1
|
Hou B, Shan X, Jiang X, Li J. Synthesis of a phosphorus-containing L-lactic acid-based flame-retardant plasticizer for simultaneously enhancing flexibility and flame retardancy of poly(lactic acid). Int J Biol Macromol 2024; 279:135420. [PMID: 39245091 DOI: 10.1016/j.ijbiomac.2024.135420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
This work provides a straightforward strategy for synthesizing efficient bio-based flame-retardant plasticizers, offering promising prospects for flame-retardant flexible materials. Poly(lactic acid) (PLA) has garnered significant attention as an environmentally friendly polymer among numerous biodegradable materials. However, its high flammability and brittleness severely hinder its application in the field of electronics and electrical devices. To address these challenges, a bio-based flame-retardant plasticizer (EPDL) was designed and synthesized using renewable L-lactic acid, which significantly enhances the flexibility and flame retardancy of PLA. Incorporating 40 phr EPDL resulted in PLA achieving UL94 V-0 grade and a limiting oxygen index of 34.3 %, demonstrating excellent flame-retardant properties. Meanwhile, the peak of heat release rate and total heat release of PLA/EPDL blends exhibited a marked reduction by 23.1 % and 34.1 % compared to that of pristine PLA, respectively. The flame-retardant action mode of EPDL is the combination of gas phase and condensed phase action. Additionally, the introduction of 40 phr EPDL significantly enhanced the ductility of PLA, resulting in a substantial rise in the elongation at break of the PLA/EPDL to 181.8 %, which is approximately 52 times higher than neat PLA. Intriguingly, the crystallization performance of PLA was enhanced by the presence of EPDL.
Collapse
Affiliation(s)
- Boyou Hou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xueying Shan
- School of Safety Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xintong Jiang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jinchun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Vuong AM, Percy Z, Yang W, Godbole AM, Ospina M, Calafat AM, Cecil KM, Lanphear BP, Braun JM, Yolton K, Chen A. Gestational organophosphate esters (OPEs) and executive function in adolescence: The HOME Study. ENVIRONMENTAL RESEARCH 2024; 263:120239. [PMID: 39461697 DOI: 10.1016/j.envres.2024.120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Evidence from toxicological studies indicate organophosphate esters (OPEs) are neurotoxic, but few epidemiological studies investigated associations between gestational OPEs and executive function. OBJECTIVE To examine the associations between gestational concentrations of OPE urinary metabolites and executive function at 12 years. METHODS We used data from 223 mother-adolescent dyads from the Health Outcomes of Measures of the Environment (HOME) Study. Women provided spot urine samples at 16 weeks gestation, 26 weeks gestation, and at delivery for quantification of bis(1,3-dichloro-2-propyl) phosphate, bis-2-chloroethyl phosphate (BCEP), diphenyl phosphate (DPHP), and di-n-butyl phosphate (DNBP). Executive function was assessed at age 12 years using the parent- and self-report Behavior Rating Inventory of Executive Function (BRIEF2). Covariate-adjusted associations between specific gravity-corrected OPEs and BRIEF2 scores were estimated using multiple informant models. Bayesian Kernel Machine Regression (BKMR) was used to assess the impact of all OPEs simultaneously. RESULTS Parent- and self-report BRIEF2 indices and composite scores were weakly to moderately correlated (rs = 0.32-0.41). A natural-log unit increase in BCEP at 26 weeks was associated with approximately a 1-point increase on the self-report Cognitive Regulation Index [CRI] (95% CI 0.4, 2.3), the Emotion Regulation Index [ERI] (95% CI 0.3, 2.2), and the Global Executive Composite [GEC] (95% CI 0.4, 2.2), indicating poorer performance. Higher DPHP at 16 weeks was associated with lower parent-report GEC score (β = -1.1, 95% CI -2.3, -0.003). BKMR identified BCEP and DNBP at 26 weeks as important contributors to CRI and ERI, respectively. CONCLUSION OPE metabolites during gestational development, particularly BCEP, may influence adolescent executive function. However, since the FDR p-values failed to reach statistical significance, additional studies would benefit from using larger cohorts.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, NV, USA.
| | - Zana Percy
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Weili Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amruta M Godbole
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, NV, USA
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim M Cecil
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Peterson AK, Alexeeff SE, Ames JL, Feng J, Yoshida C, Avalos LA, Barrett ES, Bastain TM, Bennett DH, Buckley JP, Croen LA, Dunlop AL, Hedderson MM, Herbstman JB, Kannan K, Karagas MR, McEvoy CT, O'Connor TG, Romano ME, Sathyanarayana S, Schantz SL, Schmidt RJ, Starling AP, Trasande L, Woodruff TJ, Zhao Q, Zhu Y, Ferrara A. Gestational exposure to organophosphate ester flame retardants and risk of childhood obesity in the environmental influences on child health outcomes consortium. ENVIRONMENT INTERNATIONAL 2024; 193:109071. [PMID: 39437621 DOI: 10.1016/j.envint.2024.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Organophosphate esters (OPEs) are increasing in use as flame retardants and plasticizers and concerns have been raised given their endocrine-disrupting activities and possible obesogenic consequences. However, longitudinal studies on gestational OPE exposure and childhood obesity are scarce. This study examined whether OPE levels in maternal urine during pregnancy were associated with the risk of childhood obesity. METHODS OPEs were analyzed in pregnancy urine samples of 5,087 individuals from 14 studies contributing to the Environmental influences on Child Health Outcomes (ECHO) Cohort. BDCPP, DBUP/DIBP, and DPHP, detected in > 80 % of the samples, were modeled continuously and by tertiles; whereas BCPP, BBOEP, and BCETP, detected in 50-80 % of samples, were modeled categorically (not-detected, low, and high). Childhood obesity was defined by BMI z-score ≥ 95th percentile according to WHO (<2 years) and the CDC (≥2 years) metrics. Adjusted modified Poisson regression models assessed childhood obesity risk and the mixture effect was assessed using Bayesian kernel machine regression (BKMR). RESULTS BMI measurements were available for 3,827 children in infancy (0.5-1.9 years), 3,921 children in early childhood (2.0-4.9 years), and 2,541 children in mid-childhood (5.0-10.0 years). Obesity was present in 16-21 % of children across age groups. In mid-childhood DBUP/DIBP second and third versus first tertiles were associated with increased obesity risk (RR 1.14; 95 % CI: 1.02, 1.28; and RR 1.11; 95 % CI: 0.97, 1.27; respectively); whereas BDCPP second and third versus first tertiles reflected an inverse association with obesity risk (RR 0.85; 95 % CI: 0.80, 0.91 and RR 0.91; 95 % CI: 0.77, 1.07; respectively). No association with obesity risk was observed for DPHP, BCPP, BBOEP, and BCETP. Directions observed were consistent with those seen in BKMR models. CONCLUSIONS This study identified mixed associations between gestational OPE exposure and childhood obesity. Further investigation across a comprehensive range of OPE exposures is warranted.
Collapse
Affiliation(s)
- Alicia K Peterson
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States.
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Juanran Feng
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Cathleen Yoshida
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Lyndsay A Avalos
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, United States
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, United States
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Monique M Hedderson
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Julie B Herbstman
- Columbia University Mailman School of Public Health, New York, NY, United States
| | | | | | - Cindy T McEvoy
- Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, OR, United States
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience, and Obstetrics and Gynecology, University of Rochester, Rochester, NY, United States
| | - Megan E Romano
- Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Sheela Sathyanarayana
- Department of Pediatrics and Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California, Davis, CA, United States
| | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Leonardo Trasande
- Department of Population Health, Department of Pediatrics, Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, United States
| | - Qi Zhao
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States; Center for Upstream Prevention of Adiposity and Diabetes Mellitus (UPSTREAM), Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, United States
| |
Collapse
|
4
|
Wu X, Hu J, Yuan Z, Wang S, Tong L. p-phenylenediamines (PPDs) and PPD-quinones (PPD-Qs) in human urine and breast milk samples: Urgent need for focus on PPD-Qs and the establishment of health threshold criteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136176. [PMID: 39418905 DOI: 10.1016/j.jhazmat.2024.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
PPDs and their oxidation products, PPD-Qs, are emerging environmental contaminants arising from the addition and oxidation of rubber products. Although numerous studies have been conducted to elucidate their risks, the primary focus has been on 6PPD and 6PPD-Q, with limited attention given to other PPDs and especially other PPD-Qs. This study comprehensively examines the occurrences of frequently used PPDs and their degradation products, PPD-Qs, in human urine and breast milk samples. The average concentrations of ΣPPDs and ΣPPD-Qs in urine were 27 ± 78 ng/mL and 16 ± 12 ng/mL, respectively. IPPD and DNPD were the predominant PPDs, while DPPD-Q, CPPD-Q, and IPPD-Q were the predominant PPD-Qs. Notably, the concentrations of 6PPD, CPPD, and DPPD were significantly lower than their oxidized quinone products. Weak or no correlations were observed between most PPDs and their corresponding PPD-Qs, suggesting that PPD-Qs in the human body are primarily derived from direct environmental intake rather than in vivo conversion of PPDs. PPDs and PPD-Qs were widely detected in breast milk, exhibiting concentrations and patterns similar to those found in urine, with comparable major pollutants. Estimated daily intakes of PPDs + PPD-Qs for infants were several μg/(kg·day), with the 95th percentile intake approaching 10 μg/(kg·day).
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| | - Jiangshan Hu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China; Wuhu Dongyuan New Country Developing Co., Ltd., Wuhu, Anhui, 241000, PR China; CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Tong
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| |
Collapse
|
5
|
Zhao Y, Deng Y, Shen F, Huang J, Yang J, Lu H, Wang J, Liang X, Su G. Characteristics and partitions of traditional and emerging organophosphate esters in soil and groundwater based on machine learning. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135351. [PMID: 39088951 DOI: 10.1016/j.jhazmat.2024.135351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Organophosphate esters (OPEs) pose hazards to both humans and the environment. This study applied target screening to analyze the concentrations and detection frequencies of OPEs in the soil and groundwater of representative contaminated sites in the Pearl River Delta. The clusters and correlation characteristics of OPEs in soil and groundwater were calculated by self-organizing map (SOM). The risk assessment and partitions of OPEs in industrial park soil and groundwater were conducted. The results revealed that 14 out of 23 types of OPEs were detected. The total concentrations (Σ23OPEs) ranged from 1.931 to 743.571 ng/L in the groundwater, and 0.218 to 79.578 ng/g in the soil, the former showed highly soluble OPEs with high detection frequencies and concentrations, whereas the latter exhibited the opposite trend. SOM analysis revealed that the distribution of OPEs in the soil differed significantly from that in the groundwater. In the industrial park, OPEs posed acceptable risks in both the soil and groundwater. The soil could be categorized into Zone I and II, and the groundwater into Zone I, II, and III, with corresponding management recommendations. Applying SOM to analyze the characteristics and partitions of OPEs may provide references for other new pollutants and contaminated sites.
Collapse
Affiliation(s)
- Yanjie Zhao
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Fang Shen
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jianan Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Yang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Haijian Lu
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jun Wang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Xiaoyang Liang
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Laboratory of Soil Pollution Fate and Risk Management in Earth's Critical Zone, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Wang H, Ding J, Luo S, Yan M, Hu F. Unveiling the mechanisms of reproductive toxicity induced by full life-cycle exposure to environmentally relevant concentrations of tris(2-chloroethyl) phosphate in male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107079. [PMID: 39260100 DOI: 10.1016/j.aquatox.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), a commonly used organophosphate flame retardant, has garnered considerable concern owing to its pervasive presence in the environment and its toxic effects on living organisms. The perpetuation of populations and species hinges on successful reproduction, yet research into the mechanisms underlying reproductive toxicity remains scant, particularly in aquatic species. In this work, zebrafish embryos were exposed to TCEP (0, 0.8, 4, 20, and 100 µg/L) for 120 days until sexual maturation, and multiple reproductive endpoints were investigated in male zebrafish. Our results showed that the body weight, body length, and gonadal-somatic index (GSI) were remarkably decreased in all TCEP treatment groups (except GSI in the 0.8 µg/L TCEP-treated group). Long-term exposure to TCEP led to reduced reproductive capacity of male zebrafish, as evidenced by decreased fertilization. Histological observation gave an indication of delayed testicular development and inhibited spermatogenesis under TCEP stress. The content of testosterone (T) was significantly elevated in all TCEP treatment group, whereas 17 β-estradiol (E2) levels remained stable. Transcriptome analysis revealed a lot of downregulated genes involved in steroid hormone biosynthesis, energy metabolism, and sperm motility, which might account for the imbalance of steroid hormone levels, retarded spermatogenesis and declined fertilization success. Overall, these findings offered a thorough understanding of the mechanisms underlying the male reproductive toxicity caused by TCEP, highlight the risk of TCEP on reproductive health of fish.
Collapse
Affiliation(s)
- Hongkai Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, PR China
| | - Shiyi Luo
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Meijiao Yan
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou 350001, PR China.
| |
Collapse
|
7
|
Sun H, Mi W, Li X, Wang S, Yan J, Zhang G. Organophosphate ester in surface water of the Pearl River and South China Sea, China: Spatial variations and ecological risks. CHEMOSPHERE 2024; 361:142559. [PMID: 38852634 DOI: 10.1016/j.chemosphere.2024.142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
This study focused on investigating the concentrations, compositional profiles, partitioning behaviors and spatial variations of organophosphate esters (OPEs) in the Pearl River (PR), South China Sea (SCS) region, to evaluate their environmental risks. ∑OPEs concentrations in the surface water of the PR ranged from 117.5 to 854.8 ng/L in the dissolved phase and from 0.5 to 13.3 ng/L in the suspended particulate matter. In the surface seawaters of the northern and western parts of the SCS, ∑OPEs concentrations were 1.3-17.6 ng/L (mean: 6.7 ± 5.2) and 2.3-24.4 ng/L (mean: 7.6 ± 5.5), respectively. The percentage of chlorinated OPEs in surface water samples from the PR to the SCS was 79 ± 15%. Tripentyl phosphate (TPeP) (average: 28.3%) and triphenylphosphate (TPhP) (average: 9.6%) exhibited significant particulate fraction. A significant negative correlation (p < 0.05) between salt concentration and OPE congeners in seawater suggested that river runoff predominantly introduced OPEs into the coastal waters of the SCS. The findings also showed higher levels of OPEs in the PR and estuary than in offshore waters. The OPE loading from the PR into the SCS was estimated to be ∼119 t y-1. The presence of TCEP (RQmax = 2.1), TnBP (RQmax = 0.48) and TPhP (RQmax = 0.3) in PR water samples pose a high risk to aquatic organisms, whereas OPEs (RQ < 0.1) in SCS water samples do not pose a threat to aquatic organisms. This research emphasizes the environmental fate and impact of OPEs on surface waters of the PR and SCS.
Collapse
Affiliation(s)
- Haofeng Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Xunmeng Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuaiqing Wang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiehui Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guangyang Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
8
|
Cheng X, Gao L, Cao X, Zhang Y, Ai Q, Weng J, Liu Y, Li J, Zhang L, Lyu B, Wu Y, Zheng M. Identification and Prioritization of Organic Pollutants in Human Milk from the Yangtze River Delta, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11935-11944. [PMID: 38913859 DOI: 10.1021/acs.est.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Pollutants in human milk are critical for evaluating maternal internal exposure and infant external exposure. However, most studies have focused on a limited range of pollutants. Here, 15 pooled samples (prepared from 467 individual samples) of human milk from three areas of the Yangtze River Delta (YRD) in China were analyzed by gas chromatography quadrupole time-of-flight mass spectrometry. In total, 171 compounds of nine types were preliminarily identified. Among these, 16 compounds, including 2,5-di-tert-butylhydroquinone and 2-tert-butyl-1,4-benzoquinone, were detected in human milk for the first time. Partial least-squares discriminant analysis identified ten area-specific pollutants, including 2-naphthylamine, 9-fluorenone, 2-isopropylthianthrone, and benzo[a]pyrene, among pooled human milk samples from Shanghai (n = 3), Jiangsu Province (n = 6), and Zhejiang Province (n = 6). Risk index (RI) values were calculated and indicated that legacy polycyclic aromatic hydrocarbons (PAHs) contributed only 20% of the total RIs for the identified PAHs and derivatives, indicating that more attention should be paid to PAHs with various functional groups. Nine priority pollutants in human milk from the YRD were identified. The most important were 4-tert-amylphenol, caffeine, and 2,6-di-tert-butyl-p-benzoquinone, which are associated with apoptosis, oxidative stress, and other health hazards. The results improve our ability to assess the health risks posed by pollutants in human milk.
Collapse
Affiliation(s)
- Xin Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiaoying Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
9
|
Carlin DJ, Rider CV. Combined Exposures and Mixtures Research: An Enduring NIEHS Priority. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:75001. [PMID: 38968090 PMCID: PMC11225971 DOI: 10.1289/ehp14340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND The National Institute of Environmental Health Sciences (NIEHS) continues to prioritize research to better understand the health effects resulting from exposure to mixtures of chemical and nonchemical stressors. Mixtures research activities over the last decade were informed by expert input during the development and deliberations of the 2011 NIEHS Workshop "Advancing Research on Mixtures: New Perspectives and Approaches for Predicting Adverse Human Health Effects." NIEHS mixtures research efforts since then have focused on key themes including a) prioritizing mixtures for study, b) translating mixtures data from in vitro and in vivo studies, c) developing cross-disciplinary collaborations, d) informing component-based and whole-mixture assessment approaches, e) developing sufficient similarity methods to compare across complex mixtures, f) using systems-based approaches to evaluate mixtures, and g) focusing on management and integration of mixtures-related data. OBJECTIVES We aimed to describe NIEHS driven research on mixtures and combined exposures over the last decade and present areas for future attention. RESULTS Intramural and extramural mixtures research projects have incorporated a diverse array of chemicals (e.g., polycyclic aromatic hydrocarbons, botanicals, personal care products, wildfire emissions) and nonchemical stressors (e.g., socioeconomic factors, social adversity) and have focused on many diseases (e.g., breast cancer, atherosclerosis, immune disruption). We have made significant progress in certain areas, such as developing statistical methods for evaluating multiple chemical associations in epidemiology and building translational mixtures projects that include both in vitro and in vivo models. DISCUSSION Moving forward, additional work is needed to improve mixtures data integration, elucidate interactions between chemical and nonchemical stressors, and resolve the geospatial and temporal nature of mixture exposures. Continued mixtures research will be critical to informing cumulative impact assessments and addressing complex challenges, such as environmental justice and climate change. https://doi.org/10.1289/EHP14340.
Collapse
Affiliation(s)
- Danielle J. Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
10
|
Jin X, Yao R, Yu X, Wu H, Liu H, Huang J, Dai Y, Sun J. Global responses to tris(1-chloro-2-propyl) phosphate and tris(2-butoxyethyl) phosphate in Escherichia coli: Evidences from biomarkers, and metabolic disturbance using GC-MS and LC-MS metabolomics analyses. CHEMOSPHERE 2024; 358:142177. [PMID: 38679182 DOI: 10.1016/j.chemosphere.2024.142177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBEP) as pollutants of emerging concern have aroused the rising attention due to their potential risks on aquatic ecosystem and public health. Nevertheless, there is a lack of toxicological mechanisms exploration of TCPP and TBEP at molecular levels. Herein, the toxicity effects and molecular mechanism of them were fully researched and summarized on Escherichia coli (E.coli). Acute exposure to them significantly activated antioxidant defense system and caused lipid peroxidation, as proved by the changes of antioxidant enzymes and MDA. The ROS overload resulted in the drop of membrane potential as well as the downregulated synthesis of ATPase, endorsing that E. coli cytotoxicity was ascribed to oxidative stress damage induced by TCPP and TBEP. The combination of GC-MS and LC-MS based metabolomics validated that TCPP and TBEP induced metabolic reprogramming in E.coli. More specifically, the responsive metabolites in carbohydrate metabolism, lipids metabolism, nucleotide metabolism, amino acid metabolism, and organic acids metabolism were significantly disturbed by TCPP and TBEP, confirming the negative effects on metabolic functions and key bioprocesses. Additionally, several biomarkers including PE(16:1(5Z)/15:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(19:1(9Z)/0:0), and LysoPE(0:0/18:1(11Z)) were remarkably upregulated, verifying that the protection of cellular membrane was conducted by regulating the expression of lipids-associated metabolites. Collectively, this work sheds new light on the potential molecular toxicity mechanism of TCPP and TBEP on aquatic organisms, and these findings using GC-MS and LC-MS metabolomics generate a fresh insight into assessing the effects of OPFRs on target and non-target aquatic organisms.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Runlin Yao
- Bathurst Future Agri-Tech Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Haochuan Wu
- School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yicheng Dai
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
11
|
Liang C, He Y, Mo XJ, Guan HX, Liu LY. Universal occurrence of organophosphate tri-esters and di-esters in marine sediments: Evidence from the Okinawa Trough in the East China Sea. ENVIRONMENTAL RESEARCH 2024; 248:118308. [PMID: 38281563 DOI: 10.1016/j.envres.2024.118308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Gas Hydrate, Guangzhou, 510640, China
| | - Xiao-Jing Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Hong-Xiang Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China.
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
12
|
Zhang Q, Luo C, Li Z, Huang W, Zheng S, Liu C, Shi X, Ma Y, Ni Q, Tan W, Peng J, Chen Y, Wu W, Li J, Wu K. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115960. [PMID: 38219622 DOI: 10.1016/j.ecoenv.2024.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Triphenyl phosphate (TPhP) serves as a major organophosphorus flame retardant, and its induced neurodevelopmental toxicity has attracted widespread attention, but the mechanism remains unclear. In this study, we involved zebrafish to explore the new mechanism of TPhP inducing oxidative stress and ferroptosis to promote neurodevelopmental toxicity. The results suggested that TPhP affected the embryonic development, reduced the number of new neurons, and led to abnormal neural behavior in zebrafish larvae. TPhP also induced ROS accumulation, activated the antioxidant defense signal Nrf2 and Keap1, and significantly changed the activities of Acetylcholinesterase (AChE), Adenosine triphosphatase (ATPase) and glutathione S-transferase (GST). In addition, TPhP induced ferroptosis in zebrafish, which was reflected in the increase of Fe2+ content, the abnormal expression of GPX4 protein and genes related to iron metabolism (gpx4a, slc7a11, acsl4b, tfa, slc40a1, fth1b, tfr2, tfr1a, tfr1b and ncoa4). Astaxanthin intervention specifically inhibited ROS levels, and reversed SLC7A11 and GPX4 expression levels and Fe2+ metabolism thus alleviating ferroptosis induced by TPhP. Astaxanthin also partially reversed the activity of AChE, GST and the expression of neurodevelopmental-related genes (gap43, gfap, neurog1 and syn2a), so as to partially rescue the embryonic developmental abnormalities and motor behavior disorders induced by TPhP. More interestingly, the expression of mitochondrial apoptosis-related protein BAX, anti-apoptotic protein BCL-2, Caspase3 and Caspase9 was significantly altered in the TPhP exposed group, which could be also reversed by Astaxanthin intervention. In summary, our results suggested that TPhP exposure can induce oxidative stress and ferroptosis, thereby causing neurodevelopment toxicity to zebrafish, while Astaxanthin can partially reverse oxidative stress and reduce the neurodevelopmental toxicity of zebrafish larvae by activating Nrf2/Keap1/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhikang Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yikai Ma
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qingqing Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiejie Li
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
13
|
Su Y, Luan M, Huang W, Chen H, Chen Y, Miao M. Determinants of organophosphate esters exposure in pregnant women from East China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122767. [PMID: 37863257 DOI: 10.1016/j.envpol.2023.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Organophosphate esters (OPEs) have been broadly used in various industrial and consumer products, resulting in global distribution and human exposure. Gestational exposure to OPEs may adversely affect the health of both pregnant women and their offspring. To better understand OPE exposure in pregnant women, our study determined eight urinary metabolites of major OPEs in pregnant women (n = 733) recruited at 12-16 weeks of gestation from Shanghai, China, and explored the determinants of OPE exposure among various sociodemographic characteristics, lifestyles, and dietary factors. Urinary metabolites of OPEs, including bis (1,3-dichloro-2-propyl) phosphate (BDCPP), bis (2-chloroethyl) phosphate (BCEP), bis (1-chloro-2-propyl) phosphate (BCIPP), dicresyl phosphate (DCP), diphenyl phosphate (DPP), dibutyl phosphate (DBP), bis (2-ethylhexyl) phosphate (BEHP), and bis (2-butoxyethyl) phosphate (BBOEP), exhibited a detection rate ranging from 69.30% to 99.32%. Multivariate linear regression models indicated that pregnant women who were multiparous, had a higher family income per capita, worked in white-collar jobs, and took nutritional supplements such as milk powder and fish oil tended to have higher urinary OPE metabolite concentrations. Besides, independent of sociodemographic characteristics and lifestyle factors, consumption of more aquatic products, soy products, pork, and puffed food, as well as drinking of purified tap water versus tap water, were associated with increased urinary OPEs metabolite concentrations. Our study demonstrated that OPE exposure was ubiquitous in pregnant women from Shanghai, and provided new insights into the potential factors influencing OPE exposure during pregnancy.
Collapse
Affiliation(s)
- Yingqian Su
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Min Luan
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China.
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200237, China
| |
Collapse
|
14
|
Newell AJ, Patisaul HB. Developmental organophosphate flame retardant exposure disrupts adult hippocampal neurogenesis in Wistar rats. Neurotoxicology 2023; 99:104-114. [PMID: 37783313 PMCID: PMC10842265 DOI: 10.1016/j.neuro.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Organophosphate flame retardant (OPFR) contamination is ubiquitous and bio-monitoring studies have shown that human exposure is widespread and may be unavoidable. OPFRs bear structural similarities to known neurotoxicants such as organophosphate insecticides and have been shown to have both endocrine disrupting and developmental neurotoxic effects. The perinatal period in rodents represents a critical period in the organization of the developing nervous system and insults during this time can impart profound changes on the trajectory of neural development and function, lasting into adulthood. Adult hippocampal neurogenesis (AHN) facilitates dentate gyrus function and broader hippocampal circuit activity in adults; however, the neurogenic potential of this process in adulthood is vulnerable to disruption by exogenous factors during early life. We sought to assess the impact of OPFRs on AHN in offspring of dams exposed during gestation and lactation. Results indicate that developmental OPFR exposure has significant, sex specific impacts on multiple markers of AHN in the dentate gyrus of rats. In males, OPFR exposure significantly reduced the number of neural progenitors the number of new/immature neurons and reduced dentate gyrus volume. In females, exposure increased the number of neural progenitors, decreased the number of new/immature neurons, but had no significant effect on dentate gyrus volume. These results further elucidate the developmental neurotoxic properties of OPFRs, emphasize the long-term impact of early life OPFR exposure on neural processes, and highlight the importance of including sex as a biological variable in neurotoxicology research.
Collapse
Affiliation(s)
- Andrew J Newell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Zhang Y, Liang J, Gu H, Du T, Xu P, Yu T, He Q, Huang Z, Lei S, Li J. Activation of LXRα attenuates 2-Ethylhexyl diphenyl phosphate (EHDPP) induced placental dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115605. [PMID: 37864966 DOI: 10.1016/j.ecoenv.2023.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is one of the typical organophosphate flame retardants (OPFRs) and has been widely detected in environmental media. Exposure to EHDPP during pregnancy affects placental development and fetal growth. Liver X receptor α (LXRα) is essential to placental development. However, finite information is available regarding the function of LXRα in placenta damages caused by EHDPP. In present study we investigated to figure out whether LXRα is playing roles in EHDPP-induced placenta toxicity. While EHDPP restrained cell viability, migration, and angiogenesis dose-dependently in HTR-8/SVneo and JEG-3 cells, overexpression or activation by agonist T0901317 of LXRα alleviated the above phenomenon, knockdown or inhibition by antagonist GSK2033 had the opposite effects in vitro. Further study indicated EHDPP decreased LXRα expression and transcriptional activity leading to mRNA, protein expression levels downregulation of viability, migration, angiogenesis-related genes Forkhead box M1 (Foxm1), endothelial nitric oxide synthase (eNos), matrix metalloproteinase-2 (Mmp-2), matrix metalloproteinase-9 (Mmp-9), vascular endothelial growth factor-A (Vegf-a) and upregulation of inflammatory genes interleukin-6 (Il-6), interleukin-1β (Il-1β) and tumor necrosis factor-α (Tnf-α) in vitro and in vivo. Moreover, EHDPP caused decreased placental volume and fetal weight in mice, treatment with LXRα agonist T0901317 restored these adverse effects. Taken together, our study unveiled EHDPP-induced placenta toxicity and the protective role of LXRα in combating EHDPP-induced placental dysfunction. Activating LXRα could serve as a therapeutic strategy to reverse EHDPP-induced placental toxicity.
Collapse
Affiliation(s)
- Yue Zhang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie Liang
- Yangzhou Center for Disease Control and Prevention, Yangzhou, Jiangsu 225007, China
| | - Hao Gu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Ting Du
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Ting Yu
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qing He
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zhenyao Huang
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Saifei Lei
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Jing Li
- School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
16
|
Chen FS, Chen CC, Tsai CC, Lu JH, You HL, Chen CM, Huang WT, Tsai KF, Cheng FJ, Kung CT, Li SH, Wang CC, Ou YC, Lee WC, Chang YT, Hashim F, Chao HR, Wang LJ. Urinary levels of organophosphate flame retardants metabolites in a young population from Southern Taiwan and potential health effects. Front Endocrinol (Lausanne) 2023; 14:1173449. [PMID: 37334296 PMCID: PMC10272846 DOI: 10.3389/fendo.2023.1173449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background Organophosphate flame retardants (OPFRs) are widely distributed in the environment and their metabolites are observed in urine, but little is known regarding OPFRs in a broad-spectrum young population from newborns to those aged 18 years. Objectives Investigate urinary levels of OPFRs and OPFR metabolites in Taiwanese infants, young children, schoolchildren, and adolescents within the general population. Methods Different age groups of subjects (n=136) were recruited from southern Taiwan to detect 10 OPFR metabolites in urine samples. Associations between urinary OPFRs and their corresponding metabolites and potential health status were also examined. Results The mean level of urinary Σ10 OPFR in this broad-spectrum young population is 2.25 μg/L (standard deviation (SD) of 1.91 μg/L). Σ10 OPFR metabolites in urine are 3.25 ± 2.84, 3.06 ± 2.21, 1.75 ± 1.10, and 2.32 ± 2.29 μg/L in the age groups comprising of newborns, 1-5 year-olds, 6-10 year-olds, and 11-18 year-olds, respectively, and borderline significant differences were found in the different age groups (p=0.125). The OPFR metabolites of TCEP, BCEP, DPHP, TBEP, DBEP, and BDCPP predominate in urine and comprise more than 90% of the total. TBEP was highly correlated with DBEP in this population (r=0.845, p<0.001). The estimated daily intake (EDI) of Σ5OPFRs (TDCPP, TCEP, TBEP, TNBP, and TPHP) was 2,230, 461, 130, and 184 ng/kg bw/day for newborns, 1-5 yr children, 6-10 yr children, and 11-17 yr adolescents, respectively. The EDI of Σ5OPFRs for newborns was 4.83-17.2 times higher than the other age groups. Urinary OPFR metabolites are significantly correlated with birth length and chest circumference in newborns. Conclusion To our knowledge, this is the first investigation of urinary OPFR metabolite levels in a broad-spectrum young population. There tended to be higher exposure rates in both newborns and pre-schoolers, though little is known about their exposure levels or factors leading to exposure in the young population. Further studies should clarify the exposure levels and factor relationships.
Collapse
Affiliation(s)
- Feng-Shun Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Cheng Chen
- Section of Neonatology, Department of Pediatrics, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Early Childhood Care and Education, Cheng-Shiu University, Kaohsiung, Taiwan
| | - Ching-Chang Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jian-He Lu
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Neipu, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Mei Chen
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Jen Cheng
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Department of Occupational Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Che Ou
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ting Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fahimah Hashim
- Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Neipu, Taiwan
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Li Y, Wang X, Zhu Q, Xu Y, Fu Q, Wang T, Liao C, Jiang G. Organophosphate Flame Retardants in Pregnant Women: Sources, Occurrence, and Potential Risks to Pregnancy Outcomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7109-7128. [PMID: 37079500 DOI: 10.1021/acs.est.2c06503] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organophosphate flame retardants (OPFRs) are found in various environmental matrixes and human samples. Exposure to OPFRs during gestation may interfere with pregnancy, for example, inducing maternal oxidative stress and maternal hypertension during pregnancy, interfering maternal and fetal thyroid hormone secretion and fetal neurodevelopment, and causing fetal metabolic abnormalities. However, the consequences of OPFR exposure on pregnant women, impact on mother-to-child transmission of OPFRs, and harmful effects on fetal and pregnancy outcomes have not been evaluated. This review describes the exposure to OPFRs in pregnant women worldwide, based on metabolites of OPFRs (mOPs) in urine for prenatal exposure and OPFRs in breast milk for postnatal exposure. Predictors of maternal exposure to OPFRs and variability of mOPs in urine have been discussed. Mother-to-child transmission pathways of OPFRs have been scrutinized, considering the levels of OPFRs and their metabolites in amniotic fluid, placenta, deciduae, chorionic villi, and cord blood. The results showed that bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) and diphenyl phosphate (DPHP) were the two predominant mOPs in urine, with detection frequencies of >90%. The estimated daily intake (EDIM) indicates low risk when infants are exposed to OPFRs from breast milk. Furthermore, higher exposure levels of OPFRs in pregnant women may increase the risk of adverse pregnancy outcomes and influence the developmental behavior of infants. This review summarizes the knowledge gaps of OPFRs in pregnant women and highlights the crucial steps for assessing health risks in susceptible populations, such as pregnant women and fetuses.
Collapse
Affiliation(s)
- Yongting Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqian Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
| | - Qiuguo Fu
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, 04318 Leipzig, Germany
| | - Thanh Wang
- Man-Technology-Environment (MTM) Research Centre, Örebro University, Örebro 701 82, Sweden
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou Zhejiang, 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Engelsman M, Banks APW, He C, Nilsson S, Blake D, Jayarthne A, Ishaq Z, Toms LML, Wang X. An Exploratory Analysis of Firefighter Reproduction through Survey Data and Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085472. [PMID: 37107753 PMCID: PMC10138572 DOI: 10.3390/ijerph20085472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023]
Abstract
Firefighters are occupationally exposed to chemicals that may affect fertility. To investigate this effect, firefighters were recruited to contribute blood, urine, breast milk or semen samples to (1) evaluate chemical concentrations and semen parameters against fertility standards and the general population; (2) assess correlations between chemical concentrations and demographics, fire exposure and reproductive history; and (3) consider how occupational exposures may affect reproduction. A total of 774 firefighters completed the online survey, and 97 firefighters produced 125 urine samples, 113 plasma samples, 46 breast milk samples and 23 semen samples. Blood, urine and breast milk samples were analysed for chemical concentrations (semivolatile organic compounds, volatile organic compounds, metals). Semen samples were analysed for quality (volume, count, motility, morphology). Firefighter semen parameters were below WHO reference values across multiple parameters. Self-reported rates of miscarriage were higher than the general population (22% vs. 12-15%) and in line with prior firefighter studies. Estimated daily intake for infants was above reference values for multiple chemicals in breast milk. More frequent fire incident exposure (more than once per fortnight), longer duration of employment (≥15 years) or not always using a breathing apparatus demonstrated significantly higher concentrations across a range of investigated chemicals. Findings of this study warrant further research surrounding the risk occupational exposure has on reproduction.
Collapse
Affiliation(s)
- Michelle Engelsman
- Fire and Rescue NSW, Greenacre, NSW 2190, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Andrew P. W. Banks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Chang He
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Ayomi Jayarthne
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zubaria Ishaq
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Leisa-Maree L. Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Xianyu Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
19
|
Hawkey AB, Evans J, Holloway ZR, Pippen E, Jarrett O, Kenou B, Slotkin TA, Seidler FJ, Levin ED. Developmental exposure to the flame retardant, triphenyl phosphate, causes long-lasting neurobehavioral and neurochemical dysfunction. Birth Defects Res 2023; 115:357-370. [PMID: 36369782 DOI: 10.1002/bdr2.2125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/07/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Human exposures to organophosphate flame retardants result from their use as additives in numerous consumer products. These agents are replacements for brominated flame retardants but have not yet faced similar scrutiny for developmental neurotoxicity. We examined a representative organophosphate flame retardant, triphenyl phosphate (TPP) and its potential effects on behavioral development and dopaminergic function. METHODS Female Sprague-Dawley rats were given low doses of TPP (16 or 32 mg kg-1 day-1 ) via subcutaneous osmotic minipumps, begun preconception and continued into the early postnatal period. Offspring were administered a battery of behavioral tests from adolescence into adulthood, and littermates were used to evaluate dopaminergic synaptic function. RESULTS Offspring with TPP exposures showed increased latency to begin eating in the novelty-suppressed feeding test, impaired object recognition memory, impaired choice accuracy in the visual signal detection test, and sex-selective effects on locomotor activity in adolescence (males) but not adulthood. Male, but not female, offspring showed marked increases in dopamine utilization in the striatum, evidenced by an increase in the ratio of the primary dopamine metabolite (3,4-dihydroxyphenylacetic acid) relative to dopamine levels. CONCLUSIONS These results indicate that TPP has adverse effects that are similar in some respects to those of organophosphate pesticides, which were restricted because of their developmental neurotoxicity.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Janequia Evans
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Erica Pippen
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olivia Jarrett
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bruny Kenou
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Theodore A Slotkin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Frederic J Seidler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA.,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Yang Y, Luo M, Qi Z, Fan Z, Hashmi MZ, Li G, Yu Y. Temporal trends and health risks of organophosphorus flame retardants in fishes in Taihu Lake from 2013 to 2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120733. [PMID: 36435280 DOI: 10.1016/j.envpol.2022.120733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus flame retardants (OPFRs) are synthetic, physical additive flame retardants widely detected in the environment. To investigate the temporal trends of OPFRs in Taihu regions and the associated health risks from fish consumption, 150 fish samples of five species were collected from Taihu Lake in China from 2013 to 2018. Eight OPFRs were measured, having 2-ethylhexyl diphenyl phosphate (90.7%) and tris (1,3-dichloro-2 propyl) phosphate (21.5%) as the most and least frequently detected OPFRs, respectively. Among the eight OPFRs, tris (chloropropyl) phosphate concentration (446 pg/g, wet weight) was higher than others. The maximum cumulative concentration of the OPFRs (∑8OPFRs) was observed in large icefish (1.69 × 103 pg/g), while silver carp (841 pg/g) had the lowest. For the temporal trends, higher levels of ∑8OPFRs (1.91 × 103 pg/g) were detected in 2013 than in other years, although no significant change in the trend occurred over time. The estimated daily intake of OPFRs from large icefish consumption was 1.20 × 103 pg/kg-bw/day, higher than that of other fish species. The Monte Carlo simulations showed that ≤0.3% of adults and children would suffer non-cancer health risks from OPFRs via fish consumption. This study provides the first data on temporal trends of OPFRs in Taihu Lake.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Meiqiong Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhiyong Fan
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | | | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
21
|
Tang B, Zheng J, Xiong SM, Cai FS, Li M, Ma Y, Gao B, Du DW, Yu YJ, Mai BX. The accumulation of organic contaminants in hair with different biological characteristics. CHEMOSPHERE 2023; 312:137064. [PMID: 36334734 DOI: 10.1016/j.chemosphere.2022.137064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Human hair has increasingly been used as a noninvasive biomonitoring matrix for assessment of human exposure to various organic contaminants (OCs). However, the accumulation processes of OCs in hair remains unclear thus far, which raised concerns on the reliability of hair analysis results for OCs. Herein, Chinese population was selected as the study subject, the effects of changes in hair biological characteristics, including length and color, on the accumulation of OCs in hair was investigated. With the growing of hair shaft and the increased distance from the scalp, a significant increasing trend was found for levels of polychlorinated biphenyls (PCBs) and organophosphate flame retardants (PFRs) along the hair shafts (p < 0.05). Source identification using Chemical Mass Balance model indicated that PCBs in hair were mainly from exogenous sources (air and dust). The accumulation rates of PCB and PFR individuals in the hair shaft decreased with increasing of log Kow values. Additionally, the levels of OCs in hair decreased with the change in color from black to white, probably because of the loss of melanin in white hair. The ratios (R) of Cblack/Cwhite were significantly correlated with the log Kow values for individual chemicals (p < 0.05), implying that OCs with high log Kow values tend to accumulate more readily in black hair. The results of this study demonstrated the growth and change in colors of hair, as well as the physicochemical properties of chemicals, play vital roles in the accumulation of OCs in hair. The present study provides fundamental basis for the precise assessment of human exposure to OCs using hair as a biomonitoring matrix in future studies.
Collapse
Affiliation(s)
- Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China.
| | - Shi-Mao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bo Gao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Dong-Wei Du
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| |
Collapse
|
22
|
Zhang Q, Chu M, Lin S, Lou J, Wang C. Partitioning behavior-oriented health risk assessment on internal organophosphorus flame retardants exposure. ENVIRONMENTAL RESEARCH 2023; 216:114704. [PMID: 36334827 DOI: 10.1016/j.envres.2022.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Though the partitioning behavior of organophosphorus flame retardants (OPFRs) has been recognized in vitro incubation assay, health risk assessment on those internal exposure with or without partitioning indexes in human blood is still unclear. In this study, nine commonly used OPFRs were quantified in 96 pairs of plasma and blood cell samples from Chinese volunteers. Non-carcinogenic and carcinogenic risk (CR) assessment building upon two distinct scenarios were conducted and compared. The dominant OPFRs in both plasma and blood cells were TBEP, TBP and TPHP. TCEP was the most enriched compound in plasma with Fplasma nearly to 1.0 (0.92), followed by TCPP, TBEP, TPHP, TBP and TEHP (from 0.61 to 0.76). The partitioning behavior of TCP in plasma was equivalent to blood cells with Fplasma at 0.50. When fully considered the Fplasma, the estimated average daily intake (DI) of ∑OPFRs (638.44 ng/kg BW/day) reached nearly 1.48-fold higher than the conventional calculation (dividing the concentration of plasma (Cplasma) by a factor of 2.0). Accordingly, we found the average hazard quotation (index) of TBP, TPHP and ∑OPFRs was underrated 1.50-fold when neglected the partitioning behaviors. Notably, the average CR of TCEP exceeded 10-6 at the highest concentration (1.19 × 10-6 ng/mL in plasma) only when the Fplasma was introduced. These data conjointly demonstrated that most of the DI levels and the corresponding risk index of OPFRs would be underestimated without factoring Fplasma into calculation, especially for those of low plasma partitioning. To our best knowledge, this study initially uncovered the gap between introducing Fplasma and dividing Cplasma by 2.0 during health risk assessment on internal OPFRs exposure.
Collapse
Affiliation(s)
- Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Mengjie Chu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Shu Lin
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, 310013, Zhejiang, China
| | - Cui Wang
- School of Life Science; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
Liu M, Li A, Meng L, Zhang G, Guan X, Zhu J, Li Y, Zhang Q, Jiang G. Exposure to Novel Brominated Flame Retardants and Organophosphate Esters and Associations with Thyroid Cancer Risk: A Case-Control Study in Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17825-17835. [PMID: 36468700 DOI: 10.1021/acs.est.2c04759] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel brominated flame retardant (NBFR) and organophosphate ester (OPE) exposure may engender adverse effects on human health. However, present epidemiological information regarding the effects of such exposure is limited and controversial. In this case-control study, 481 serum samples were collected from patients with thyroid cancer (n = 242) and healthy controls (n = 239) in Shandong Province, eastern China. The levels of NBFRs and OPEs, thyroid hormones, and serum lipid parameters were measured in all the participants. Pentabromotoluene, 2,3-dibromopropyl 2,4,6 tribromophenyl ether, decabromodiphenylethane (DBDPE), tris (2-chloroethyl) phosphate (TCEP), and triphenyl phosphate (TPP) were widely detected (detection frequency > 60%) in all the participants. A significantly high risk association was found between exposure of NBFRs and OPEs (namely 1,2,3,4,5-pentabromobenzene, DBDPE, tri-n-propyl phosphate, tri[(2R)-1-chloro-2-propyl] phosphate, tris (1,3-dichloro-2-propyl) phosphate, and tris (2-butoxyethyl) phosphate) and thyroid cancer in both males and females. In the females of the control group, TCEP levels exhibited a significantly positive association with thyroid-stimulating hormone and a negative association with triiodothyronine (T3), free triiodothyronine (FT3), and free thyroxine (FT4) levels. Weighted quantile sum regression evaluated the mixed effects of the compounds on thyroid hormones levels and thyroid cancer. As a result, TPP accounted for the majority of the T3, thyroxine, and FT3 amounts. Our results suggest that NBFR and OPE exposure contributes to alterations in thyroid function, thereby increasing thyroid cancer risk.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lingling Meng
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Jiang Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310000, China
| |
Collapse
|
24
|
Guo Y, Liang C, Zeng MX, Wei GL, Zeng LX, Liu LY, Zeng EY. An overview of organophosphate esters and their metabolites in humans: Analytical methods, occurrence, and biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157669. [PMID: 35926632 DOI: 10.1016/j.scitotenv.2022.157669] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
With the strict regulation of brominated flame retardants, organophosphate esters (OPEs) have been extensively used as replacements. Increasing concerns on OPEs have aroused due to their extensive distribution in the environment and humans, as well as their potential toxicities. Recent studies have demonstrated that some organophosphate di-esters are even more toxic than their respective tri-esters. This review summarized the current state of knowledge on the analytical methodologies (including sample collection and preparation, instrumental analysis, and the feasibility of each potential human matrix), as well as the occurrences of OPEs and/or their metabolites (m-OPEs) in various human matrices. Organophosphate esters are readily metabolized in human thus only limited studies reported their occurrences in blood and breast milk, whereas abundant studies are available regarding the occurrences of m-OPEs rather than OPEs in urine. Since none of the matrix is suitable all the time, appropriate matrix should be selected depending on the aims of biomonitoring studies, e.g., high throughput screening or body burden estimation. Biomonitoring with non-invasive matrices such as hair and/or nail is useful to screen specific populations that might be under high exposure risks while urine is more suitable to provide valuable information on body burden. In terms of urinary monitoring, specific biomarkers have been identified for some OPE compounds, including tri(2-butoxyethyl) phosphate, tri(1,3-dichloro-2-propyl) phosphate, tri(2-chloroethyl) phosphate and tri(1-chloro-2-propyl) phosphate. Further studies are required to identify suitable urinary biomarkers for other OPE compounds, especially the emerging ones.
Collapse
Affiliation(s)
- Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Meng-Xiao Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Gao-Ling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Managements, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Li-Xi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
25
|
Zhang R, Li N, Li J, Zhao C, Luo Y, Wang Y, Jiang G. Percutaneous absorption and exposure risk assessment of organophosphate esters in children's toys. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129728. [PMID: 35969952 DOI: 10.1016/j.jhazmat.2022.129728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The percutaneous penetration and exposure risk of organophosphate esters (OPEs) from children's toys remains largely unknown. Percutaneous penetration of OPEs was evaluated by EPISkin™ model. Chlorinated OPEs (Cl-OPEs) and alkyl OPEs, except tris(2-ethylhexyl) phosphate, exhibited a fast absorption rate and good dermal penetration ability with cumulative absorptions of 57.6-127 % of dosed OPEs. Cumulative absorptions of OPEs through skin cells were inversely associated with their molecular weight and log octanol-water partition coefficient. Additionally, a quantitative structure-activity relationship model indicated that topological charge and steric features of OPEs were closely related to the transdermal permeability of these chemicals. With the clarification of the factors affecting the transdermal penetration of OPEs, the level and exposure risk of OPEs in actual toys were studied. The summation of 18 OPE concentrations in 199 toy samples collected from China ranged from 6.82 to 228,254 ng/g, of which Cl-OPEs presented the highest concentration. Concentrations of OPEs in toys exhibited clear type differences. Daily exposure to OPEs via dermal, hand-to-mouth contact, and mouthing was evaluated, and dermal contact was a significant route for children's exposure to OPEs. Hazard quotients for noncarcinogenic risk assessment were below 1, indicating that the health risk of OPEs via toys was relatively low.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yadan Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
26
|
Yang D, Wei X, Zhang B, Zhu R, Hu H, Fan X, Du H, Chen X, Zhang Z, Zhao M, Oh Y, Gu N. Probiotics protect against hepatic steatosis in tris (2-chloroethyl) phosphate-induced metabolic disorder of mice via FXR signaling. Food Chem Toxicol 2022; 169:113440. [PMID: 36162615 DOI: 10.1016/j.fct.2022.113440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), the most widely useful and most frequently detective organophosphate flame retardants in environment, has been shown potential relationship with adolescent weight. Probiotics is an effective therapy for metabolic diseases such as obesity and NAFLD with gut microbiota dysregulation. This study aims to explore the protective effects of probiotics against lipid metabolic disorder induced by chronic TCEP exposure and demonstrate the mechanism of this event. The data showed that dietary complex probiotics supplement attenuated TCEP-induced obesity, hyperlipidemia, liver dysfunction, and hepatic steatosis. In addition, dietary complex probiotics suppressed TCEP-promoted ileal FXR signaling, and upregulated hepatic FXR/SHP pathway inhibited by TCEP. Moreover, dietary complex probiotics stimulated PPARα-mediated lipid oxidation and suppressed SREBP1c/PPARγ-mediated lipid synthesis via regulation of FXR signaling. Therefore, this study indicates that dietary complex probiotics could protect against hepatic steatosis via FXR-mediated signaling pathway in TCEP-induced metabolism disorder in mice, resulting in attenuation of systemic lipid accumulation.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xi Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
27
|
Nontarget analysis and characterization of alkylamides in electrical product plastics by gas chromatography-positive chemical ionization quadrupole-orbitrap high-resolution mass spectrometry and quasi-molecular ion screening and anchoring algorithm. J Chromatogr A 2022; 1682:463466. [DOI: 10.1016/j.chroma.2022.463466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
|
28
|
Zhou M, Wang J, Yang H, Ji X, Qian M, Li Z. Organophosphate ester concentrations in infant food and dietary risk assessment for the infant population in China. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Liu Y, Le Y, Xu M, Wang W, Chen H, Zhang Q, Wang C. Remodeling on adipocytic physiology of organophosphorus esters in mature adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119287. [PMID: 35421551 DOI: 10.1016/j.envpol.2022.119287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The emerging endocrine disruption chemicals organophosphate esters (OPEs) pose high risk of metabolic disruption. However, limited information is available on physiological disturbance of OPEs on adipose, a major endocrine and metabolic organ. In this study, physiological change was investigated after exposing 3T3-L1fully differentiated adipocytes to six OPEs at non-cytotoxic concentrations. We found two chlorinated-OPEs (tris-(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) and tris(2-chloroisopropyl) phosphate (TCPP)) and two alkyl-OPEs (tributyl phosphate (TBP) and tris (2-butoxyethyl) phosphate (TBEP)) induced inflammation-like adipokines (chemoattractant protein 1 and interleukin-6), respectively. Increment of insulin-resistance-related hormones (resistin and leptin) were observed under TDCPP, TCPP, and TBP exposure. Functional and mechanistic investigation revealed that all of the compounds inhibited lipolysis at basal level through dephosphorylated HSLser563, the rate limiting enzyme of lipolysis. Triphenyl phosphate (TPhP), tricresyl phosphate (TCP), TDCPP, TBP and TBEP enhanced glucose uptake at both basal and insulin-stimulated status. We evidenced that impact was independent of the classical pIRSser639/pAKTser473 nor the insulin-independent AMPK pathway. The elevated mRNA of slc2a4 and its transcriptional factor LXRα may, at least partially, explain for the increase of glucose uptake. Given the focus within the endocrine disruption on glands, it would be prudent not to ignore endocrinal impact on adipocytes.
Collapse
Affiliation(s)
- Ying Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Mengting Xu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Wanyue Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Hang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
30
|
Yang D, Wei X, Zhang Z, Chen X, Zhu R, Oh Y, Gu N. Tris (2-chloroethyl) phosphate (TCEP) induces obesity and hepatic steatosis via FXR-mediated lipid accumulation in mice: Long-term exposure as a potential risk for metabolic diseases. Chem Biol Interact 2022; 363:110027. [PMID: 35780845 DOI: 10.1016/j.cbi.2022.110027] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
Abstract
Tris (2-chloroethyl) phosphate (TCEP) is the most commonly detective organophosphate flame retardant in surroundings. TCEP is also evidenced as endocrine disrupting chemicals and has potential adverse effects on metabolic diseases. In this study, we hypothesized that metabolic diseases are adverse outcomes of TCEP exposure. Adult ICR mice was daily treated with TCEP (20 mg/kg and 60 mg/kg, higher than expected level in people) by gavage administration for 9 weeks. The results demonstrate that TCEP promoted body weight gain, hypertriglyceridemia, and hepatic steatosis, consistent with upregulation of hepatic lipogenesis-related gene expression. Moreover, TCEP altered the levels of several hepatic metabolites, especially bile acids and downregulated bile acid synthesis pathways. Intriguingly, we found a marked downregulation of the bile acid nuclear reporter, FXR, in TCEP-exposed livers. Mechanistically, TCEP directly interacted with FXR at Lys335 and Lys336. Further studies in this work elucidate the mechanisms of long-term TCEP exposure on hepatic steatosis and obesity in mice via FXR-mediated lipid accumulation. Our results provide insight into the possibility of intermediate TCEP exposure in causing metabolic diseases.
Collapse
Affiliation(s)
- Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ziyi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xi Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
31
|
Chen N, Fan S, Zhang N, Zhao Y, Yao S, Chen X, Liu X, Shi Z. Organophosphate esters and their diester metabolites in infant formulas and baby supplementary foods collected in Beijing, China: Occurrence and the implications for infant exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154272. [PMID: 35247416 DOI: 10.1016/j.scitotenv.2022.154272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/30/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) have been extensively used as flame retardants and/or plasticizers and they found to be ubiquitous in various environmental matrices along with the gradual phase-out of brominated flame retardants (BFRs). Moreover, their main metabolites, organophosphate di-esters (di-OPEs), were also frequently detected. However, few studies focused on the occurrence of OPEs and di-OPEs in foods. In this study, fourteen OPEs and five di-OPEs were measured in infant formula and baby supplementary food (BSF) collected in Beijing, China. Most OPEs and di-OPEs presented high detection frequencies, which indicated their ubiquity in baby foods. The concentrations of ∑14OPEs in the 75 infant formula samples ranged from 0.79 to 159 ng/g, with a median of 23.2 ng/g, and in which triphenyl phosphate (TPhP) was the most abundant compound. The concentrations of ∑14OPEs in the 32 BSF samples were 4.42-115 ng/g (median: 19.5 ng/g), and tri(3-chloropropyl) phosphate (TCIPP) was predominant. Moreover, no significant difference was observed between OPE levels in infant formula and BSF. The median concentrations of Σ5di-OPEs in infant formula and BSF were 3.39 and 5.43 ng/g, respectively. However, no significantly correlation was observed between concentrations of di-OPEs and their parent compounds, which indicated they have different sources. The median estimated dietary intakes (EDIs) of the ∑14OPEs were from 165 to 383 ng/kg bodyweight (bw)/day for infants via infant formula feeding, and were from 429 to 470 ng/kg bw/day via BSF feeding. A comparison to corresponding reference dose (RfD) suggested that dietary intakes of OPEs to Beijing infants via formula/BSF consumption were still unable to cause significant health concerns. However, EDIs of OPEs for infants were found to be significantly higher than that for Chinese adults, and dietary intake might be the predominant OPE intake pathway for infants. To our knowledge, this is the first study to investigate OPEs and their metabolites in baby foods.
Collapse
Affiliation(s)
- Ning Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Sai Fan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Nan Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Yao Zhao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Shunying Yao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xuelei Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaofeng Liu
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing 100013, China.
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
32
|
Wang Y, Cheng Z, Zhang H, Li S, Pan Y, Zhang W, Huang S, He X, Zou F, Yuan Z, Yan W, Huang H. Tri-n-butyl phosphate delays tissue repair by dysregulating neutrophil function in zebrafish. Toxicol Appl Pharmacol 2022; 449:116114. [PMID: 35690110 DOI: 10.1016/j.taap.2022.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/14/2022] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Tri-n-butyl phosphate (TnBP) is a widely used organophosphate ester, but its effects on the regenerative process under damaging circumstances remain unknown. In the present study, zebrafish larvae were exposed to 0, 50, 100, 200 and 1000 μg/L TnBP, and the caudal fins were cut at 72 hours post fertilization (hpf). First, after exposure to TnBP, the number of total neutrophils decreased together with decreased neutrophils in the tail, and TnBP inhibited chemotaxis. Second, reactive oxygen species (ROS) levels in the zebrafish decreased greatly. Following exposure to TnBP, transcription levels of many genes regulating fin regeneration, such as fgf20a, fgfr1a, bmp2a and bmp4, were significantly downregulated, while inflammatory factors such as cxcl8a, cxcl18b, il-6, and tnfa were abnormally upregulated. In addition, TnBP inhibited the regenerative area after caudal fin amputation. The inflammatory state was adverse during the regenerative process. In summary, TnBP exposure is immunotoxic and decreases oxidative stress in injured zebrafish larvae.
Collapse
Affiliation(s)
- Yunpeng Wang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China
| | - Zhi Cheng
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Huan Zhang
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Shuaiting Li
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China
| | - Yiming Pan
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Weiyang Zhang
- The First Affiliated Hospital of Chongqing Medical University, No.1 Yuanjia Gangyouyi Road, Yuzhong District, Chongqing 400042, China
| | - Siyuan Huang
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Xiwen He
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Fa Zou
- School of Basic Medical Sciences, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China
| | - Zhi Yuan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China
| | - Wenhua Yan
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China.
| | - Huizhe Huang
- The Second Affiliated Hospital of Chongqing Medical University, No.76 Linjiang Road, Yuzhong District, 400010 Chongqing, China.
| |
Collapse
|
33
|
Nephrotoxicity of Flame Retardants: An Understudied but Critical Toxic Endpoint. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Degroat TJ, Conde KM, Roepke TA. Implications of estrogen receptor alpha (ERa) with the intersection of organophosphate flame retardants and diet-induced obesity in adult mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:397-413. [PMID: 35045790 PMCID: PMC8916992 DOI: 10.1080/15287394.2022.2026849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Previously, organophosphate flame retardants (OPFRs) were found to produce intersecting disruptions of energy homeostasis using an adult mouse model of diet-induced obesity. Using the same mixture consisting of 1 mg/kg/day of each triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate, the current study aimed to identify the role of estrogen receptor alpha (ERα) in OPFR-induced disruption, utilizing ERα knockout (ERαKO) mice fed either a low-fat diet (LFD) or high-fat diet (HFD). Body weight and composition, food intake patterns, glucose and insulin tolerance, circulating peptide hormones, and expression of hypothalamic genes associated with energy homeostasis were measured. When fed HFD, no marked direct effects of OPFR were observed in mice lacking ERα, suggesting a role for ERα in generating previously reported wildtype (WT) findings. Male ERαKO mice fed LFD experienced decreased feeding efficiency and altered insulin tolerance, whereas their female counterparts displayed less fat mass and circulating ghrelin when exposed to OPFRs. These effects were not noted in the previous WT study, indicating that loss of ERα may sensitize animals fed LFD to alternate pathways of endocrine disruption by OFPRs. Collectively, these data demonstrate both direct and indirect actions of OPFRs on ERα-mediated pathways governing energy homeostasis and support a growing body of evidence urging concern for risk of human exposure.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Thomas J. Degroat
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Kristie M. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| |
Collapse
|
35
|
Vail GM, Walley SN, Yasrebi A, Maeng A, Degroat TJ, Conde KM, Roepke TA. Implications of peroxisome proliferator-activated receptor gamma (PPARY) with the intersection of organophosphate flame retardants and diet-induced obesity in adult mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:381-396. [PMID: 35000574 PMCID: PMC8897244 DOI: 10.1080/15287394.2021.2023716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Previously, organophosphate flame retardants (OPFRs) were demonstrated to dysregulate homeostatic parameters of energy regulation within an adult mouse model of diet-induced obesity. Using the same OPFR mixture consisting of 1 mg/kg/day of each triphenyl phosphate, tricresyl phosphate, and tris(1,3-dichloro-2-propyl)phosphate, the current study examined the role of peroxisome proliferator-activated receptor gamma (PPARγ) in OPFR-induced disruption by utilizing mice with brain-specific deletion of PPARγ (PPARγKO) fed either a low-fat diet (LFD) or high-fat diet (HFD). Body weight and composition, feeding behavior, glucose and insulin tolerance, circulating peptide hormones, and expression of hypothalamic genes associated with energy homeostasis were recorded. When fed HFD, the effects of OPFR on body weight and feeding behavior observed in the previous wild-type (WT) study were absent in mice lacking neuronal PPARγ. This posits PPARγ as an important target for eliciting OPFR disruption in a diet-induced obesity model. Interestingly, female PPARγKO mice, but not males, experienced many novel OPFR effects not noted in WT mice, including decreased fat mass, altered feeding behavior and efficiency, improved insulin sensitivity, elevated plasma ghrelin and hypothalamic expression of its receptor. Taken together, these data suggest both direct roles for PPARγ in OPFR disruption of obese mice and indirect sensitization of pathways alternative to PPARγ when neuronal expression is deleted.
Collapse
Affiliation(s)
- Gwyndolin M. Vail
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Sabrina N. Walley
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Angela Maeng
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Thomas J. Degroat
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Kristie M. Conde
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| | - Troy A. Roepke
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Endocrinology and Animal Biosciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ. USA
| |
Collapse
|
36
|
Cong B, Li S, Liu S, Mi W, Liu S, Zhang Z, Xie Z. Source and Distribution of Emerging and Legacy Persistent Organic Pollutants in the Basins of the Eastern Indian Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4199-4209. [PMID: 35302762 DOI: 10.1021/acs.est.1c08743] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Persistent organic pollutants (POPs) have received significant and ongoing attention. To establish favorable regulatory policies, it is vital to investigate the occurrence, source, and budgets of POPs worldwide. POPs including phthalic acid esters (PAEs), organophosphate esters (OPEs), brominated flame retardants (BFRs), and highly chlorinated flame retardants (HFRs) have not yet been examined in the Eastern Indian Ocean (EIO). In this study, the distribution of POPs has been investigated from surface sediments with the depth of 4369-5742 m in the Central Indian Ocean Basin (CIOB) and Wharton Basin (WB) of EIO. The average (±SD) concentrations of ∑11PAEs, ∑11OPEs, ∑4 BFRs, and ∑5HFRs were 1202.0 ± 274.36 ng g-1 dw, 15.3 ± 7.23 ng g-1 dw, 327.6 ± 211.74 pg g-1 dw, and 7.9 ± 7.45 pg g-1 dw, respectively. The high abundance of low-molecular-weight (LMW) PAEs, chlorinated OPEs, LMW BDEs, and anti-Dechlorane Plus indicated the pollution characteristics in the EIO. Correlation analysis demonstrated that LMW compounds may be derived from the high-molecular-weight compounds. The monsoon circulation, currents, and Antarctic Bottom Water may be the main drivers. POP accumulation rate, depositional flux, and mass inventory in the Indian Ocean were also estimated.
Collapse
Affiliation(s)
- Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350108, China
| | - Shuang Li
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Shengfa Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhaohui Zhang
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| |
Collapse
|
37
|
Yin H, Luo Y, Song J, Li S, Lin S, Xiong Y, Fang S, Tang J. Pollution characteristics and emissions of typical organophosphate esters of a wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25892-25901. [PMID: 34850344 DOI: 10.1007/s11356-021-17742-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/21/2021] [Indexed: 05/22/2023]
Abstract
Effluent from wastewater treatment plants (WWTP) is an important source of organophosphate esters (OPEs) in the receiving rivers. In this paper, the concentration and distribution of seven OPEs in the water samples were determined, and the discharge was estimated. The results showed that the total removal rate of Σ7OPEs in water phase in WWTP was 57.2%. The average concentrations of Σ7OPEs in influent and effluent of the WWTP during rainy period were 3956.1 ± 1897.3 ng/L and 1461.9 ± 846.3 ng/L, respectively, which were about 4 times larger than those in influent water (978.2 ± 166.5 ng/L) and effluent (418.3 ± 12.0 ng/L) during non-rainy period, indicating that rainfall has a marked impact on the load of OPEs in WWTP and the receiving water. It was estimated that the average daily discharge of Σ7OPEs in the effluent of WWTP was 157.9 g, and the daily per capita contribution of the population in the area to the OPEs in the influent was 0.414 mg. During the shift of labour-intensive manufacturing from the coastal developed areas to inland regions, OPEs were widely used and produced in Southwest China. The total amount of OPEs emissions and its control should be taken into consideration.
Collapse
Affiliation(s)
- Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China.
| | - Yi Luo
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China
| | - Jiaojiao Song
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China
| | - Shiping Li
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China
| | - Shuyu Lin
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China
| | - Yuanming Xiong
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China
| | - Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China
| | - Juan Tang
- College of Resources and Environment, Chengdu University of Information Technology, No. 24, Section 1, Xuefu Road, Cheng Du, 610225, China
| |
Collapse
|
38
|
Occurrence, Distribution, and Risk of Organophosphate Flame Retardants in Sediments from Jiulong River Estuary and Adjacent Western Taiwan Strait, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042449. [PMID: 35206636 PMCID: PMC8872513 DOI: 10.3390/ijerph19042449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Organophosphate ester flame retardants (OPFRs) are widely prevalent in the environment and are of significant concern because of their potential toxicity to human health and wildlife. In this study, the concentration, frequency, spatial distribution, potential sources, and ecological risks of OPFRs in sediments from the Jiulong River estuary and the adjacent western Taiwan Strait were investigated. Concentrations of four of the five studied OPFRs were between <LOD and 36.6 ng/g. The distribution of all OPFRs, except 2-Ethylhexyl diphenyl phosphate (EHDPP), remained highly consistent with hydrological (salinity) trends. Furthermore, a significantly positive correlation between EHDPP and total concentrations suggested that it may be the dominant contaminant at both sites. Principal element analysis indicated multiple sources of OPFRs, which were categorized as emissions from road runoff and surface traffic, effects of atmospheric deposition and hydrologic conditions, and a combination of industrial and population effects. Ecological risk indicates that tris (chloroethyl) phosphate (TCEP) and triphosphate ester (2,3-dibromopropyl) (TDBPP) have almost no risk, tris (clorisopropyl) phosphate (TCPP) generally has low risk, while EHDPP has moderate risk with the highest value of 0.487 in the sediments from both sites. Meanwhile, TCPP and TCEP exhibit lower theoretical health risks but are still not negligible. Overall, this work provides data to support global pollutant studies and facilitate the implementation of pollutant control strategies.
Collapse
|
39
|
Zhang L, Xu W, Mi W, Yan W, Guo T, Zhou F, Miao L, Xie Z. Atmospheric deposition, seasonal variation, and long-range transport of organophosphate esters on Yongxing Island, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150673. [PMID: 34597544 DOI: 10.1016/j.scitotenv.2021.150673] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The South China Sea (SCS), surrounded by developing countries/regions with a huge consumption of flame retardants, is generally contaminated by organophosphate esters (OPEs). However, studies on the occurrence, deposition and long-range atmospheric transport (LRAT) process over the SCS of OPEs compounds are still limited. In this work, 10 OPEs were measured in 100 atmospheric samples collected from Yongxing Island (YXI) in the SCS. The total OPEs concentrations ranged from 1508 to 1968 pg/m3 with 28.6-1416.9 pg/m3 in gas and 95.2-1066.2 pg/m3 in particle partition. The three chlorinated OPEs are present at higher concentrations than the other seven non-chlorinated OPEs. Most OPEs had clear seasonal variations that followed the order: spring>summer≈winter>autumn except for tri-isobutyl phosphate (TIBP) and tris-(2-ethylhexyl) phosphate (TEHP). The particle-bound fraction of the total OPEs had little seasonal variations with a mean value of 0.35. Comparing J-P model and Koa model, it was found that the gas/particle partition in the study area was in non-equilibrium condition. LRAT, controlled by seasonal wind direction, was the predominated factor that led to the seasonal variations of OPEs on YXI. The average daily deposition flux of total OPEs was 13.0 ng/m2 with an annual total deposition of 15.06 g.
Collapse
Affiliation(s)
- Lulu Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihai Xu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Wen Yan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianfeng Guo
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fenghua Zhou
- Xisha Marine Environment National Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510300, China
| | - Li Miao
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| |
Collapse
|
40
|
Chen M, Koekkoek J, Lamoree M. Organophosphate ester metabolites in human breast milk determined by online solid phase extraction coupled to high pressure liquid chromatography tandem mass spectrometry. ENVIRONMENT INTERNATIONAL 2022; 159:107049. [PMID: 34952374 DOI: 10.1016/j.envint.2021.107049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/01/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The analysis of metabolites of organophosphate esters (OPEs) in human breast milk is essential to evaluate OPE and OPE metabolite exposure of newborns. In the current study, an analytical method which only needs a small amount of breast milk (100 μl) was developed and validated for six diester metabolites and three hydroxylated metabolites applying salt-induced liquid-liquid extraction (SI-LLE) and dispersive solid phase extraction (d-SPE) for sample preparation and online solid phase extraction coupled to high pressure chromatography tandem mass spectrometry (online-SPE-HPLC-MS/MS) for quantitative measurement. The final method consisted of an extraction with formic acid (FA)/acetonitrile (1:200, v/v) and a cleanup with C18 d-SPE. The final extracts were trapped on a C18 cartridge with application of a wash step of 2 ml 0.1% FA milli-Q/methanol (98:2, v/v). Method detection limits (MDLs) ranging from 21.7 ng/l for BBOEHEP to 500 ng/l for BCIPP and average recoveries ranging from 58% for 5-OH-EHDPHP to 120% for BCIPP were achieved. Thirty-three breast milk samples from the LINC (Linking EDCs in maternal Nutrition to Child health) cohort collected in three distinct areas in The Netherlands were analyzed using the validated method. BCEP, BCIPP, BCIPHPP, BDCIPP, and 5-OH-EHDPHP were not detected in any of the samples, while BBOEP was the most frequently detected metabolite with a concentration range of <MDL to l.47 ng/ml, followed by DPhP and BBOEHEP, detected in ranges of <MDL to 0.09 and <MDL to 0.027 ng/ml. The results indicated that OPEs entering the human body are only to a limited extent excreted via breast milk.
Collapse
Affiliation(s)
- Mengqin Chen
- Department of Environment and Health, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands; College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jacco Koekkoek
- Department of Environment and Health, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Marja Lamoree
- Department of Environment and Health, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
41
|
Sala B, Giménez J, Fernández-Arribas J, Bravo C, Lloret-Lloret E, Esteban A, Bellido JM, Coll M, Eljarrat E. Organophosphate ester plasticizers in edible fish from the Mediterranean Sea: Marine pollution and human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118377. [PMID: 34656682 DOI: 10.1016/j.envpol.2021.118377] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Concentrations of organophosphate esters (OPEs) plasticizers were analysed in the present study. Fifty-five fish samples belonging to three highly commercial species, European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus), and European hake (Merluccius merluccius), were taken from the Western Mediterranean Sea. OPEs were detected in all individuals, except for two hake samples, with concentrations between 0.38 and 73.4 ng/g wet weight (ww). Sardines presented the highest mean value with 20.5 ± 20.1 ng/g ww, followed by anchovies with 14.1 ± 8.91 ng/g ww and hake with 2.48 ± 1.76 ng/g ww. The lowest OPE concentrations found in hake, which is a partial predator of anchovy and sardine, and the higher δ15N values (as a proxy of trophic position), may indicate the absence of OPEs biomagnification. Eleven out of thirteen tested OPEs compounds were detected, being diphenyl cresyl phosphate (DCP) one of the most frequently detected in all the species. The highest concentration values were obtained for tris(1,3-dichloro-2-propyl) phosphate (TDClPP), trihexyl phosphate (THP), and tris(2-butoxyethyl) phosphate (TBOEP), for sardines, anchovies, and hakes, respectively. The human health risk associated with the consumption of these fish species showing that their individual consumption would not pose a considerable threat to public health regarding OPE intake.
Collapse
Affiliation(s)
- Berta Sala
- Water, Environment and Food Chemistry, Dep. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Joan Giménez
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain; Centre for Marine and Renewable Energy (MaREI), Marine Ecology Group, Beaufort, Building, Environmental Research Institute, University College Cork, Ringaskiddy, Ireland
| | - Julio Fernández-Arribas
- Water, Environment and Food Chemistry, Dep. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Carlota Bravo
- Water, Environment and Food Chemistry, Dep. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Elena Lloret-Lloret
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Antonio Esteban
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero 1 Apdo 22, 30740, San Pedro del Pinatar, Murcia, Spain
| | - José María Bellido
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero 1 Apdo 22, 30740, San Pedro del Pinatar, Murcia, Spain
| | - Marta Coll
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Ethel Eljarrat
- Water, Environment and Food Chemistry, Dep. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
42
|
Patisaul HB, Behl M, Birnbaum LS, Blum A, Diamond ML, Rojello Fernández S, Hogberg HT, Kwiatkowski CF, Page JD, Soehl A, Stapleton HM. Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:105001. [PMID: 34612677 PMCID: PMC8493874 DOI: 10.1289/ehp9285] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND To date, the toxicity of organophosphate esters has primarily been studied regarding their use as pesticides and their effects on the neurotransmitter acetylcholinesterase (AChE). Currently, flame retardants and plasticizers are the two largest market segments for organophosphate esters and they are found in a wide variety of products, including electronics, building materials, vehicles, furniture, car seats, plastics, and textiles. As a result, organophosphate esters and their metabolites are routinely found in human urine, blood, placental tissue, and breast milk across the globe. It has been asserted that their neurological effects are minimal given that they do not act on AChE in precisely the same way as organophosphate ester pesticides. OBJECTIVES This commentary describes research on the non-AChE neurodevelopmental toxicity of organophosphate esters used as flame retardants and plasticizers (OPEs). Studies in humans, mammalian, nonmammalian, and in vitro models are presented, and relevant neurodevelopmental pathways, including adverse outcome pathways, are described. By highlighting this scientific evidence, we hope to elevate the level of concern for widespread human exposure to these OPEs and to provide recommendations for how to better protect public health. DISCUSSION Collectively, the findings presented demonstrate that OPEs can alter neurodevelopmental processes by interfering with noncholinergic pathways at environmentally relevant doses. Application of a pathways framework indicates several specific mechanisms of action, including perturbation of glutamate and gamma-aminobutyric acid and disruption of the endocrine system. The effects may have implications for the development of cognitive and social skills in children. Our conclusion is that concern is warranted for the developmental neurotoxicity of OPE exposure. We thus describe important considerations for reducing harm and to provide recommendations for government and industry decision makers. https://doi.org/10.1289/EHP9285.
Collapse
Affiliation(s)
- Heather B. Patisaul
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carol F. Kwiatkowski
- Green Science Policy Institute, Berkeley, California, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jamie D. Page
- Cancer Prevention & Education Society, Meads House, Leighterton, Tetbury, Gloucestershire, UK
| | - Anna Soehl
- Green Science Policy Institute, Berkeley, California, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
43
|
Chen Z, Xie J, Li Q, Hu K, Yang Z, Yu H, Liu Y. Human CYP enzyme-activated clastogenicity of 2-ethylhexyl diphenyl phosphate (a flame retardant) in mammalian cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117527. [PMID: 34380225 DOI: 10.1016/j.envpol.2021.117527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP) is a common flame retardant and environmental pollutant, exposing humans with endocrinal disrupting potentials. Its mutagenicity, especially following metabolism, remains unclear. In this study, molecular docking analysis indicated that EHDPP was a potential substrate for several human CYP enzymes except for CYP1A1. Among V79-derived cell lines genetically engineered for the expression of each CYP, EHDPP (6 h exposure/18 h recovery) did not induce micronuclei in the V79 or V79-derived cells expressing human CYP1A1, however, it was positive in V79-derived cell lines expressing human CYP2E1, 3A4, and 2B6. In a human hepatoma (HepG2) cell line, EHDPP (48 h exposure) moderately induced micronuclei, which was blocked by 1-aminobenzotriazole (ABT, 60 μM, inhibitor of CYPs); pretreating HepG2 cells with bisphenol AF, another organic pollutant as inducer of CYPs (0.1 μM for 16 h), significantly potentiated micronuclei formation by EHDPP, threshold being decreased from 10 to 1.25 μM. This effect was blocked by ABT, drastically reduced by ketoconazole (inhibiting CYP3A expression/activity), and moderately inhibited by trans-1,2-dichloroethylene (selective CYP2E1 inhibitor). Immunofluorescent centromere protein B staining indicated that EHDPP-induced micronuclei in V79-derived cell lines expressing human CYP2E1 and 3A4 were predominantly centromere-negative, and that in HepG2 cells pretreated with bisphenol AF (for inducing multiple CYPs) were purely centromere-negative. In bisphenol AF-pretreated HepG2 cells EHDPP potently induced DNA breaks, as indicated by the comet assay and Western blot analysis of γ-H2AX. In conclusion, our study suggests that EHDPP is potently clastogenic, following activation by several human CYP enzymes, CYP3A4 being a major one.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Jiayi Xie
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Qing Li
- Department of Dietetics, Nanfang Hospital, Southern Medical University, 1838 N. Guangzhou Avenue, Guangzhou, 510515, China
| | - Keqi Hu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
44
|
Davis A, Ryan PB, Cohen JA, Harris D, Black M. Chemical exposures from upholstered furniture with various flame retardant technologies. INDOOR AIR 2021; 31:1473-1483. [PMID: 33624349 PMCID: PMC8451937 DOI: 10.1111/ina.12805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/02/2023]
Abstract
Upholstered furniture is often manufactured with polyurethane foam (PUF) containing flame retardants (FRs) to prevent the risk of a fire and/or to meet flammability regulations, however, exposure to certain FRs and other chemicals have been linked to adverse health effects. This study developed a new methodology for evaluating volatile organic compound (VOC) and FR exposures to users of upholstered furniture by simulating use of a chair in a controlled exposure chamber and assessing the health significance of measured chemical exposure. Chairs with different fire-resistant technologies were evaluated for VOC and FR exposures via inhalation, ingestion, and dermal contact exposure routes. Data show that VOC exposure levels are lower than threshold levels defined by the US and global indoor air criteria. Brominated FRs were not detected from the studied chairs. The organophosphate FRs added to PUF were released into the surrounding air (0.4 ng/m3 ) and as dust (16 ng/m2 ). Exposure modeling showed that adults are exposed to FRs released from upholstered furniture mostly by dermal contact and children are exposed via dermal and ingestion exposure. Children are most susceptible to FR exposure/dose (2 times higher average daily dose than adults) due to their frequent hand to mouth contact.
Collapse
Affiliation(s)
- Aika Davis
- Underwriters Laboratories, Inc.MariettaGAUSA
| | | | | | | | | |
Collapse
|
45
|
Wang Y, Yang M, Wang F, Chen X, Wu M, Ma J. Organophosphate Esters in Indoor Environment and Metabolites in Human Urine Collected from a Shanghai University. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9212. [PMID: 34501802 PMCID: PMC8431728 DOI: 10.3390/ijerph18179212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
In China, organophosphate esters (OPEs) are widely used in indoor environments. However, there is little information regarding the internal and external exposure of university students to OPEs. Therefore, in this study, nine OPEs and eight OPE metabolites (mOPEs) were measured in indoor dust and atmospheric PM2.5 samples from a university campus in Shanghai, as well as in urine samples collected from the university students. The total concentration of OPEs in the indoor dust in female dormitories (1420 ng/g) was approximately twice that in male dormitories (645 ng/g). In terms of indoor PM2.5, the highest OPE concentration was found in meeting rooms (105 ng/m3, on average), followed by chemical laboratories (51.2 ng/m3), dormitories (44.9 ng/m3), and offices (34.9 ng/m3). The total concentrations of the eight mOPEs ranged from 279 pg/mL to 14,000 pg/mL, with a geometric mean value of 1590 pg/mL. The estimated daily intake values based on the indoor dust and PM2.5 OPE samples (external exposure) were 1-2 orders of magnitude lower than that deduced from the concentration of urinary mOPEs (internal exposure), indicating that dermal contact, dust ingestion, and inhalation do not contribute significantly to OPE exposure in the general population. Moreover, additional exposure routes lead to the accumulation of OPEs in the human body.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (Y.W.); (M.Y.); (F.W.); (X.C.); (M.W.)
| |
Collapse
|
46
|
Zhang S, Yang C, Liu M, Zhao W, Li Y, Meng XZ, Cai M. Occurrence of organophosphate esters in surface water and sediment in drinking water source of Xiangjiang River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146734. [PMID: 33812108 DOI: 10.1016/j.scitotenv.2021.146734] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the occurrence of organophosphate esters (OPEs) in the surface water and sediments of the Xiangjiang (XJ) River, a drinking water source of Changsha City. The total concentrations of five detected OPEs (Σ5OPEs) in surface water and tap water were 6.07-25.3 ng L-1 (average 14.9 ± 4.98 ng L-1), and 23.6 ng L-1, respectively, and four detected OPEs (Σ4OPEs) in sediments were 3.74-27.5 ng g-1 dw (average 12.1 ± 6.48 ng g-1 dw). Tris-2-chloroisopropyl phosphate (TCIPP) was the dominant contributor in water and sediment samples, accounting for over 40% of ΣOPEs. A particular flood event during July-August 2020 reduced the level of OPEs in river water, leading to generally uniform OPE concentrations in surface water and sediment samples from the upper, middle, and lower reaches of XJ. Principal component analysis-multiple linear regression (PCA-MLR) results indicated that the main sources of OPEs in the surface water and sediments of XJ were emissions of waste-water treatment plants and anthropocentric activities. The results of ecological and human health risk assessments indicated that all OPEs posed a low or negligible ecological risk for algae, daphnia, and fish, and negligible risk for human health. Interestingly, the concentration and human health risk of OPEs in a composite tap water sample was generally higher than those in river water samples, indicating possible OPE contamination from water treatment processes or transportation through pipe networks.
Collapse
Affiliation(s)
- Shengwei Zhang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mengyue Liu
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Wenyu Zhao
- School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China.
| |
Collapse
|
47
|
Zhang S, Li Y, Yang C, Meng XZ, Zheng H, Gao Y, Cai M. Application of Hi-throat/Hi-volume SPE technique in analyzing occurrence, influencing factors and human health risk of organophosphate esters (OPEs) in drinking water of China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112714. [PMID: 33940361 DOI: 10.1016/j.jenvman.2021.112714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Organophosphate esters (OPEs) are typical industrial additives widely applied in various industrial and household products, but they may pollute drinking water. In the present study, the occurrence of OPEs in drinking water was analyzed. For this purpose, 25 drinking water samples were collected from households in 25 cities in China. The concentrations of OPEs were accurately determined according to a high-throughput organic analysis testing combined with high-volume solid phase extraction (Hi-throat/Hi-volume SPE) technique. Through this technique, nine OPEs were detected, with spiked recoveries from 77% to 101%, and their total concentrations (ΣOPEs) ranging from 46.8 to 251 (average 126) ng L-1. The detection frequencies of the selected OPEs determined via Hi-throat/Hi-volume SPE were 88.0%-100%, which are much higher than those previously reported. The limit of detections of the OPEs was low at < 0.01 ng L-1, which could be mainly attributed to the high volume of accumulated drinking water (>20 L). OPEs in drinking water presented a decreasing trend from cities in coastal provinces to inland cities of China. Redundancy analysis showed that the concentrations of OPEs in drinking water were significantly influenced by economic-demographic influencing factors. The non-carcinogenic and lifetime carcinogenic risks (non-CR and CR) of the analyzed OPEs in drinking water were negligible for urban residents in China.
Collapse
Affiliation(s)
- Shengwei Zhang
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hongyuan Zheng
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuan Gao
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, 200136, China.
| |
Collapse
|
48
|
Hou M, Shi Y, Cai Y. [Determination of 16 organophosphate esters in human blood by high performance liquid chromatography-tandem mass spectrometry combined with liquid-liquid extraction and solid phase extraction]. Se Pu 2021; 39:69-76. [PMID: 34227360 PMCID: PMC9274832 DOI: 10.3724/sp.j.1123.2020.07033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Measurement of organophosphate esters (OPEs) in human body fluids is important for understanding human internal exposure to OPEs and for assessing related health risks. Most of the current studies have focused on the determination of OPE metabolites in human urine, as OPEs are readily metabolized into their diester or hydroxylated forms in the human body. However, given the existence of one metabolite across multiple OPEs or multiple metabolites of one OPE, as well as the low metabolic rates of several OPEs in in vitro studies, the reliability of urinary OPE metabolites as biomarkers for specific OPEs is needs to be treated with caution.Human blood is a matrix that is in contact with all body organs and tissues, and the blood levels of compounds may better represent the doses that reach target tissues. Currently, only a few studies have investigated the occurrence of OPEs in human blood by different analytical methods, and the variety of OPEs considered is limited. In this study, a method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous determination of 16 OPEs in human blood, and the extraction efficiency of the solid phase extraction (SPE) column for OPEs was verified. To human blood samples, 10 ng of an internal standard was added, followed by mixing and aging for 30 min. The samples were extracted three times with acetonitrile using a shaker, and then purified on ENVI-18 cartridges with acetonitrile containing 25% dichloromethane as the eluent. Finally, the OPEs were analyzed by high performance liquid chromatography-tandem mass spectrometry. After optimization of the analytical column and mobile phases, the analytes were separated on a BEH C18 column (100 mm×2.1 mm, 1.7 μm) by gradient elution using methanol and 5 mmol/L ammonium acetate in water as the mobile phase. Then, the analytes were ionized in electrospray ionization positive (ESI+) mode and detected in the multiple reaction monitoring (MRM) mode. The mass spectral parameters, including the precursor ion, product ion, declustering potential, entrance potential, and collision cell exit potential, were optimized. The results were quantified by the internal standard method. The limits of detection (LOD, S/N=3) of the OPEs were in the range of 0.0038-0.882 ng/mL. The calibration curves for the 16 OPEs showed good linear relationships in the range of 0.1-50 ng/mL, and the correlation coefficients were >0.995. The extraction efficiency of the ENVI-18 column for the 16 OPEs was validated, and the average recoveries of the target compounds were 54.6%-104%. The average recoveries (n=3) of 15 OPEs, except trimethyl phosphate (TMP), in whole blood at three spiked levels were in the range of 53.1%-126%, and the relative standard deviations (RSDs) were in the range of 0.15%-12.6%. The average recoveries of six internal standards were in the range of 66.8%-91.6% except for TMP-d9 (39.1%), with RSDs of 3.52%-6.85%. The average matrix effects of the OPEs in whole blood were 56.4%-103.0%. Significant matrix effects were found for resorcinol bis(diphenyl phosphate) (RDP) (75.8%±1.4%), trimethylphenyl phosphate (TMPP) (68.4%±1.0%), 2-ethylhexyl di-phenyl phosphate (EHDPP) (56.4%±12.4%), and bisphenol-A bis(diphenyl phosphate) (BABP) (58.5%±0.4%). However, these effects could be corrected by similar signal suppressions of the corresponding internal standard (TPHP-d15, 77.4%±7.5%). This method is simple, highly sensitive, and suitable for the determination of OPEs in human blood. Fifteen human whole blood samples were collected to quantify the 16 OPEs using the developed method. The total concentrations of the OPEs ranged from 1.50 to 7.99 ng/mL. The detection frequencies of eight OPEs were higher than 50%. Tri-iso-butyl phosphate (TiBP), tri(2-chloroethyl) phosphate (TCEP), and tri(1-chloro-2-propyl) phosphate (TCIPP) were the dominant OPEs, with median concentrations of 0.813, 0.764, and 0.690 ng/mL, respectively. These results indicated widespread human exposure to OPEs, which should be of concern.
Collapse
Affiliation(s)
- Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100083, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100083, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100083, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Bukowska B. Changes in Human Erythrocyte Exposed to Organophosphate Flame Retardants: Tris(2-chloroethyl) Phosphate and Tris(1-chloro-2-propyl) Phosphate. MATERIALS 2021; 14:ma14133675. [PMID: 34279245 PMCID: PMC8269848 DOI: 10.3390/ma14133675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) are the main representatives of organophosphate flame retardants (OPFRs). The exposure of humans to OPFRs present in air, water, and food leads to their occurrence in the circulation. Thus far, no report has been published about the influence of these retardants on non-nucleated cells like mature erythrocytes. Therefore, the impact of TCEP and TCPP (in concentrations determined in human blood as well as potentially present in the human body after intoxication) on human erythrocytes was evaluated. In this study, the effect of TCEP and TCPP on the levels of methemoglobin, reduced glutathione (GHS), and reactive oxygen species (ROS), as well as the activity of antioxidative enzymes, was assessed. Moreover, morphological, hemolytic, and apoptotic alterations in red blood cells were examined. Erythrocytes were incubated for 24 h with retardants in concentrations ranging from 0.001 to 1000 μg/mL. This study has revealed that the tested flame retardants only in very high concentrations disturbed redox balance; increased ROS and methemoglobin levels; and induced morphological changes, hemolysis, and eryptosis in the studied cells. The tested compounds have not changed the activity of the antioxidative system in erythrocytes. TCPP exhibited a stronger oxidative, eryptotic, and hemolytic potential than TCEP in human red blood cells. Comparison of these findings with hitherto published data confirms a much lower toxicity of OPFRs in comparison with brominated flame retardants.
Collapse
Affiliation(s)
- Bożena Bukowska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Str. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
50
|
Gbadamosi MR, Abdallah MAE, Harrad S. A critical review of human exposure to organophosphate esters with a focus on dietary intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144752. [PMID: 33540161 DOI: 10.1016/j.scitotenv.2020.144752] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Organophosphate esters (OPEs) are common additives in a wide range of commercial and industrial products. Elevated and prolonged exposure to OPEs may induce several adverse effects. This is concerning as they are ubiquitous in air, indoor dust, drinking water, and other environmental matrices. However, information on the presence of OPEs in foodstuffs and consequent health risks remains scant. This review critically evaluates available information on levels and sources of OPEs in food, discusses the relative significance of diet as a pathway of human exposure, identifies knowledge gaps, and suggests directions for future research. For toddlers, dermal uptake from dust ingestion appears the predominant pathway of exposure to chlorinated OPEs, as well as ethylhexyl diphenyl phosphate (EHDPP) and triphenyl phosphate (TPHP). In contrast, diet appears the main pathway of exposure to all eight OPEs considered for adults, and for tri n-butyl phosphate (TnBP), tris 2-ethylhexyl phosphate (TEHP), and tris (2-butoxyethyl) phosphate (TBOEP) for toddlers. While summed exposures via all pathways are within reference dose (RfD) values, they do not include high-end exposure estimates, and for highly-exposed individuals, the margin between exposure and RfD values is smaller. Moreover, our exposure estimates are based on a meta-analysis of multiple exposure assessments conducted over a range of points in space and time. There is an urgent need for assessments of human exposure to OPEs that examine all relevant pathways in a spatially and temporally-consistent fashion. Given food is an important exposure pathway to OPEs, regular monitoring of their presence as well as their metabolites (that may have toxicological significance) in foodstuffs is recommended. While dermal uptake from indoor dust appears an important human exposure pathway, no evaluations exist of exposure via dermal uptake from OPE-containing products such as foam-filled furniture. This review also highlights very few data exist on OPEs in drinking water.
Collapse
Affiliation(s)
| | | | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|