1
|
Zhu P, Zhang Y, Deng M, Zhang Y, Luo J, Han R, Xu L. Microplastics and Nanoplastics Alter the Physicochemical Properties of Willow Trees and Lead to Mortality in Leaf Beetle Larvae. PLANT, CELL & ENVIRONMENT 2025; 48:2895-2909. [PMID: 39635818 DOI: 10.1111/pce.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Polystyrene micro- and nanoplastics (MNPs) are increasingly found in terrestrial environments, posing risks across the food web. However, the potential impacts of MNPs transfer on plant-insect interactions remains largely unknown. In this study, consumption of willow plants (Salix maizhokunggarensis) exposed to 10.0 mg/L MNPs for 21 days inhibited survival and reduced body weight in Plagiodera versicolora larvae unlike those exposed to lower concentrations or shorter durations (0.1, 1.0 and 10.0 mg/L MNPs for 7 or 14 days). MNPs exposure increased lignin content and leaf thickness in willows, leading to decreased leaf consumption and increased mouthpart wear in P. versicolora larvae. Transcriptome and gut microbiota analyses revealed significant downregulation of genes related to digestion, intestinal homoeostasis, immunity, and growth/development along with profound alterations in gut microbiota composition. Notably, the abundance of the pathogenic bacterium Pseudomonas increased significantly. The gut barrier was disrupted, allowing gut bacteria to translocate into the haemolymph, accelerating larval mortality. Overall, MNPs altered plant physiology, making willow plants unsuitable for herbivore consumption and indirectly influenced herbivore survival by modulating gut bacteria. These findings offer novel insights into the cascading ecological effects and risks of MNPs, highlighting potential impacts on plant-herbivore interactions, biodiversity, and ecosystem health in terrestrial ecosystems.
Collapse
Affiliation(s)
- Peipei Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanping Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mengqi Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Runhua Han
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Peng BY, Wang WX. In Vivo visualization of microplastic degradability and intestinal functional responses in a plastivore insect. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137109. [PMID: 39764959 DOI: 10.1016/j.jhazmat.2025.137109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 03/12/2025]
Abstract
The plastivore insect Tenebrio molitor demonstrates significant potential for the rapid biodegradation and bioremediation of micro(nano)plastics. However, real-time visualization of the digestive degradation and removal of microplastics (MPs) during intestinal transit, along with the associated in vivo intestinal functional responses, remains challenging. Here, we developed second near-infrared (NIR-II) window aggregated-induced emission (AIE) MPs of two sizes (29.8 μm and 299.5 μm, respectively) to enable real-time monitoring of MPs removal in T. molitor larvae, and quantified the degradation kinetics. Our findings revealed that small MPs were digested and passed through the intestine more rapidly compared to large MPs, in strong contrast with patterns observed in organisms lacking plastic-degrading capacity. Digestive removal was more pronounced in the posterior than in the anterior midgut. A NIR-II peroxynitrite probe (NIR-ONOO-) was synthesized to investigate the intestinal functional responses to MPs biodegradation. Generation of reactive nitrogen species (RNS) was extensive during feedstock digestion in the intestine. The larvae instinctively modulated the ONOO- levels and heterogeneously redistributed the ONOO- in response to MPs biodegradation, with a more pronounced effect observed in larvae fed large MPs. This work presents a robust trafficking technology for the dynamic and in vivo visualization of micro(nano)plastics removal and bioremediation in plastivore species.
Collapse
Affiliation(s)
- Bo-Yu Peng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Akash K, Parthasarathi R, Elango R, Bragadeeswaran S. Exploring the plastic-fed Indian mealworm (Tenebrio molitor) gut bacterial strain (Bacillus subtilis AP-04) - A potential driver of polyethylene degradation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137022. [PMID: 39740547 DOI: 10.1016/j.jhazmat.2024.137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Plastic biodegradation by microbes is an environmentally friendly and sustainable approach that has no negative consequences. In this study, mealworms were fed with 9 different diets with expanded polystyrene (EPS) and polyethylene foam (PF), after 28 days of incubation mealworm survival rates were highest at 93.3 % when fed wheat bran alone whereas 83.3 % and 80 % when fed EPS and PF exclusively, indicating their adaptability to different plastics and their ability to thrive in various conditions. Histological examination revealed ingestion of EPS and PF found in the intestine confirming through cell wall disruptions. Ten bacterial isolates (AMI-1 to AMI-10) were obtained from EPS and PF-fed mealworms gut. After 30 days in mineral salt media (MSM) with low-density polyethylene (LDPE), AMI-4 showed higher turbidity and biofilm formation. Out of ten isolates seven bacterial isolates produced lipase, six produced proteases and laccases, and all exhibited positive amylase activity, with the highest zone formation in AMI-4. Morphophysical characteristics and 16S rRNA sequencing identified AMI-4 as Bacillus subtilis AP-04 (OR288581). A higher ATP value (783 ± 84.69), LDPE film Weight loss (36.55 %) and CO2 evolution (15.8 ± 0.99-22.39 ± 1.40 g/l) and the mechanical changes of LDPE film were confirmed through GSM loss 27.24 % and decrease in tensile strength (9.82 ± 0.61-7.98 ± 0.50 Mpa) by Bacillus subtilis AP-04 was recorded at 60 days of incubation. AFM, FTIR, and SEM analyses confirmed degradation in treated LDPE films compared to controls. This study reveals the potential of gut bacterial strain (Bacillus subtilis AP-04) on LDPE film, indicating their potential for bioremediation of plastic waste on a larger scale.
Collapse
Affiliation(s)
- Krishnamoorthi Akash
- Department of Microbiology, Faculty of Agriculture, Annamalai University, Annamalai nagar, Chidambaram, Tamil Nadu 608002, India.
| | - Rengasamy Parthasarathi
- Department of Microbiology, Faculty of Agriculture, Annamalai University, Annamalai nagar, Chidambaram, Tamil Nadu 608002, India; Department of Soil Science and Agricultural Chemistry, Anbil Dharmalingam Agricultural College and Research Institute, Trichy, Tamil Nadu 620027, India.
| | - Rajavel Elango
- Department of Microbiology, Faculty of Agriculture, Annamalai University, Annamalai nagar, Chidambaram, Tamil Nadu 608002, India
| | - Subramanian Bragadeeswaran
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu 608502, India
| |
Collapse
|
4
|
Chen X, Zhang Z, Hsueh Y, Zhang C, Yu J, Zhu J, Niu J, Yin N, Zhang J, Cui X, Liu X, Xu K, Yuan C. Interactions between environmental pollutants and gut microbiota: A review connecting the conventional heavy metals and the emerging microplastics. ENVIRONMENTAL RESEARCH 2025; 269:120928. [PMID: 39855410 DOI: 10.1016/j.envres.2025.120928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Growing epidemiological evidence suggests that the diverse and functional gut microbiota plays a vital role in regulating the health and disease of organisms including human. However, organisms are inevitably exposed to widespread environmental pollutants, and the interactions between their gut microbiota and pollutants are relatively underreported. The present paper considers heavy metals (HMs) and microplastics (MPs) as representatives of traditional and emerging pollutants and systematically summarizes their effects on gut microbiota and the effects of gut microbiota on pollutants. The former refers to the alterations in the gut microbiota's abundance, diversity and composition caused by pollutants, whereas the latter focuses on the changes in the metabolism of pollutants by adjusting the dominant bacteria, specific enzymes, and key genes. In particular, some fields were found to be poorly studied, including extension of research to humans, mechanistic exploration of gut microbiota's changes, and the metabolism of pollutants by gut microbiota. Accordingly, we draw attention to the development and application of in vitro test models to more accurately explore the interactions between pollutants and gut microbiota when assessing human health risks. In addition, by combining state-of-the-art biological techniques with culturomics, more gut microbiota can be identified, isolated, and cultured, which helps to confirm the relationship between pollutants and gut microbiota and the potential function of gut microbiota in pollutant metabolism. Furthermore, the phenomenon of coexposure to HMs and MPs is becoming more frequent, and their interactions with gut microbiota and the influence on human health is expected to be one of the frontier research fields in the future. The key information presented in this review can stimulate further development of techniques and methodologies for filling the knowledge gaps in the relationships between combined pollutants (HMs and MPs), gut microbiota, and human health.
Collapse
Affiliation(s)
- Xiaochen Chen
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zengdi Zhang
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yushiang Hsueh
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC
| | - Chunpeng Zhang
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), Jilin University, Changchun, 130021, China
| | - Jianying Yu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China; The Second Geological Exploration Institute, China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Junyu Zhu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jia Niu
- Center of Safe and Energy-saving Engineering Technology for Urban Water Supply and Drainage System, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Jianyu Zhang
- Jiangsu Longchang Chemical Co., Ltd., Rugao, 226532, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Kaiqin Xu
- Innovation Center for Soil Remediation and Restoration Technologies, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ching Yuan
- Department of Civil and Environmental Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan, ROC.
| |
Collapse
|
5
|
Urrutia RI, Gutierrez VS, Werdin-González JO. Sustainable approach to polystyrene management and bioinsecticide production: Biodegradation by Tenebrio molitor larvae co-fed with residual biomass and bioactivity of frass pyrolysis bio-oil against insect pests. BIORESOURCE TECHNOLOGY 2025; 419:132005. [PMID: 39719202 DOI: 10.1016/j.biortech.2024.132005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Tenebrio molitor has gained attention as a potential solution for plastic pollution. This study explored the biodegradation of polystyrene (PS) by mealworms co-fed with rice bran (RB) under an optimized rearing scheme. The RB co-diet significantly increased PS consumption by two-fold compared to wheat bran (WB). Additionally, RB supported mealworm growth with favorable survival and feed conversion rates. Protein content of mealworms remained unchanged with PS plus RB, while significantly increased lipid stores and improved the fatty acid profile. Frass from PS (1) and biomass (2) intake was subjected to pyrolysis. Bio-oils from frass 2 exhibited insecticidal activity against Plodia interpunctella adults and Culex pipiens pipiens larvae. Finally, bio-oils demonstrated low toxicity to the aquatic non-target species Artemia salina, with up to three-fold selectivity towards Cx. p. pipiens. These findings highlight RB's role in PS management and the potential application of bio-oil as bioinsecticide.
Collapse
Affiliation(s)
- Rodrigo Iñaki Urrutia
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000 Bahía Blanca, Argentina
| | | | - Jorge Omar Werdin-González
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Li A, Yuan F, Li L, Gu J, Zhang Y, Li F, Tang T, Liu F. Interactions between nanoplastics and Tetrahymena thermophila: Low toxicity vs. potential biodegradation. CHEMOSPHERE 2025; 373:144166. [PMID: 39914086 DOI: 10.1016/j.chemosphere.2025.144166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025]
Abstract
Nanoplastics (NPs) are prevalent throughout the environment and have raised growing environmental concerns. Although numerous studies have examined the toxicological aspects of NPs, few have investigated their environmental fate and behavior when affected by organisms other than bacteria or fungi. Planktonic ciliates are essential components of aquatic ecosystems and play important roles in decomposing organic matter and transferring energy from the microbial food web to higher trophic levels. To investigate the interplay between NPs and the ciliate Tetrahymena thermophila, we executed a sequence of feeding experiments utilizing 50 nm polystyrene nanoplastics (PS-NPs). In the presence of sufficient nutrition, exposure to PS-NPs (even at concentrations up to 500 mg/L) did not significantly inhibit growth in Tetrahymena thermophila, indicating only a mild toxic effect of PS-NPs. When ingested by T. thermophila, the PS-NPs are repackaged into aggregates with lysosomal components in the food vacuole and finally expelled as compacted "fecal pellets". This process modifies the physical attributes of PS-NPs, including their hydrophilicity, aggregability, and buoyancy, influencing their transportation, retention, deposition dynamics, and ultimately their bioavailability within the environment. A total of 73 proteins were identified from the fecal pellets, containing various hydrolases. Gel permeation chromatography (GPC), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA) were used to identify changes in molecular weights, functional groups, and thermal stabilities of PS-NP residues in fecal pellets. The results verified the degradation of PS-NPs during the passage through the T. thermophila cell.
Collapse
Affiliation(s)
- Aiyun Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Lianshan Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Jihai Gu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengchao Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Tripathi M, Singh P, Pathak S, Manimekalai R, Garg D, Dashora K. Strategies for the Remediation of Micro- and Nanoplastics from Contaminated Food and Water: Advancements and Challenges. J Xenobiot 2025; 15:30. [PMID: 39997373 PMCID: PMC11856478 DOI: 10.3390/jox15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Micro- and nanoplastic (MNP) pollution is a significant concern for ecosystems worldwide. The continuous generation and extensive utilization of synthetic plastics have led to the widespread contamination of water and food resources with MNPs. These pollutants originate from daily-use products and industrial waste. Remediation of such pollutants is essential to protect ecosystems and human health since these ubiquitous contaminants pose serious biological and environmental hazards by contaminating food chains, water sources, and the air. Various remediation techniques, including physical, chemical, sophisticated filtration, microbial bioremediation, and adsorption employing novel materials, provide encouraging avenues for tackling this worldwide issue. The biotechnological approaches stand out as effective, eco-friendly, and sustainable solutions for managing these toxic pollutants. However, the complexity of MNP pollution presents significant challenges in its management and regulation. Addressing these challenges requires cross-disciplinary research efforts to develop and implement more efficient, sustainable, eco-friendly, and scalable techniques for mitigating widespread MNP pollution. This review explores the various sources of micro- and nanoplastic contamination in water and food resources, their toxic impacts, remediation strategies-including advanced biotechnological approaches-and the challenges in treating these pollutants to alleviate their effects on ecosystems and human health.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | | | - Diksha Garg
- Department of Microbiology, DAV University, Jalandhar 144012, Punjab, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, Delhi, India
| |
Collapse
|
8
|
Vital-Vilchis I, Karunakaran E. Using Insect Larvae and Their Microbiota for Plastic Degradation. INSECTS 2025; 16:165. [PMID: 40003794 PMCID: PMC11856541 DOI: 10.3390/insects16020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
Plastic pollution is one of the biggest current global threats to the environment given that petroleum-based plastic is recalcitrant and can stay in the environment for decades, even centuries, depending on the specific plastic type. Since less than 10% of all plastic made is recycled, and the other solutions (such as incineration or landfill storage) are pollutant methods, new, environmentally friendly solutions are needed. In this regard, the latest biotechnological discovery on this topic is the capability of insect larvae to use plastic polymers as carbon feedstock. This present review describes the most relevant information on the insect larvae capable of degrading plastic, mainly Galleria mellonella (Fabricius, 1798), Tenebrio molitor (Linnaeus, 1758), and Zophobas atratus (Fabricius, 1776), and also adds new information about other less commonly studied "plastivore" insects such as termites. This review covers the literature from the very first work describing plastic degradation by larvae published in 2014 all the way to the very latest research available (till June 2024), focusing on the identification of a wide variety of plastic-degrading microorganisms isolated from larvae guts and on the understanding of the potential molecular mechanisms present for degradation to take place. It also describes the latest discoveries, which include the identification of novel enzymes from waxworm saliva.
Collapse
Affiliation(s)
| | - Esther Karunakaran
- School of Chemical, Materials and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK;
| |
Collapse
|
9
|
Ros M, Lidon P, Carrascosa A, Muñoz M, Navarro MV, Orts JM, Pascual JA. Polyurethane foam degradation combining ozonization and mealworm biodegradation and its exploitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5332-5346. [PMID: 39921778 PMCID: PMC11868246 DOI: 10.1007/s11356-025-36029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
The biodegradation of polyurethane foam (PU foam) using a combination of oxidative pre-treatment (ozonization) and Tenebrio molitor (T. molitor) mealworms was conducted in this study. Different degrees of ozone oxidation (0%, 25%, and 50%) were applied to PU foam, which was subsequently fed to mealworms. The mealworms' survival and growth were then compared to mealworms receiving a normal diet (bran). Results showed that mealworms fed with non-oxidized PU foam (PUF0) exhibited a higher consumption rate (11.8%) than those fed with 25% (PUF25) and 50% (PUF50) oxidized PU foam (7.7% and 5.7%, respectively). The survival rate was similar across all the PU foam diets and the bran diet. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analyses revealed minor structural changes in the PU foam. The gut microbiota analysis showed a significant correlation between the PU foam and bran diets. Among the different oxidized PU, distinct microbial community profiles were also observed, with the genus Klebsiella consistently present across the PU foam diets. The ozone pre-treatment altered the palatability and degradation of the PU foam by mealworms, while the mealworm frass and chitin obtained could potentially be used as resources for agricultural and industrial applications that would close the circular bio-economy cycle.
Collapse
Affiliation(s)
- Margarita Ros
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain.
| | - Paula Lidon
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| | - Angel Carrascosa
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| | - Marta Muñoz
- CETEM, Materials, Adhesion and Polymers, C/ Perales S/N, Yecla, Murcia, Spain
| | | | - Jose Maria Orts
- Department of Biochemistry and Molecular Biology, Facultad de Farmacia, C/Prof., Universidad de Sevilla, García Gonzalez 2, 41012, Seville, Spain
| | - Jose Antonio Pascual
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| |
Collapse
|
10
|
Sanchez-Hernandez JC, Megharaj M. Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100521. [PMID: 39867963 PMCID: PMC11758129 DOI: 10.1016/j.ese.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025]
Abstract
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management. However, insect-assisted plastic depolymerization is incomplete, leaving significant amounts of microplastics in the frass (or manure), limiting its use as a soil amendment. In this perspective, we propose a novel two-step bioconversion system to overcome these limitations, using insects to sustainably manage plastic waste while revalorizing its by-products (frass). The first step involves pyrolyzing microplastic-containing frass from mealworms (Tenebrio molitor larvae) fed on plastic-rich diets to produce biochar with enhanced adsorptive properties. The second stage integrates this biochar into the entomocomposting of organic residues, such as food waste, using black soldier fly (Hermetia illucens) larvae to produce nutrient-rich substrates enriched with carbon and nitrogen. This integrated system offers a potential framework for large-scale industrial applications, contributing to the bioeconomy by addressing both plastic waste and organic residue management. We critically examine the advantages and limitations of the proposed system based on current literature on biochar technology and entomocomposting. Key challenges and research opportunities are identified, particularly concerning the physiological and toxicological processes involved, to guide future efforts aimed at ensuring the scalability and sustainability of this innovative approach.
Collapse
Affiliation(s)
- Juan C. Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071, Toledo, Spain
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
Son JS, Lee S, Hwang S, Jeong J, Jang S, Gong J, Choi JY, Je YH, Ryu CM. Enzymatic oxidation of polyethylene by Galleria mellonella intestinal cytochrome P450s. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136264. [PMID: 39500186 DOI: 10.1016/j.jhazmat.2024.136264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
Polyethylene is widely used but highly resistant to biodegradation, owing to its composition of only a hydrocarbon backbone. For biodegradation to occur, oxidation within the polymer needs to be initiated. Galleria mellonella was the first insect discovered to autonomously oxidize polyethylene without the aid of gut microbes. However, the specific enzyme remains unidentified. Here, we identified for the first time two polyethylene oxidation enzyme candidates of cytochrome P450 (CYP) 6B2-GP04 and CYP6B2-13G08 from the G. mellonella midgut. Both candidate clones oxidized polyethylene efficiently, generating short-chain aliphatic compounds, with CYP6B2-GP04 exhibiting higher activity than CYP6B2-13G08 in yeast and insect cells. In silico structural modeling approaches revealed that the CYP6B2-GP04 Phe118 was essential for interacting with hydrocarbons, which was further validated by mutating phenylalanine to glycine. Furthermore, directed enzyme evolution led to the identification of an enzyme variant with significantly increased oxidation efficiency. Our findings offer promising enzyme-based solutions for polyethylene biodegradation, potentially mitigating polyethylene-driven plastic pollution.
Collapse
Affiliation(s)
- Jin-Soo Son
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Soohyun Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Sungbo Hwang
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, Daejeon 34141 South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Seonghan Jang
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea
| | - Jiyoung Gong
- Environmental Disease Research Center, KRIBB, Daejeon 34141, South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea
| | - Jae Young Choi
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, South Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141 South Korea; KRIBB School, University of Science and Technology, 217, Daejeon 34113, South Korea; Department of Pediatrics, University of California at San Diego, La Jolla, CA, 92093-0380, USA.
| |
Collapse
|
12
|
Wang Y, Nan X, Sun H, Shi Y, Miao J, Li Y, Han X, Zhang N, Wang H, Ren N, Zhao X, Liu B. From insects to mammals! Tissue accumulation and transgenerational transfer of micro/nano-plastics through the food chain. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136424. [PMID: 39531820 DOI: 10.1016/j.jhazmat.2024.136424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Despite extensive global attention on microplastic pollution, our understanding of the pathways underlying microplastic translocation, accumulation, and their potential impacts on ecosystems and human health through the food chain remains incomplete. To investigate the translocation and accumulation of microplastics from insects to mammals, we developed a novel oral exposure model that Tenebrio molitor larvae (yellow mealworms, invertebrate terrestrial insects) were firstly orally exposed to both micro and nanometer-sized plastics (M/NPs), and subsequently fed as a food source to mice (mammals). Our results provide clear evidence that micro/nanoplastics (M/NPs) do indeed translocate through the food chain, from lower to higher trophic levels. Fluorescence microscopy and tissue quantification revealed the accumulation of M/NPs in the digestive, somatic, and circulatory systems of the larvae. Specifically, the food chain transferred M/NPs were later detected in the digestive, respiratory, and urinary systems of mice, showcasing strong fluorescent signals in vital organs such as the lungs, liver, intestines, brain, and kidneys, as well as in embryos. These findings highlight the intricate dynamics of M/NPs contamination, emphasizing their ability to traverse biological barriers, accumulate in organisms, and potentially impact embryonic development via food chain transfer.
Collapse
Affiliation(s)
- Yijing Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Xinrui Nan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yutian Shi
- Clinical Medicine, The Second Clinical Medical School, China Medical University, Shenyang 110122, China
| | - Jixing Miao
- Clinical Medicine, The First Clinical Medical School, China Medical University, Shenyang 110001, China
| | - Yuheng Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ning Zhang
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Huaqin Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Baoqin Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
13
|
Xu Y, Zhang X, Xiao S, Peng BY, Chen J, Yang L, Zhou X, Zhang Y. Distinct exposure impact of non-degradable and biodegradable microplastics on freshwater microalgae (Chlorella pyrenoidosa): Implications for polylactic acid as a sustainable plastic alternative. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136265. [PMID: 39515141 DOI: 10.1016/j.jhazmat.2024.136265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are increasingly recognized as significant sources of harm to biota in various environments. However, the detrimental impacts of aged MPs with different structures and degradability remain poorly understood. In this study, aged MPs from polylactic acid (PLA), polyethylene (PE), and polystyrene (PS), representing biodegradable, aliphatic, and aromatic plastics, respectively, were prepared to examine their effects on microalgae (Chlorella pyrenoidosa). Structural and property analyses indicated the presence of aging and oxygen-containing functional groups on the surfaces of the MPs, which correlated with an increase in negative electrical charge (i.e., aged PLA > aged PE ≈ aged PS). Aged PLA MPs affected microalgae biomass, promoted protein synthesis, and elevated mild oxidative stress. In contrast, aged PE and PS MPs not only affected biomass, protein, and carbohydrate synthesis but also inhibited photosynthetic pigment production and activity, resulting in intracellular oxidative stress. Excitation-emission-matrix spectra analysis showed that PLA induced microalgae to secrete large amounts of humic acid-like extracellular polymers, whereas aged PE and aged PS groups contained only small amounts of them and proteins. This study addresses critical knowledge gaps in the toxicology of various aged MPs on microalgae and provides valuable insights into the potential of PLA as a sustainable alternative to conventional plastics in microalgae culture industry.
Collapse
Affiliation(s)
- Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China.
| |
Collapse
|
14
|
Gicole S, Dimitriou A, Klasios N, Tseng M. Partial consumption of medical face masks by a common beetle species. Biol Lett 2024; 20:20240380. [PMID: 39626762 PMCID: PMC11614548 DOI: 10.1098/rsbl.2024.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 12/08/2024] Open
Abstract
The widespread distribution of microplastics (MPs) in the environment has motivated research on the ecological significance and fate of these pervasive particles. Recent studies have demonstrated that MPs may not always have negative effects, and in contrast, several species of Tenebrionidae beetles utilized plastic as a food source in controlled laboratory experiments. However, most studies of plastic-eating insects have not been ecologically realistic, and thus it is unclear whether results from these experiments apply more broadly. Here, we quantified the ability of mealworms (Coleoptera: Tenebrionidae) to consume MPs derived from polypropylene and polylactic acid face masks; these are two of the most commonly used conventional and plant-based plastics. To simulate foraging in nature, we mixed MPs with wheat bran to create an environment where beetles were exposed to multiple food types. Mealworms consumed approximately 50% of the MPs, egested a small fraction, and consumption did not affect survival. This study adds to our limited knowledge of the ability of insects to consume MPs. Understory or ground-dwelling insects may hold the key to sustainable plastic disposal strategies, but we caution that research in this field needs to proceed concomitantly with reductions in plastic manufacturing.
Collapse
Affiliation(s)
- Shim Gicole
- Departments of Botany and Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Alexandra Dimitriou
- Departments of Botany and Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Natasha Klasios
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Michelle Tseng
- Departments of Botany and Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
15
|
Chen C, Yuan T, Zhou W, Wu B, Zhou Y, Xiao N. Effects of straw structure and component on feeding efficiency of yellow mealworm for insect protein production. BIORESOURCE TECHNOLOGY 2024; 414:131630. [PMID: 39401658 DOI: 10.1016/j.biortech.2024.131630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Elucidating the influence of straw structure and component on the feeding efficacy of yellow mealworm is pivotal for improving insect protein production from straw. This research utilized four distinct types of straws-water hyacinth straw (WHS), corn straw (CS), rape straw (RAS), and rice straw (RIS)-as the sole substrate for larvae. Results indicated that the straw utilization rate and fresh larval weight gain rate followed the order of WHS > CS > RAS > RIS. Analysis of straw structural characteristics demonstrated that decreasing straw hardness and cellulose crystallinity, while enhancing straw chewability, facilitated the ingestion of larvae. Feeding efficiency of yellow mealworm was positively correlated with the hemicellulose and crude protein content, and inversely correlated with lignin content in the straw. Additionally, the structural characteristics and components of straw significantly influenced the composition of the gut microbiota. These results offer valuable insights for optimizing yellow mealworm feeding on straw.
Collapse
Affiliation(s)
- Chunlin Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbing Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Biliu Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Naidong Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China.
| |
Collapse
|
16
|
Vishnu Murthy JS, Keerthana A, Logeswaran K, Das A, Choudhury S, Ramakrishna BG, Chowdhury S, Aggarwal H, Saravanan S, Pal A, Dubey VK, Kumar V. Harnessing insects mediated plastic biodegradation: Current insight and future directions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123038. [PMID: 39566205 DOI: 10.1016/j.jenvman.2024.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Plastic polymers pose a significant challenge due to their resistance to degradation, resulting in their persistent accumulation in the environment and exacerbating a critical environmental concern. Urgent innovation and novel management technologies are essential to tackle this issue. Plastic biodegradation, distinguished by its environmentally friendly and safe attributes, has garnered substantial attention as a viable solution. Insects are pivotal in this process, utilizing their gut microbes to facilitate plastic degradation. The enzymatic action within the digestive tracts of diverse insect hosts and their microbial symbionts contributes to the breakdown of these polymers. This comprehensive review delves into the current landscape and strategies aimed at combating plastic pollution, with a specific focus on the involvement of insects such as mealworms (Tenebrio molitor Linnaeus), superworms (Zophobas atratus Blanchard), greater wax moths (Galleria mellonella Linnaeus), and various other insect species in the degradation of plastics. This review explores the different insects involved in plastic degradation, the mechanisms by which insects degrade plastics and delineates the characteristics of resultant degradable products. Furthermore, it investigates the future potential for plastic degradation by insects and examines the prospective developmental pathways for degradable plastics. Ultimately, this review provides an array of solutions by using various insects to pervasive the issue of plastic pollution.
Collapse
Affiliation(s)
- Jasti Sri Vishnu Murthy
- Department of Agricultural Entomology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - Alagesan Keerthana
- Department of Entomology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, 641003, Tamil Nadu, India
| | - K Logeswaran
- Division of Entomology and Nematology, Indian Institute of Horticultural Research, Bengaluru, 560089, Karnataka, India
| | - Abhibandana Das
- Department of Entomology, College of Agriculture, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Srishti Choudhury
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Bindu Gudi Ramakrishna
- Department of Agricultural Entomology, College of Agriculture, Vellanikkara, Kerala Agricultural University, Thrissur, 680656, Kerala, India
| | - Sanhita Chowdhury
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Himani Aggarwal
- Department of Entomology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - S Saravanan
- Department of Entomology, Tamil Nadu Agricultural University, Lawley Road, Coimbatore, 641003, Tamil Nadu, India
| | - Arindam Pal
- Department of Entomology, Post Graduate College of Agriculture, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, 848125, Bihar, India
| | - Vinod Kumar Dubey
- School of Agriculture and Veterinary Science, Shridhar University, Pilani, 333031, Rajasthan, India.
| | - Vinay Kumar
- Department of Soil Science and Agricultural Chemistry, Jute Research Station Katihar, Bihar Agricultural University, Sabour, Bhagalpur, 854103, Bihar, India
| |
Collapse
|
17
|
Ding MQ, Ding J, Yang SS, Ren XR, Shi SN, Zhang LY, Xing DF, Ren NQ, Wu WM. Effects of plastic aging on biodegradation of polystyrene by Tenebrio molitor larvae: Insights into gut microbiome and bacterial metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176130. [PMID: 39260508 DOI: 10.1016/j.scitotenv.2024.176130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Plastics aging reduces resistance to microbial degradation. Plastivore Tenebrio molitor rapidly biodegrades polystyrene (PS, size: < 80 μm), but the effects of aging on PS biodegradation by T. molitor remain uncharacterized. This study examined PS biodegradation over 24 days following three pre-treatments: freezing with UV exposure (PS1), UV exposure (PS2), and freezing (PS3), compared to pristine PS (PSv) microplastic. The pretreatments deteriorated PS polymers, resulting in slightly higher specific PS consumption (602.8, 586.1, 566.7, and 563.9 mg PS·100 larvae-1·d-1, respectively) and mass reduction rates (49.6 %, 49.5 %, 49.2 %, and 48.7 %, respectively) in PS1, PS2, and PS3 compared to PSv. Improved biodegradation correlated with reduced molecular weights and the formation of oxidized functional groups. Larvae fed more aged PS exhibited greater gut microbial diversity, with microbial community and metabolic pathways shaped by PS aging, as supported by co-occurrence network analysis. These findings indicated that the aging treatments enhanced PS biodegradation by only limited extent but impacted greater on gut microbiome and bacterial metabolic genes, indicating that the T. molitor host have highly predominant capability to digest PS plastics and alters gut microbiome to adapt the PS polymers fed to them.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xin-Ran Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shao-Nan Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Gates EG, Crook N. The biochemical mechanisms of plastic biodegradation. FEMS Microbiol Rev 2024; 48:fuae027. [PMID: 39500541 PMCID: PMC11644497 DOI: 10.1093/femsre/fuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/15/2024] Open
Abstract
Since the invention of the first synthetic plastic, an estimated 12 billion metric tons of plastics have been manufactured, 70% of which was produced in the last 20 years. Plastic waste is placing new selective pressures on humans and the organisms we depend on, yet it also places new pressures on microorganisms as they compete to exploit this new and growing source of carbon. The limited efficacy of traditional recycling methods on plastic waste, which can leach into the environment at low purity and concentration, indicates the utility of this evolving metabolic activity. This review will categorize and discuss the probable metabolic routes for each industrially relevant plastic, rank the most effective biodegraders for each plastic by harmonizing and reinterpreting prior literature, and explain the experimental techniques most often used in plastic biodegradation research, thus providing a comprehensive resource for researchers investigating and engineering plastic biodegradation.
Collapse
Affiliation(s)
- Ethan G Gates
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| | - Nathan Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
19
|
Urbanek AK, Rybak J, Hanus-Lorenz B, Komisarczyk DA, Mirończuk AM. Zophobas morio versus Tenebrio molitor: Diversity in gut microbiota of larvae fed with polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176005. [PMID: 39236822 DOI: 10.1016/j.scitotenv.2024.176005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/21/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Plastics are common synthetic materials that have been abundantly present as pollutants in natural ecosystems for the past few decades. Thus scientists have investigated the capability of plastic digestion by insects. Here we compare the effectiveness of biodegradation of the specific polymers: expanded polystyrene (EPS), polyvinyl chloride (PVC), low-density polyethylene (LDPE) and polypropylene (PP) altogether with above variants of plastics with microelements and vitamins by the mealworm - the larval form of the beetle Tenebrio molitor - and larvae of the beetle Zophobas morio, known as superworms. Z. morio beetles on all diets were able to complete their life cycle from larvae through pupae and imago, gaining 19 % and 22 % in mass on LDPE and EPS; 8 % and 7 % on PVC and PP. Mealworms (T. molitor) reared on polymers had minimal weight gain, gaining 2 % on LDPE and EPS, and a slight reduction in mass was observed when reared on PP and PVC. Not all specimens of T. molitor were able to pupate and transform to the adult stage. The results suggest that larvae of Z. morio can eat and degrade some types of plastic compounds more effectively than T. molitor. The changes in microbial gut communities were compared between these two species. The highest mass gain for Z. morio is associated with higher diversity in gut microbia and it was more diverse than that of T. molitor. Citrobacter freundii, a bacterium recognized for its ability to degrade long-chain polymers, linear hydrocarbons and cyclic hydrocarbons, was found in the microflora of Z. morio. The results confirm that superworms can survive on polymer feed. Moreover, this diet supplemented with microelements and vitamins increases the number of bacterial species and the diversity in the microbial gut.
Collapse
Affiliation(s)
- Aneta K Urbanek
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Justyna Rybak
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50370 Wrocław, Poland
| | - Beata Hanus-Lorenz
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50370 Wrocław, Poland
| | - Dominika A Komisarczyk
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland
| | - Aleksandra M Mirończuk
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Biology, Laboratory for Biosustainability, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
20
|
Li MX, Yang SS, Ding J, Ding MQ, He L, Xing DF, Criddle CS, Benbow ME, Ren NQ, Wu WM. Cockroach Blaptica dubia biodegrades polystyrene plastics: Insights for superior ability, microbiome and host genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135756. [PMID: 39255668 DOI: 10.1016/j.jhazmat.2024.135756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
The report demonstrated that a member of cockroach family, Blaptica dubia (Blattodea: Blaberidae) biodegraded commercial polystyrene (PS) plastics with Mn of 20.3 kDa and Mw of 284.9 kDa. The cockroaches digested up to 46.6 % of ingested PS within 24 h. The biodegradation was confirmed by the 13C isotopic shift of the residual PS in feces versus pristine PS (Δ δ13C of 2.28 ‰), reduction of molecular weight and formation of oxidative functional groups in the residual PS. Further tests found that B.dubia cockroaches degraded all eight high purity PS microplastics with low to ultra-high molecular weights (MW) at 0.88, 1.20, 3.92, 9.55, 62.5, 90.9, 524.0, and 1040 kDa, respectively, with superior biodegradation ability. PS depolymerization/biodegradation pattern was MW-dependent. Ingestion of PS shifted gut microbial communities and elevated abundances of plastic-degrading bacterial genes. Genomic, transcriptomic and metabolite analyses indicated that both gut microbes and cockroach host contributed to digestive enzymatic degradation. PS plastic diet promoted a highly cooperative model of gut digestive system. Weighted gene co-expression network analysis revealed different PS degradation patterns with distinct MW profiles in B. dubia. These results have provided strong evidences of plastic-degrading ability of cockroaches or Blaberidae family and new understanding of insect and their microbe mediated biodegradation of plastics.
Collapse
Affiliation(s)
- Mei-Xi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA
| | - Mark Eric Benbow
- Department of Entomology and Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Adamu H, Bello U, IbrahimTafida U, Garba ZN, Galadima A, Lawan MM, Abba SI, Qamar M. Harnessing bio and (Photo)catalysts for microplastics degradation and remediation in soil environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122543. [PMID: 39305881 DOI: 10.1016/j.jenvman.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
Soil pollution by microplastics (MPs) is an escalating environmental crisis with far-reaching consequences. However, current research on the degradation and/or remediation of MPs has mainly focused on water-simulated environments, with little attention given to soil MPs. Therefore, the review explores such terrestrial territory, exploring the potential of biodegradation and novel photocatalytic technologies for MPs degradation/remediation in soil. This review comprehensively investigates the potential of biological and photocatalytic approaches for soil MPs degradation and remediation. A temporal analysis of research from 2004 to 2024 highlights the increasing focus on this critical issue. The review explores the biocatalytic roles of diverse enzymes, including cutinase, PETase, MHETase, hydrolase, lipase, laccase, lignin peroxidase, and Mn-peroxidase, in MPs degradation. Strategies for enzyme engineering, such as protein engineering and immobilization, are explored to enhance catalytic efficiency. The potential for developing enzyme consortia for optimized MP degradation is also discussed. Photocatalytic remediation using TiO2, ZnO, clay, hydrogel, and other photocatalysts is examined, emphasizing their mechanisms and effectiveness. Computational modeling is proposed to deepen understanding of soil MPs-catalyst interactions, primarily aiming to develop novel catalysts tailored for soil environments for environmental safety and sustainable restoration. A comparative analysis of biological and photocatalytic approaches evaluates their environmental implications and the potential for synergistic combinations, with emphasis on soil quality protection, restoration and impact on soil ecosystems. Hence, this review accentuates the urgent need for innovative solutions to address MPs pollution in soil and provides a foundational understanding of the current knowledge gaps, as well as paves the way for future research and development.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yelwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | | | - Ahmad Galadima
- Department of Chemistry, Federal University Gusau, Nigeria
| | | | - Sani Isah Abba
- Department of Chemical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia; Water Research Centre, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Mohammad Qamar
- Department of Materials Science and Engineering (MSE), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
22
|
Miravalle E, Balboa S, Zanetti M, Otero A, Lazzari M. New insights on the degradation of polystyrene and polypropylene by larvae of the superworm Zophobas atratus and gut bacterial consortium enrichments obtained under different culture conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135475. [PMID: 39146588 DOI: 10.1016/j.jhazmat.2024.135475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
This study aims to deepen knowledge of the biodegradation of plastics, focusing on polypropylene (PP) fabric from surgical masks and polystyrene (PS) by larvae of Zophobas atratus as well as of specialized bacterial consortia from their gut, which were obtained in different enrichment conditions (aerobic, anaerobic, presence or absence of combined nitrogen). Plastics ingested by larvae obtained in Spain did not show any signs of oxidation but only limited depolymerization, preferably from the lowest molecular weight chains. Gut microbiota composition changed as an effect of plastic feeding. Such differences were more evident in bacterial enrichment cultures, where the polymer type influenced the composition more than by culture conditions, with an increase in the presence of nitrogen-fixers in anaerobic conditions. PS and PP degradation by different enrichment cultures was confirmed under aerobic and anaerobic conditions by respirometry tests, with anaerobic conditions favouring a more active plastic degradation. In addition, exposure to selected bacterial consortia in aerobiosis induced limited surface oxidation of PS. This possibly indicates that different biochemical routes are being utilized in the anaerobic gut and in aerobic conditions to degrade the polymer.
Collapse
Affiliation(s)
- Edoardo Miravalle
- Department of Chemistry, University of Turin, 10125 Turin, Italy; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Sabela Balboa
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Cross-disciplinary Research Center in Environmental Technologies (CRETUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Marco Zanetti
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Aquatic One Health Research Institute (iARCUS). Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Massimo Lazzari
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Wang S, Yu H, Li W, Song E, Zhao Z, Xu J, Gao S, Wang D, Xie Z. Biodegradation of four polyolefin plastics in superworms (Larvae of Zophobas atratus) and effects on the gut microbiome. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135381. [PMID: 39088959 DOI: 10.1016/j.jhazmat.2024.135381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Recent studies have demonstrated superworms (larvae of Zophobas atratus) ability to degrade polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polypropylene (PP) within their digestive system. This study aimed to compare the ability of superworms to degrade the above four polyolefin plastics over a duration of 30 days. In this study, the degradation rate of PE was the highest, and the final average weight of superworms, as well as the final plastic mass loss consumed by them, significantly increased (73.38 % and 52.33 %, respectively) when PE was fed with wheat bran (1:1 [w/w]). FTIR and TGA indicated the occurrence of oxidation and biodegradation processes in the four polyolefin plastics when exposed to superworms. In addition, the molecular weights (Mw and Mn) of excreted polymer residues decreased by 3.1 % and 2.87 % in PE-fed superworms, suggesting that the depolymerization of PE was not entirely dependent on the gut microbial community. The analysis of the gut microbial communities revealed that the dominant microbial community were different for each type of plastic. The results indicate that the gut microbiome of superworms exhibited remarkable adaptability in degrading various types of plastics, and the intake preferences and efficiency of different plastics are associated with different dominant microbial community species.
Collapse
Affiliation(s)
- Shuaibing Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Hong Yu
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Wei Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Enze Song
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Zhiguo Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Shangkun Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an City, Shandong 271018, China
| | - Dandan Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| | - Zhihong Xie
- College of Resources and Environment, Shandong Agricultural University, Tai'an City, Shandong 271018, China.
| |
Collapse
|
24
|
Ndotono EW, Tanga CM, Kelemu S, Khamis FM. Mitogenomic profiling and gut microbial analysis of the newly identified polystyrene-consuming lesser mealworm in Kenya. Sci Rep 2024; 14:21370. [PMID: 39266593 PMCID: PMC11393456 DOI: 10.1038/s41598-024-72201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Plastic waste has recently become a major global environmental concern and one of the biggest challenges has been seeking for alternative management options. Several studies have revealed the potential of several coleopteran species to degrade plastics, and this is the first research paper on plastic-degradation potential by lesser mealworms from Africa. This study evaluated the whole mitogenomic profile of the lesser mealworm to further identify the insect. The ability of the mealworm to consume Polystyrene (PS) was also evaluated alongside its associated gut microbiota diversity. Our results showed a complete circular mitochondrial genome which clustered closely to the Alphitobius genus but also suggested that our insect might be a new subspecies which require further identification. During the PS feeding trials, overall survival rates of the larvae decreased when fed a sole PS diet while PS intake was observed to increase over a 30-day period. The predominant bacteria observed in larvae fed PS diets were Kluyvera, Lactococcus, Klebsiella, Enterobacter, and Enterococcus, while Stenotrophomonas dominated the control diet. These findings demonstrated that the newly identified lesser mealworm can survive on a PS diet and has a consortium of important bacteria strongly associated with PS degradation. This work provides a better understanding of bioremediation applications, paving the way for further research into the metabolic pathways of plastic-degrading microbes and bringing hope to solving plastic waste pollution while providing high-value insect protein towards a circular economy.
Collapse
Affiliation(s)
- Evalyne W Ndotono
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
25
|
Saura-Martínez J, Montalbán A, Manzano-Nicolás J, Taboada-Rodríguez A, Hernández F, Marín-Iniesta F. A Treatment for Rice Straw and Its Use for Mealworm ( Tenebrio molitor L.) Feeding: Effect on Insect Performance and Diet Digestibility. INSECTS 2024; 15:631. [PMID: 39194835 DOI: 10.3390/insects15080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The development of reuse processes for plant by-products for both animal and human food offers numerous possibilities for quality-of-life improvements that align with a circular economy model. For this reason, we divided this study into two experiments. First, we designed a combined treatment consisting of laccase, ultrasound, and ascorbic acid to hydrolyze rice straw plant fibers and used the resulting feed as the basis for T. molitor diets. Second, we formulated diets with different inclusion levels (0%, 25%, 50%, 75%, and 100%) of rice straw and treated rice straw to assess their impact on larvae growth and diet digestibility. For each treatment, six replicates were employed: four for the growth-performance-digestibility trial and two for complementary uric acid determination tests. The combined laccase enzyme, ultrasound, and ascorbic acid treatment hydrolyzed 13.2% of the vegetable fibers. The diets containing treated rice straw resulted in higher larvae weight and a better feed conversion ratio; however, reaching 100% by-product inclusion values led to similar results between both diets. In conclusion, these treatments improve the potential of low-nutritional-value vegetable by-products as part of a T. molitor diet, opening the possibility of new methodologies for the use of recalcitrant vegetable by-products for insect rearing.
Collapse
Affiliation(s)
- Jorge Saura-Martínez
- Group of Research Food Biotechnology-BTA, Department of Food Science, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Ana Montalbán
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Jesús Manzano-Nicolás
- Group of Research Food Biotechnology-BTA, Department of Food Science, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Amaury Taboada-Rodríguez
- Group of Research Food Biotechnology-BTA, Department of Food Science, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Fuensanta Hernández
- Department of Animal Production, Faculty of Veterinary Science, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - Fulgencio Marín-Iniesta
- Group of Research Food Biotechnology-BTA, Department of Food Science, Nutrition and Bromatology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
26
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
27
|
Xu Y, Peng BY, Zhang X, Xu Q, Yang L, Chen J, Zhou X, Zhang Y. The aging of microplastics exacerbates the damage to photosynthetic performance and bioenergy production in microalgae (Chlorella pyrenoidosa). WATER RESEARCH 2024; 259:121841. [PMID: 38820734 DOI: 10.1016/j.watres.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.
Collapse
Affiliation(s)
- Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qianfeng Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China.
| |
Collapse
|
28
|
Peng BY, Wang WX. Microplastics Biofragmentation and Degradation Kinetics in the Plastivore Insect Tenebrio molitor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39028927 DOI: 10.1021/acs.est.4c05113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The insect Tenebrio molitor possesses an exceptional capacity for ultrafast plastic biodegradation within 1 day of gut retention, but the kinetics remains unknown. Herein, we investigated the biofragmentation and degradation kinetics of different microplastics (MPs), i.e., polyethylene (PE), poly(vinyl chloride) (PVC), and poly(lactic acid) (PLA), in T. molitor larvae. The intestinal reactions contributing to the in vivo MPs biodegradation were concurrently examined by utilizing aggregated-induced emission (AIE) probes. Our findings revealed that the intestinal biofragmentation rates essentially followed the order of PLA > PE > PVC. Notably, all MPs displayed retention effects in the intestine, with PVC requiring the longest duration for complete removal/digestion. The dynamic rate constant of degradable MPs (0.2108 h-1 for PLA) was significantly higher than that of persistent MPs (0.0675 and 0.0501 h-1 for PE and PVC, respectively) during the digestive gut retention. Surprisingly,T. molitor larvae instinctively modulated their internal digestive environment in response to in vivo biodegradation of various MP polymers. Esterase activity and intestinal acidification both significantly increased following MPs ingestion. The highest esterase and acidification levels were observed in the PLA-fed and PVC-fed larvae, respectively. High digestive esterase activity and relatively low acidification levels inT. molitor larvae may, to some extent, contribute to more efficient MPs removal within the plastic-degrading insect. This work provided important understanding of MPs biofragmentation and intestinal responses to in vivo MPs biodegradation in plastic-degrading insects.
Collapse
Affiliation(s)
- Bo-Yu Peng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
29
|
Jiang J, Xu H, Cao X, Liang Y, Mo A, Cao X, Liu Y, Benbow ME, Criddle CS, Wu WM, He D. Soil-dwelling grub larvae of Protaetia brevitarsis biodegrade polystyrene: Responses of gut microbiome and host metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173399. [PMID: 38781836 DOI: 10.1016/j.scitotenv.2024.173399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Plastic pollution poses a significant threat to terrestrial ecosystems, yet the potential for soil fauna to contribute to plastic biodegradation remains largely unexplored. In this study, we reveal that soil-dwelling grubs, Protaetia brevitarsis larvae, can effectively biodegrade polystyrene (PS) plastics. Over a period of 4 weeks, these grubs achieved a remarkable 61.5 % reduction in PS foam mass. This biodegradation was confirmed by the depolymerization of ingested PS, formation of oxidative functional groups, noticeable chemical modifications, and an increase of δ13C of residual PS in frass. Additionally, antibiotic treatment to suppress gut microbes led to variations in the biodegradation process. PS ingestion induced a significant shift in the gut microbiome, promoting the growth of degradation-related bacteria such as Promicromonosporaceae, Bacillaceae, and Paenibacillaceae. Furthermore, the digestion of plastic triggered extensive metabolomic reprogramming of grubs' intestines, enhancing redox capabilities and facilitating PS biodegradation. These results indicate that responsive adaptation of both the gut microbiome and the host's intestinal metabolism contributes to PS degradation. Collectively, these findings demonstrate P. brevitarsis larvae's capability to alleviate soil plastic pollution, and highlight the potential of researching soil fauna further for sustainable plastic waste management solutions.
Collapse
Affiliation(s)
- Jie Jiang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Haowen Xu
- School of Life Sciences, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Xiaomu Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yuqing Liang
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Aoyun Mo
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China
| | - Xuelong Cao
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Yan Liu
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Mark Eric Benbow
- Department of Entomology and Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI 48824, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305-4020, USA.
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
30
|
Dar MA, Xie R, Zabed HM, Pawar KD, Dhole NP, Sun J. Current paradigms and future challenges in harnessing gut bacterial symbionts of insects for biodegradation of plastic wastes. INSECT SCIENCE 2024. [PMID: 38990171 DOI: 10.1111/1744-7917.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 07/12/2024]
Abstract
The ubiquitous incorporation of plastics into daily life, coupled with inefficient recycling practices, has resulted in the accumulation of millions of metric tons of plastic waste, that poses a serious threat to the Earth's sustainability. Plastic pollution, a global problem, disrupts the ecological balance and endangers various life forms. Efforts to combat plastic pollution are underway, with a promising avenue being biological degradation facilitated by certain insects and their symbiotic gut microorganisms, particularly bacteria. This review consolidates existing knowledge on plastic degradation by insects and their influence on gut microbiota. Additionally, it delves into the potential mechanisms employed by insects in symbiosis with gut bacteria, exploring the bioconversion of waste plastics into value-added biodegradable polymers through mineralization. These insights hold significant promise for the bio-upcycling of plastic waste, opening new horizons for future biomanufacturing of high-value chemicals from plastic-derived compounds. Finally, we weigh the pros and cons of future research endeavors related to the bioprospection of plastic-degrading bacteria from underexplored insect species. We also underscore the importance of bioengineering depolymerases with novel characteristics, aiming for their application in the remediation and valorization of waste plastics.
Collapse
Affiliation(s)
- Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra, India
| | - Neeraja P Dhole
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Sucharitakul P, Wu WM, Zhang Y, Peng BY, Gao J, Wang L, Hou D. Exposure Pathways and Toxicity of Microplastics in Terrestrial Insects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11887-11900. [PMID: 38885123 DOI: 10.1021/acs.est.4c02842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.
Collapse
Affiliation(s)
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Lu B, Lou Y, Wang J, Liu Q, Yang SS, Ren N, Wu WM, Xing D. Understanding the Ecological Robustness and Adaptability of the Gut Microbiome in Plastic-Degrading Superworms ( Zophobas atratus) in Response to Microplastics and Antibiotics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12028-12041. [PMID: 38838251 DOI: 10.1021/acs.est.4c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Recent discoveries indicate that several insect larvae are capable of ingesting and biodegrading plastics rapidly and symbiotically, but the ecological adaptability of the larval gut microbiome to microplastics (MPs) remains unclear. Here, we described the gut microbiome assemblage and MP biodegradation of superworms (Zophobas atratus larvae) fed MPs of five major petroleum-based polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) and antibiotics. The shift of molecular weight distribution, characteristic peaks of C═O, and metabolic intermediates of residual polymers in egested frass proved depolymerization and biodegradation of all MPs tested in the larval intestines, even under antibiotic suppression. Superworms showed a wide adaptation to the digestion of the five polymer MPs. Antibiotic suppression negatively influenced the survival rate and plastic depolymerization patterns. The larval gut microbiomes differed from those fed MPs and antibiotics, indicating that antibiotic supplementation substantially shaped the gut microbiome composition. The larval gut microbiomes fed MPs had higher network complexity and stability than those fed MPs and antibiotics, suggesting that the ecological robustness of the gut microbiomes ensured the functional adaptability of larvae to different MPs. In addition, Mantel's test indicated that the gut microbiome assemblage was obviously related to the polymer type, the plastic degradability, antibiotic stress, and larval survival rate. This finding provided novel insights into the self-adaptation of the gut microbiome of superworms in response to different MPs.
Collapse
Affiliation(s)
- Baiyun Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yu Lou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Qiang Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305, United States
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
33
|
Yang XG, Wen PP, Yang YF, Jia PP, Li WG, Pei DS. Corrigendum: Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front Microbiol 2024; 15:1444678. [PMID: 39040902 PMCID: PMC11261735 DOI: 10.3389/fmicb.2024.1444678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2022.1001750.].
Collapse
Affiliation(s)
- Xian-Guang Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ping-Ping Wen
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yi-Fan Yang
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Wei-Guo Li
- State Key Laboratory Base of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Zhang C, Zhang G, Chen Y, Zheng S, Du J, Zhao Z, Zhao Y, Wang N, Chen C, Gao Z, Li S, Liu K. Sphingobacterium tenebrionis sp. nov., isolated from intestine of mealworm. Int J Syst Evol Microbiol 2024; 74. [PMID: 39023139 DOI: 10.1099/ijsem.0.006455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
A bacterial strain designated PU5-4T was isolated from the mealworm (the larvae of Tenebrio molitor) intestines. It was identified to be Gram-stain-negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Strain PU5-4T was observed to grow at 10-40 °C, at pH 7.0-10.0, and in the presence of 0-3.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PU5-4T should be assigned to the genus Sphingobacterium. The 16S rRNA gene sequence similarity analysis showed that strain PU5-4T was closely related to the type strains of Sphingobacterium lactis DSM 22361T (98.49 %), Sphingobacterium endophyticum NYYP31T (98.11 %), Sphingobacterium soli NCCP 698T (97.69 %) and Sphingobacterium olei HAL-9T (95.73 %). The predominant isoprenoid quinone is MK-7. The major fatty acids were identified as iso-C15 : 0, iso-C17 : 03-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 9 (iso-C17 : 0 ω9c). The polar lipids are phosphatidylethanolamine, one unidentified phospholipid, and six unidentified lipids. The genomic DNA G+C content of strain PU5-4T is 40.24 mol%. The average nucleotide identity of strain PU5-4T exhibited respective values of 73.88, 73.37, 73.36 and 70.84 % comparing to the type strains of S. lactis DSM 22361T, S. soli NCCP 698T, S. endophyticum NYYP31T and S. olei HAL-9T, which are below the cut-off level (95-96 %) for species delineation. Based on the above results, strain PU5-4T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium temoinsis sp. nov. is proposed. The type strain is PU5-4T (=CGMCC 1.61908T=JCM 36663T).
Collapse
Affiliation(s)
- Chengsong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yuexing Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Shanmin Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yushuo Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Cheng Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
35
|
Matyakubov B, Lee TJ. Optimizing polystyrene degradation, microbial community and metabolite analysis of intestinal flora of yellow mealworms, Tenebrio molitor. BIORESOURCE TECHNOLOGY 2024; 403:130895. [PMID: 38801953 DOI: 10.1016/j.biortech.2024.130895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
This study explored a direct feeding of expanded polystyrene as the sole diet for breeding Tenebrio molitor larvae. Temperature and relative humidity were manipulated to evaluate polystyrene biodegradation efficiency, survival rate, and formation of micro-polystyrene residue. Efficient conditions were at temperature of 25 °C with a humidity of 65 ± 5 %. Comparative metabolomic and metabolic-metabolic network analyses was performed for visualizing detailed pathway. Possibility of forming 4 (p)-hydroxyphenylacetic acid from phenylacetic acid with further conversion to 4-methylphenol, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate could be seen as a side chain route for further biodegrading process. Key species identified in the gut of T. molitor larvae included Citrobacter sp., Serratia marcescens, Klebsiella aerogenes, and Klebsiella oxytoca. Pseudomonas aeruginosa was detected only under an anaerobic condition whereas Acinetobacter sp. was present only under an aerobic condition. These results demonstrate the potential to decrease micro-polystyrene by optimizing breeding conditions and biodegradation process of polystyrene.
Collapse
Affiliation(s)
- Behzad Matyakubov
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Tae-Jin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
| |
Collapse
|
36
|
Weng Y, Han X, Sun H, Wang J, Wang Y, Zhao X. Effects of polymerization types on plastics ingestion and biodegradation by Zophobas atratus larvae, and successions of both gut bacterial and fungal microbiomes. ENVIRONMENTAL RESEARCH 2024; 251:118677. [PMID: 38508358 DOI: 10.1016/j.envres.2024.118677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Recent studies demonstrated that plastic degradation in Zophobas atratus superworms is related to the gut microbiota. To determine whether the biodegradation and gut-microbiota were influenced by ingested plastic polymerization types, foams of polypropylene (PP), polyurethane (PU) and ethylene vinyl acetate (EVA) were selected as representatives of polyolefins, polyester and copolymers, and the sole feedstock for superworms for 45 d. Both growth and survival rates of superworms were influenced by the type of plastic diet. Although the total consumptions of EVA- and PP-fed groups were similar at 29.03 ± 0.93 and 28.89 ± 1.14 mg/g-larva, which were both significantly higher than that of PU-fed groups (21.63 ± 2.18 mg/g-larva), the final survival rates of the EVA-fed group of 36.67 ± 10.41% exhibited significantly lower than that of the PP- and PU-fed groups of 76.67 ± 2.89% and 75.00 ± 7.07%, respectively, and even the starvation group of 51.67 ± 10.93%. The Illumina MiSeq results revealed similarities in the dominant gut bacterial communities between PU- and EVA-fed groups, with an increase in relative abundance of Lactococcus, but significant differences from the PP-fed groups, which had two predominant genera of unclassified Enterobacteriaceae and Enterococcus. Compared to bran-fed groups, changes in gut fungal communities were similar across all plastics-fed groups, with an increase in the dominant abundance of Rhodotorula. The abundance of Rhodotorula increased in the order of polyolefin, polyester, and copolymer. In summary, plastic ingestion, larval growth, and changes in gut bacterial and fungal community of superworms were all influenced by foam diets of different polymerization types, and especially influences on the gut microbiomes were different from each other.
Collapse
Affiliation(s)
- Yue Weng
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Jiaming Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yumeng Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
37
|
Boctor J, Pandey G, Xu W, Murphy DV, Hoyle FC. Nature's Plastic Predators: A Comprehensive and Bibliometric Review of Plastivore Insects. Polymers (Basel) 2024; 16:1671. [PMID: 38932021 PMCID: PMC11207432 DOI: 10.3390/polym16121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Unprecedented plastic production has resulted in over six billion tons of harmful waste. Certain insect taxa emerge as potential agents of plastic biodegradation. Through a comprehensive manual and bibliometric literature analysis, this review analyses and consolidates the growing literature related to insect-mediated plastic breakdown. Over 23 insect species, representing Coleoptera, Lepidoptera, and 4 other orders, have been identified for their capacity to consume plastic polymers. Natural and synthetic polymers exhibit high-level similarities in molecular structure and properties. Thus, in conjunction with comparative genomics studies, we link plastic-degrading enzymatic capabilities observed in certain insects to the exaptation of endogenous enzymes originally evolved for digesting lignin, cellulose, beeswax, keratin and chitin from their native dietary substrates. Further clarification is necessary to distinguish mineralisation from physicochemical fragmentation and to differentiate microbiome-mediated degradation from direct enzymatic reactions by insects. A bibliometric analysis of the exponentially growing body of literature showed that leading research is emerging from China and the USA. Analogies between natural and synthetic polymer's degradation pathways will inform engineering robust enzymes for practical plastic bioremediation applications. By aggregating, analysing, and interpreting published insights, this review consolidates our mechanistic understanding of insects as a potential natural solution to the escalating plastic waste crisis.
Collapse
Affiliation(s)
- Joseph Boctor
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Gunjan Pandey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Acton, ACT 2601, Australia;
| | - Wei Xu
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C. Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
38
|
Peng BY, Xu Y, Zhou X, Wu WM, Zhang Y. Generation and Fate of Nanoplastics in the Intestine of Plastic-Degrading Insect ( Tenebrio molitor Larvae) during Polystyrene Microplastic Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10368-10377. [PMID: 38814143 DOI: 10.1021/acs.est.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37‰ versus -24.88‰) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.
Collapse
Affiliation(s)
- Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yazhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Tongji University, Shanghai 200092, China
| |
Collapse
|
39
|
Wang Q, Chen H, Gu W, Wang S, Li Y. Biodegradation of aged polyethylene (PE) and polystyrene (PS) microplastics by yellow mealworms (Tenebrio molitor larvae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172243. [PMID: 38582118 DOI: 10.1016/j.scitotenv.2024.172243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Globally, over 287 million tons of plastic are disposed in landfills, rivers, and oceans or are burned every year. The results are devastating to our ecosystems, wildlife and human health. One promising remedy is the yellow mealworm (Tenebrio molitor larvae), which has proved capable of degrading microplastics (MPs). This paper presents a new investigation into the biodegradation of aged polyethylene (PE) film and polystyrene (PS) foam by the Tenebrio molitor larvae. After a 35 - day feeding period, both pristine and aged MPs can be consumed by larvae. Even with some inhibitions in larvae growth due to the limited nutrient supply of aged MPs, when compared with pristine MPs, the aged MPs were depolymerized more efficiently in gut microbiota based on gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) analysis. With the change in surface chemical properties, the metabolic intermediates of aged MPs contained more oxygen-containing functional groups and shortened long-chain alkane, which was confirmed by gas chromatography and mass spectrometry (GC-MS). High-throughput sequencing revealed that the richness and diversity of gut microbes were restricted in the MPs-fed group. Although MPs had a negative effect on the relative abundance of the two dominant bacteria Enterococcaceae and Lactobacillaceae, the aged MPs may promote the relative abundance of Enterobacteriaceae and Streptococcaceae. Redundancy analysis (RDA) further verified that the aged MPs are effectively biodegraded by yellow mealworm. This work provides new insights into insect-mediated mechanisms of aged MP degradation and promising strategies for MP sustainable and efficient solutions.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wanqing Gu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Shurui Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Yinghua Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
40
|
Di Liberto EA, Battaglia G, Pellerito R, Curcuruto G, Dintcheva NT. Biodegradation of Polystyrene by Plastic-Eating Tenebrionidae Larvae. Polymers (Basel) 2024; 16:1404. [PMID: 38794597 PMCID: PMC11125288 DOI: 10.3390/polym16101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Polystyrene (PS) is an extremely stable polymer with a relatively high molecular weight and a strong hydrophobic character that makes it highly resistant to biodegradation. In this study, PS was subjected to biodegradation tests by Tenebrio Molitor (T. Molitor) and Zophobas Morio (Z. Morio) larvae. Specifically, six different experimental diets were compared: (i) T. Molitor fed with bran; (ii) T. Molitor fed only PS; (iii) T. Molitor fed only PS treated with H2O2; (iv) Z. Morio fed with bran; (v) Z. Morio fed only PS; and (vi) Z. Morio fed only PS treated with H2O2. Therefore, the mass change of the larvae and the survival rate were measured periodically, while the frass collected after 15 and 30 days was analyzed by different analyses, such as spectroscopy (FTIR), spectrometry (molecular weight and polydispersity), thermal analysis (TGA) and microscopy (scanning electron microscopy observations). The obtained results suggest that in the case of T. Molitor larvae, larvae feeding on bran showed the highest survival rate of ~94% at 30 days, while in the case of the Z. Morio larvae, the highest survival rate was exhibited by larvae eating PS-H2O2. Although not strongly pronounced, the Mw and Mn of PS in the frass of both T. Molitor and Z. Morio larvae decreased over 30 days, suggesting PS biodegradation. Finally, the morphological analysis shows that PS samples isolated from the frass of T. Molitor and Z. Morio larvae showed completely different, rough and irregularly carved surface structures, in comparison to PS before biodegradation.
Collapse
Affiliation(s)
- Erika Alessia Di Liberto
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy;
| | - Giuseppe Battaglia
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy;
| | - Rosalia Pellerito
- Istituto Comprensivo Statale “Luigi Capuana”, Via A. Narbone, 55, 90138 Palermo, Italy;
| | - Giusy Curcuruto
- Institute for Polymers, Composites and Biomaterials (IPCB)—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Nadka Tz. Dintcheva
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy;
- Institute for Polymers, Composites and Biomaterials (IPCB)—CNR, Via Paolo Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
41
|
Gwenzi W, Gufe C, Alufasi R, Makuvara Z, Marumure J, Shanmugam SR, Selvasembian R, Halabowski D. Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171116. [PMID: 38382596 DOI: 10.1016/j.scitotenv.2024.171116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Traditional and emerging contaminants pose significant human and environmental health risks. Conventional physical, chemical, and bioremediation techniques have been extensively studied for contaminant remediation. However, entomo- or insect-driven remediation has received limited research and public attention. Entomo-remediation refers to the use of insects, their associated gut microbiota, and enzymes to remove or mitigate organic contaminants. This novel approach shows potential as an eco-friendly method for mitigating contaminated media. However, a comprehensive review of the status, applications, and challenges of entomo-remediation is lacking. This paper addresses this research gap by examining and discussing the evidence on entomo-remediation of various legacy and emerging organic contaminants. The results demonstrate the successful application of entomo-remediation to remove legacy organic contaminants such as persistent organic pollutants. Moreover, entomo-remediation shows promise in removing various groups of emerging contaminants, including microplastics, persistent and emerging organic micropollutants (e.g., antibiotics, pesticides), and nanomaterials. Entomo-remediation involves several insect-mediated processes, including bio-uptake, biotransfer, bioaccumulation, and biotransformation of contaminants. The mechanisms underlying the biotransformation of contaminants are complex and rely on the insect gut microbiota and associated enzymes. Notably, while insects facilitate the remediation of contaminants, they may also be exposed to the ecotoxicological effects of these substances, which is often overlooked in research. As an emerging field of research, entomo-remediation has several knowledge gaps. Therefore, this review proposes ten key research questions to guide future perspectives and advance the field. These questions address areas such as process optimization, assessment of ecotoxicological effects on insects, and evaluation of potential human exposure and health risks.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, 18A Bevan Building, Borrowdale Road, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | | | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| |
Collapse
|
42
|
Wang J, Liu C, Cao Q, Li Y, Chen L, Qin Y, Wang T, Wang C. Enhanced biodegradation of microplastic and phthalic acid ester plasticizer: The role of gut microorganisms in black soldier fly larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171674. [PMID: 38479533 DOI: 10.1016/j.scitotenv.2024.171674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Hermetia illucens larvae are recognized for their ability to mitigate or eliminate contaminants by biodegradation. However, the biodegradation characteristics of microplastics and phthalic acid esters plasticizers, as well as the role of larval gut microorganisms, have remained largely unrevealed. Here, the degradation kinetics of plasticizers, and biodegradation characteristics of microplastics were examined. The role of larval gut microorganisms was investigated. For larval development, microplastics slowed larval growth significantly (P < 0.01), but the effect of plasticizer was not significant. The degradation kinetics of plasticizers were enhanced, resulting in an 8.11 to 20.41-fold decrease in degradation half-life and a 3.34 to 3.82-fold increase in final degradation efficiencies, compared to degradation without larval participation. The depolymerization and biodeterioration of microplastics were conspicuously evident, primarily through a weight loss of 17.63 %-25.52 %, variation of chemical composition and structure, bio-oxidation and bioerosion of microplastic surface. The synergistic effect driven by larval gut microorganisms, each with various functions, facilitated the biodegradation. Specifically, Ignatzschineria, Paenalcaligenes, Moheibacter, Morganella, Dysgonomonas, Stenotrophomonas, Bacteroides, Sphingobacterium, etc., appeared to be the key contributors, owing to their xenobiotic biodegradation and metabolism functions. These findings offered a new perspective on the potential for microplastics and plasticizers biodegradation, assisted by larval gut microbiota.
Collapse
Affiliation(s)
- Jiaqing Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yun Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Li Chen
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Yuanhang Qin
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
43
|
Ding MQ, Ding J, Zhang ZR, Li MX, Cui CH, Pang JW, Xing DF, Ren NQ, Wu WM, Yang SS. Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: Effects on their physiology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120832. [PMID: 38599089 DOI: 10.1016/j.jenvman.2024.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 μm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Mei-Xi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing, 100089, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA, 94305, USA
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
44
|
He L, Ding J, Yang SS, Zang YN, Pang JW, Xing D, Zhang LY, Ren N, Wu WM. Molecular-Weight-Dependent Degradation of Plastics: Deciphering Host-Microbiome Synergy Biodegradation of High-Purity Polypropylene Microplastics by Mealworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6647-6658. [PMID: 38563431 DOI: 10.1021/acs.est.3c06954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.
Collapse
Affiliation(s)
- Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- CECEP Digital Technology Co., Ltd., China Energy Conservation and Environmental Protection Group, Beijing 100096, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
45
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
46
|
Xu L, Li Z, Wang L, Xu Z, Zhang S, Zhang Q. Progress in polystyrene biodegradation by insect gut microbiota. World J Microbiol Biotechnol 2024; 40:143. [PMID: 38530548 DOI: 10.1007/s11274-024-03932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Polystyrene (PS) is frequently used in the plastics industry. However, its structural stability and difficulty to break down lead to an abundance of plastic waste in the environment, resulting in micro-nano plastics (MNPs). As MNPs are severe hazards to both human and environmental health, it is crucial to develop innovative treatment technologies to degrade plastic waste. The biodegradation of plastics by insect gut microorganisms has gained attention as it is environmentally friendly, efficient, and safe. However, our knowledge of the biodegradation of PS is still limited. This review summarizes recent research advances on PS biodegradation by gut microorganisms/enzymes from insect larvae of different species, and schematic pathways of the degradation process are discussed in depth. Additionally, the prospect of using modern biotechnology, such as genetic engineering and systems biology, to identify novel PS-degrading microbes/functional genes/enzymes and to realize new strategies for PS biodegradation is highlighted. Challenges and limitations faced by the application of genetically engineered microorganisms (GEMs) and multiomics technologies in the field of plastic pollution bioremediation are also discussed. This review encourages the further exploration of the biodegradation of PS by insect gut microbes/enzymes, offering a cutting-edge perspective to identify PS biodegradation pathways and create effective biodegradation strategies.
Collapse
Affiliation(s)
- Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zelin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuwei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
47
|
Zaman I, Turjya RR, Shakil MS, Al Shahariar M, Emu MRRH, Ahmed A, Hossain MM. Biodegradation of polyethylene and polystyrene by Zophobas atratus larvae from Bangladeshi source and isolation of two plastic-degrading gut bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123446. [PMID: 38295931 DOI: 10.1016/j.envpol.2024.123446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/13/2024]
Abstract
Plastic pollution has become a major environmental concern globally, and novel and eco-friendly approaches like bioremediation are essential to mitigate the impact. Low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), and expanded polystyrene (EPS) are three of the most frequently used plastic types. This study examined biodegradation of these using Zophobas atratus larvae, followed by isolation and whole genome sequencing of gut bacteria collected from larvae frass. Over 36 days, 24.04 % LDPE, 20.01 % EPS, and 15.12 % LLDPE were consumed on average by the larvae, with survival rates of 85 %, 90 %, and 87 %, respectively. Fourier transform infrared spectroscopy (FTIR) analysis of fresh plastic types, consumed plastics, and larvae frass showed proof of plastic oxidation in the gut. Frass bacteria were isolated and cultured in minimal salt media supplemented with plastics as the sole carbon source. Two isolates of bacteria were sampled from these cultures, designated PDB-1 and PDB-2. PDB-1 could survive on LDPE and LLDPE as carbon sources, whereas PDB-2 could survive on EPS. Scanning Electron Microscopy (SEM) provided proof of degradation in both cases. Both isolates were identified as strains of Pseudomonas aeruginosa, followed by sequencing, assembly, and annotation of their genomes. LDPE- and LLDPE-degrading enzymes e.g., P450 monooxygenase, alkane monooxygenase, alcohol dehydrogenase, etc. were identified in PDB-1. Similarly, phenylacetaldehyde dehydrogenase and other enzymes involved in EPS degradation were identified in PDB-2. Genes of both isolates were compared with genomes of known plastic-degrading P. aeruginosa strains. Virulence factors, antibiotic-resistance genes, and rhamnolipid biosurfactant biosynthesis genes were also identified in both isolates. This study indicated Zophobas atratus larvae as potential LDPE, LLDPE, and EPS biodegradation agent. Additionally, the isolated strains of Pseudomonas aeruginosa provide a more direct and eco-friendly solution for plastic degradation. Confirmation and modification of the plastic-degrading pathways in the bacteria may create scope for metabolic engineering in the future.
Collapse
Affiliation(s)
- Ifthikhar Zaman
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Rafeed Rahman Turjya
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Ramna, Dhaka, 1000, Bangladesh.
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mahruf Al Shahariar
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | | | - Akash Ahmed
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| | - M Mahboob Hossain
- Department of Mathematics and Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
48
|
Shah MZ, Quraishi M, Sreejith A, Pandit S, Roy A, Khandaker MU. Sustainable degradation of synthetic plastics: A solution to rising environmental concerns. CHEMOSPHERE 2024; 352:141451. [PMID: 38368957 DOI: 10.1016/j.chemosphere.2024.141451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Plastics have a significant role in various sectors of the global economy since they are widely utilized in agriculture, architecture, and construction, as well as health and consumer goods. They play a crucial role in several industries as they are utilized in the production of diverse things such as defense materials, sanitary wares, tiles, plastic bottles, artificial leather, and various other household goods. Plastics are utilized in the packaging of food items, medications, detergents, and cosmetics. The overconsumption of plastics presents a significant peril to both the ecosystem and human existence on Earth. The accumulation of plastics on land and in the sea has sparked interest in finding ways to breakdown these polymers. It is necessary to employ suitable biodegradable techniques to decrease the accumulation of plastics in the environment. To address the environmental issues related to plastics, it is crucial to have a comprehensive understanding of the interaction between microorganisms and polymers. A wide range of creatures, particularly microbes, have developed techniques to survive and break down plastics. This review specifically examines the categorization of plastics based on their thermal and biodegradable properties, as well as the many types of degradation and biodegradation. It also discusses the various types of degradable plastics, the characterization of biodegradation, and the factors that influence the process of biodegradation. The plastic breakdown and bioremediation capabilities of these microbes make them ideal for green chemistry applications aimed at removing hazardous polymers from the ecosystem.
Collapse
Affiliation(s)
- Masirah Zahid Shah
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Marzuqa Quraishi
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Anushree Sreejith
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, 410206, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201306, India.
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia; Faculty of Graduate Studies, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
49
|
Li X, Wang Y, Sun H, Wang Y, Han X, Yu J, Zhao X, Liu B. Differences in ingestion and biodegradation of the melamine formaldehyde plastic by yellow mealworms Tenebrio molitor and superworms Zophobas atratus, and the prediction of functional gut microbes. CHEMOSPHERE 2024; 352:141499. [PMID: 38373446 DOI: 10.1016/j.chemosphere.2024.141499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/11/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Plastics biodegradation by insect larvae is considered as a new strategy for plastic wastes treatment. To uncover the biodegradation of a more complex chemical polymer of melamine formaldehyde (MF) by insect larvae, two worm species of yellow mealworm Tenebrio molitor and superworm Zophobas atratus were fed on MF foam as sole diet for 45 days with sole bran diet as control. Although the MF foam consumption by yellow mealworms of 0.38 mg/d/g-larvae was almost 40% higher than that by superworms of 0.28 mg/d/g-larvae, a similar decrease of survival rates in both species were obtained at about 58%, indicating the adverse effects on their growth. Depolymerization and biodegradation of MF foam occurred in both larval guts, but was more extensive in yellow mealworms. MF foam sole diet influenced gut bacterial and fungal microbiomes of both larvae species, which were assessed by Illumina MiSeq on day 45. Compared to the bran-fed group, both gut bacterial and fungal communities significantly changed in MF-fed groups, but differed in the two larvae species. The results demonstrated a strong association between the distinctive gut microbiome and MF foam degradation, such as unclassified Enterobacteriaceae, Hyphopichia and Issatchenkia. However, sole MF foam diet negatively influenced worms, like lower survival rates and gut abnormalities. In summary, MF foam could be degraded by both yellow mealworms and superworms, albeit with adverse effects. Gut microbes were strongly associated to MF foam degradation, especially the gut fungi.
Collapse
Affiliation(s)
- Xin Li
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Yijing Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Huayang Sun
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Yumeng Wang
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Xiaoyu Han
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China
| | - Jingli Yu
- College of Ecology and Environment, Inner Mongolia University, Huhhot, 010021, PR China
| | - Xin Zhao
- Department of Environmental Engineering, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, PR China.
| | - Baoqin Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
50
|
Xu J, Dong Y. Analysis of the gut microbiome associated to PVC biodegradation in yellow mealworms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116046. [PMID: 38309231 DOI: 10.1016/j.ecoenv.2024.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The potential of invertebrates in the biodegradation of plastic polymers such as polyvinyl chloride (PVC) is receiving increasing attention. The present study is aimed to identify the gut microbiome involved in this degradation in yellow mealworms, i.e., the larvae of Tenebrio molitor Linnaeus. The egested PVC polymer experienced a dramatic reduction in both number average molecular weight (Mn) and weight average molecular weight (Mw) of 99.3% and 99.6%, respectively, whereas FTIR analysis revealed chemical alterations. Mass spectrometry analysis identified two potential degradation products: phthalic acid, di(2-propylpentyl) ester and 2-Propenoic acid, tridecyl ester. Further, we used metagenomic sequencing to elucidate the response of the gut microbiome when transitioning from bran to PVC as a food source, identifying four microorganisms actively involved in PVC degradation. Additionally, metagenomic functional analysis of the gut microbiome identified 111 key gene modules that were significantly enriched. In summary, our findings suggest that yellow mealworms adapt to PVC degradation by modifying their gut microbiome both structurally and functionally.
Collapse
Affiliation(s)
- Jianquan Xu
- Jiangxi Modern Institute of Vocational Technology, Nan Chang 330095, China.
| | - Yongquan Dong
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Key Laboratory of Jiangxi Province for Persistant Pollutants, Nan Chang 330063, China
| |
Collapse
|