1
|
Wu H, Wang Y, Ren Z, Liu X, Yu M, Cao Y, Cong H, Yu B, Shen Y. Screening of Short-Chain Antimicrobial Peptide LKARI with Broad-Spectrum Bactericidal Properties and Its Application in Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32087-32103. [PMID: 38866723 DOI: 10.1021/acsami.4c05949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Due to the extensive use of antibiotics, many highly resistant bacteria and extensively resistant bacteria have been produced. In recent years, the increase of drug-resistant bacteria and the resulting proliferation of drug-resistant bacteria have increased the incidence of hospital-acquired infections and caused great harm to human health. Antimicrobial peptides (AMPs) are considered to be an innovative antibiotic and belong to the latest advances in this field. We designed a polypeptide and verified its low minimum inhibitory concentration and broad-spectrum activity against Gram-positive bacteria, Gram-negative bacteria, and fungi in microbiology and pharmacology. Several experiments have confirmed that the screened antimicrobial peptides have significant antidrug resistance and also show significant therapeutic properties in the treatment of systemic bacterial infections. In addition, through our experimental research, it was proved that the antibacterial hydrogel composed of poly(vinyl alcohol), sodium alginate, and antimicrobial peptides had excellent antibacterial properties and showed good wound healing ability.
Collapse
Affiliation(s)
- Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Mingtao Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
| |
Collapse
|
2
|
Mattar VT, Borioni JL, Hollman A, Rodriguez SA. Insecticidal action, repellency, and toxicity mechanism of the essential oil of Lippia turbinata against the stored product pest Rhipibruchus picturatus (F.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105907. [PMID: 38685228 DOI: 10.1016/j.pestbp.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
The use of essential oils (EOs) in the development of alternative management methods for bruchid control under storage conditions aroused great interest because they have proven to be effective, less toxic, and less persistent in the ecosystem than synthetic pesticides. In this sense, leaves of Lippia turbinata (Griseb.) Moldenke EO were studied in the present work. The monoterpene limonene and the monoterpenoid eucalyptol were its main constituents. EO showed a potent insecticidal activity, both in contact and fumigant conditions, against Rhipibruchus picturatus (F.) which is one of the main pests of Prosopis alba pods in stored conditions. Moreover, the EO produces repellency in these insects. Additionally, the toxicity mechanism of action was studied. In this regard, the EO inhibits the acetylcholinesterase enzyme in in vitro assays, alters the activity of the antioxidant enzymes superoxide dismutase and catalase, and produces an increase in the lipid peroxidation reactions. This is the first report of the use of the L. turbinata EO against R. picturatus insect pest. The data obtained demonstrate its potential for developing more efficient and natural storage pest control strategies.
Collapse
Affiliation(s)
- Valeria Tapia Mattar
- Instituto de Ciencias Químicas, Facultad de Agronomía y Agroindustrias (FAyA), Universidad Nacional de Santiago del Estero (UNSE), Consejo Nacional de Investigación Científicas y Técnicas (CONICET), Argentina
| | - José Luis Borioni
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC-CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | - Axel Hollman
- Laboratorio de Compuestos Bioactivos, Centro de Investigación de Biofísica Aplicada y Alimentos (CIBAAL)-CONICET- Universidad Nacional de Santiago del Estero (UNSE), Argentina
| | - Sergio A Rodriguez
- Instituto de Ciencias Químicas, Facultad de Agronomía y Agroindustrias (FAyA), Universidad Nacional de Santiago del Estero (UNSE), Consejo Nacional de Investigación Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
3
|
Michel P, Olszewska MA. Phytochemistry and Biological Profile of Gaultheria procumbens L. and Wintergreen Essential Oil: From Traditional Application to Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2024; 25:565. [PMID: 38203735 PMCID: PMC10778675 DOI: 10.3390/ijms25010565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Gaultheria procumbens L. is a medicinal plant whose aerial parts (leaves, stems, and fruits) and methyl salicylate-rich essential oil (wintergreen oil) are used in phytotherapy to treat inflammation, muscular pain, and infection-related disorders. This overview summarises the current knowledge about ethnobotany, phytochemistry, pharmacology, molecular mechanisms, biocompatibility, and traditional use of G. procumbens and the wintergreen oil distilled from different plant organs. Over 70 hydrophilic compounds, including methyl salicylate glycosides, flavonoids, procyanidins, free catechins, caffeoylquinic acids, and simple phenolic acids, have been identified in G. procumbens plant parts. Moreover, aliphatic compounds, triterpene acids, and sterols have been revealed in lipophilic fractions. Furthermore, over 130 volatile compounds have been detected in wintergreen oil with dominating methyl salicylate (96.9-100%). The accumulated research indicates that mainly hydrophilic non-volatiles are responsible for the pharmacological effects of G. procumbens, primarily its potent anti-inflammatory, antioxidant, and photoprotective activity, with mechanisms verified in vitro and ex vivo in cellular and cell-free assays. The biological effectiveness of the dominant methyl salicylate glycoside-gaultherin-has also been confirmed in animals. Wintergreen oil is reported as a potent anti-inflammatory agent exhibiting moderate antioxidant and antimicrobial activity in vitro and significant insecticidal and larvicidal capacity. Together, G. procumbens accumulate a diverse fraction of polyphenols, triterpenes, and volatiles with validated in vitro and ex vivo biological activity but with the absence of in vivo studies, especially clinical trials concerning effective dose determination and toxicological verification and technological research, including drug formulation.
Collapse
Affiliation(s)
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
4
|
Bao X, Song H, He L, Li Y, Niu S, Guo J. Histopathological observations and comparative transcriptome analysis of Ophiocordyceps sinensis infection of Hepialus xiaojinensis in the early stage. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105067. [PMID: 37797777 DOI: 10.1016/j.dci.2023.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hepialus xiaojinensis is a Lepidopteran insect and one of the hosts for the artificial cultivation of Cordyceps. Ophiocordyceps sinensis can infect and coexist with H. xiaojinensis larvae for a long time. Little studies focused on the interaction process through its early infection stage. In this research, we particularly study the interaction of infected and uninfected larvae in the 3rd (OS-3, CK-3) and 4th (OS-4, CK-4) instars. O. sinensis was distributed within the larvae and accompanied by pathological changes in some tissue structures. In response to O. sinensis infection, OS-3 enhanced the antioxidant defense ability, while OS-4 decreased. The transcriptome analysis showed that OS-3 resisted the invasion of O. sinensis by the immune and nervous systems. Correspondingly, OS-4 reduced immune response and utilized more energy for growth and development. This study provides a comprehensive resource for analyzing the mechanism of H. xiaojinensis and O. sinensis interaction.
Collapse
Affiliation(s)
- Xiuwen Bao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haoran Song
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Li
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Shuqi Niu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China.
| |
Collapse
|
5
|
Singh PP, Jaiswal AK, Raghuvanshi TS, Prakash B. Insights into the antimicrobial efficacy of Coleus aromaticus essential oil against food-borne microbes: Biochemical and molecular simulation approaches. Food Chem Toxicol 2023; 182:114111. [PMID: 37890759 DOI: 10.1016/j.fct.2023.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
The study reported the antimicrobial efficacy of chemically characterized Coleus aromaticus essential oil (CEO) against food-borne bacteria, molds (Aspergillus flavus), aflatoxin B1 (AFB1) and explored its mechanism of action using biochemical and molecular simulation approaches. The chemical profile of CEO was explored by Gas chromatography-mass spectrometry (GC-MS) analysis, which revealed thymol (46.0%) as the major compound. The minimum inhibitory concentration values of CEO for bacterial species Escherichia coli, Salmonella enterica, Bacillus cereus, and Shigella flexneri was found to be 0.9 μl/ml, 0.7 μl/ml, 0.16 μl/ml, and 0.12 μl/ml respectively. The MIC value for A. flavus and AFB1 contamination was 0.6 μl/ml. The DPPH radical scavenging activity of CEO was recorded with IC50 0.32 μl/ml. Biochemical and computational approaches (docking and dynamics simulation) have been performed to explore the multi-faceted antimicrobial inhibitory effects of CEO at the molecular level, which shows the impairment in membrane functioning, leakage of cellular contents, release of 260-nm absorbing materials, antioxidative defense, carbon catabolism and vital genes (7AP3, Nor1, Omt1, and Vbs). The findings indicated that CEO could be used as natural antimicrobial agents against food-spoilage bacteria, A. flavus and AFB1 contamination to extend the shelf-life of food product and prevention of food-borne diseases.
Collapse
Affiliation(s)
- Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Atul Kumar Jaiswal
- Department of Computer Science and Engineering, Jamia Hamdard University, New Delhi, India
| | - Tanya Singh Raghuvanshi
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
6
|
Huang X, Du L, Liu T, Ma R, Liu X, Yuan H, Liu S. Insecticidal Activity of a Component, (-)-4-Terpineol, Isolated from the Essential Oil of Artemisia lavandulaefolia DC. against Plutella xylostella (L.). INSECTS 2022; 13:1126. [PMID: 36555036 PMCID: PMC9783381 DOI: 10.3390/insects13121126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Plutella xylostella (L.) is one of the most serious pests of cruciferous vegetables. Our previous work demonstrated that the essential oil of Artemisia lavandulaefolia DC. exhibits promising insecticidal activities against P. xylostella. This study further characterizes the key components that are responsible for the insecticidal effect. In total, 47 compounds (96.52% of the total compounds) were identified from the total oil using GC-MS, and the major compounds were eucalyptol (21.57%), D(+)-camphor (17.33%), (-)-4-terpineol (9.96%) and caryophyllene oxide (10.96%). Among them, (-)-4-terpineol showed significantly larvicidal and fumigant activities against P. xylostella. The LD50 of (-)-4-terpineol was 43.15 mg/mL at 12 h and 31.22 mg/mL at 24 h for 3rd instar larvae, and the LC50 for adults was 8.34 mg/mL at 12 h and 7.35 mg/mL at 24 h. In addition, the adults treated with (-)-4-terpineol showed varying degrees of inhibitory activity toward glutathione S-transferase, catalase, acetylcholinesterase and Na+/K+-ATPase at different post-treatment intervals and concentrations. The results indicate that (-)-4-terpineol has promising insecticidal activities against P. xylostella, and it has good inhibitory effects on the four enzymes of P. xylostella adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Haibin Yuan
- Correspondence: (H.Y.); (S.L.); Tel.: +86-0431-8433-3719 (H.Y.)
| | - Shuai Liu
- Correspondence: (H.Y.); (S.L.); Tel.: +86-0431-8433-3719 (H.Y.)
| |
Collapse
|
7
|
Zargari F, Nikfarjam Z, Nakhaei E, Ghorbanipour M, Nowroozi A, Amiri A. Study of tyramine-binding mechanism and insecticidal activity of oil extracted from Eucalyptus against Sitophilus oryzae. Front Chem 2022; 10:964700. [PMID: 36212071 PMCID: PMC9538504 DOI: 10.3389/fchem.2022.964700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
The rice weevil, Sitophilus oryzae (L.), is a major pest of stored grains throughout the world, which causes quantitative and qualitative losses of food commodities. Eucalyptus essential oils (EOs) possess insecticidal and repellent properties, which make them a potential option for insect control in stored grains with environmentally friendly properties. In the current study, the binding mechanism of tyramine (TA) as a control compound has been investigated by funnel metadynamics (FM) simulation toward the homology model of tyramine1 receptor (TyrR) to explore its binding mode and key residues involved in the binding mechanism. EO compounds have been extracted from the leaf and flower part of Eucalyptus camaldulensis and characterized by GC/MS, and their effectiveness has been evaluated by molecular docking and conventional molecular dynamic (CMD) simulation toward the TyrR model. The FM results suggested that Asp114 followed by Asp80, Asn91, and Asn427 are crucial residues in the binding and the functioning of TA toward TyrR in Sitophilus Oryzae. The GC/MS analysis confirmed a total of 54 and 31 constituents in leaf and flower, respectively, where most of the components (29) are common in both groups. This analysis also revealed the significant concentration of Eucalyptus and α-pinene in leaves and flower EOs. The docking followed by CMD was performed to find the most effective compound in Eucalyptus EOs. In this regard, butanoic acid, 3-methyl-, 3-methyl butyl ester (B12) and 2-Octen-1-ol, 3,7-dimethyl- (B23) from leaf and trans- β-Ocimene (G04) from flower showed the maximum dock score and binding free energy, making them the leading candidates to replace tyramine in TyrR. The MM-PB/GBSA and MD analysis proved that the B12 structure is the most effective compound in inhibition of TyrR.
Collapse
Affiliation(s)
- Farshid Zargari
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Zahra Nikfarjam
- Department of Physical & Computational Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
- *Correspondence: Zahra Nikfarjam,
| | - Ebrahim Nakhaei
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Masoumeh Ghorbanipour
- Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Alireza Nowroozi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan (USB), Zahedan, Iran
| | - Azam Amiri
- College of Geography and Environmental Planning, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
8
|
Eesiah S, Yu J, Dingha B, Amoah B, Mikiashvili N. Preliminary Assessment of Repellency and Toxicity of Essential Oils against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) on Stored Organic Corn Grains. Foods 2022; 11:foods11182907. [PMID: 36141033 PMCID: PMC9498902 DOI: 10.3390/foods11182907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Insect infestation of cereal grains during post-harvest storage not only causes significant grain loss, but also reduces grain quality and makes grains more susceptible to mold infection. Synthetic pesticides are banned from being used in organic grain storage setting due to their high toxicity. The main insect damaging stored corn grains is maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). The purpose of this study was to evaluate insect repellency and insecticidal potentials of some generally recognized as safe (GRAS) essential oils (EOs) (including cinnamon, clove, thyme, oregano, and orange terpene oils) at concentrations of 1–20% against the maize weevil using an olfactometer and a simulated fumigation method, respectively. The olfactory tests show that cinnamon oil had the highest repellency (90%) to the weevils among the EOs tested. The insecticidal activity study indicates that maize weevil mortality increased with EO concentration and storage time with cinnamon, clove, and thyme oils being more effective. No weevil death was observed at 1% EOs; weevil mortality was 3.3–36% at 5%, which varied with the type of EO and storage time. At 10% or higher concentrations, all tested EO showed comparable or higher insecticidal activity than pirimiphos methyl-positive control at its recommended concentration (5 mg/kg corn). No significant increase in weevil mortality was observed with further increase in EO concentration, with exceptions of oregano oil and thyme oil. The highest weevil mortality levels were observed at week 7 for 15% cinnamon oil (100%) and eugenol (100%), followed by 20% thyme oil (93%). The study indicates that some EOs have great potential to serve as synthetic insecticide alternatives to protect organic corn grains from maize weevil damage during storage. This is important to food security, safety and environmental health.
Collapse
Affiliation(s)
- Sawo Eesiah
- Food and Nutritional Sciences Program, Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Jianmei Yu
- Food and Nutritional Sciences Program, Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
- Correspondence:
| | - Beatrice Dingha
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Barbara Amoah
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| | - Nona Mikiashvili
- Food and Nutritional Sciences Program, Department of Family and Consumer Sciences, North Carolina A&T State University, 1601 East Market Street, Greensboro, NC 27411, USA
| |
Collapse
|
9
|
Ebadollahi A, Naseri B, Abedi Z, Setzer WN. Chemical Profiles and Insecticidal Potential of Essential Oils Isolated from Four Thymus Species against Rhyzopertha dominica (F.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1567. [PMID: 35736718 PMCID: PMC9227810 DOI: 10.3390/plants11121567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Although chemical pesticides have been efficiently used to manage insect pest, their overuse has led to environmental contamination and threats to human health, enticing researchers to introduce eco-friendly and effective agents. In this study, the insecticidal effectiveness of essential oils isolated from Thymus species, including T. eriocalyx, T. kotschyanus, T. fallax, and T. vulgaris, was evaluated against the adults of Rhyzopertha dominica. The terpenes p-cymene, 1,8-cineole, linalool, α-terpineol, and carvacrol were the prominent compounds in the hydrodistilled essential oils. All essential oils produced significant fumigant at 24, 48, and 72-exposure times. The energy reserves protein by all essential oils, glycogen by T. kotschyanus and T. vulgaris, and lipid by T. fallax and T. vulgaris were significantly decreased compared to control. All essential oils except T. vulgaris affected the amylolytic and proteolytic activity of the pest. The pest increased the α- and β-esterase enzyme activity in response to the essential oils. Nutritional indices of adults were also affected by essential oils, in which feeding deterrence index was calculated from 20.41% to 61.11%. Accordingly, based on lethal and extensive sub-lethal insecticidal activities, T. eriocalyx, T. kotschyanus, T. fallax, and T. vulgaris essential oils can be considered as efficient agents for R. dominica management.
Collapse
Affiliation(s)
- Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
| | - Bahram Naseri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran; (B.N.); (Z.A.)
| | - Zahra Abedi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran; (B.N.); (Z.A.)
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
| |
Collapse
|
10
|
Ebadollahi A, Naseri B, Abedi Z, Setzer WN, Changbunjong T. Promising Insecticidal Efficiency of Essential Oils Isolated from Four Cultivated Eucalyptus Species in Iran against the Lesser Grain Borer, Rhyzopertha dominica (F.). INSECTS 2022; 13:insects13060517. [PMID: 35735854 PMCID: PMC9224839 DOI: 10.3390/insects13060517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Eucalyptus essential oils have shown promising insecticidal effects on several insect pests. The lesser grain borer, Rhyzopertha dominica (F.), causes economically significant damage to stored grains as an internal primary insect pest. In this study, the chemical compositions of essential oils isolated from four Eucalyptus species. E. microtheca, E. procera, E. spatulata, and E. torquata were detected and identified using a gas chromatography-mass spectrometer, and their lethal and sublethal insecticidal effects were evaluated against the adults of R. dominica. Although all essential oils have significant fumigant toxicity, due to the high relative potency, R. dominica was more susceptible to the E. procera essential oil than the others. The total protein, glycogen, and lipid contents and digestive amylase and protease enzyme activities of the treated insects were reduced. The nutritional indices consumption index, relative consumption rate, and relative growth rate were also reduced in the treated adults. The findings of this study reveal that E. microtheca, E. procera, E. spatulata, and E. torquata essential oils can be potentially used for the development of eco-friendly natural agents for the management of R. dominica. Abstract The lesser grain borer, Rhyzopertha dominica (F.), causes damage to stored grains resulting in both quantitative and qualitative losses. The use of synthetic fumigants in the management of stored-product pests resulted in undesirable side effects such as environmental contamination and threat to human and animal health. In this study, the lethal and sublethal effects of essential oils from four Eucalyptus species, E. microtheca, E. procera, E. spatulata, and E. torquata were studied against R. dominica adults. Gas chromatographic–mass spectral analysis of the essential oils was carried out, in which terpenes such as 1,8-cineole and globulol were abundant in essential oils. The pest was susceptible to the fumigation of the essential oils and, considering concentrations and exposure times (24, 48, and 72 h), had significant effects on the pest mortality. The total protein, glycogen, and lipid contents and digestive amylolytic and proteolytic activities of the adults treated with tested essential oils were reduced. The consumption index, relative consumption rate, and relative growth rate were also reduced in the treated adults. According to the insecticidal effects on the adults of R. dominica, the essential oils of E. microtheca, E. procera, E. spatulata, and E. torquata can be candidates for further investigations as grain protectant agents.
Collapse
Affiliation(s)
- Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
- Correspondence: (A.E.); (T.C.)
| | - Bahram Naseri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran; (B.N.); (Z.A.)
| | - Zahra Abedi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran; (B.N.); (Z.A.)
| | - William N. Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA;
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence: (A.E.); (T.C.)
| |
Collapse
|
11
|
Lazarević J, Jevremović S, Kostić I, Vuleta A, Manitašević Jovanović S, Kostić M, Šešlija Jovanović D. Assessment of Sex-Specific Toxicity and Physiological Responses to Thymol in a Common Bean Pest Acanthoscelides obtectus Say. Front Physiol 2022; 13:842314. [PMID: 35250641 PMCID: PMC8892178 DOI: 10.3389/fphys.2022.842314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), is one of the most important pests of the common bean Phaseolus vulgaris L. Without appropriate management it may cause significant seed loss in storages. In search for means of environmentally safe and effective protection of beans we assessed biological activity of thymol, an oxygenated monoterpene present in essential oils of many aromatic plants. We studied contact toxicity of thymol on bean seeds and its effects on adult longevity and emergence in F1 generation. Furthermore, we determined acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO), carboxylesterases (CarE) and glutathione S-transferase (GST) activities in response to 24 h exposure of beetles to sublethal and lethal thymol concentrations. Our results showed that thymol decreased adult survival, longevity and percentage of adult emergence. Higher median lethal concentration (LC50) was recorded in females indicating their higher tolerance comparing to males. Overall, activities of SOD, CAT and CarE increased at sublethal and MFO increased at both sublethal and lethal thymol concentrations. On the other hand, GST and AChE activities decreased along with the increase in thymol concentrations from sublethal (1/5 of LC50, 1/2 of LC50) to lethal (LC50). Enzyme responses to the presence of thymol on bean seed were sex-specific. In the control group females had lower CarE and higher SOD, CAT and GST activity than males. In treatment groups, females had much higher CAT activity and much lower CarE activity than males. Our results contribute to deeper understanding of physiological mechanisms underlying thymol toxicity and tolerance which should be taken into account in future formulation of a thymol-based insecticide.
Collapse
|
12
|
Nanotechnology-Based Bioactive Antifeedant for Plant Protection. NANOMATERIALS 2022; 12:nano12040630. [PMID: 35214959 PMCID: PMC8879102 DOI: 10.3390/nano12040630] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
Abstract
The productivity of vegetable crops is constrained by insect pests. The search for alternative insect pest control is becoming increasingly important and is including the use of plant-derived pesticides. Plant-derived pesticides are reported as effective in controlling various insect pests through natural mechanisms, with biodegradable organic materials, diverse bioactivity, and low toxicity to non-target organisms. An antifeedant approach for insect control in crop management has been comprehensively studied by many researchers, though it has only been restricted to plant-based compounds and to the laboratory level at least. Nano-delivery formulations of biopesticides offer a wide variety of benefits, including increased effectiveness and efficiency (well-dispersion, wettability, and target delivery) with the improved properties of the antifeedant. This review paper evaluates the role of the nano-delivery system in antifeedant obtained from various plant extracts. The evaluation includes the research progress of antifeedant-based nano-delivery systems and the bioactivity performances of different types of nano-carrier formulations against various insect pests. An antifeedant nano-delivery system can increase their bioactivities, such as increasing sublethal bioactivity or reducing toxicity levels in both crude extracts/essential oils (EOs) and pure compounds. However, the plant-based antifeedant requires nanotechnological development to improve the nano-delivery systems regarding properties related to the bioactive functionality and the target site of insect pests. It is highlighted that the formulation of plant extracts creates a forthcoming insight for a field-scale application of this nano-delivery antifeedant due to the possible economic production process.
Collapse
|
13
|
Abdel Haleem DR, El Tablawy NH, Ahmed Alkeridis L, Sayed S, Saad AM, El-Saadony MT, Farag SM. Screening and evaluation of different algal extracts and prospects for controlling the disease vector mosquito Culex pipiens L. Saudi J Biol Sci 2022; 29:933-940. [PMID: 35197761 PMCID: PMC8848025 DOI: 10.1016/j.sjbs.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
Continual application of synthetic insecticides in controlling mosquito larvae has resulted in several problems as build-up of mosquito resistance beside to negative impacts on human health and environment. Discovering new and affordable bio-insecticidal agents with high efficiency, cost effective and target specific become a crucial need. The current study assessed the larvicidal activity of eight methanolic algal extracts belong to three different algal divisions against the 3rd larval instar of Culex pipiens L. (Diptera: Culicidae). Comparative studies showed that four species of red and green algal extracts exhibited good larvicidal activity. Galaxaura elongata and Jania rubens (Rhodophyta), Codium tomentosum and Ulva intestinales (Chlorophyta) showed higher larvicidal potencies than Padina boryana, Dictyota dichotoma, and Sargassum dentifolium (Phaeophyta) and Gelidium latifolium (Rhodophyta). The maximum level of toxicity was achieved by exposure to G. elongata extract with LC50 (31.13 ppm), followed by C. tomentosum (69.85 ppm) then J. rubens (84.82 ppm) and U. intestinalis (97.54 ppm), while the lowest toxicity exhibited by G. latifolium (297.38 ppm) at 72 h post- treatment. The application of LC50 values of G. elongate, J. rubens, C. tomentosum, and U. intestinalis extracts affected the activities of antioxidant enzymes viz. superoxide dismutase, catalase and glutathione peroxidase as oxidative stress markers. An increase of antioxidant enzymes activities was recorded. Therefore, a significant elimination of free radicals, causing toxic effects. Overall, this study casts light on the insecticidal activity of some algal extracts, suggesting the possibility of application of these bio- agents as novel and cost- effective larvicides.
Collapse
Affiliation(s)
- Doaa R. Abdel Haleem
- Department of Entomology, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
- Corresponding authors.
| | - Neamat H. El Tablawy
- Department of Botany, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
- Corresponding authors.
| | - Shaimaa M. Farag
- Department of Entomology, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
14
|
Yadav A, Kumar A, Singh PP, Prakash B. Pesticidal efficacy, mode of action and safety limits profile of essential oils based nanoformulation against Callosobruchus chinensis and Aspergillus flavus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104813. [PMID: 33993954 DOI: 10.1016/j.pestbp.2021.104813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
The study explores the pesticidal efficacy, mode of action, and safety limit profile of essential oils-based formulation using the combination of Myristica fragrans (M), Bunium persicum (B), and Zanthoxylum alatum (Z) (1:1:1 v/v/v) and their nanoformulation (Ne-MBZ) against the Callosobruchus chinensis, Aspergillus flavus and aflatoxin B1 production. Linalool, γ-terpinene, and cuminaldehyde were identified as the major compounds of the formulation (MBZ) by Gas chromatography-mass spectrometry (GC-MS). Nanoencapsulation of developed formulation (Ne-MBZ) was prepared using chitosan and characterized by scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). The pesticidal efficacy of nanoformulation (Ne-MBZ) against C. chinensis IC50 (0.14 μl/ml), A. flavus (0.8 μl/ml) and AFB1 (0.8 μl/ml) was significantly higher in both in-vitro and in-situ conditions than the sum of their individual revealing a notable synergistic effect. Besides, the detailed mode of pesticidal action and safety limit profile were explored using biochemical, in-silico and ADMET (absorption, distribution, metabolism, excretion, and toxicity) approaches.
Collapse
Affiliation(s)
- Amrita Yadav
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akshay Kumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prem Pratap Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bhanu Prakash
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
15
|
The Volatile Phytochemistry of Seven Native American Aromatic Medicinal Plants. PLANTS 2021; 10:plants10061061. [PMID: 34070663 PMCID: PMC8229852 DOI: 10.3390/plants10061061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/20/2022]
Abstract
As part of our evaluation of essential oils derived from Native American medicinal plants, we have obtained the essential oils of Agastache foeniculum (Pursch) Kuntze (Lamiaceae), Gaultheria procumbens L. (Ericaceae), Heliopsis helianthoides (L.) Sweet (Asteraceae), Liatris spicata (L.) Willd. (Asteraceae), Pycnanthemum incanum (L.) Michx. (Lamiaceae), Smallanthus uvedalia (L.) Mack. ex Mack. (Asteraceae), and Verbena hastata L. (Verbenaceae) by hydrodistillation. The essential oils were analyzed by gas chromatographic techniques. The essential oil of A. foeniculum was dominated by estragole (88–93%), while methyl salicylate (91%) dominated the G. procumbens essential oil. Germacrene D was the major component in H. helianthoides (42%) and L. spicata (24%). 1,8-Cineole (31%) and α-terpineol (17%) were the main compounds in P. incanum essential oil. The essential oil of S. uvedalia showed α-pinene (24%), perillene (15%), and β-caryophyllene (17%) as major components. Verbena hastata essential oil was rich in 1-octen-3-ol (up to 29%) and palmitic acid (up to 22%). Four of these essential oils, H. helianthoides, L. spicata, P. incanum, and V. hastata, are reported for the first time. Additionally, the enantiomeric distributions of several terpenoid components have been determined.
Collapse
|
16
|
Yang P, Jia M, Zhu L. Acaricidal activity of the essential oil from Senecio cannabifolius and its constituents eucalyptol and camphor on engorged females and larvae of Rhipicephalus microplus (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:411-426. [PMID: 33590356 DOI: 10.1007/s10493-021-00590-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The objective of this experiment was to evaluate the acaricidal activity of Senecio cannabifolius essential oil, and two of its constituents, eucalyptol and camphor. Efficacy against females and larvae of Rhipicephalus (Boophilus) microplus was assessed by the adult immersion test (AIT) and the larval immersion test (LIT). The oil was analyzed by gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (MS) and in total 68 components were identified representing 99.2% of the essential oil. AIT revealed that the oil, eucalyptol, and camphor at the highest concentration presented efficacy of 68.9, 57.1, and 71.9%, respectively. LIT revealed that the essential oil and camphor achieved 100% mortality at concentration of 1.6% wt/vol, whereas eucalyptol showed moderate inhibitory activity. Biochemical assays indicated that the essential oil and camphor can reduce significantly overall detoxification enzyme activities in engorged females and larvae at high concentration (≥ 0.4% wt/vol), whereas the inhibitory effect of eucalyptol is weaker than that of the oil and camphor. Taken together our results indicated that the S. cannabifolius essential oil and its isolated constituent had potential for the development of a new and safe acaricide for the control of R. microplus ticks.
Collapse
Affiliation(s)
- Peipei Yang
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, Guangdong Province, China
| | - Mengmeng Jia
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, Guangdong Province, China
| | - Liang Zhu
- School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510641, Guangdong Province, China.
| |
Collapse
|
17
|
Rajkumar V, Gunasekaran C, Paul CA, Dharmaraj J. Development of encapsulated peppermint essential oil in chitosan nanoparticles: characterization and biological efficacy against stored-grain pest control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104679. [PMID: 32980061 DOI: 10.1016/j.pestbp.2020.104679] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Peppermint oil (PO) has widely been reported for their nutritional and biomedical properties. Essential oil (EO) has several properties, usage restricted due to environmental condition, polymer based nanoencapsulation of EOs is developed as one of the promising technique to address this limitation. In this current study emphasizes on developing Peppermint oil (PO) encapsulated chitosan nanoparticles (CS NPs) by ionic gelation method in order to improving its insecticidal potential effective management of two stored grain pest. The nano-encapsulated PO (CS/PO NPs) was confirmed by UV-Vis spectrophotometry and X-ray diffraction (XRD) techniques. The physicochemical characterization of CS/PO NPs revealed <563.3 nm size, Zeta potential of -12.12 mV, encapsulation efficiency >64% and loading capacity >12.31% respectively. Developed CS/PO NPs demonstrated the toxicity studies have significantly efficacy against both stored product pest compared to control. In-vivo percent inhibition of AChE activity ranged between S. oryzae (52.43% and 37.71% and and T. castaneum (37.80% and 31.29). Overall, these results highlighted that polymer chitosan nanoparticle encapsulated with essential oil is a promising novel design that could be promoted in stored food pest management schedule for T. castaneum and S. oryzae.
Collapse
Affiliation(s)
- Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Chinnappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Cheruvathur Amita Paul
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jayaraman Dharmaraj
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
18
|
Toxic, Oviposition Deterrent and Oxidative Stress Effects of Thymus vulgaris Essential Oil against Acanthoscelides obtectus. INSECTS 2020; 11:insects11090563. [PMID: 32846872 PMCID: PMC7563443 DOI: 10.3390/insects11090563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023]
Abstract
The bean weevil Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae) can cause significant losses in production of its primary host common bean Phaseolus vulgaris L. To avoid bean protection with environmentally risky chemical insecticides and provide sustainable and safe production of food, new pest management methods based on natural compounds are investigated. In the present study, we evaluated protective potential of the essential oil (EO) from the common thyme Thymus vulgaris L. applied on bean seeds. We assessed residual contact toxicity of thyme EO and its effects on A. obtectus longevity, oviposition and adult emergence. Furthermore, to elucidate the role of oxidative stress in thyme EO toxicity, we estimated the levels of oxidatively damaged proteins and lipids, as well as the level of thiols which have important role for antioxidant capacity. We found that thyme oil significantly reduced adult survival and longevity, induced oxidative damage to lipids and proteins and depleted protein and non-protein thiols in a concentration-dependent manner. Females appeared to be more tolerant to thyme oil treatment than males. Sublethal EO concentrations affected oxidative stress indices, deterred oviposition and strongly inhibited adult emergence. The results suggest that thyme oil has the potential to be used as an ecofriendly insecticide for A. obtectus control.
Collapse
|
19
|
Krzyżowski M, Baran B, Łozowski B, Francikowski J. The Effect of Rosmarinus officinalis Essential Oil Fumigation on Biochemical, Behavioral, and Physiological Parameters of Callosobruchus maculatus. INSECTS 2020; 11:E344. [PMID: 32503195 PMCID: PMC7349277 DOI: 10.3390/insects11060344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/03/2023]
Abstract
This study explores the influence of rosemary, Rosmarinus officinalis (L.) essential oil (EO) on the biochemical (acetylcholinesterase, catalase, and glutathione S-transferase), physiological (oxygen consumption), and behavioral (open field test, repellency) parameters of an important stored product insect: cowpea weevil, Callosobruchus maculatus (F.). R. officinalis EO exhibited effective insecticidal action against C. maculatus even at relatively low concentrations. LC50 = 15.69 μL/L air, and was highly repellent at concentrations equal to or above LC25. Statistically significant inhibition in locomotor activity occurred only after the acute exposure to the EO at LC12.5 and LC25. The oxygen consumption test showed metabolism increase only at LC50. An increase in activity was observed in the case of all three enzymes examined. The presented data provides a potentially valuable resource in designing more environmentally friendly and safer insecticide agents.
Collapse
Affiliation(s)
- Michał Krzyżowski
- Laboratory of Insect Physiology and Ethology, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.B.); (B.Ł.); (J.F.)
| | | | | | | |
Collapse
|
20
|
Rajkumar V, Gunasekaran C, Dharmaraj J, Chinnaraj P, Paul CA, Kanithachristy I. Structural characterization of chitosan nanoparticle loaded with Piper nigrum essential oil for biological efficacy against the stored grain pest control. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104566. [PMID: 32448420 DOI: 10.1016/j.pestbp.2020.104566] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
In this study, Piper nigrum essential oil (PNO) has been encapsulated in chitosan nanoparticle (CS NPs) via ionic gelation method with sodium tripolyphosphate (TPP). The successfully loaded Piper nigrum EO was confirmed by UV-Vis spectrophotometry and X-ray diffraction (XRD) techniques. The average particle size of P. nigrum essential oil loaded chitosan nanoparticle (CS/PNO NPs) showed 527.5 nm with spherical shape morphology. Zeta potential values of the particles were found to be negative -5.34 mV. Encapsulation efficiency and loading efficiency was in the range of 35% to 40% and 4.85% to 7.04% respectively. CS/PNO NPs exhibited strong insecticidal activity against Sitophilus oryzae and Tribolium castaneum. In addition, CS/PNO NPs enhanced the fumigant toxicity and altered the neurotransmitter, acetylcholine in both the stored grain pests. Overall results of nanoformulation indicated that these novel design systems could be promoted in integrated pest management schedule for T. castaneum and S. oryzae.
Collapse
Affiliation(s)
- Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Chinappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Jayaraman Dharmaraj
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Panneerselvam Chinnaraj
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Cheruvathur Amita Paul
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Inbaraj Kanithachristy
- Jiangsu Key Laboratory for Biotechnology and Biodiversity, School of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| |
Collapse
|
21
|
Devrnja N, Kostić I, Lazarević J, Savić J, Ćalić D. Evaluation of tansy essential oil as a potential "green" alternative for gypsy moth control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11958-11967. [PMID: 31983003 DOI: 10.1007/s11356-020-07825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
The development of "green" alternatives to chemical pesticides could play a crucial role in integrated pest management (IPM). Their use is considered either as a substitution for or in addition to hazardous synthetic products. We analysed the influence of three concentrations of tansy (Tanacetum vulgare L.) essential oil (EO), previously characterised by GC-MS, on the survival and moulting of the 2nd instar and the nutritional indices of the 4th instar gypsy moth (Lymantria dispar L.) larvae. In a residual contact toxicity assessment, the exposure to tansy EO caused low mortality (< 10%) while larval development was significantly slowed down, i.e., the percentage of larvae that moulted into the 3rd instar was reduced. On the other hand, when tansy EO was incorporated into the diet (digestive toxicity assay), high mortality and a lack of moulting after 120 h of eating were recorded for the highest applied concentration of EO. During 48 h of feeding on EO-supplemented food at concentrations of 0.5 and 1% (v/v), the relative growth rate (RGR) of the 4th instar larvae significantly decreased, which can be explained by a significant reduction of the relative consumption rate (RCR) and significantly or marginally significantly lower efficiency of conversion of ingested food into insect biomass (ECI). Although the RCR was also reduced with the lowest applied EO concentration (0.1%), the ECI was not affected which meant the RGR was as high as it was for the control larvae. ECI changes, when two higher EO concentrations were applied, were due to a reduction in the efficiency of conversion of digested food into biomass (ECD), while approximate digestibility was unaffected by the presence of EO in the food. Our results on the significant negative effects of tansy EO on gypsy moth larval survival, development time, and nutritional physiology suggest that it could be considered in future designs for botanical insecticides for gypsy moth control.
Collapse
Affiliation(s)
- Nina Devrnja
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia.
| | - Igor Kostić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, 11030, Serbia
| | - Jelica Lazarević
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Jelena Savić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Dušica Ćalić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| |
Collapse
|
22
|
Huang Y, Lin M, Jia M, Hu J, Zhu L. Chemical composition and larvicidal activity against Aedes mosquitoes of essential oils from Arisaema fargesii. PEST MANAGEMENT SCIENCE 2020; 76:534-542. [PMID: 31270930 DOI: 10.1002/ps.5542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Dengue fever is caused by the spread of dengue virus by Aedes mosquito vectors. Currently, the most effective way to control dengue is by preventing mosquitoes from spreading the disease. Arisaema fargesii is a Chinese herbal medicine commonly used to repel mosquitoes. In our laboratory, anti-mosquito chemical components were extracted from A. fargesii, and the effects of these substances on mosquito larvae were examined. RESULTS In total, 48 compounds corresponding to 98.79% of the total oil were identified and the major compounds identified were linalool (12.38%), carvacrol (8.27%), eugenol (5.21%), and β-selinene (5.36%). Essential oil had larvicidal activity against Ae. aegypti and Ae. albopictus with LC50 values of 40.49 mg/L, 47.01 mg/L, respectively. The LC50 values of carvacrol, eugenol, linalool and β-selinene were 32.78, 56.34, 70.56, 136.03 mg/L against Ae. aegypti larvae, and 39.08, 52.07, 82.34, 151.74 mg/L, respectively, against Ae. albopictus larvae. Biochemical assays of Aedes larvae showed that the activities of acetylcholinesterase (AChE), monooxygenases (MO), glutathione-S-transferase (GST), p-Nitrophenyl acetate (p-NPA) esterase, α-esterase and β-esterase were significantly affected by carvacrol. Essential oil induced the detoxification mechanism for the action of GST and MO. CONCLUSION The result indicates that essential oil of A. fargesii and its isolated constituent have good inhibitory effects on the defense enzymes of Aedes mosquito larvae. A. fargesii essential oil can be used to control Aedes mosquito larvae to prevent the spread of dengue fever. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Huang
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Mengya Lin
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Mengmeng Jia
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Junpeng Hu
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Liang Zhu
- School of Food Science and engineering, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
23
|
Rajkumar V, Gunasekaran C, Christy IK, Dharmaraj J, Chinnaraj P, Paul CA. Toxicity, antifeedant and biochemical efficacy of Mentha piperita L. essential oil and their major constituents against stored grain pest. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:138-144. [PMID: 31027573 DOI: 10.1016/j.pestbp.2019.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
The efficiency of chemically characterized Mentha piperita L. essential oil (EO), a plant based insecticide was tested for acetylcholinesterase activity (AChE) and antioxidant enzyme system (SOD, CAT, GSH and GSSH) in Sitophilus oryzae (L.) and Tribolium castaneum (Herbst.). GC-MS results evidenced for menthone and menthol as the major compounds of EO. As a fumigant, EO and its major component showed 100% mortality at 75.0 μL/L air and 100.0 μL/L air against S. oryzae and T. castaneum at 24 h of exposure. Antifeedant activity exhibited 100% lethal activity against pests in comparison to sub lethal doses. In vivo percent inhibition of AChE activity ranged between S. oryzae (29.68%, 18.81% and 14.34%) and T. castaneum (20.67%, 13.73% and 9.19%). Significant changes in antioxidant defense system studied for SOD, CAT, GSH and GSSH were noticed. Results revealed the toxicity of EO associations with the inhibition of AChE activity accompanied by oxidative imbalance. Therefore, M. piperita EO has a noteworthy role in insecticidal properties and could be recommended as an eco-friendly alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Vallavan Rajkumar
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Chinappan Gunasekaran
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Inbaraj Kanitha Christy
- Jiangsu Key Laboratory for Biotechnology and Biodiversity, School of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu, China
| | - Jayaraman Dharmaraj
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Panneerselvam Chinnaraj
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Cheruvathur Amita Paul
- Conservation Biology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
24
|
Upadhyay N, Singh VK, Dwivedy AK, Das S, Chaudhari AK, Dubey NK. Assessment of Melissa officinalis L. essential oil as an eco-friendly approach against biodeterioration of wheat flour caused by Tribolium castaneum Herbst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:14036-14049. [PMID: 30852752 DOI: 10.1007/s11356-019-04688-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
The study reports efficacy of Melissa officinalis L. essential oil (MOEO) as a safe plant-based insecticide against Tribolium castaneum Herbst (TC) by induction of oxidative stress. MOEO nanoencapsulation in chitosan matrix was performed to enhance its bioefficacy. GC-MS analysis of MOEO depicted geranial (31.54%), neral (31.08%), and β-caryophyllene (12.42%) as the major components. MOEO showed excellent insecticidal potential in contact (100% mortality at 0.157 μL/cm2) and fumigant bioassays (LC50 = 0.071 μL/mL air) and 100% repellency at concentration ≤ 0.028 μL/cm2. Increased reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), and decreased ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) at the LC50 dose suggested significant oxidative stress on TC in MOEO treatment sets. The encapsulated MOEO exhibited enhanced activity as fumigant (LC50 = 0.048 μL/mL air) and showed significant antifeedant activity in situ (EC50 = 0.043 μL/mL). High LD50 value (13,956.87 μL/kg body weight of mice) confirmed favorable toxicological profile for non-target mammals. The findings depict potential of nanoencapsulated MOEO as an eco-friendly green pesticide against infestation of stored food by TC.
Collapse
Affiliation(s)
- Neha Upadhyay
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
25
|
Magierowicz K, Górska-Drabik E, Sempruch C. The insecticidal activity of Satureja hortensis essential oil and its active ingredient -carvacrol against Acrobasis advenella (Zinck.) (Lepidoptera, Pyralidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:122-128. [PMID: 30744885 DOI: 10.1016/j.pestbp.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Nowadays, Acrobasis advenella is considered a pest of the highest economic significance in black chokeberry plantations, negatively affecting the quantity and quality of fruits. The aim of this study was to investigate the effect of Satureja hortensis essential oil and its main constituent, carvacrol, on the life cycle and physiology of A. advenella. The metabolic activity of both preparations was evaluated against insect α- and β- glucosidase, catalase, peroxidase and polyphenol oxidase. The results showed S. hortensis essential oil and carvacrol, are characterized by insecticidal activity against A. advenella larvae. It found an increase in catalase activity in A. advenella homogenates under the influence of carvacrol and an induction of polyphenol oxidase by S. hortensis EO with no changes in POX activity. Also, it was shown that the activity of α- and β-glucosidase significantly increased in larvae fed on inflorescences treated with the essential oil and carvacrol. These preparations particularly strongly affected β-glucosidase activity in the insect homogenates. S. hortensis essential oil reduced emergence the longevity of moths. The obtained results suggest that S. hortensis essential oil and carvacrol can be useful in protecting organic crops of black chokeberry but essential oils may be more effective biopesticides than their active ingredients separately.
Collapse
Affiliation(s)
- Klaudia Magierowicz
- University of Life Sciences in Lublin, Faculty of Horticulture and Landscape Architecture, Department of Plant Protection, Leszczynskiego 7, 20-069 Lublin, Poland
| | - Edyta Górska-Drabik
- University of Life Sciences in Lublin, Faculty of Horticulture and Landscape Architecture, Department of Plant Protection, Leszczynskiego 7, 20-069 Lublin, Poland.
| | - Cezary Sempruch
- Siedlce University of Natural Sciences and Humanities, Faculty of Natural Sciences, Department of Biochemistry and Molecular Biology, Prusa 12, 08-110 Siedlce, Poland
| |
Collapse
|
26
|
Ling SQ, Xu YN, Gu YP, Liu SY, Tang WW. Toxicity and biochemical effects of itol A on the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:90-97. [PMID: 30497717 DOI: 10.1016/j.pestbp.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
Itol A, a novel isoryanodane diterpene derived from Itoa orientalis Hemsl., has potent activities against insect pests. This study was conducted to determine the contact toxicity and biochemical effects of itol A on the Nilaparvata lugens. After macropterous females of N. lugens were exposed to itol A from 0.5 to 24 h, the mortality and poisoning symptoms were measured. Effects of itol A on the major enzymes activity and oxidative stress level were assessed in dose-response (with LD10-LD70 at 24 h) and time-course (with LD50 at 0.5-24 h) experiments for the potential toxicity mechanisms. Based on the results, the mortality of N. lugens showed significant dose- and time-dependent effects, with the 24-h LD50 value was 0.58 μg/insect. The symptoms of excitation, convulsion and paralysis were also observed. However, acetylcholinesterases (AChE) activity was not altered after itol A treatment compared to control. Na+/K+-ATPases, Ca2+-ATPases, Ca2+/Mg2+-ATPases, glutathione S-transferases (GSTs), cytochrome P450 monooxygenases (P450s), superoxide dismutases (SOD) and catalases (CAT) activities were significantly reduced in dose-response and time-course experiments. While acid phosphatases (ACP) and glutathione peroxidases (GPX) activities were significantly increased. We further revealed that itol A exposure resulted in the decrease of GSH/GSSG (reduced to oxidized glutathione) ratio and the increase of hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels in both experiments. The results indicated that the inhibition of Na+/K+-ATPases, Ca2+-ATPases, Ca2+/Mg2+-ATPases, GSTs, P450s, SOD and CAT activities and the induction of oxidative stress was one of the potential biochemical mechanisms of itol A against N. lugens.
Collapse
Affiliation(s)
- Si-Quan Ling
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Ya-Nan Xu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Yan-Ping Gu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Shu-Yu Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Wen-Wei Tang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
| |
Collapse
|
27
|
Liu Z, Zhang Q, Wu X, Yu W, Guo S. Insecticidal Mechanism of Wintergreen Oil Against the Health Pest Paederus fuscipes (Coleoptera: Staphylinidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:155-162. [PMID: 29029320 DOI: 10.1093/jme/tjx162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Paederus fuscipes, a health pest, causes dermatitis linearis in humans. Wintergreen oil exhibits optimal insecticidal activity against P. fuscipes. However, the insecticidal mechanism remains unclear not only in P. fuscipes but also in other pests. In this study, we explored the insecticidal mechanism of wintergreen oil in terms of its effect on the activity of acetylcholinesterase (AChE) enzyme and detoxifying enzymes (carboxylesterase, glutathione-S-transferase, and mixed function oxidase); such effect was studied by fumigation both in vivo and in vitro in P. fuscipes male and female adults. In the in vivo and in vitro experiments on male and female adults, wintergreen oil did not significantly affect the activities of the three detoxifying enzymes. Hence, the mode of action of wintergreen oil may be unrelated to the three detoxifying enzymes. Wintergreen oil significantly inhibited AChE activity. When wintergreen oil was tested at different times in vivo, the highest inhibition rates were 41.99% (male) and 40.91% (female). When different doses of wintergreen oil were used for in vivo treatment, the highest inhibition rates were 33.78% (male) and 43.33% (female). When wintergreen oil was tested in vitro, the highest inhibition rates were 31.06% (male) and 35.57% (female). In vitro with chlorpyrifos as a positive control, the AChE activity of 3-μl wintergreen oil treatment was significantly lower than that of 10 mg/liter chlorpyrifos in both P. fuscipes male and female adults. The results demonstrated that AChE is a potential key factor, maybe a target enzyme, in the mechanism of wintergreen oil against P. fuscipes.
Collapse
Affiliation(s)
- Zhiping Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing, China
| | - Qiang Zhang
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing, China
| | - Xuan Wu
- Chongqing Animal Disease Control Center, Chongqing, China
| | - Wei Yu
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing, China
| | - Shengquan Guo
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
28
|
Kujur A, Kiran S, Dubey N, Prakash B. Microencapsulation of Gaultheria procumbens essential oil using chitosan-cinnamic acid microgel: Improvement of antimicrobial activity, stability and mode of action. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
H. Qari S, Abdel-Fatt NA, A. Shehawy A. Assessment of DNA Damage and Biochemical Responses in Rhyzopertha dominica Exposed to Some Plant Volatile Oils. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jpt.2017.87.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Zhang Q, Wu X, Liu Z. Primary Screening of Plant Essential Oils as Insecticides, Fumigants, and Repellents Against the Health Pest Paederus fuscipes (Coleoptera: Staphylinidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2388-2396. [PMID: 27744281 DOI: 10.1093/jee/tow232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
The contact and fumigant toxicity as well as repellent activity of 10 plant essential oils were evaluated against Paederus fuscipes Curtis adults. Essential oils were identified through gas chromatography-mass spectrometry analysis. Results showed that wintergreen oil exhibited optimal contact and fumigant toxicity but had no significant repellent activity against P. fuscipes. The LC50 values of fumigant toxicity of wintergreen oil were 2.680 and 1.591 µL/L air after 1 and 8 h of exposure, respectively. The LC50 values of contact toxicity of wintergreen oil were 0.086 and 0.060 µL/adult after 1 and 8 h of exposure, respectively. Cinnamon oil exhibited the highest repellent activity. In particular, 0.1 µL/cm2 cinnamon oil showed 100% repellency against P. fuscipes even for 6 h. Moreover, 0.01 and 0.005 µL/cm2 cinnamon oil conferred 80% repellency against P. fuscipes for 8 and 4 h, respectively. Overall, wintergreen oil is the best candidate insecticide and fumigant, and cinnamon oil is optimal as a repellent. The low-dose, rapid action of wintergreen oil and the low-dose, persistent repellency of cinnamon oil are important factors that suggest their use as insecticides, fumigants, and repellents against P. fuscipes.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China (; )
| | - Xuan Wu
- Chongqing Animal Disease Control Center, Chongqing 401147, China
| | - Zhiping Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Beibei, Chongqing 400715, China (; )
| |
Collapse
|
31
|
S. K, Kujur A, Prakash B. Assessment of preservative potential of Cinnamomum zeylanicum Blume essential oil against food borne molds, aflatoxin B 1 synthesis, its functional properties and mode of action. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Costa G, Gidaro MC, Vullo D, Supuran CT, Alcaro S. Active Components of Essential Oils as Anti-Obesity Potential Drugs Investigated by in Silico Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5295-5300. [PMID: 27268752 DOI: 10.1021/acs.jafc.6b02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, for the first time, we have considered essential oils (EOs) as possible resources of carbonic anhydrase inhibitors (CAIs), in particular against the mitochondrial isoform VA that, actually, represents an innovative target for the obesity treatment. In silico structure-based virtual screening was performed in order to speed up the identification of promising antiobesity agents. The potential hit compounds were submitted to in vitro assays and experimental results, corroborated by molecular modeling studies, showed EOs components as a new class of CAIs with a competitive mechanism of action due to the zinc ion coordination within the active sites of these metallo-enzymes.
Collapse
Affiliation(s)
- Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro , Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy
| | - Maria Concetta Gidaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro , Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze , Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro , Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy
| |
Collapse
|