolic pathways, including pentose phosphate, amino acids, lysine degradation, glycerophospholipid, glutathione, nucleotides and carbohydrate, which was alleviated after UV/bisulfite treatment. This work provided a meaningful support to potential risk of CBZ intermediates products, which shed light on the future application in eliminating drugs using UV /bisulfite.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
32
|
Gong Z, Wang J, Shao S, Fan B, Shi Y, Qian L, Lu K, Gao S. H2O2 activation over Cu-Schiff bases nanozyme for the removal of amlodipine: Kinetics, mechanism and toxicity evaluation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Yang B, Luo Q, Li Q, Jia R, Liu Y, Huang X, Zhou M, Li L. Dye mineralization under UV/H 2O 2 promoted by chloride ion at high concentration and the generation of chlorinated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159453. [PMID: 36252669 DOI: 10.1016/j.scitotenv.2022.159453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Chloride ion (Cl-) may promote or inhibit the oxidation of specific organic compounds treated by hydroxyl radical based advanced oxidation processes (HR-AOPs) depending on the reactivity of chlorine radicals towards the organics. However, the effects of high contents of Cl- on the removal of total organic compounds (TOC) in high salinity organic wastewater treated by HR-AOPs were unclear. The removal and mineralization of azo dye Orange II (OrgII) by UV/H2O2 process with Cl- at high contents under various pH conditions were investigated. As the pH conditions increased higher than pH 5, TOC removal rates increased slightly possibly related to the increase of O2- production and the reduce of futile decomposition of H2O2 into O2. Cl- at relative high concentration (1000 and 2000 mM) significantly promoted the mineralization of dyes with TOC removal increasing by 10 %-40 % under both acid and alkaline conditions. The proposed mechanism is that the reaction of Cl- with OH would decline the decomposition of H2O2 into O2 by inhibiting the reaction between OH and H2O2, and the generated chlorine species (Cl and Cl2-) could further promote the oxidation of dye molecules into intermediates and be helpful for the subsequent mineralization process. In addition, H2O2 and Cl- can slowly react to give HClO and ClO-, which may partly contribute to the decolorization and mineralization of OrgII. Meanwhile, an appropriate relative proportion between Cl2- and OH depending on Cl- contents and pH conditions is important to enhance the TOC removal. However, the formation of various chlorinated byproducts especially under alkaline condition may increase the risk of environmental pollution accidents. The results demonstrate the promotion of TOC removal by UV/H2O2 under certain high contents of Cl- and provide new insight into the application of HR-AOPs to the pretreatment of high salinity organic wastewater.
Collapse
Affiliation(s)
- Bing Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Institute of Industrial Hazardous Waste Disposal and Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, China.
| | - Qiuping Luo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Qinman Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Rong Jia
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China, Ministry of Education, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China; Institute of Industrial Hazardous Waste Disposal and Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Xiangfu Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Mi Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
| | - Lingli Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China.
| |
Collapse
|
34
|
Chen Y, Shi R, Luo H, Zhang R, Hu Y, Xie H, Zhu NM. Alkali-catalyzed hydrothermal oxidation treatment of triclosan in soil: Mechanism, degradation pathway and toxicity evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159187. [PMID: 36202363 DOI: 10.1016/j.scitotenv.2022.159187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The continuous accumulation of chlorinated organic pollutants in soil poses a potential threat to ecosystems and human health alike. Alkali-catalyzed hydrothermal oxidation (HTO) can successfully remove chlorinated organic pollutants from water, but it is rarely applied to soil remediation. In this work, we assessed this technique to degrade and detoxify triclosan (TCS) in soil and we determined the underlying mechanisms. The results showed a dechlorination efficiency of TCS (100 mg per kg soil) of 49.03 % after 120 min reaction (H2O2/soil ratio 25 mL·g-1, reaction temperature 180 °C in presence of 1 g·L-1 NaOH). It was found that soil organic constituents (humic acid, HA) and inorganic minerals (SiO2, Al2O3, and CaCO3) suppressed the dechlorination degradation of TCS, with HA having the strongest inhibitory effect. During alkali-catalyzed HTO, the TCS molecules were effectively destroyed and humic acid-like or fulvic acid-like organics with oxygen functional groups were generated. Fluorescence spectroscopy analysis showed that hydroxyl radicals (OH) were the dominant reactive species of TCS degradation in soil. On the basis of the Fukui function and the degradation intermediates, two degradation pathways were proposed. One started with cleavage of the ether bond between the benzene rings of TCS, followed by dechlorination and the opening of benzene via oxidation. The other pathway started with direct hydroxylation of the benzene rings of TCS, after which they were opened and dechlorinated through oxidation. Analysis of the soil structure before and after treatment revealed that the soil surface changed from rough to smooth without affecting soil surface elements. Finally, biotoxicity tests proved that alkali-catalyzed HTO effectively reduced the toxicity of TCS-contaminated soil. This study suggests that alkali-catalyzed hydrothermal oxidation provides an environmentally friendly approach for the treatment of soil contaminated with chlorinated organics such as TCS.
Collapse
Affiliation(s)
- Yushuang Chen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Rui Shi
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| | - Hongjun Luo
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Rong Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yafei Hu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou 310003, China
| | - Neng-Min Zhu
- Biogas Institute of Ministry of Agriculture, Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
| |
Collapse
|
35
|
Chen Y, Cui K, Liu T, Cui M, Ding Y, Chen Y, Chen X, Li WW, Li CX. Enhanced degradation of sulfamethoxazole by non-radical-dominated peroxymonosulfate activation with Co/Zn co-doped carbonaceous catalyst: Synergy between Co and Zn. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158055. [PMID: 35973542 DOI: 10.1016/j.scitotenv.2022.158055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Bimetallic catalysts are often used for peroxymonosulfate (PMS) activation in recent years due to the synergistic effects between two different metal species. However, the synergy between Zn and other transition metal in PMS activation are rarely studied because of the ease of evaporation of Zn species at high temperature. In this work, a Co/Zn co-doped carbonaceous catalyst derived from ZIF-67@ZIF-8 (Z67@8D) was prepared successfully by the core-shell replacement strategy, and used to activate PMS for sulfamethoxazole (SMX) degradation. Due to the co-existence of Co/Zn species (e.g., Co/Zn-N site), Z67@8D showed a much higher catalytic activity than that of Z8D, Z67D, and several commercial oxides. Importantly, the CoZn synergy was deeply revealed by combining experiments and density functional theory (DFT) calculations, in which Zn could adjust the electron distribution of Co, reducing the PMS adsorption energy and thus enhancing PMS decomposition and singlet oxygen (1O2) formation. Moreover, formed ZnO and graphitic structure of Z67@8D could also promote the catalytic activity. In addition, the good stability and reusability, universal applicability, and high environmental robustness of Z67@8D were demonstrated. Our findings may provide a new insight into the Zn-based bimetallic catalysts for PMS activation and pollutant degradation.
Collapse
Affiliation(s)
- Yawen Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Tong Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Minshu Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yan Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xing Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, People's Republic of China
| | - Chen-Xuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Key Laboratory on Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
36
|
Shi KX, Qiu F, Wang JW, Wang P, Li HY, Wang CC. Sulfamethoxazole degradation via peroxydisulfate activation over WO3/MIL-100(Fe) under low power LED visible light. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Chen S, Yan C, Nie M, Wu L, Ding M, Wang P. Hydrogen sulfite promoted the activation of persulfate by μM Fe 2+ for bisphenol A degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85185-85201. [PMID: 35793023 DOI: 10.1007/s11356-022-21801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the improvement of bisphenol A (BPA) elimination through hydrogen sulfite (HS) coupling with persulfate (PS) activated by low amounts of Fe2+. Under the optimum condition (10 μM Fe2+, 0.6 mM HS, 0.8 mM PS, pH = 4.0), 100% BPA (5 μM) was removed within 15 min. Sulfate radical (SO4•-) and singlet oxygen (1O2) were confirmed as the primary active species for BPA degradation in the Fe2+/HS/PS system, and the steady-state concentration of SO4•- and 1O2 was 2.43 × 10-9 M and 1.67 × 10-9 M, respectively. Besides, FeHSO3+ and FeOHSO3H+ were the main iron species in the Fe2+/HS/PS system. The removal potency of BPA depended on the operation parameters, such as chemical reagent dosages, reaction temperature, and the solution initial pH. The impact of NO3-, SO42-, and humic acid (HA) on BPA removal was negligible, whereas Cl-, HCO3-, and HPO42- restrained BPA decomposition. Two injections of HS could improve the limitation of BPA degradation efficiency due to the rapid consumption of HS in the reaction process. The lower removal efficiency of BPA was observed in real water matrices than that in ultrapure water. Whatever, up to 58.1%, 66.3%, 68.1%, and 88.1% of BPA were removed from domestic wastewater, lake water, river water, and tap water within 10 min, respectively. In addition, the BPA degradation process was characterized by the 3D fluorescence spectra technique, which indicated the BPA oxidation intermediates also have fluorescence characteristics. Moreover, 6 intermediate products were identified, and the possible degradation pathways of BPA were proposed. Additionally, the Fe2+/HS/PS system also exerted an excellent performance for the removal of other representative organic contaminants including enrofloxacin, acid orange 7, acetaminophen, and phenol. All results indicated that the Fe2+/HS/PS system could be a promising method for organic pollutant removal.
Collapse
Affiliation(s)
- Shiyao Chen
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
- Key Laboratory of Eco-Geochemistry, Ministry of Natural Resource, Beijing, 100037, China.
| | - Leliang Wu
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Peng Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
38
|
Architecture of bimetallic-MOF/silicate derived Co/NC@mSiO2 as peroxymonosulfate activator for highly efficient ciprofloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Chen Z, Wang X, Feng H, Chen S, Niu J, Di G, Kujawski D, Crittenden JC. Electrochemical Advanced Oxidation of Perfluorooctanoic Acid: Mechanisms and Process Optimization with Kinetic Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14409-14417. [PMID: 36173643 DOI: 10.1021/acs.est.2c02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) are promising technologies for perfluorooctanoic acid (PFOA) degradation, but the mechanisms and preferred pathways for PFOA mineralization remain unknown. Herein, we proposed a plausible primary pathway for electrochemical PFOA mineralization using density functional theory (DFT) simulations and experiments. We neglected the unique effects of the anode surface and treated anodes as electron sinks only to acquire a general pathway. This was the essential first step toward fully revealing the primary pathway applicable to all anodes. Systematically exploring the roles of valence band holes (h+), hydroxyl radicals (HO•), and H2O, we found that h+, whose contribution was previously underestimated, dominated PFOA mineralization. Notably, the primary pathway did not generate short-chain perfluoroalkyl carboxylic acids (PFCAs), which were previously thought to be the main degradation intermediates, but generated other polyfluorinated alkyl substances (PFASs) that were rapidly degraded upon formation. Also, we developed a simplified kinetic model, which considered all of the main processes (mass transfer with electromigration included, surface adsorption/desorption, and oxidation on the anode surface), to simulate PFOA degradation in EAOPs. Our model can predict PFOA concentration profiles under various current densities, initial PFOA concentrations, and flow velocities.
Collapse
Affiliation(s)
- Zefang Chen
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Hualiang Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Guanglan Di
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, P. R. China
| | - David Kujawski
- Refinery Water Engineering & Associates, Hydrocarbon Processing Water & Waste Technology, Inc., 15634 Wallisville Road, Houston, Texas 77042, United States
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30308, United States
| |
Collapse
|
40
|
Jeong WG, Kim JG, Lee SM, Baek K. CaO 2-based electro-Fenton-oxidation of 1,2-dichloroethane in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157065. [PMID: 35780882 DOI: 10.1016/j.scitotenv.2022.157065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
It has been well recognized that the Fenton reaction requires a rigorous pH control and suffers from the fast self-degradation of H2O2. In an effort to resolve the technical demerits of the conventional Fenton reaction, particular concern on the use of CaO2-based Fenton reaction was paid in this study. To realize the practical use of CaO2 in the Fenton reaction for groundwater remediation, it could be of great importance to control its reaction rate in the subsurface. As such, this study laid great emphasis on the combined process of electrochemical oxidation and CaO2-based Fenton oxidation, using 1,2-dichloroethane (1,2-DCA) as a model compound. It was hypothesized that the reaction rate is also highly contingent on the formation of Fe(II) (stemmed from iron anode oxidation). Eighty percent of 1,2-DCA were degraded by the CaO2-based Fenton reaction. The final pH was neutral, inferring that the reaction could be a viable option for the subsurface environment. Moreover, the supply of electric current in an iron anode expedited 1,2-DCA degradation efficiency from 35 % to 62 % via electrically generated Fe(II), which donated electrons to H2O2, producing more hydroxyl radicals. An anode-cathode configuration from the single-well system enhanced the degradation of 1,2-DCA, with less amount of energy consumption than the double-well system. Based on results, CaO2-based electro-Fenton oxidation can remove well 1,2-DCA in groundwater and can be a strategic measure for groundwater remediation.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Su-Min Lee
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
41
|
Activation of Peracetic Acid with CuFe2O4 for Rhodamine B Degradation: Activation by Cu and the Contribution of Acetylperoxyl Radicals. Molecules 2022; 27:molecules27196385. [PMID: 36234920 PMCID: PMC9571141 DOI: 10.3390/molecules27196385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022] Open
Abstract
Advanced oxidation processes (AOPs) demonstrate great micropollutant degradation efficiency. In this study, CuFe2O4 was successfully used to activate peracetic acid (PAA) to remove Rhodamine B. Acetyl(per)oxyl radicals were the dominant species in this novel system. The addition of 2,4-hexadiene (2,4-HD) and Methanol (MeOH) significantly inhibited the degradation efficiency of Rhodamine B. The ≡Cu2+/≡Cu+ redox cycle dominated PAA activation, thereby producing organic radicals (R-O˙) including CH3C(O)O˙ and CH3C(O)OO˙, which accounted for the degradation of Rhodamine B. Increasing either the concentration of CuFe2O4 (0–100 mg/L) or PAA (10–100 mg/L) promoted the removal efficiency of this potent system. In addition, weakly acid to weakly alkali pH conditions (6–8) were suitable for pollutant removal. The addition of Humid acid (HA), HCO3−, and a small amount of Cl− (10–100 mmol·L−1) slightly inhibited the degradation of Rhodamine B. However, degradation was accelerated by the inclusion of high concentrations (200 mmol·L−1) of Cl−. After four iterations of catalyst recycling, the degradation efficiency remained stable and no additional functional group characteristic peaks were observed. Taking into consideration the reaction conditions, interfering substances, system stability, and pollutant-removal efficiency, the CuFe2O4/PAA system demonstrated great potential for the degradation of Rhodamine B.
Collapse
|
42
|
Lu X, Zhou X, Qiu W, Wang Z, Wang Y, Zhang H, Yu J, Wang D, Gu J, Ma J. Kinetics and mechanism of the reaction of hydrogen peroxide with hypochlorous acid: Implication on electrochemical water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129420. [PMID: 35816805 DOI: 10.1016/j.jhazmat.2022.129420] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Reduction of HOCl to Cl- by in-situ electrochemical synthesis or ex-situ addition of H2O2 is a feasible method to minimize Cl-DBPs and ClOx- (x = 2, 3, and 4) formation in electrochemical oxidative water treatment systems. This work has investigated the kinetics and mechanism of the reaction between H2O2 and HOCl. The kinetics study showed the species-specific second order rate constants for HOCl with H2O2 (k1), HOCl with HO2- (k2) and OCl- with H2O2 (k3) are 195.5 ± 3.3 M-1s-1, 4.0 × 107 M-1s-1 and 3.5 × 103 M-1s-1, respectively. The density functional theory calculation showed k2 is the most advantageous thermodynamically pathway because it does not need to overcome a high energy barrier. The yields of 1O2 generation from the reaction of H2O2 with HOCl were reinvestigated by using furfuryl alcohol (FFA) as a probe, and an average of 92.3% of 1O2 yields was obtained at pH 7-12. The second order rate constants of the reaction of 1O2 with 13 phenolates were determined by using the H2O2/HOCl system as a quantitative 1O2 production source. To establish a quantitative structure activity relationship, quantum chemical descriptors were more satisfactory than empirical Hammett constants. The potential implications in electrochemical oxidative water treatment were discussed at the end.
Collapse
Affiliation(s)
- Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoqun Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Yishi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
43
|
Fan X, Lin Q, Zheng J, Fu H, Xu K, Liu Y, Ma Y, He J. Peroxydisulfate activation by nano zero-valent iron graphitized carbon materials for ciprofloxacin removal: Effects and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129392. [PMID: 35732109 DOI: 10.1016/j.jhazmat.2022.129392] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the potential hazards of ciprofloxacin (CIP) to the ecosystem and human health, there has been an urgent need to develop effective technologies to solve the severe issue. In this work, the nanozero-valent iron graphitized carbon matrix (xFe@CS-Tm) were prepared via a hydrothermal method to activate peroxydisulfate (PDS) for degradation of CIP. Specifically, 0.5Fe@CS-T7 exhibited the excellent catalytic performance for PDS activation to degrade CIP. Moreover, the catalyst exhibited vigorous interference resistance at various pH values, in the presence of various inorganic anions and under humic acid conditions. The characterization results demonstrated that Fe was successfully embedded on the carbon matrix and became the active sites to promote ROS production. It is demonstrated that O2•- was the main active species rather than •OH and SO4•-, based on quench trapping, EPR experiments and steady state concentrations calculations. The possible pathways of CIP degradation were proposed using LC-MS results and density functional theory. The outcomes of the toxicity estimation software tool found that the toxicity of CIP was reduced. This study not only investigated a novel methodology for the degradation of antibiotic wastewater but also provides a feasible pathway for carbon-neutral wastewater treatment.
Collapse
Affiliation(s)
- Xindan Fan
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qintie Lin
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junli Zheng
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hengyi Fu
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, China
| | - Kehuan Xu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxin Liu
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongjie Ma
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jin He
- Guangdong Industrial Contaminated Site Remediation Technology and Equipment Engineering Research Center, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
44
|
Persulfate activation by copper tailings with hydroxylamine: efficiency, mechanism and DFT calculations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Hong AJ, Lee J, Cha Y, Zoh KD. Propiconazole degradation and its toxicity removal during UV/H 2O 2 and UV photolysis processes. CHEMOSPHERE 2022; 302:134876. [PMID: 35551935 DOI: 10.1016/j.chemosphere.2022.134876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Propiconazole (PRO) is a triazole fungicide that is frequently detected in the water. In this study, we investigated the kinetics and degradation mechanism of PRO during the UV photolysis and UV/H2O2 processes. PRO was removed by the pseudo-first-order kinetics in both processes. The removal of PRO was enhanced by increasing H2O2 concentration in the UV/H2O2 process. The highest removal under neutral conditions, and lower removal of PRO were observed in acidic and alkaline pHs in the UV/H2O2 process. The presence of natural water ingredients such as Cl-, NO3-, humic acid acted as radical scavengers, but HCO3- ion acted as both radical promoter and scavenger in the UV/H2O2 process. The transformation products (TPs) of PRO during both processes were identified using LC-QTOF/MS. Four TPs ([M+H]+ = 238, 256, 306, and 324) were identified during UV photolysis, and six TPs ([M+H]+ = 238, 256, 306, 324, 356, and 358) were identified in the UV/H2O2 process. Among the identified TPs, TP with [M+H]+ values of 356 and 358 were newly identified in the UV/H2O2 process. In addition, ionic byproducts, such as Cl-, NO3-, formate (HCOO-), and acetate (CH3COO-), were newly identified, indicating that significant mineralization was achieved in the UV/H2O2 process. Based on the identified TPs and ionic byproducts, the degradation mechanisms of PRO during two processes were proposed. The major reactions in both processes were ring cleavage and cyclization, and hydroxylation by OH radicals. The Microtox test with Vibrio fischeri showed that, while the toxicity of the reaction solution increased first, then gradually decreased during UV photolysis, the UV/H2O2 process initially increased toxicity at 10 min due to the production of TPs, but toxicity was completely removed as the reaction progressed. The results obtained in this study imply that the UV/H2O2 process is an effective treatment for eliminating PRO, its TPs, and the resulting toxicity in water.
Collapse
Affiliation(s)
- Ae-Jung Hong
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Jaewon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Youngho Cha
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
46
|
Cheng Z, Tao H, Zhang J, Wang S, Yang Y, Li J, Wu D, Ma Z. KBH4 Modification of Fe3O4 Core Shell Carbon Microspheres Promoted Persulfate Activation for Organic Contaminants degradation: Factors and Mechanism. Catal Letters 2022. [DOI: 10.1007/s10562-022-04143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Wojnárovits L, Wang J, Chu L, Takács E. Rate constants of chlorine atom reactions with organic molecules in aqueous solutions, an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55492-55513. [PMID: 35688978 PMCID: PMC9374632 DOI: 10.1007/s11356-022-20807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/10/2022] [Indexed: 05/15/2023]
Abstract
Rate constants of chlorine atom (Cl•) reactions (kCl•) determined using a large variation of experimental methods, including transient measurements, steady-state and computation techniques, were collected from the literature and were discussed together with the reaction mechanisms. The kCl• values are generally in the 108-109 mol-1 dm3 s-1 range when the basic reaction between the Cl• and the target molecule is H-atom abstraction. When Cl• addition to double bonds dominates the interaction, the kCl• values are in the 1 × 109-2 × 1010 mol-1 dm3 s-1 range. In the kCl• = 1 × 1010-4 × 1010 mol-1 dm3 s-1 range, single-electron-transfer reactions may also contribute to the mechanism. The Cl• reactions with organic molecules in many respects are similar to those of •OH, albeit Cl• seems to be less selective as •OH. However, there is an important difference, as opposed to Cl• in the case of •OH single-electron-transfer reactions have minor importance. The uncertainty of Cl• rate constant determinations is much higher than those of •OH. Since Cl• reactions play very important role in the emerging UV/chlorine water purification technology, some standardization of the rate constant measuring techniques and more kCl• measurements are recommended.
Collapse
Affiliation(s)
- László Wojnárovits
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Radiation Chemistry Department, ELKH, Budapest, Hungary
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Libing Chu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Erzsébet Takács
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, Radiation Chemistry Department, ELKH, Budapest, Hungary.
| |
Collapse
|
48
|
Activation of Bisulfite with Pyrophosphate-Complexed Mn(III) for Fast Oxidation of Organic Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159437. [PMID: 35954793 PMCID: PMC9368537 DOI: 10.3390/ijerph19159437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022]
Abstract
Aqueous complexes of Mn(III) ion with ligands exist in various aquatic systems and many stages of water treatment works, while HSO3− is a common reductant in water treatment. This study discloses that their encounter results in a process that oxidizes organic contaminants rapidly. Pyrophosphate (PP, a nonredox active ligand) was used to prepare the Mn(III) solution. An approximate 71% removal of carbamazepine (CBZ) was achieved by the Mn(III)/HSO3− process at pH 7.0 within 20 s, while negligible CBZ was degraded by Mn(III) or HSO3− alone. The reactive species responsible for pollutant abatement in the Mn(III)/HSO3− process were SO4•− and HO•. The treatment efficiency of the Mn(III)/HSO3− process is highly related to the dosage of HSO3− because HSO3− acted as both the radical scavenger and precursor. The reaction of Mn(III) with HSO3− follows second-order reaction kinetics and the second-order rate constants ranged from 7.5 × 103 to 17 M−1 s−1 under the reaction conditions of this study, suggesting that the Mn(III)/HSO3− process is an effective process for producing SO4•−. The pH and PP:Mn(III) ratio affect the reactivity of Mn(III) towards HSO3−. The water background constituents, such as Cl− and dissolved organic matter, induce considerable loss of the treatment efficiency in different ways.
Collapse
|
49
|
Sánchez-Yepes A, Santos A, Rosas JM, Rodríguez-Mirasol J, Cordero T, Lorenzo D. Regeneration of Granulated Spent Activated Carbon with 1,2,4-Trichlorobenzene Using Thermally Activated Persulfate. Ind Eng Chem Res 2022; 61:9611-9620. [PMID: 35855725 PMCID: PMC9284557 DOI: 10.1021/acs.iecr.2c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Chlorinated organic
compounds (COCs) are persistent organic pollutants
often found in groundwater near industrial sites or in industrial
wastewaters. Adsorption into activated carbon is a common strategy
to remediate these waters, but spent activated carbon results in a
toxic residue to manage. To avoid the transport of the chlorinated
compounds out of the site, the in-situ regeneration of the spent activated
carbon can be considered for reuse to implement a circular economy.
In this work, the regeneration of a commercial granular activated
carbon (GAC) has been carried out using thermally activated sodium
persulfate (TAP). GAC was previously saturated in 1,2,4-trichlorobenzene
(124-TCB) as the model compound. The initial adsorption value was
350 mg124-TCB·gGAC–1. First, the nonproductive consumption
of sodium persulfate was studied at different temperatures using nonsaturated
GAC. Then, the regeneration of the saturated GAC (5 g) was studied
by an aqueous solution (166 mM) of TAP (1 L) at a temperature range
from 20 to 80 °C. The possible recovery of the adsorption capacity
was studied after 3 h of treatment in three successive adsorption–regeneration
cycles at the selected temperature (60 °C). The physicochemical
changes of the GAC were also investigated before and after the regeneration
treatments. The results evidence the significant deposition of sulfate
on the GAC after each treatment of regeneration, which avoids the
recovery of the initial adsorption capacity. Therefore, each regeneration
cycle was necessarily followed by a washing step at 60 °C to
remove this sulfate. After that, the regeneration treatment achieved
a stable and high recovery of the initial adsorption capacity of about
48.2%.
Collapse
Affiliation(s)
- Andrés Sánchez-Yepes
- Departamento de Ingeniería Química y de Materiales, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Aurora Santos
- Departamento de Ingeniería Química y de Materiales, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Juana M. Rosas
- Departamento de Ingenierí́a Química, Universidad de Málaga, Andalucia Tech, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - José Rodríguez-Mirasol
- Departamento de Ingenierí́a Química, Universidad de Málaga, Andalucia Tech, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - Tomás Cordero
- Departamento de Ingenierí́a Química, Universidad de Málaga, Andalucia Tech, Campus de Teatinos s/n, 29010 Málaga, Spain
| | - David Lorenzo
- Departamento de Ingeniería Química y de Materiales, Universidad Complutense de Madrid, Madrid 28040, Spain
| |
Collapse
|
50
|
Zou R, Tang K, Hambly AC, Chhetri RK, Andersen HR, Zhang Y. Elimination of recalcitrant micropollutants by medium pressure UV-catalyzed bioelectrochemical advanced oxidation process: Influencing factors, transformation pathway and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154543. [PMID: 35302016 DOI: 10.1016/j.scitotenv.2022.154543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Bio-electro-Fenton (BEF) processes have been widely studied in recent years to remove recalcitrant micropollutants from wastewater. Though promising, it still faces the critical challenge of residual iron and iron sludge in the treated effluent. Thus, an innovative medium-pressure ultraviolet-catalyzed bio-electrochemical system (MUBEC), in which medium-pressure ultraviolet was employed as an alternative to iron for in-situ H2O2 activation, was developed for the removal of recalcitrant micropollutants. The influence of operating parameters, including initial catholyte pH, cathodic aeration rate, and input voltage, on the system performance, was explored. Results indicated that complete reduction of 10 mg L-1 of model micro-pollutants ibuprofen (IBU) and carbamazepine (CBZ) was achieved at pH 3, with an aeration rate of 1 mL min-1 and a voltage of 0.3 V, following pseudo-first-order kinetics. Moreover, potential transformation pathways and the associated intermediates during the degradation were deduced and detected, respectively. Thus, the MUBEC system shows the potential for the efficient and cost-effective degradation of recalcitrant micropollutants from wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ravi Kumar Chhetri
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|