1
|
Yang H, Chen N, Yang K, Liu F, Yuan Y, Zhang X, Hao Z, Jia H. Microscale Spatiotemporal Variation of Reactive Oxygen Species in the Charosphere: Underlying Formation Mechanism and Their Role in CO 2 Emission. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2095-2106. [PMID: 39849310 DOI: 10.1021/acs.est.4c11955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Charosphere, a highly active zone between biochar and surrounding soil, is widely present in agricultural and wildfire-affected soils, yet whether reactive oxygen species (ROS) are produced within the charosphere remains unclear. Herein, the production and spatiotemporal evolution of charosphere ROS were explored. In situ ROS capture visualized a gradual decrease in ROS production with increasing distance from the biochar/soil interface. Temporally, O2•- and H2O2 contents initially increased and then declined with increasing incubation time, peaking at 3.04 and 5.40 μmol kg-1, respectively, while •OH content decreased continuously. High-throughput sequencing revealed that dissolved biochar (DBC) facilitated ROS production by promoting the growth of bacteria with electron-releasing capacity, such as Bacteroidetes, Acidobacteria, Actinobacteria, and Chloroflexi. Additionally, adding electron transfer-weakened DBC significantly decreased ROS contents (ANOVA, P < 0.05), demonstrating that DBC also served as the electron shuttle and electron-storing materials to promote ROS production by accelerating electron transfer. This was further confirmed via fluorescence imaging, which visually showed stronger electron transfer ability near the soil/biochar surface. Inhibition and isotope experiments revealed the critical role of charosphere ROS in CO2 emissions, primarily from soil organic carbon. This study highlights the charosphere as a prevalent yet overlooked ROS hotspot, advancing our understanding of organic carbon turnover in soils.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yuntao Yuan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Xianglei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zelin Hao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
2
|
Yu X, Yu L, Wang H, Duan Y, Li X, Zhao X, Wei H. Upcycling Waste Biomass to Biochar: Feedstocks, Catalytic Mechanisms, and Applications in Advanced Oxidation for Wastewater Decontamination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6-26. [PMID: 39750544 DOI: 10.1021/acs.langmuir.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses. In addition, carbonaceous materials are commonly used to enhance the synergistic mechanisms of advanced oxidation processes, because of their good electrical conductivity and metal-free leaching. Biochar produced from waste biomass through pyrolysis has catalytic potential, is cost-effective, and is environmentally friendly. It is commonly used to activate hydrogen peroxide, persulfate, ozone, photocatalysis, and other systems for degrading organic pollutants in water. This review provides a summary of the feedstocks, pyrolysis conditions, and modification methods used in biochar production. It also described the effects of these factors on the yield, structure, and active sites of the biochar. The review summarized the mechanisms of various catalytic systems and their applications in wastewater decontamination, as well as their potential for practical application. Eventually, the limitations of this current technique and the outlook for future research were noted.
Collapse
Affiliation(s)
- Xiaohong Yu
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Li Yu
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Hongtao Wang
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Yun Duan
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Xingfa Li
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Xia Zhao
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Zhang C, Yang A, Qin B, Zhao W, Kong C, Qin C. pH dependence of reactive oxygen species generation and pollutant degradation in Fe(II)/O 2/tripolyphosphate system. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136174. [PMID: 39418909 DOI: 10.1016/j.jhazmat.2024.136174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
It has been reported that tripolyphosphate (TPP) can effectively enhance the activation of O2 by Fe(II) to remove organic pollutants in the environment. However, the influence of solution pH on the generation and conversion of reactive oxygen species (ROS) and their degradation of pollutants in the Fe(II)/O2/TPP system needs further investigation. In this study, we demonstrated that O2•- and •OH were the main ROS responsible for degradation in the system at different pH conditions, and their formation rates were calculated using a steady-state model. Experiments combined with density functional theory (DFT) calculations showed that the p-nitrophenol (PNP) degradation pathway in the Fe(II)/O2/TPP system is regulated by solution pH. Specifically, at pH = 3, the existence of Fe(II) in the solution is dominated by [Fe(II)(HTPP)2]2-, which leads to a rapid conversion from O2 and HO2• to generate •OH, and PNP is primarily oxidatively degraded. However, at pH = 5/7, [Fe(II)(TPP)2]4- is taking the lead with which O2•- is accumulated in the solution due to the slow conversion to •OH in this condition, and the PNP is mainly reductively degraded. This study proposes a new strategy to achieve the targeted oxidative/reductive removal of different types of pollutants by simply varying the solution pH in the Fe(II)/O2/TPP system.
Collapse
Affiliation(s)
- Chengwu Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Anqi Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Bing Qin
- Sinopec Research Institute of Petroleum Processing Co., LTD, Beijing 100083, China
| | - Wei Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Chuipeng Kong
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China.
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Xu H, Zhang L, Li Z, Chen Y, Yang B, Zhou Y. Activation of iron oxides through organic matter-induced dissolved oxygen penetration depth dynamics enhances iron-cycling driven ammonium oxidation in microaerobic granular sludge. WATER RESEARCH 2024; 266:122400. [PMID: 39260195 DOI: 10.1016/j.watres.2024.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The iron redox cycle can enhance anammox in treating low-strength ammonia wastewater. However, maintaining an effective iron redox cycle and suppressing nitrite-oxidizing bacteria in a one-stage partial nitritation and anammox (PN/A) process poses challenges during long-term aeration. We proposed a novel and simple strategy to achieve an efficient iron redox cycle in an iron-mediated anoxic-microaerobic (A/O) process by controlling organic matter (OM) at medium-strength levels (30-110 mg COD/L) in microaerobic granular sludge (MGS)-dominated reactor. The developed A/O process consistently achieved >90 % OM removal and >75 % nitrogen removal. Medium-strength OM varied the penetration depths of dissolved oxygen (DO) in MGS, regulating redox conditions and promoting redox reactions across MGS layers, thus activating accumulated inert iron oxides. Ammonia-oxidizing bacteria (Nitrosomonas), iron-reducing bacteria (e.g., Ignavibacterium, Geobacter), and anammox bacteria (Ca. Kuenenia) coexisted harmoniously in MGS. This coexistence ensured high anammox and Feammox rates along with a robust iron redox cycle, thereby mitigating the adverse impacts of fluctuating DO and OM on one-stage PN/A process stability. The identification of iron reduction-associated genes within Ca. Kuenenia, Ignavibacterium, and Geobacter suggests their potential roles in supporting Feammox coupled in one-stage PN/A process. This study introduces an iron-cycle-driven A/O process as an energy-efficient alternative for simultaneous carbon and nitrogen removal from low-strength wastewater.
Collapse
Affiliation(s)
- Hui Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Liang Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Yun Chen
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Bo Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
5
|
Zhou S, Wang Q, Hua M, Wang S, Zhang S. Sustainable Biomass Acts as an Electron Donor for Cr(VI) Reduction during the Subcritical Hydrothermal Process: Molecular Insights into the Role of Hydrochar and Liquid Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15855-15863. [PMID: 39163203 DOI: 10.1021/acs.est.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Heavy metal pollution is a critical environmental issue that has garnered significant attention from the international community. Subcritical hydrothermal liquefaction (HTL) as an emerging green technology has demonstrated remarkable promise in environmental remediation. However, there is limited research on the remediation of highly toxic Cr(VI) using HTL. This study reveals that the HTL reaction of biomass enables the simultaneous reduction and precipitation of Cr(VI). At 280 °C, the reduction of Cr(VI) was nearly complete, with a high reduction rate of 98.9%. The reduced Cr as Cr(OH)3 and Cr2O3 was primarily enriched in hydrochar, accounting for over 99.9% of the total amount. This effective enrichment resulted in the removal of Cr(VI) from the aqueous phase while simultaneously yielding clean liquid compounds like organic acids and furfural. Furthermore, the elevated temperature facilitated the formation of Cr(III) and enhanced its accumulation within hydrochar. Notably, the resulting hydrochar and small oxygenated compounds, especially aldehyde, served as electron donors for Cr(VI) reduction. Additionally, the dissolved Cr facilitated the depolymerization and deoxygenation processes of macromolecular compounds with lignin-like structures, leading to more small oxygenated compounds and subsequently influencing Cr(VI) reduction. These findings have substantial implications for green and sustainable development.
Collapse
Affiliation(s)
- Shaojie Zhou
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qi Wang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Mingda Hua
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
6
|
Yang Z, Li Y, Wang X, Li J, Wang J, Zhang G. Facet-dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants. J Environ Sci (China) 2024; 142:204-214. [PMID: 38527885 DOI: 10.1016/j.jes.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 03/27/2024]
Abstract
Naturally occurring hematite has been widely studied in the Fenton-like system for water pollutant remediation due to its abundance and non-toxicity. However, its inadequate catalytic activity results in difficulty in effectively degrading pollutants in the catalytic degradation system that it constitutes. Thus, we constructed a photochemical system composed of hematite with {001} facet of high activity facet and low-cost and non-toxic oxalic acid (OA) for the removal of various types of pollutants. The removal rate for the degradation of metronidazole, tetracycline hydrochloride, Rhodamine B, and hexavalent chromium by hematite nanoplate with the exposed {001} facet activating OA under visible light irradiation was 4.75, 2.25, 2.33, and 2.74 times than that by the exposed {110} facet, respectively. Density functional theory (DFT) calculation proved that the OA molecule was more easily adsorbed on the {001} facet of hematite than that on the {110} facet, which would favor the formation of the more Fe(III)-OA complex and reactive species. In addition, the reactive site of metronidazole for the attraction of radicals was identified on the basis of the DFT calculation on the molecular occupied orbitals, and the possible degradation pathway for metronidazole included carbon chain fracture, hydroxyethyl-cleavage, denitrogenation, and hydroxylation. Thus, this finding may offer a valuable direction in designing an efficient iron-based catalyst based on facet engineering for the improved activity of Fenton-like systems such as OA activation.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaotian Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiaming Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Jiquan Wang
- Hubei Engineering Consulting Co., Ltd., Wuhan 430071, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
7
|
Ma C, Li H, Huangfu X, Huang R, Ma J. Photochemical transformation and immobilization of thallium in the presence of iron and arsenic: Mechanistic insights from the coupled formation of arsenate complexes. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134081. [PMID: 38522205 DOI: 10.1016/j.jhazmat.2024.134081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Despite the occurrence of thallium (Tl) in the acidic mining-affected areas being highly positively correlated with iron (Fe) and arsenic (As), the effects of the two accompanying elements on Tl redox transformation and immobilization remain largely unknown. Here, we investigated the photochemical redox kinetics and immobilization efficiency of Tl for a wide range of As/Fe and As/Tl ratios under acidic conditions. We provided the first experimental confirmation of the complexation of Tl(III) with As(V) by the spectrophotometric method and revealed the role of Tl(III)-As(V) complexes in decreasing the photoreduction rate of Tl(III) under sunlight. Additionally, the negative impact of colloidal Fe(III)-As(V) and Fe(III)-As(III) complexes formation on decreasing photoactive Fe(III) speciation and thus the apparent quantum yield of •OH was highlighted, which consequently hindered the oxidative conversion of Tl(I) to Tl(III). We rationalize the kinetics results by developing the model which quantitatively describes the photochemistry of Tl. Furthermore, we demonstrated the colloid-facilitated immobilization of Tl(III) through the formation of Tl(III)-As(V) clusters and surface adsorption onto the complexes. This study broadens the mechanistic understanding of redox transformation and immobilization potential of Tl and aids in assessing Tl speciation as well as its coupled transformation with Fe and As species in the sunlit water environment.
Collapse
Affiliation(s)
- Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hongye Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Ruixing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Kim J, Park J, Yoon S, Lee J, Hanna K, Lee J, Lee C, Choe JK, Bae S. Unveiling the oxidation mechanism of persistent organic contaminants via visible light-induced dye-sensitized reaction by red mud suspension with peroxymonosulfate. WATER RESEARCH 2024; 253:121343. [PMID: 38422888 DOI: 10.1016/j.watres.2024.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
A dye-sensitized photocatalysis system was developed for degrading persistent organic contaminants using solid waste (i.e., red mud, RM) and peroxymonosulfate (PMS) under visible light. Complete degradation of acid orange 7 (AO7) was achieved in RM suspension with PMS, where the co-existence of amorphous FeO(OH)/α-Fe2O3 was the key factor for PMS activation. The experimental results obtained from photochemical and electrochemical observations confirmed the enhanced PMS activation due to the Fe-OH phase in RM. DFT calculations verified the acceleration of PMS activation due to the high adsorption energy of PMS on FeO(OH) and low energy barrier for generating reactive radicals. Compared to the control experiment without AO7 showing almost no degradation of other organic contaminants (phenol, bisphenol A, 4-chlorophenol, 4-nitrophenol, and benzoic acid), photo-sensitized AO7* enhanced electron transfer in the FeIII/FeII cycle, dramatically enhancing the degradation of organic contaminants via radical (•OH, SO4•-, and O2•-) and non-radical (dye*+ and 1O2) pathways. Therefore, the novel finding of this study can provide new insights for unique PMS activation by heterogeneous Fe(III) containing solid wastes and highlight the importance of sensitized dye on the interaction of PMS with Fe charge carrier for the photo-oxidation of organic contaminants under visible light.
Collapse
Affiliation(s)
- Joohyun Kim
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaehyeong Park
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sunho Yoon
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Khalil Hanna
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Yao Y, Zhao W, Liu C, Gao J, Yang X, Xiao C, Qi J, Zhou Y, Zhu Z, Yang Y, Li J. Iron containing sludge-derived carbon towards efficient peroxymonosulfate activation: Active site synergy, performance and alternation mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170183. [PMID: 38246367 DOI: 10.1016/j.scitotenv.2024.170183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Converting industrial sludge into catalytic materials for water purification is a promising approach to simultaneously realize effective disposal of sludge and resource of water. However, manipulating the high efficiency remains a huge challenge due to the difficulty in the active sites control of the sludge. Herein, we proposed a constitutive modulation strategy by the combination of hydrothermal and pyrolysis (HTP) for the fabrication of defects-assistant Fe containing sludge-derived carbon catalysts on upgrading performance in peroxymonosulfate (PMS) activation for pollutant degradation. Adjustable defects on dyeing sludge-derived carbon catalysts (DSCC) were achieved by introducing oxygen or nitrogen functional precursors (hydroquinone or p-phenylenediamine) during hydrothermal processes and by further pyrolysis, where O was detrimental while N was beneficial to defect generation. Compared to the DSCC with less defects (DHSC-O), the defect-rich sample (DHSC-2N) exhibited superior catalytic performance of PMS activation for bisphenol A (BPA) elimination (k = 0.45 min-1, 2.52 times of DHSC-O), as well as 81.4% total organic carbon (TOC) removal. Meanwhile, the degradation capacity was verified in wide pH range (2.1-8.1) and various aqueous matrices, reflecting the excellent adaptability and anti-interference performance. Furthermore, the continuous-flow experiments on industrial wastewater showed synchronous BPA and chemical oxygen demand (COD) removal, implying great potential for practical application. Solid electron paramagnetic resonance (EPR) and 57Fe Mösssbauer spectra analysis indicated that the defects acted as secondary active sites for Fe sites, which were beneficial to accelerating the electron transfer process. The only Fe active sites preferred the radical pathway. The controllable reaction tendency provides possibilities for the on-demand design of sludge-based catalysts to meet the requirements of practical wastewater treatment under Fenton-like reaction.
Collapse
Affiliation(s)
- Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wenyu Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chuquan Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiamin Gao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuran Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
10
|
Kim J, Lee J, Kim S, Kim T, Lee KM, Lee D, Cho J, Kim JY, Jeong YW, Park HJ, Lee JC, Lee C. Virucidal activity of Cu-doped TiO 2 nanoparticles under visible light illumination: Effect of Cu oxidation state. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133525. [PMID: 38237436 DOI: 10.1016/j.jhazmat.2024.133525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Copper (Cu) is an effective antimicrobial material; however, its activity is inhibited by oxidation. Titanium dioxide (TiO2) photocatalysis prevents Cu oxidation and improves its antimicrobial activity and stability. In this study, the virucidal efficacy of Cu-doped TiO2 nanoparticles (Cu-TiO2) with three different oxidation states of the Cu dopant (i.e., zero-valent Cu (Cu0), cuprous (CuI), and cupric (CuII) oxides) was evaluated for the phiX174 bacteriophage under visible light illumination (Vis/Cu-TiO2). CuI-TiO2 exhibited superior virucidal activity (5 log inactivation in 30 min) and reusability (only 11 % loss of activity in the fifth cycle) compared to Cu0-TiO2 and CuII-TiO2. Photoluminescence spectroscopy and photocurrent measurements showed that CuI-TiO2 exhibited the highest charge separation efficiency and photocurrent density (approximately 0.24 μA/cm2) among the three materials, resulting in the most active redox reactions of Cu. Viral inactivation tests under different additives and viral particle integrity analyses (i.e., protein oxidation and DNA damage analyses) revealed that different virucidal species played key roles in the three Vis/Cu-TiO2 systems; Cu(III) was responsible for the viral inactivation by Vis/CuI-TiO2. The Vis/CuI-TiO2 system exhibited substantial virucidal performance for different viral species and in different water matrices, demonstrating its potential practical applications. The findings of this study offer valuable insights into the design of effective and sustainable antiviral photocatalysts for disinfection.
Collapse
Affiliation(s)
- Joohyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Juri Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Taewan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiyoon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jee Yeon Kim
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Yong Won Jeong
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Hee-Jin Park
- Samsung Research, Samsung Electronics Co., Ltd., Seoul 06756, Republic of Korea
| | - Jong-Chan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Li K, Ma S, Zou C, Latif J, Jiang Y, Ni Z, Shen S, Feng J, Jia H. Unrecognized Role of Organic Acid in Natural Attenuation of Pollutants by Mackinawite (FeS): The Significance of Carbon-Center Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20871-20880. [PMID: 38029317 DOI: 10.1021/acs.est.3c07473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Organic acid is prevalent in underground environments and, against the backdrop of biogeochemical cycles on Earth, holds significant importance in the degradation of contaminants by redox-active minerals. While earlier studies on the role of organic acid in the generation of reactive oxygen species (ROS) primarily concentrated on electron shuttle or ligand effects, this study delves into the combined impacts of organic acid decomposition and Mackinawite (FeS) oxidation in contaminant transformation under dark aerobic conditions. Using bisphenol A (BPA) as a model, our findings showed that oxalic acid (OA) notably outperforms other acids in enhancing BPA removal, attaining a rate constant of 0.69 h-1. Mass spectrometry characterizations, coupled with anaerobic treatments, advocate for molecule-O2 activation as the principal mechanism behind pollutant transformation. Comprehensive results unveiled that carbon center radicals, initiated by hydroxyl radical (•OH) attack, serve as the primary agents in pollutant oxidation, accounting for at least 93.6% of the total •OH generation. This dynamic, driven by the decomposition of organic acids and the concurrent formation of carbon-centered radicals, ensures a steady supply of electrons for ROS generation. The obtained information highlights the importance of OA decomposition in the natural attenuation of pollutants and offers innovative strategies for FeS and organic acid-coupled decontamination.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chuningrui Zou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Siqi Shen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Jinpeng Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| |
Collapse
|
12
|
Han C, Xie J, Shi Q, Liang L, Yang T, He S. Capturing Cu 2+ and recycling spent Cu-adsorbents as catalyst for eliminating Rhodamine B: reactivity and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110352-110362. [PMID: 37783993 DOI: 10.1007/s11356-023-29942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
The thorny problem of adsorption is the disposing of spent adsorbent. In this manuscript, the exhaust adsorbent of efficient capture Cu(II) over ZSM-5 that supported zero-valent iron (nZVI) was reused as a catalyst for eliminating Rhodamine B (RhB). Batch experiments were used to evaluate the removal performance of Cu2+ and RhB. The results demonstrated that the Cu2+ adsorption process obeyed pseudo-second-order kinetics, and the adsorption performance was dependent on solution pH. The maximum adsorption capacity at the optimal pH 4.0 was 375.9 mg/g; equilibrium was reached rapidly within 35 min. From XPS, the reduction-oxidation between Fe0 and Cu2+ was occurred in the adsorption process, and Fe2+, Fe3+, and Cu0 was formed. In the recycling experiments, RhB was removed by the spent Cu adsorbent, with the removal performance being dependent on the initial Cu concentration, in the order of 5 mg/L > 20 mg/L > 0 mg/L > 100 mg/L > 500 mg/L. RhB removal also improved with increasing H2O2 concentration. More than 99.9% of the RhB was degraded within 8 min using 1.75 mM H2O2, which was a large improvement over the previously used catalyst. The hydroxyl radical was found to be the main free radical responsible for RhB degradation.
Collapse
Affiliation(s)
- Caiyun Han
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, China.
| | | | - Qin Shi
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, China
| | - Liying Liang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, China
| | - Ting Yang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, China
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Sufang He
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| |
Collapse
|
13
|
Dong Y, Shen Y, Yuan H, Ge D, Zhu N. Roles of catalytic ozonation by bimetallic Fe/Ce loading sludge-derived biochar in amelioration of sludge dewaterability: Performance and implementation mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118430. [PMID: 37348300 DOI: 10.1016/j.jenvman.2023.118430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
In this study, an environmentally friendly alternative was developed using catalytic ozonation by sludge-derived biochar loaded with bimetallic Fe/Ce (O3/SBC-FeCe) for enhanced sludge dewatering. The results indicated that the lowest capillary suction time (CST) of 20.9 s and water content of dewatered sludge cake (Wc) of 64.09% were achieved under the dosage of 40 mg O3/g dry solids (DS) and 0.4 g SBC-FeCe/g DS which were considered as the optimum condition. In view of excellent electron exchanging capacity of SBC-FeCe with rich Lewis acid sites and conversions of valence sates of Fe and Ce, more O3 were decomposed into reactive oxygen species under the catalytic action of SBC-FeCe, which strengthened oxidizing capacity. Enhanced oxidation rendered sludge cells inactivation and compact network structure rupture releasing intracellular water and organic substances. Subsequently, hydrophilic organic matters were attacked and eliminated lessening sludge viscosity and colloidal forces and intensifying hydrophobicity and flowability. In addition, changes of sludge morphology suggested that sludge roughness was alleviated, structural strength and compressibility were raised and porous and retiform structure was constructed providing channels for water outflow by adding skeleton builder of SBC-FeCe. Overall, the synergistic interaction of strengthened oxidation and skeleton construction improved sludge dewaterability.
Collapse
Affiliation(s)
- Yanting Dong
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Yanwen Shen
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Dongdong Ge
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
14
|
Li M, Li H, Ling C, Shang H, Wang H, Zhao S, Liang C, Mao C, Guo F, Zhou B, Ai Z, Zhang L. Highly selective synthesis of surface Fe IV=O with nanoscale zero-valent iron and chlorite for efficient oxygen transfer reactions. Proc Natl Acad Sci U S A 2023; 120:e2304562120. [PMID: 37695890 PMCID: PMC10515137 DOI: 10.1073/pnas.2304562120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/05/2023] [Indexed: 09/13/2023] Open
Abstract
High-valent iron-oxo species (FeIV=O) has been a long-sought-after oxygen transfer reagent in biological and catalytic chemistry but suffers from a giant challenge in its gentle and selective synthesis. Herein, we propose a new strategy to synthesize surface FeIV=O (≡FeIV=O) on nanoscale zero-valent iron (nZVI) using chlorite (ClO2-) as the oxidant, which possesses an impressive ≡FeIV=O selectivity of 99%. ≡FeIV=O can be energetically formed from the ferrous (FeII) sites on nZVI through heterolytic Cl-O bond dissociation of ClO2- via a synergistic effect between electron-donating surface ≡FeII and proximal electron-withdrawing H2O, where H2O serves as a hydrogen-bond donor to the terminal O atom of the adsorbed ClO2- thereby prompting the polarization and cleavage of Cl-O bond for the oxidation of ≡FeII toward the final formation of ≡FeIV=O. With methyl phenyl sulfoxide (PMS16O) as the probe molecule, the isotopic labeling experiment manifests an exclusive 18O transfer from Cl18O2- to PMS16O18O mediated by ≡FeIV=18O. We then showcase the versatility of ≡FeIV=O as the oxygen transfer reagent in activating the C-H bond of methane for methanol production and facilitating selective triphenylphosphine oxide synthesis with triphenylphosphine. We believe that this new ≡FeIV=O synthesis strategy possesses great potential to drive oxygen transfer for efficient high-value-added chemical synthesis.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Hui Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Chengliang Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan430079, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
15
|
Zhong Y, Wan X, Lian X, Cheng W, Ma X, Wang D. Hydroxylamine facilitated catalytic degradation of methylene blue in a Fenton-like system for heat-treatment modified drinking water treatment residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27780-x. [PMID: 37284959 DOI: 10.1007/s11356-023-27780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Rational treatment of drinking water treatment residues (WTR) has become an environmental and social issue due to the risk of secondary contamination. WTR has been commonly used to prepare adsorbents because of its clay-like pore structure, but then requires further treatment. In this study, a Fenton-like system of H-WTR/HA/H2O2 was constructed to degrade organic pollutants in water. Specifically, WTR was modified by heat treatment to increase its adsorption active site, and to accelerate Fe(III)/Fe(II) cycling on the catalyst surface by the addition of hydroxylamine (HA). Moreover, the effects of pH, HA and H2O2 dosage on the degradation were discussed with methylene blue (MB) as the target pollutant. The mechanism of the action of HA was analyzed and the reactive oxygen species in the reaction system were determined. Combined with the reusability and stability experiments, the removal efficiency of MB remained 65.36% after 5 cycles. Consequently, this study may provide new insights into the resource utilization of WTR.
Collapse
Affiliation(s)
- Yu Zhong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiancheng Wan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoyan Lian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenyu Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoying Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dongtian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
16
|
Zhang X, Li X, Yu P, Yu Y, Fan X, Zhang J, Yu Y, Zheng H, Sun Y. Photocatalytic O 2 activation by metal-free carbon nitride nanotube for rapid reactive species generation and organic contaminants degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131715. [PMID: 37245367 DOI: 10.1016/j.jhazmat.2023.131715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Advanced oxidation processes (AOPs) using oxygen (O2) as an oxidant represent a low-cost and sustainable wastewater treatment process. Herein, a metal-free nanotubular carbon nitride photocatalyst (CN NT) was prepared to activate O2 to degrade organic contaminants. The nanotube structure allowed for sufficient O2 adsorption, while the optical and photoelectrochemical properties enabled photogenerated charge to be efficiently transferred to the adsorbed O2 to trigger the activation process. The developed CN NT/Vis-O2 system based on O2 aeration degraded various organic contaminants and mineralized 40.7% of chloroquine phosphate within 100 min. In addition, the toxicity and environmental risk of treated contaminants were reduced. Mechanistic studies suggested that the enhanced O2 adsorption capacity and fast charge transfer behavior on CN NT surface led to reactive·O2-, 1O2 and h+ generation, each of which played a distinct role in contaminants degradation. Importantly, the proposed process could overcome the interference from water matrices and outdoor sunlight, and the energy and chemical reagent savings reduced the operating cost to about 1.63 US$·m-3. Altogether, this work provides insights into the potential application of metal-free photocatalysts and green O2 activation for wastewater treatment.
Collapse
Affiliation(s)
- Xiao Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China.
| | - Xi Li
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Yu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Yu
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiulei Fan
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jiankun Zhang
- Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yang Yu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Huaili Zheng
- Key laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yongjun Sun
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
17
|
Si Q, Wang H, Kuang J, Liu B, Zheng S, Zhao Q, Jia W, Wu Y, Lu H, Wu Q, Yu T, Guo W. Light and nitrogen vacancy-intensified nonradical oxidation of organic contaminant with Mn (III) doped carbon nitride in peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131463. [PMID: 37141778 DOI: 10.1016/j.jhazmat.2023.131463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Recently, Mn-based materials have a great potential for selective removal of organic contaminants with the assistance of oxidants (PMS, H2O2) and the direct oxidation. However, the rapid oxidation of organic pollutants by Mn-based materials in PMS activation still presents a challenge due to the lower conversion of surface Mn (III)/Mn (IV) and higher reactive energy barrier for reactive intermediates. Here, we constructed Mn (III) and nitrogen vacancies (Nv) modified graphite carbon nitride (MNCN) to break these aforementioned limitations. Through analysis of in-situ spectra and various experiments, a novel mechanism of light-assistance non-radical reaction is clearly elucidated in MNCN/PMS-Light system. Adequate results indicate that Mn (III) only provide a few electrons to decompose Mn (III)-PMS* complex under light irradiation. Thus, the lacking electrons necessarily are supplied from BPA, resulting in its greater removal, then the decomposition of the Mn (III)-PMS* complex and light synergism form the surface Mn (IV) species. Above Mn-PMS complex and surface Mn (IV) species lead to the BPA oxidation in MNCN/PMS-Light system without the involvement of sulfate (SO4• ̶) and hydroxyl radicals (•OH). The study provides a new understanding for accelerating non-radical reaction in light/PMS system for the selective removal of contaminant.
Collapse
Affiliation(s)
- Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Junyan Kuang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Banghai Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Shanshan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Hao Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China
| | - Tao Yu
- Tianjin Univ, Sch Chem Eng & Technol, Tianjin 300350, People's Republic of China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Inst Technology, Harbin, Heilongjiang 150090 People's Republic of China.
| |
Collapse
|
18
|
Wang S, Li T, Cheng X, Zhu R, Xu Y. Regulating the concentration of dissolved oxygen to achieve the directional transformation of reactive oxygen species: A controllable oxidation process for ciprofloxacin degradation by calcined CuCoFe-LDH. WATER RESEARCH 2023; 233:119744. [PMID: 36841161 DOI: 10.1016/j.watres.2023.119744] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Different reactive oxygen species (ROS) tend to attack specific sites on pollutants, leading to the formation of intermediates with different toxic effects. Therefore, regulating the directional transformation of ROS is a new effective approach for safe degradation of refractory organic compounds in wastewater. However, the regulation mechanism and transformation path of ROS remain unclear. In this work, the dissolved oxygen (DO) content was controlled by aeration to generate different ROS through the activation of O2 on the calcined CuCoFe-LDH (CuCoFe-300). ROS quantitative experiments and electron paramagnetic resonance proved that O2 was mainly activated to superoxide radical (•O2-) and singlet oxygen (1O2) under low DO concentration (0.231 mmol/L) (O2 → •O2- → 1O2). With the increasing of DO concentration (0.606 mmol/L), O2 was inclined to convert into hydroxyl radicals (•OH) (O2 → •O2- → H2O2 → •OH). The density functional theory and function model of active sites utilization and DO concentration built a solid proof for ROS conversion mechanism that increasing the DO concentration promotes the increase of active sites utilization on the CuCoFe-300 system. That is, the •O2- was more prone to convert to •OH, not 1O2 in thermodynamics under high active sites utilization condition. Hence, the ROS generation was controlled by regulating DO concentration, and the nontoxic degradation pathway of ciprofloxacin was well-designed. This work is dedicated to the in-depth exploration of the mechanism between DO concentration and ROS conversion, which provides an extremely flexible, low energy consumption, and environmentally friendly wastewater treatment method in a new perspective.
Collapse
Affiliation(s)
- Shaohong Wang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China
| | - Ting Li
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China; Hunan Key Lab for Environmental Behavior of New Pollutants and Control Principle, Hunan 411105, PR China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100091, PR China
| | - Runliang Zhu
- Guangzhou Institutes of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yin Xu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China; Hunan Key Lab for Environmental Behavior of New Pollutants and Control Principle, Hunan 411105, PR China.
| |
Collapse
|
19
|
Zheng N, Li L, Tang X, Xie W, Zhu Q, Wang X, Lian Y, Yu JC, Hu Z. Spontaneous Formation of Low Valence Copper on Red Phosphorus to Effectively Activate Molecular Oxygen for Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5024-5033. [PMID: 36892275 DOI: 10.1021/acs.est.2c09645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Efficient spontaneous molecular oxygen (O2) activation is an important technology in advanced oxidation processes. Its activation under ambient conditions without using solar energy or electricity is a very interesting topic. Low valence copper (LVC) exhibits theoretical ultrahigh activity toward O2. However, LVC is difficult to prepare and suffers from poor stability. Here, we first report a novel method for the fabrication of LVC material (P-Cu) via the spontaneous reaction of red phosphorus (P) and Cu2+. Red P, a material with excellent electron donating ability and can directly reduce Cu2+ in solution to LVC via forming Cu-P bonds. With the aid of the Cu-P bond, LVC maintains an electron-rich state and can rapidly activate O2 to produce ·OH. By using air, the ·OH yield reaches a high value of 423 μmol g-1 h-1, which is higher than traditional photocatalytic and Fenton-like systems. Moreover, the property of P-Cu is superior to that of classical nano-zero-valent copper. This work first reports the concept of spontaneous formation of LVC and develops a novel avenue for efficient O2 activation under ambient conditions.
Collapse
Affiliation(s)
- Ningchao Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Lejing Li
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, Shatin, China
| | - Xinhui Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Weiqiao Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qing Zhu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Xiaoli Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yekai Lian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, Shatin, China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
20
|
Wang F, Zhang M, Liu X, Li Z, Zhu H, Lian F, Liu X, Li L, Wu X, Sun H. Unraveling the critical role of iron-enriched sludge hydrochar in mediating the Fenton-like oxidation of triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121205. [PMID: 36738880 DOI: 10.1016/j.envpol.2023.121205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The traditional Fenton system is subject to the low efficiency of the Fe(III)/Fe(II) conversion cycle, with significant attempts made to improve the oxidation efficiency by overcoming this hurdle. In support of this goal, iron-enriched sludge-derived hydrochar was prepared as a high-efficiency catalyst by one-step hydrothermal carbonization and its performance and mechanisms in mediating the oxidation of triclosan were explored in the present study. The hydrochar prepared at 240 °C for 4 h (HC240-4) had the highest removal of triclosan (97.0%). The removal of triclosan in the HC240-4/H2O2 system was greater than 90% in both acidic and near-neutral environments and remained as high as 83.5% after three cycles, indicating the broad pH applicability and great recycling stability of sludge-derived hydrochar in Fenton-like systems. H2O2 was activated by both persistent free radicals (PFRs; 19.7%) and iron (80.3%). The binding of Fe(III) to carboxyl decreased the electron transfer energy from H2O2 to Fe(III), making its degradation efficiency 2.6 times greater than that of the conventional Fenton reaction. The study provides a way for iron-enriched sludge utilization and reveals a role for hydrochar in promoting iron cycling and electron transfer in the Fenton reaction.
Collapse
Affiliation(s)
- Fei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Mingming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xingyu Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zimeng Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Xiangyue Liu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Liqiang Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xintian Wu
- EnviroGene Technology (Tianjin) Co., Ltd., Tianjin, 300221, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Wang Z, Lu N, Cao X, Li Q, Gong S, Lu P, Zhu K, Guan J, Feike T. Interactions between Cr(VI) and the hydrochar: The electron transfer routes, adsorption mechanisms, and the accelerating effects of wood vinegar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160957. [PMID: 36528950 DOI: 10.1016/j.scitotenv.2022.160957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Conversion of the low-valued invasive plant biomass into high-grade carbonaceous materials may provide a novel strategy to tackle the global issues of climate changes and exotic plant invasion. In this study, the hydrochar was fabricated from the biomass of Eupatorium adenophorum spreng. via hydrothermal carbonization (HTC) process to remove Cr(VI). The adsorption thermodynamics and kinetics were investigated via batch experiments, and the electron transfer routes and adsorption mechanisms were further revealed based on systematic characterization. The adsorption isotherms were well fitted by the Langmuir model with a maximum adsorption amount of 7.76 mg/g. The adsorption was spontaneous, and the surface adsorption and intraparticle diffusion may be the speed-limiting steps. Both -OH group and furan structures may donate the electrons to reduce Cr(VI), and the adsorption was governed by the surface complexation with the oxygen-containing functional groups including hydroxyl and carboxyl. Furthermore, the wood vinegar, as the by-product, can significantly accelerate the reduction rate of Cr(VI). Thus, this study provided a new strategy to fabricate carbonaceous materials which may facilitate to boost the carbon neutrality and control of invasive plants.
Collapse
Affiliation(s)
- Zirui Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Nan Lu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Qingzi Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shangyu Gong
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Ping Lu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ke Zhu
- School of Thermal Engineering, Shandong Jianzhu University, Fengming Road 1000, 250000, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Til Feike
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Inst. for Strategies and Technology Assessment, 14532 Kleinmachnow, Germany
| |
Collapse
|
22
|
Liang C, Sun H, Ling C, Liu X, Li M, Zhang X, Guo F, Zhang X, Shi Y, Cao S, He H, Ai Z, Zhang L. Pyrolysis temperature-switchable Fe-N sites in pharmaceutical sludge biochar toward peroxymonosulfate activation for efficient pollutants degradation. WATER RESEARCH 2023; 228:119328. [PMID: 36413832 DOI: 10.1016/j.watres.2022.119328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Pyrolysis of pharmaceutical sludge (PS) is a promising way of safe disposal and to recover energy and resources from waste. The resulting PS biochar (PSBC) is often used as adsorbent, but has seldom been explored as catalyst. Herein we demonstrate that PSBC (0.4 g/L) could efficiently activate peroxymonosulfate (PMS) to 100% degrade 4-chlorophenol (4-CP) with rate constants of 0.42-1.70 min-1, outperforming other reported catalysts. Interestingly, the PMS activation pathway highly depended on PSBC pyrolysis temperature, which produced dominantly high-valent iron species (e.g., FeIVO2+) at low temperature but more sulfate radical (SO4·-) and hydroxyl radical (·OH) at higher temperature, e.g., 0.17, 0.23, 0.12 mmol/L of FeIVO2+ and 0.009, 0.038, 0.102 mmol/L of SO4·-/·OH were produced within 10 min by PSBC-600/PMS, PSBC-800/PMS, and PSBC-1000/PMS, respectively. Characterization, density functional theory (DFT) simulation and Pearson correlation analysis revealed that along with the increase of pyrolysis temperatures, the active sites of PSBC gradually shifted from atomically dispersed N-coordinated Fe moieties (FeNx) to iron nitrides (FexN), which activated PMS to produce FeIVO2+ and SO4·-/·OH, respectively. This study clarifies the structure-activity relationships of PSBC for PMS activation, and opens a new avenue for the treatment and utilization of PS as high value-added resources.
Collapse
Affiliation(s)
- Chuan Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Cancan Ling
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiufan Liu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xu Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hua He
- Hebei North China Pharmaceutical Huaheng Pharmaceutical Co., Ltd., Shijiazhuang 051530, China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Yang Z, Wang Z, Wang J, Li Y, Zhang G. Facet-Dependent Activation of Oxalic Acid over Magnetic Recyclable Fe 3S 4 for Efficient Pollutant Removal under Visible Light Irradiation: Enhanced Catalytic Activity, DFT Calculations, and Mechanism Insight. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:18008-18017. [PMID: 36480705 DOI: 10.1021/acs.est.2c06571] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photo-Fenton-like reaction based on oxalic acid (OA) activation is a promising method for the fast degradation of pollutants due to the low cost and safety. Hence, the magnetic recyclable greigite (Fe3S4) with the exposed {011} facet (FS-011) was prepared using a facile one-pot hydrothermal method and activated OA under visible light irradiation for pollutant removal, in which the removal efficiency values of FS-011 for metronidazole (MNZ) and hexavalent chromium were 2.02 and 1.88 times higher than that of Fe3S4 with the exposed {112} facet, respectively. Density functional theory calculations revealed that OA was more easily adsorbed by the {011} facet of Fe3S4 than by the {112} facet, and the in situ-generated H2O2 preferred to diffuse away from the active sites of the {011} facet of Fe3S4 than from that of the {112} facet, which was conducive to the continuous adsorption and efficient activation of OA. Moreover, the analyses of Fukui index and dual descriptor confirmed the degradation mechanism that the imidazole ring of MNZ was easy to be attacked by electrophilic species, while the amino group of MNZ was easy to be attacked by nucleophilic species. These findings deeply analyzed the mechanism of enhanced OA activation by facet engineering and consolidated the theoretical basis for practical application of Fenton-like reactions.
Collapse
Affiliation(s)
- Zhixiong Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei430070, China
| | - Zhuangzhuang Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei430070, China
| | - Junting Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei430070, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei430070, China
| |
Collapse
|
24
|
Chen Z, Li X, Wu Y, Duan A, Wang D, Yang Q, Fan Y. Achieving simultaneous hydrogen evolution and organic pollutants degradation through the modification of Ag3PO4 using Cs2AgBiBr6 quantum dots and graphene hydrogel. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Wang Z, Xiao F, Shen X, Zhang D, Chu W, Zhao H, Zhao G. Electronic Control of Traditional Iron-Carbon Electrodes to Regulate the Oxygen Reduction Route to Scale Up Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13740-13750. [PMID: 36130282 DOI: 10.1021/acs.est.2c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shifting four-electron (4e-) oxygen reduction in fuel cell technology to a two-electron (2e-) pathway with traditional iron-carbon electrodes is a critical step for hydroxyl radical (HO•) generation. Here, we fabricated iron-carbon aerogels with desired dimensions (e.g., 40 cm × 40 cm) as working electrodes containing atomic Fe sites and Fe3C subnanoclusters. Electron-donating Fe3C provides electrons to FeN4 through long-range activation for achieving the ideal electronic configuration, thereby optimizing the binding energy of the *OOH intermediate. With an iron-carbon aerogel benefiting from finely tuned electronic density, the selectivity of 2e- oxygen reduction increased from 10 to 90%. The resultant electrode exhibited unexpectedly efficient HO• production and fast elimination of organics. Notably, the kinetic constant kM for sulfamethoxazole (SMX) removal is 60 times higher than that in a traditional iron-carbon electrode. A flow-through pilot device with the iron-carbon aerogel (SA-Fe0.4NCA) was built to scale up micropolluted water decontamination. The initial total organic carbon (TOC) value of micropolluted water was 4.02 mg L-1, and it declined and maintained at 2.14 mg L-1, meeting the standards for drinking water quality in China. Meanwhile, the generation of emerging aromatic nitrogenous disinfection byproducts (chlorophenylacetonitriles) declined by 99.2%, satisfying the public safety of domestic water. This work provides guidance for developing electrochemical technologies to satisfy the flexible and economic demand for water purification, especially in water-scarce areas.
Collapse
Affiliation(s)
- Zining Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Xiao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuqian Shen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hongying Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
26
|
Hu J, Zhao L, Luo J, Gong H, Zhu N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129437. [PMID: 35810514 DOI: 10.1016/j.jhazmat.2022.129437] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Conversion of sewage sludge to biochar for contaminants removal from water achieves the dual purpose of solid waste reuse and pollution elimination, in line with the concept of circular economy and carbon neutrality. However, the current understanding of sludge-derived biochar (SDB) for wastewater treatment is still limited, with a lack of summary regarding the effect of modification on the mechanism of SDB adsorption/catalytic removal aqueous contaminants. To advance knowledge in this aspect, this paper systematically reviews the recent studies on the use of (modified) SDB as adsorbents and in persulfate-based advanced oxidation processes (PS-AOPs) as catalysts for the contaminants removal from water over the past five years. Unmodified SDB not only exhibits stronger cation exchange and surface precipitation for heavy metals due to its nitrogen/mineral-rich properties, but also can provide abundant catalytic active sites for PS. An emphatic summary of how certain adsorption removal mechanisms of SDB or its catalytic performance in PS-AOPs can be enhanced by targeted regulation/modification such as increasing the specific surface area, functional groups, graphitization degree, N-doping or transition metal loading is presented. The interference of inorganic ions/natural organic matter is one of the unavoidable challenges that SDB is used for adsorption/catalytic removal of contaminants in real wastewater. Finally, this paper presents the future perspectives of SDB in the field of wastewater treatment. This review can contribute forefront knowledge and new ideas for advancing sludge treatment toward sustainable green circular economy.
Collapse
Affiliation(s)
- Jinwen Hu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinming Luo
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
27
|
Cai A, Ling X, Wang L, Sun Q, Zhou S, Chu W, Li X, Deng J. Insight into UV-LED/PS/Fe(Ⅲ) and UV-LED/PMS/Fe(Ⅲ) for p-arsanilic acid degradation and simultaneous arsenate immobilization. WATER RESEARCH 2022; 223:118989. [PMID: 35998556 DOI: 10.1016/j.watres.2022.118989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
As a feed additive, p-arsanilic acid (p-ASA) is hardly metabolized in animal bodies and is excreted chemically unchanged via feces and urine, which can be transformed into more toxic inorganic arsenic species and other organic by-products upon degradation in the aquatic environment. In this study, UV-LED/persulfate (PS)/Fe(Ⅲ) and UV-LED/peroxymonosulfate (PMS)/Fe(Ⅲ) processes were developed to remove p-ASA and immobilize the formed inorganic arsenic via tuning solution pH. UV-LED/PMS/Fe(Ⅲ) (90.8%) presented the best performance for p-ASA degradation at pH 3.0, and the p-ASA degradation in these processes both followed the pseudo-first-order kinetics. The ∙OH played the major role in UV-LED/PS/Fe(Ⅲ) and UV-LED/PMS/Fe(Ⅲ) systems. Solution pH greatly affected the p-ASA degradation and the maximum removal can be achieved at pH 3.0 due to the presence of more Fe(OH)(H2O)52+. The dosages of Fe(III) and PMS (PS), SO42- and HCO3- significantly influenced the performance of p-ASA oxidation, while HA, Cl- and NO3- slightly affected the p-ASA degradation. According to quantum chemical calculation, radical addition on the C atom in the C-As bond of p-ASA was corroborated to be the dominant reaction pathway by SO4∙- and ∙OH. Additionally, the reactive sites and reasonable degradation pathways of p-ASA were proposed based on DFT calculation and HPLC/MS analysis. The release of inorganic arsenic in both processes can be effectively immobilized and the toxicity of the reaction solution dramatically reduced by adjusting solution pH to 6.0. UV-LED/PMS/Fe(Ⅲ) process was found to be more cost-effective than UV-LED/PS/Fe(Ⅲ) process at the low oxidant dosages.
Collapse
Affiliation(s)
- Anhong Cai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiao Ling
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Lei Wang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qian Sun
- Afflicated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Shiqing Zhou
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|
28
|
Chen N, Zhao Y, Li M, Wang X, Peng X, Sun H, Zhang L. FeC 2O 4•2H 2O enables sustainable conversion of hydrogen peroxide to hydroxyl radical for promoted mineralization and detoxification of sulfadimidine. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129049. [PMID: 35526344 DOI: 10.1016/j.jhazmat.2022.129049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Safe treatment of antibiotics requires efficient removal of both antibiotics and their degraded intermediates. In this study, we demonstrate that FeC2O4•2H2O enables the more sustainable conversion of H2O2 to •OH than commonly used FeSO4•7H2O, promoting the detoxification of a typical antibiotic sulfadimidine. It was found that the FeC2O4/H2O2 system could completely degrade 250 mg L-1 of sulfadimidine within 40 min at pH 3.0, along with decreasing the contents of chemical oxygen demand and total organic carbon by 295.0 and 33.5 mg L-1, respectively, more efficient than those in a classical Fenton system (FeSO4/H2O2). Analysis of sulfadimidine degraded intermediates and toxicity evaluation suggested that the FeC2O4/H2O2 treatment could more effectively decrease the overall toxicity of the sulfadimidine solution than the FeSO4/H2O2 counterpart. The sustainability of FeC2O4•2H2O in H2O2 conversion to •OH was attributed to its controlled release of Fe2+ into the solution to prevent the quenching of •OH by excessive Fe2+, as well as the simultaneous release of C2O42- to complex with Fe2+ and Fe3+, which could inhibit iron sludge formation and accelerate Fe3+/Fe2+ redox cycle. This study provides a promising Fenton system for the safe treatment of antibiotics and sheds light on the potential of FeC2O4•2H2O in environmental remediation.
Collapse
Affiliation(s)
- Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ying Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiaobing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
29
|
Yan Y, Peng Y, Wang J, Xiang Z, Li Y, Yang J, Yin J, Xiao H, Wang W. Simultaneous oxidation of As(III) and reduction of Cr(VI) by NiS-CdS@biochar through efficient oxalate activation: The key role of enhanced generation of reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128993. [PMID: 35483260 DOI: 10.1016/j.jhazmat.2022.128993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The reutilization of exhausted biochar is attracting extensive interest among researchers. In this study, the biochar generated from Chinese fir with natural regular porous structure that adsorbed Cd2+/Ni2+ at different concentration levels was used as the precursor, and then combined with simple hydrothermal vulcanization and ion deposition to generate the p-n heterojunction between NiS and CdS compounds (NiS-CdS@C) in situ. The hybrids with 3 cycles of NiS deposition reduced the interfacial transmission resistance from 80 Ω to 40 Ω, and increased photocurrent density by 5 times, thus effectively promoting the separation of photogenerated electrons and holes. The simultaneous removal of As(III) and Cr(VI) was selected to evaluate the oxidation and reduction capacity of the visible light/NiS-CdS@C/oxalate system. The results indicated that 10 mg/L As(III) and Cr(VI) were completely and simultaneously removed with 0.75 mM oxalate addition within 40 min in the system, and the NiS-CdS@C presented good durability and stability for oxalate activation. Electron paramagnetic resonance (EPR) and quenching experiments demonstrated that oxalate was activated by holes under light to produce •CO2- and enhanced the generation of additional •OH and •O2-, further contributing to the oxidation of As(III) and reduction of Cr(VI).
Collapse
Affiliation(s)
- Ying Yan
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Peng
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ziyang Xiang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yanmei Li
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Junhui Yang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jinglin Yin
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongbo Xiao
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
30
|
Li M, Chen N, Shang H, Ling C, Wei K, Zhao S, Zhou B, Jia F, Ai Z, Zhang L. An Electrochemical Strategy for Simultaneous Heavy Metal Complexes Wastewater Treatment and Resource Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10945-10953. [PMID: 35830297 DOI: 10.1021/acs.est.2c02363] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Heavy metals chelated with coexisting organic ligands in wastewater impose severe risks to public health and the ambient ecosystem but are also valuable metal resources. For sustainable development goals, the treatment of heavy metal complexes wastewater requires simultaneous metal-organic bond destruction and metal resource recovery. In this study, we demonstrated that a neutral pH electro-Fenton (EF) system, which was composed of an iron anode, carbon cloth cathode, and sodium tetrapolyphosphate electrolyte (Na6TPP), could induce a successive single-electron activation pathway of molecular oxygen due to the formation of Fe(II)-TPP complexes. The boosted •OH generation in the Na6TPP-EF process could decomplex 99.9% of copper ethylene diamine tetraacetate within 8 h; meanwhile, the released Cu ions were in situ deposited on the carbon cloth cathode in the form of Cu nanoparticles with a high energy efficiency of 2.45 g kWh-1. Impressively, the recovered Cu nanoparticles were of purity over 95.0%. More importantly, this neutral EF strategy could realize the simultaneous removal of Cu, Ni, and Cr complexes from real electroplating effluents. This study provides a promising neutral EF system for simultaneous heavy metal complexes wastewater treatment and resource recovery and sheds light on the importance of molecular oxygen activation in the field of pollutant control.
Collapse
Affiliation(s)
- Meiqi Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Huan Shang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cancan Ling
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shengxi Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
31
|
Hu J, Zhao J, Zheng X, Li S, Lv Q, Liang C. Removal of heavy metals from sewage sludge by chemical leaching with biodegradable chelator methyl glycine diacetic acid. CHEMOSPHERE 2022; 300:134496. [PMID: 35390410 DOI: 10.1016/j.chemosphere.2022.134496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The heavy metals (HMs) contained in sewage sludge are some of the largest obstacles that hamper the usage of sewage sludge in land application (e.g. fertilizer, soil improver). The conventional chelators, e.g., ethylenediaminetetraacetic acid (EDTA), were effective in the remediation of HMs polluted sewage sludge, but suffered from an evident drawback of low biodegradability. Therefore, the applicability of a new biodegradable chelator, methyl glycine diacetic acid (MGDA), to extract HMs from sewage sludge was carried out and compared with EDTA. The experimental parameters affecting the performance of MGDA were optimized. Leaching results showed that in general, MGDA exhibited higher Zn leaching efficiency and similar Cu, Ni and Cr leaching efficiencies with EDTA at same pH and dosage conditions. The maximum Zn, Cu, Ni and Cr leaching efficiencies of MGDA were 94.1% ± 4.5%, 58.2% ± 3.1%, 78.2% ± 2.3% and 54.6% ± 2.5%, respectively. The leaching efficiency plateaued within a reaction time of 4 h, but that of Cu and Ni showed a slightly decreasing trend during hours 4 to 10. In raw sewage sludge, the Zn and Cu were mainly presented in the organically bound fraction, i.e., 45.3 ± 3.2% of total Zn and 48.3 ± 1.4% of total Cu. The addition of MGDA and EDTA caused obvious distribution transformations in Zn and Cu from the organically bound fraction to soluble fraction. According to the reduced partition index calculation, the mobility of Zn, Cu, Ni, and Cr was not significantly lowered after the MGDA treatment. However, the HMs secondary pollution risk of the sludge was reduced due to the drop of the total HMs content after chelator leaching. Findings from this study suggest that MGDA could be a potential environment-friendly alternative for refractory chelators (e.g. EDTA) in the decontamination of HMs from sludge.
Collapse
Affiliation(s)
- Jianlong Hu
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China.
| | - Jixu Zhao
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Xi Zheng
- Beijing General Research Institute of Mining &Metallurgy, Beijing, 100160, PR China
| | - Simeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Qi Lv
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Cunzhen Liang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| |
Collapse
|
32
|
Zhou X, Chen X, Han W, Han Y, Guo M, Peng Z, Fan Z, Shi Y, Wan S. Tetracycline Removal by Hercynite-Biochar from the Co-Pyrolysis of Red Mud-Steel Slag-Sludge. NANOMATERIALS 2022; 12:nano12152595. [PMID: 35957024 PMCID: PMC9370334 DOI: 10.3390/nano12152595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/10/2022]
Abstract
The sludge-derived biochar is considered an effective emerging contaminants adsorbent for wastewater treatment. In this paper, red mud and steel slag (RMSS) was used for improving sludge dewaterability and enhancing the sludge-derived biochar adsorption capacity. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM) were employed to comprehensively characterize the mineral composition, functional group, and morphology of the adsorbent. RMSS was able to improve the sludge dewatering performance by providing a skeleton structure to promote drainage and Fe(III) to decrease the Zeta potential. The dosage of 20 mg/g RMSS was able to reduce the specific resistance to filtration (SRF) and the Zeta potential of sludge from 1.57 × 1013 m/kg and −19.56 mV to 0.79 × 1013 m/kg and −9.10 mV, respectively. The co-pyrolysis of RMSS and sludge (2:8) induced the formation of biochar containing FeAl2O4 (PS80). The PS80 exhibited a large surface area (46.40 m2/g) and high tetracycline (TC) removal capacity (98.87 mg/g) when combined with H2O2 (PS80-H2O2). The adsorption process of TC onto PS80 and PS80-H2O2 was well described by the pseudo-first-order and pseudo-second-order kinetic model, indicating physisorption and chemisorption behavior. The results indicated that co-pyrolysis of RMSS sludge PS80-H2O2 could enhance the biochar adsorption capacity of TC, attributable to the degradation by ·OH generated by the heterogeneous Fenton reaction of FeAl2O4 and H2O2, the release of adsorbed sites, and the improvement of the biochar pore structure. This study proposed a novel method for the use of RMSS to dewater sludge as well as to induce the formation of FeAl2O4 in biochar with effective TC removal by providing a Fe and Al source, achieving a waste-to-resource strategy for the integrated management of industrial solid waste and sewage sludge.
Collapse
Affiliation(s)
- Xian Zhou
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Xia Chen
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Wei Han
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Yi Han
- College of Resources and Environment, Anqing Normal University, Anqing 246011, China;
- Correspondence:
| | - Mengxin Guo
- College of Resources and Environment, Anqing Normal University, Anqing 246011, China;
| | - Ziling Peng
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Zeyu Fan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Yan Shi
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| | - Sha Wan
- Changjiang River Scientific Research Institute, Research Center of Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China; (X.Z.); (X.C.); (W.H.); (Z.P.); (Z.F.); (Y.S.); (S.W.)
| |
Collapse
|
33
|
Ma C, Huang R, Huangfu X, Ma J, He Q. Light- and H 2O 2-Mediated Redox Transformation of Thallium in Acidic Solutions Containing Iron: Kinetics and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5530-5541. [PMID: 35435677 DOI: 10.1021/acs.est.2c00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The redox transformation between the oxidation states of thallium (Tl(I) and Tl(III)) is the key to influencing its toxicity, reactivity, and mobility. Dissolved iron (Fe) is widely distributed in the environment and coexists at a high level with Tl in acidic mine drainages (AMDs). While ultraviolet (UV) light and H2O2 can directly (by inducing Tl(III) reduction) and indirectly (by inducing Fe(III) to form reactive intermediates) impact the redox cycles of Tl in Fe(III)-containing solutions, the kinetics and mechanism remain largely unclear. This study is the first to investigate the UV light- and H2O2-mediated Tl redox kinetics in acidic Fe(III) solutions. The results demonstrate that UV light and H2O2 could directly reduce Tl(III) to Tl(I), with the extent of reduction dependent on the presence of Fe(III) and the solution pH. At pH 3.0, Tl(I) was completely oxidized to Tl(III), which can be ascribed to the generation of hydroxyl radicals (•OH) from the Fe(III) photoreduction or Fe(III) reaction with H2O2. The kinetics of Tl(I) oxidation were strongly affected by the Fe(III) concentration, pH, light source, and water matrix. Kinetic models incorporating Tl redox kinetics with Fe redox kinetics were developed and satisfactorily interpreted Tl(III) reduction and Tl(I) oxidation under the examined conditions. These findings emphasize the roles of the UV light- and H2O2-driven Fe cycles in influencing the redox state of Tl, with implications for determining its mobility and fate in the environment.
Collapse
Affiliation(s)
- Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ruixing Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
34
|
Wang G, Bi W, Zhang Q, Dong X, Zhang X. Hydrothermal carbonation carbon-based photocatalysis under visible light: Modification for enhanced removal of organic pollutant and novel insight into the photocatalytic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127821. [PMID: 34810004 DOI: 10.1016/j.jhazmat.2021.127821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal carbonation carbon (HTCC) is emerging as a promising alternative for photocatalytic removal of contaminants from water. However, the catalytic activity of HTCC is limited by its poor charge transfer ability, and its photocatalytic mechanism remains unclear. Herein, a unique photosensitization-like mechanism was firstly found on Fe modified HTCC (Fe-HTCC) derived from glucose for effective removal of organic pollutants. Under visible light illumination, the organic pollutant coordinated with Fe-HTCC enabled electrons transfer from its highest occupied molecular orbital (HOMO) to conduction band (CB) of Fe-HTCC, which not only oxidized pollutant itself, but also generated oxygen-centered radical for reducing O2 into O2•- towards pollutant removal. The degradation kinetic constant of sulfamethoxazole (SMX) over Fe-HTCC was about 1024.4 and 20.5 times higher than that of HTCC and g-C3N4, respectively. The enhanced performance of Fe-HTCC was originated from dual role of Fe modification: one is to boost the electron-deficient C sites which prefer to coordinate with amino or hydroxyl of pollutants; the other is to enhance the linkage of discrete polyfuran chains in Fe-HTCC for effective electron transfer from pollutant to Fe-HTCC. This work provides new insight into the synthesis and mechanism of HTCC-based high-efficiency photocatalyst for water decontamination.
Collapse
Affiliation(s)
- Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenxin Bi
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qunmei Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
35
|
Pan C, Wang C, Zhao X, Xu P, Mao F, Yang J, Zhu Y, Yu R, Xiao S, Fang Y, Deng H, Luo Z, Wu J, Li J, Liu S, Xiao S, Zhang L, Guo Y. Neighboring sp-Hybridized Carbon Participated Molecular Oxygen Activation on the Interface of Sub-nanocluster CuO/Graphdiyne. J Am Chem Soc 2022; 144:4942-4951. [PMID: 35262357 DOI: 10.1021/jacs.1c12772] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Activation of O2 is a crucial step in oxidation processes. Here, the concept of sp-hybridized C≡C triple bonds as an electron donor is adopted to develop highly active and stable catalysts for molecular oxygen activation. We demonstrate that the neighboring sp-hybridized C and Cu sites on the interface of the sub-nanocluster CuO/graphdiyne are the key structures to effectively modulate the O2 activation process in the bridging adsorption mode. The as-prepared sub-nanocluster CuO/graphdiyne catalyst exhibited the highest CO oxidation activity and readily converted 50% CO at around 133 °C, which is 34 and 94 °C lower than that for CuO/graphene and CuO/active carbon catalysts, respectively. In situ diffused reflectance infrared Fourier transform spectroscopy and density functional theory calculation results proved that the neighboring sp-hybridized C is more favorable to promote the rapid dissociation of carbonate than sp2-hybridized C without overcoming any energy barrier. The gaseous CO directly reacts with the active molecular oxygen and tends to proceed through the E-R mechanism with a relatively low energy barrier (0.20 eV). This work revealed that sp-hybridized C of graphdiyne-based materials could effectively improve the O2 activation efficiency, which could facilitate the low-temperature oxidation processes.
Collapse
Affiliation(s)
- Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chenyang Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xinya Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peiyan Xu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Feihong Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Shiyi Xiao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongtao Deng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Junbo Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, P. R. China
| | - Shengqiang Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
36
|
Chen Z, Lian C, Huang K, Ji J, Yan Q, Zhang J, Xing M. “Small amount for multiple times” of H2O2 feeding way in MoS2-Fex heterogeneous fenton for enhancing sulfadiazine degradation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
MFO@NZVI/hydrogel for sulfasalazine degradation: Performance, mechanism and degradation pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
|
39
|
Isotypic heterojunction based on Fe-doped and terephthalaldehyde-modified carbon nitride for improving photocatalytic degradation with simultaneous hydrogen production. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Chen N, Cao S, Zhang L, Peng X, Wang X, Ai Z, Zhang L. Structural dependent Cr(VI) adsorption and reduction of biochar: hydrochar versus pyrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147084. [PMID: 34088126 DOI: 10.1016/j.scitotenv.2021.147084] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Hydrochar and pyrochar are two typical biochars, and possess different intrinsic structures and chemical properties as well as pollutant removal abilities. However, their structural dependent pollutant removal performances and the related mechanisms are far less studied. In this study, we systematically compared the Cr(VI) removal processes of hydrochar and pyrochar in dark and under simulated sunlight at pH 5.7 ± 0.1, aiming to clarify the structural dependent Cr(VI) removal of biochar. In dark, hydrochar could remove 19.0% of Cr(VI) only via adsorption within 8 h, less than that (23.5%) of pyrochar via both adsorption and indirect solution •O2- reduction pathway. Although simulated sunlight irradiation could significantly promote the Cr(VI) reduction performances of both hydrochar and pyrochar, the Cr(VI) reduction percentage (88.1%) of hydrochar via both direct surface electron reduction and indirect solution •O2- reduction pathways, was much higher than that (30.2%) of pyrochar only via indirect solution •O2- reduction pathway. This different Cr(VI) reduction pathway of hydrochar and pyrochar was arisen from their structural dependent Cr(VI) adsorption models, as revealed by ATR-FTIR characterization and DFT calculation. More phenolic -OH group on hydrochar surface provided abundant sites for Cr(VI) chemical adsorption to form a strong inner-sphere complex, favoring the interfacial electron transfer for the direct surface Cr(VI) reduction. In contrast, more micropores in pyrochar were responsible for the Cr(VI) physical adsorption via intra-particle and boundary layer diffusion, which hampered the surface Cr(VI) direct reduction because of the weak interfacial interaction between Cr(VI) and pyrochar. This study clarifies the influence of surface structure on the Cr(VI) adsorption and reduction pathways of biochar, and also provides an efficient Cr(VI) removal strategy with sunlight and hydrochar.
Collapse
Affiliation(s)
- Na Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lin Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xing Peng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiaobing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
| |
Collapse
|
41
|
Zhou Z, Shen Z, Song C, Li M, Li H, Zhan S. Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. WATER RESEARCH 2021; 201:117314. [PMID: 34146763 DOI: 10.1016/j.watres.2021.117314] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic activation of molecular oxygen (O2) is a promising way in oxidative degradation of organic pollutants. However, it suffers from low efficiency mainly due to the limited active sites for O2 activation over traditional photocatalysts. Therefore, we established a single atomic Ag-g-C3N4 (SAACN) catalyst with 10 wt% loading of Ag single sites for boosting the O2 activation during the degradation of tetracycline (TC), and 10 wt% loading of nanoparticle Ag-g-C3N4 (NPACN) was studied as a comparison. When using SAACN, the accumulative concentration of superoxide (•O2-), hydroxyl radical (•OH), singlet oxygen (1O2) reached up to 0.66, 0.19, 0.33 mmol L-1h-1, respectively, within 120 min, 11.7, 5.7 and 4.9 times compared with those using NPACN, representing 17.24% of dissolved O2 was converted to reactive oxygen species (ROS). When additionally feeding air or O2, the accumulative concentrations of •O2-, •OH, 1O2 were even higher (air: 4.21, 0.97, 2.02 mmol L-1 h-1; O2: 17.13, 1.32, 9.00 mmol L-1 h-1). The rate constants (k) for degrading the TC were 0.0409 min-1 over SAACN and 0.00880 min-1 over NPACN, respectively (mineralization rate: 95.7% vs. 59.9% after 3 h of degradation). Moreover, the degradation ability of SAACN did not decrease in a wide range of pH value (4-10) or under low temperature (10 °C). Besides the high exposure of Ag single sites, other advances of SAACN were: 1(O2 was more energetic favorable to adsorb on single atomic Ag sites; 2) Positive Ag single sites were easier to obtain the electrons from the surrounding N atoms, and facilitated electron transfer towards adsorbed O2.
Collapse
Affiliation(s)
- Zhiruo Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhurui Shen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chunlin Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mingmei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hui Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Lab for Rare Earth Materials and Applications, Tianjin 300072, China.
| |
Collapse
|
42
|
Zhang S, Zhuo Y, Ezugwu CI, Wang CC, Li C, Liu S. Synergetic Molecular Oxygen Activation and Catalytic Oxidation of Formaldehyde over Defective MIL-88B(Fe) Nanorods at Room Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8341-8350. [PMID: 34076409 DOI: 10.1021/acs.est.1c01277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Defective MIL-88B(Fe) nanorods are exploited as exemplary iron-bearing metal-organic framework (MOF) catalyst for molecular oxygen (O2) activation at ambient temperature, triggering effective catalytic oxidation of formaldehyde (HCHO), one of the major indoor air pollutants. Defective MIL-88B(Fe) nanorods, growing along the [001] direction, expose abundant coordinatively unsaturated Fe-sites (Fe-CUSs) along extended hexagonal channels with a diameter of ca. 5 Å, larger enough for the diffusion of O2 (3.46 Å) and HCHO (2.7 Å). The Lewis acid-base interaction between Fe-CUSs and accessible HCHO accelerates the FeIII/FeII cycle, catalyzing Fenton-like O2 activation to produce reactive oxidative species (ROSs), including superoxide radicals (•O2-), hydroxyl radicals (•OH), and singlet oxygen (1O2). Consequently, adsorbed HCHO can be oxidized into CO2 with a considerable mineralization efficiency (over 80%) and exceptional recyclability (4 runs, 48 h). Dioxymethylene (CH2OO), formate (HCOO-) species, and formyl radicals (•CHO) are recorded as the main reaction intermediates during HCHO oxidation. HCHO, H2O, and O2 are captured and activated by abundant FeIII/FeII-CUSs as acid/base and redox sites, triggering synergetic ROS generation and HCHO oxidation, involving cooperative acid-base and redox catalysis processes. This study will bring new insights into exploiting novel MOF catalysts for efficient O2 activation and reliable indoor air purification at ambient temperature.
Collapse
Affiliation(s)
- Shuping Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yifan Zhuo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chizoba I Ezugwu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China
| | - Chuanhao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Shengwei Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
43
|
Wen S, Zou H, Liu J, Evrendilek DE, Yan Y, Liang G. Multi-response optimization toward efficient and clean (co-)combustions of textile dyeing sludge and second-generation feedstock. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124824. [PMID: 33373950 DOI: 10.1016/j.jhazmat.2020.124824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The rapid growth of textile dyeing sludge (TDS) necessitates feeding it back into a circular economy in an efficient and clean way. This study aimed to optimize the clean and efficient operational conditions to co-combust TDS and incense sticks (IS). The (co-)-combustions exhibited four distinctive stages of thermal degradation. According to the master-plots method, the reaction mechanisms of reaction order (F2.4 and F1.5), three-dimensional diffusion (D3), and nucleation growth (A1.5) best explained the four stages, respectively. The interaction between TDS and IS exerted an inhibition effect in the range of 400-500 °C and a facilitation effect in the range of 600-1000 °C. At 300 °C as the main reaction temperature, the main evolved gas and functional groups such as CO2, H2O, CH4, C˭O, C-O, and C-H were detected. The addition of IS improved the comprehensive combustion index, inhibited SO2, but enhanced CO2, HCN, and NOx emissions. CaO in IS enabled Fe to remain in TDS and fixed more S in ash. Multi-response optimizations based on the best-fit artificial neural networks revealed the range of 545-605 °C and the co-combustion of 25% TDS and 75% IS as the cleaner and more efficient operational conditions.
Collapse
Affiliation(s)
- Shaoting Wen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huihuang Zou
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Deniz Eren Evrendilek
- Department of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Youping Yan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanjie Liang
- Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization, Guangdong Provincial Institute of Mining Applications, Guangdong 512026, China
| |
Collapse
|
44
|
Jin Q, Chen Z, Chen Q, Yan P, Zhao S, Shen J, Li L, Guo F, Kang J. Structure activity relationship study of N-doped ligand modified Fe(III)/H 2O 2 for degrading organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124142. [PMID: 33059248 DOI: 10.1016/j.jhazmat.2020.124142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The performance of Fe(III)/H2O2 was extremely enhanced by a novel N-doped ligand dipicolinamide (Dpa) for removing various organic pollutants. This dramatic enhancement of contaminants degradation in Fe(III)-Dpa/H2O2 system under pH≥ 7 was ascribed to the coordinating capacity of Dpa to form the dissolved Fe(III)-Dpa/Fe(II)-Dpa, and the reductive capacity of Dpa to maintain the concentration of Fe(II), which made Dpa improve the catalytic performance of Fe(III) nearly twice as much as Fe(II). Dpa has a strong complexing ability than Cit, NTA, and EDTA to maintain the catalytic activity of Fe(III) without light. The single crystal of Fe-Dpa was obtained to reveal its structure activity relationship. Fe-Dpa was composed of four bonds of Fe-N and two bonds of Fe-Cl. The Fe-Cl bonds were labile sites, which was easily experienced ligand exchange with H2O2, resulting Fe-H2O2 bonds to initiate degradation reaction. The remaining Fe-N bonds were effectively planar, which had a large delocalized π electrons flow domain, enhancing the production of multiple reactive species, including iron(IV/V)-oxo species, HO· and O2-·. An empirical kinetic model of Fe(III)-Dpa/H2O2 system was established. In addition, the evaluation results of the toxicity of Fe-Dpa to larval zebrafish and chinese cabbage displayed that Fe-Dpa possesses low toxicity.
Collapse
Affiliation(s)
- Qianqian Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qian Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, School of Chemical Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jimin Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jing Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
45
|
Zhou S, Shang H, Luo J, Shen M, Wang Q, Zhang S, Zhu X. Organoarsenic conversion to As(III) in subcritical hydrothermal reaction of livestock manure. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123571. [PMID: 32763770 DOI: 10.1016/j.jhazmat.2020.123571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Liquid phase produced by the subcritical hydrothermal liquefaction (HTL) of livestock manure is extensively used in agronomic and environmental applications, but the potential risks caused by inherent pollutants (e.g., roxarsone, ROX) of the livestock manure have not been considered. This study shows that less toxic ROX is completely converted into highly toxic As(III) and As(V) in the HTL reaction with temperature more than 240 °C. Moreover, more than 81.5% of As is distributed in the liquid phase generated by the livestock manure HTL reaction. Notably, the hydrothermal products of livestock manure facilitate the conversion of As(V) to As(III). The resulting hydrochar and aldehydes act as electron donors for As(V) reduction, thus resulting in the formation of As(III). Furthermore, the dissociated As promotes the depolymerization and deoxygenation of the macromolecular compounds to produce more small oxygen-containing compounds such as aldehydes, further boosting the As(V) reduction to As(III). These results indicate that the liquid phase of the livestock manure has potential risks in applications as a fertilizer. Such findings have substantial implications in biomass utilization and redox reactions of envirotechnical and biogeochemical relevance.
Collapse
Affiliation(s)
- Shaojie Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hua Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiewen Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Minghao Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qi Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
46
|
Hu Z, Liu W. Conversion of Biomasses and Copper into Catalysts for Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51366-51373. [PMID: 33155808 DOI: 10.1021/acsami.0c13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rapid increase of CO2 in the atmosphere has caused serious environmental problems. Burning of biomass wastes increases the content of CO2 in the environment. Herein, we propose a new strategy to convert biomass into photocatalysts for artificial CO2 reduction. Using a hydrothermal method, carbohydrates from biomass can be converted into hydrothermal carbonaceous carbon (HTCC). The HTCC consists of plenty of sp2-hybridized structures, which are capable of absorbing solar light for photocatalytic CO2 reduction. Furthermore, with the addition of Cu cocatalysts, higher activity can be obtained for CO2 reduction. The activity of Cu-HTCC is 32 and 1.7 times higher than that of commercial TiO2 and pure HTCC, respectively. This method provides a new strategy of trash to treasure, which converts biomass waste into photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Weiwei Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
47
|
Zahra T, Ahmad KS, Ali D. Ecospheric Decontamination Attained via Green Nanobiotechnological NiO-Based Nanocatalyst Derived from Nature's Biofactories. Int J Nanomedicine 2020; 15:8357-8367. [PMID: 33149580 PMCID: PMC7605640 DOI: 10.2147/ijn.s272726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Water contamination from dye effluents from various industrial sources has become a major challenge of the scientific community that is difficult to remediate using orthodox chemical and biological procedures. As such, there is a need for more suitable and cost-effective ways to treat such effluents. The present work describes a green-synthesis approach for preparation of three types of Ni-based oxides as effective catalytic materials to remove environmental pollutants. Metal oxide nanomaterials are cheap, abundant, and ecofriendly earth metals, and thus are promising materials for catalytic applications for environmental detoxification. METHODS An aqueous leaf extract of Prunus persica was used as a reducing agent for the synthesis of NiO, NiO-PdO, and NiO-ZnO nanoparticles (NPs). The leaf extract was treated with each metal-salt precursor based on sol-gel synthesis, and then the final procured NPs were analyzed by spectroscopic techniques for structural and morphological makeup. The pure NPs were further explored for catalytic degradation of hazardous aqueous dye at ambient conditions, instead of following any sophisticated experimental conditions. RESULTS AND DISCUSSION Morphological features revealed the pure formation of NiO, NiO-ZnO, and NiO-PdO NPs of size <100nm, characterized by X-ray diffraction spectroscopy and scanning electron microscopy. Catalytic tests with methyl orange revealed the remediation potential of synthesized material, showing the pseudo-first order kinetics (R 2<1) for NiO, NiO-PdO, and NiO-ZnO. NiO-ZnO gave outstanding results both in dark (R 2=0.88) and light (R 2=0.82) with degradation percentage of 99% (dark) in comparison with the other two catalysts. Moreover, excellent catalyst stability for NiO-ZnO) was observed, even after the fourth cycle, under both light and dark conditions and was separated easily during centrifugation. CONCLUSION Although all three materials depicted the degradation potential with good stability, but the NiO-ZnO catalyst was the best catalytic material in the present investigation, with prominent degradation percentage, and can be considered as an efficient catalytic material. Thus, we conclude that P. persica-inspired catalytic material could pave the path toward environmental remediation, alternative clean energy, and other biological applications.
Collapse
Affiliation(s)
- Taghazal Zahra
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Dauod Ali
- Department of Zoology, College of Sciences, King Saud University, Riyadh11451, Saudi Arabia
| |
Collapse
|
48
|
Fu T, Zhang Y, Wu D, Zhu W, Gao X, Han C, Luo Y, Ma W, Dionysiou DD. Solvent-free synthesis of MFI-type zeolites and their degradation properties of gas-phase styrene. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122630. [PMID: 32416379 DOI: 10.1016/j.jhazmat.2020.122630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/08/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, a series of MFI-type zeolites with various compositions were synthesized by a solvent-free synthesis method at a comparatively mild condition. The results of investigations showed that the as-synthesized samples displayed a good crystallinity grade and regular morphology of layered structure. The crystallization process of TS-1 was systematic investigated. It was revealed that the transition stage of crystallization process was the formation of nucleation intermediates (Na2SiF6), which was the key factor for dropping Ti atoms into MFI framework. Meanwhile, it showed a high apparent nucleation activation energy (64.8 kJ mol-1), and low growth activation energy (25.3 kJ mol-1) in a spontaneous nucleation system, and the nucleation activation energy could be reduced to 17.2 kJ mol-1 in non-spontaneous nucleation system. The as-synthesized zeolites were evaluated for their catalytic activity for the degradation of gas-phase styrene. The titanium silicalite-1 sample doped with iron exhibited excellent catalytic activity with 100% degradation of styrene. The method employed in this work not only decreases the production cost and energy-consumption of MFI-type zeolites, but also significantly enhances their production yield. Moreover, it is an efficient pathway to solve the pollution of volatile organic compounds using solid waste.
Collapse
Affiliation(s)
- Te Fu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province Key Laboratory for Controlling Malodorous Volatile Organic Compounds, Kunming, 650500, PR China
| | - Ying Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province Key Laboratory for Controlling Malodorous Volatile Organic Compounds, Kunming, 650500, PR China
| | - Di Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province Key Laboratory for Controlling Malodorous Volatile Organic Compounds, Kunming, 650500, PR China
| | - Wenjie Zhu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province Key Laboratory for Controlling Malodorous Volatile Organic Compounds, Kunming, 650500, PR China.
| | - Xiaoya Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province Key Laboratory for Controlling Malodorous Volatile Organic Compounds, Kunming, 650500, PR China
| | - Caiyun Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province Key Laboratory for Controlling Malodorous Volatile Organic Compounds, Kunming, 650500, PR China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province Key Laboratory for Controlling Malodorous Volatile Organic Compounds, Kunming, 650500, PR China.
| | - Wenhui Ma
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, PR China; Key Laboratory of Non-Ferrous Metals Vacuum Metallurgy of Yunnan Province/Engineering Research Center for Silicon Metallurgy and Silicon Materials of Yunnan Provincial Universities, Kunming, 650093, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0012, USA
| |
Collapse
|
49
|
Qiu Y, Zhang Q, Gao B, Li M, Fan Z, Sang W, Hao H, Wei X. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115018. [PMID: 32806451 DOI: 10.1016/j.envpol.2020.115018] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
In this study, sludge-derived biochar was prepared and utilized to support nano-zero-valent iron (NZVI-SDBC) for removing Cr(VI) and Cr(III) from aqueous solution with the aim of investigating their removal and transformation. Under the conditions of initial pH of 4, dosage of 1 g/L, temperature of 25 °C, and rotational speed of 160 rpm, 64.13% Cr species could be removed by NZVI-SDBC from Cr(VI) solution and 28.89% from Cr(III) solution. Coexisting ions experiments showed that Cu(II) and humic acids dramatically affected the removal of Cr(VI) and Cr(III), while the effect of Na(I) and Ca(II) was almost negligible. Based on this, through the coexistence and pre-loaded Cr(III) experiments, the conversion from Cr(VI) to Cr(III) was demonstrated to enhance the further attraction on Cr(VI) and promote the subsequent removal of Cr(VI). The SDBC of NZVI-SDBC could serve as electron shuttle mediator to facilitate the electron transfer between adsorbed Cr(VI) and NZVI for ortho-reduction. The transformation and removal mechanisms were further discussed by various characterizations. The kinetics of Cr(VI) removal suggested that the removal process of Cr(VI) could be divided into three phases dominated by different mechanisms (adsorption, direct/ortho reduction, electrostatic attraction), in which Cr(VI) and Cr(III) showed different behaviors of interaction. The removal of Cr(III) mainly depended on sufficient adsorption sites and the direct complexation with Fe(II). Finally, the reusability of NZVI-SDBC was assessed by adsorption/desorption recycling test. These results provided new insights into the removal and transformation mechanisms of Cr(VI) and Cr(III) by biochar-based nanocomposites.
Collapse
Affiliation(s)
- Yue Qiu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zixi Fan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenjiao Sang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Huiru Hao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaonan Wei
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
50
|
Wang C, Xian Z, Jin X, Liang S, Chen Z, Pan B, Wu B, Ok YS, Gu C. Photo-aging of polyvinyl chloride microplastic in the presence of natural organic acids. WATER RESEARCH 2020; 183:116082. [PMID: 32668353 DOI: 10.1016/j.watres.2020.116082] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 05/22/2023]
Abstract
In this study, a new photo-aging pathway in the aquatic environments and the underlying transformation mechanism were described for polyvinyl chloride microplastic (PVC-MP). Our results indicated that the photo-aging of PVC-MP was strongly dependent on particle size and the aging reaction could be facilitated in the presence of low-molecular-weight organic acid (LMWOA) and LMWOA-Fe(III) complex under simulated and natural sunlight irradiation and ambient conditions. The hydroxyl radical (OH•) generated from the photolysis of LMWOA or its ferric complexes played a dominant role in enhancing PVC-MP degradation. In situ Fourier transform infrared and Raman spectroscopic techniques and theoretical calculations further confirmed that C-Cl bond cleavage and formation of polyene and carbonyl underwent on the PVC-MP surface, especially in the presence of LMWOA and LMWOA-Fe(III). Moreover, PVC-MP surface oxidation also led to the increase of the specific surface area and affinity towards water as indicated by the results of scanning electron microscopy, Brunauer-Emmett-Teller tests and contact angles for water, which would further enhance the adsorption of polar contaminants on PVC-MP and thus increase the health risk of PVC-MP on aquatic organisms.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Zeyu Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|