1
|
Farajizadeh A, Sui L, Wong J, Goss GG. Modulation of PFOA (perfluorooctanoic acid) uptake in Daphnia (Daphnia magna) by TiO 2 nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 2025; 291:110150. [PMID: 39978429 DOI: 10.1016/j.cbpc.2025.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
The hydrophobic surface of plastics adsorbs hydrophobic persistent organic pollutants (POP) such as Perfluorooctanoic acid (PFOA). The potential for hydrophobic nanoparticles such as titanium dioxide (TiO2) to associate with PFOA and alter accumulation rates has not been investigated. Nanoparticles form ecocorona by adsorption of multiple constituents in water, but few studies have examined if this results in differences in the rate of PFOA accumulation in freshwater animals. We demonstrate the PFOA associates with the hydrophobic surfaces of nano-sized TiO2 particles and this increases the rate of uptake of PFOA into Daphnia magna. Accumulation of PFOA in daphnia was measurement over multiple concentrations, flux times and particle sizes using a radiotracer-based method (14C-labelled PFOA). Our results show that TiO2 NPs have a high sorption capacity for PFOA and PFOA sorption decreased aggregation of TiO2 as evidenced by a decrease in average hydrodynamic diameter, decreased zeta potential and increased polydispersity index. Uptake of PFOA at 10 μg/L was found to be 45 % higher in the presence of 500 μg/L of 5 nm TiO2 compared to control PFOA alone uptake. Potentiation of PFOA uptake using 25 nm TiO2 NPs was 25 % higher than control PFOA alone. PFOA alone (0.5 mg/L) reduced metabolic oxygen consumption (MO2) in daphnia by 52 %, but exposure to (100 mg/L) 5 nm TiO2 NPs sorbed with (0.5 mg/L) PFOA decreased metabolic oxygen consumption (MO2) by ~88 %. These findings show that TiO2 nanoparticles act as vectors for hydrophobic organic pollutant accumulation and significantly potentiate PFOA accumulation and toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Arian Farajizadeh
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Lazarus Sui
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Jonas Wong
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
2
|
Domingo JL. A review of the occurrence and distribution of Per- and polyfluoroalkyl substances (PFAS) in human organs and fetal tissues. ENVIRONMENTAL RESEARCH 2025; 272:121181. [PMID: 39978621 DOI: 10.1016/j.envres.2025.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025]
Abstract
This review synthesizes current evidence on PFAS concentrations across human organs and tissues, excluding blood matrices. Literature search was conducted using PubMed, Web of Science, and Scopus. The earliest reported study on the topic measured PFOS, PFOSA, PFOA, and PFHxS levels in human liver and serum, showing mean liver concentrations of 18.8 ng/g and a liver-to-serum ratio of 1.3:1 for PFOS. Subsequent research extended these findings to other organs, with measurements in pooled samples indicating organ-specific accumulation patterns. PFOS was predominant in liver, kidney, and lung, while PFOA was more prominent in bone. Pathological conditions, such as liver disease, have shown to influence PFAS distribution, with diseased tissues exhibiting altered accumulation patterns. On the other hand, the occurrence of PFAS in fetal and placental tissues demonstrated that these compounds cross the placenta, although fetal exposure levels were significantly lower than maternal levels. Tissue-specific accumulation has been reported, with liver and lung showing higher concentrations compared to other fetal tissues. Associations between PFAS levels in the placenta and birth outcomes indicated potential sex-specific effects, including reduced birth weight in male infants exposed to higher PFOS levels. This review highlights important differences in the detection frequencies and concentrations of PFAS across organs and the specific studies. These variations are attributed to differences in analytical methods, sample characteristics, and exposure sources. The findings underscore the need for standardized methodologies and further research to better understand PFAS distribution in human tissues and their potential health impacts, particularly during critical developmental stages.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, San Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
3
|
Zhao N, Zhang X, Li Y, Zhang H, Yang E, Ding L, Liu Y. Associations between in utero exposure of per- and polyfluoroalkyl substances (PFAS) mixture and anthropometry measures at birth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126093. [PMID: 40113195 DOI: 10.1016/j.envpol.2025.126093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
In utero exposure to per- and polyfluoroalkyl substances (PFAS), which are recognized developmental toxicants, potentially leads to decreased anthropometric measures in infants at birth. We analyzed 16 PFAS in 350 cord serum samples from Jinan, China, using ultra-high-performance liquid chromatography integrated with Orbitrap mass spectrometry. Birth length, birth weight, and head circumference were extracted from medical records and converted into z-scores (BL-z, BW-z and HC-z, respectively). Multivariable linear regression (MLR) models were employed to investigate the associations between individual PFAS and these birth anthropometric z-scores. To assess the cumulative effects of PFAS, quantile g-computation (QGC) and Bayesian kernel machine regression (BKMR) models were employed. Additionally, stratified analyses were performed to derive sex-specific estimates of the associations. MLR analysis revealed significant associations between specific PFAS and reduced birth anthropometric measures varying by infant sex. For example, log2-transformed concentration of cord serum perfluorooctanoic acid (PFOA) was associated with reduced BL-z (β=-0.12 (-0.18, -0.06), p<0.001) and BW-z (β=-0.20 (-0.31, -0.10), p<0.001) in all infants. Perfluoroheptanesulfonic acid (PFHpS) was inversely associated with BL-z (β=-0.07 (-0.13, -0.02), p=0.03) and HC-z (β=-0.06 (-0.11, -0.02), p=0.01) exclusively in males. BKMR and QGC models suggested general negative dose-response pattern between exposure to PFAS mixtures and BL-z, BW-z, and HC-z in males. Conversely, these associations were not evident in females. The key PFAS identified as contributors to the joint effects, along with the directions of their estimated impacts as determined by the mixture methods, showed marginal consistency with the results obtained from the MLR models. Our study underscored that in utero exposure to certain PFAS was associated with reduced anthropometric measures at birth. Male infants were more susceptible to PFAS exposure, particularly to combined PFAS mixture effects.
Collapse
Affiliation(s)
- Nan Zhao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Xiaozhen Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China
| | - Yahui Li
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan 250102, Shandong, China
| | - Haoyu Zhang
- School of Environmental Research Institute, Shandong University, Qingdao 266237, Shandong, China
| | - En Yang
- Environmental Monitoring Station of Lanshan Branch of Rizhao Ecology and Environment Bureau, Rizhao 276800, Shandong, China
| | - Lei Ding
- School of Environmental Research Institute, Shandong University, Qingdao 266237, Shandong, China.
| | - Yi Liu
- School of Public Health, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
4
|
Li Y, Zhou W, Jiang RW, Pawliszyn J. Solid-phase microextraction with recessed matrix compatible coating for in situ sampling of per- and polyfluoroalkyl substances in meat. Food Chem 2025; 480:143891. [PMID: 40121880 DOI: 10.1016/j.foodchem.2025.143891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/02/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
This study presents a novel method for in situ extraction of per- and polyfluoroalkyl substances (PFAS) from intact meat samples using a recessed solid phase microextraction (SPME) device coupled with LC-MS/MS. The SPME device with matrix-compatible coating (HLB-WAX/PAN) in the recessed section, exhibited mechanically robust and low matrix effects in meat samples (-13.7-11.1 %). Key parameters influencing extraction efficiency, including extraction time, adsorbent amount, extraction temperature, and desorption time were comprehensively optimized. The stability of PFAS adsorbed onto the coating during storage at different temperatures and durations was also assessed. Under optimized conditions, the proposed method demonstrated applicability across pork, beef, and lamb tissues with excellent linearity (R2 ≥ 99.32 %), good sensitivity (LOD in the range of 0.01-1.52 ng/g), as well as acceptable accuracy and reproducibility (intra-day and inter-day). Compared with conventional methods, the SPME-LC-MS/MS method shows the advantages of simple operation, short extraction time and low organic solvent consumption with low matrix effects. This approach offers a straightforward and reliable solution for direct in situ monitoring PFAS in commercial meat samples and has potential for on-site application.
Collapse
Affiliation(s)
- Yaping Li
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada; Department of Chemistry, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, 100048, China
| | - Wei Zhou
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Runshan Will Jiang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
5
|
Pacyga DC, Buckley JP, Martinez-Steele E, Bommarito PA, Ferguson KK, Stevens DR. Degree of food processing and serum poly- and perfluoroalkyl substance concentrations in the US National Health and Nutrition Examination Survey, 2003-2018. Int J Hyg Environ Health 2025; 266:114557. [PMID: 40068585 DOI: 10.1016/j.ijheh.2025.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ultra-processed foods account for >50% of total energy consumed among U.S. individuals and may be a source of poly- and perfluoroalkyl substances (PFAS) exposure - chemicals linked with cancer/cardiometabolic disorders. OBJECTIVE To evaluate associations between degree of food processing and PFAS exposure. METHODS Serum concentrations of seven PFAS were analyzed in 11,530 individuals ≥12-years-old from the U.S. National Health and Nutrition Examination Survey (2003-2018). We averaged responses from two 24-h dietary recalls to calculate relative energy intakes of unprocessed/minimally processed foods, processed culinary ingredients, processed foods, and ultra-processed foods using the Nova food classification system. We estimated percent differences in concentrations (β; PFAS with ≥70% detection) or odds ratios of detection (OR; PFAS with <70% detection) using linear or logistic regression, respectively. We explored associations stratified by cycle, life stage, sex, body mass index, race/ethnicity, and poverty/income ratio. RESULTS Each 10% increase in ultra-processed food intake was associated with higher serum perfluorohexanesulfonic acid (PFHxS; β: 1.40; 95%CI: -0.12, 2.94), but lower perfluorodecanoic acid (PFDA; β: -4.41; 95%CI: -5.55, -3.26) and perfluoroundecanoic acid (PFUnDA; OR: 0.82; 95%CI: 0.79, 0.86) concentrations. Positive associations between ultra-processed foods and PFHxS were driven by adolescents and under-/normal weight individuals. Additionally, each 10% increase in unprocessed/minimally processed food intake was associated with lower perfluorooctanoic acid (PFOA; β: -1.10; 95%CI: -2.38, 0.20) and PFHxS (β: -1.50; 95%CI: -3.03, 0.06), but higher perfluorononanoic acid (PFNA; β: 1.71; 95%CI: 0.24, 3.21), PFDA (β: 5.33; 95%CI: 3.78, 6.90), and PFUnDA (OR: 1.22; 95%CI: 1.16, 1.27). Positive and negative associations of unprocessed/minimally processed foods and ultra-processed foods, respectively, with PFDA and PFUnDA were strongest in recent survey cycles, males, and non-Hispanic Asians. SIGNIFICANCE Unprocessed/minimally processed foods, more than ultra-processed, were associated with serum PFAS concentrations. Efforts should focus on eliminating PFAS from multiple parts of the food chain.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jessie P Buckley
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Euridice Martinez-Steele
- School of Public Health, Center for Epidemiological Studies in Health and Nutrition, University of São Paulo, São Paulo, Brazil
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
6
|
Farajizadeh A, Giacomin M, Goss G. Enhanced uptake of perfluorooctanoic acid by polystyrene nanoparticles in Pacific oyster (Magallana gigas). Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110119. [PMID: 39725185 DOI: 10.1016/j.cbpc.2024.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The effects of plastic pollution on marine organisms is of growing concern. The hydrophobic surface of plastics adsorbs organic contaminants and can alter the rate of chemical uptake in fishes. Per-fluorinated organic chemicals such as Perfluorooctanoic acid (PFOA) are highly hydrophobic toxic chemicals that adsorb to hydrophobic surfaces. We hypothesized that the presence of nano-sized plastic particles adsorbs PFOA and alter both the physical-chemical properties of the plastics and also enhance PFOA uptake into organisms. Using radiolabelled 14C-PFOA, we measured direct unidirectional uptake of PFOA in juvenile Pacific Oysters (Magallana gigas) at different (0.025, 0.50, and 0.100 mg/L) concentrations, for different exposure periods (1, 2, 4, and 6 h) and investigated whether varying concentrations (0.1, 0.5, 1 mg/L) of either 500 nm or 20 nm polystyrene nanoparticles (PS-NPs) differentially altered the uptake rate of PFOA. Our results demonstrate that PFOA adsorbs to the surface of PS-NPs, altering PS-NP behaviour in solution and significantly increases the rate of uptake of PFOA in exposed Pacific oysters. PFOA uptake at 0.1 mg/L was increased 2.3-fold in the presence of 1 mg/L 500 nm PS-NP and 3.2-fold in the presence of 1 mg/L 20 nm PS-NP. In a separate study to examine if PS NPs potentiate the biochemical response to PFOA, both 500 and 20 nm PS-NP at 100 mg/L increased the 1 mg/L PFOA-induced oxidative stress by 2.5-fold and 3-fold respectively. These findings demonstrate that nanoplastics as co-contaminants in marine systems are able to adsorb PFOA and significantly potentiate its uptake and toxicity.
Collapse
|
7
|
Domingo JL. Updated Mini-Review on Polychlorinated Diphenyl Ethers (PCDEs) in Food: Levels and Dietary Intake. J Food Prot 2025; 88:100456. [PMID: 39880207 DOI: 10.1016/j.jfp.2025.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Polychlorinated diphenyl ethers (PCDEs) are a class of chlorinated aromatic compounds with structural similarities to polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs). Due to their physicochemical properties, PCDEs are highly resistant to degradation and tend to accumulate in soils, sediments, and aquatic organisms, making them capable of entering and persisting in the food chain. As with other persistent organic pollutants (POPs), diet represents the primary route of human exposure to PCDEs. This mini-review focuses on recent studies evaluating the concentrations of PCDEs in foodstuffs. The most recent available dietary intake, estimated in 2008, was 51.6 ng/day, showing an increase from 41 ng/day (reported in 2004). In both cases, the highest concentrations of ΣPCDEs were observed in fish and seafood (1,094.7 ng/kg wet weight in 2008). Notably, studies indicate that ΣPCDE levels are lower in cooked food samples compared to their raw counterparts. However, the potential health risks associated with dietary exposure to PCDEs remain uncertain, as no tolerable daily intake (TDI) values have been established for these compounds. This gap is directly linked to the absence of assigned toxic equivalency factors (TEFs) for PCDE congeners. Establishing TDIs and TEFs for PCDEs is critical to comprehensively assess their health risks and to inform regulatory and public health interventions.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili Laboratory of Toxicology and Environmental Health, School of Medicine, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
8
|
González N, Domingo JL. PFC/PFAS concentrations in human milk and infant exposure through lactation: a comprehensive review of the scientific literature. Arch Toxicol 2025:10.1007/s00204-025-03980-x. [PMID: 39985683 DOI: 10.1007/s00204-025-03980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), previously known as perfluorinated compounds (PFC), are a group of synthetic chemicals widely used over the past decades. Their extensive application, combined with their environmental persistence, has contributed to their ubiquitous presence in the environment and the associated toxicological risks. Regarding humans, blood serum testing remains the primary method for biomonitoring PFAS exposure, while breast milk has also been used due to the transfer of these substances from mothers to infants during lactation. This paper aims to review the scientific literature (using PubMed and Scopus databases) on PFAS concentrations in the breast milk of non-occupationally exposed women. Where available, the estimated daily intake of these compounds by breastfeeding infants is also examined. The reviewed studies are categorized by continent and country/region, revealing a significant lack of data for many countries, including both developed and developing nations. The findings indicate substantial variability in PFAS concentrations, influenced by factors such as geographic location, sampling year, and the specific PFAS analyzed. Among the identified compounds, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are most commonly detected, along with perfluorohexanesulfonic acid (PFHxS) and perfluorononanoic acid (PFNA), being the only PFAS with regulated maximum levels in certain foodstuffs. Most studies were conducted before the implementation of the current (updated) tolerable weekly intake (TWI) values for these substances. Consequently, the majority reported a low health risk for breastfeeding infants, even in high-intake scenarios. Nevertheless, biomonitoring studies are urgently needed in countries with limited or no data, and new investigations should assess whether current estimated intakes exceed the updated TWI. Special focus should be given to rural and industrial areas where exposure levels remain poorly understood.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, San Llorens 21, 43201, Reus, Catalonia, Spain
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, San Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
9
|
Mascari M, Cohen N, Yao M, Huang J, Lane J, Reeves KW, Balasubramanian R, Liu Z, Laouali N, Daniel LM, Chen CY, Seng CY, Shiao-Yng C, Kee MZL, Valvi D, Oulhote Y. Associations of cord blood concentrations of perfluoroalkyl substances with autistic traits in Singaporean children: The growing up in Singapore towards healthy outcomes study. CHEMOSPHERE 2025; 371:144040. [PMID: 39733956 PMCID: PMC11758275 DOI: 10.1016/j.chemosphere.2024.144040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/25/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors. Environmental pollutants may contribute to the etiology of ASD, but studies of perfluoroalkyl substances (PFAS) have shown conflicting results. OBJECTIVES We assessed associations between cord blood concentrations of PFAS with autistic traits at age seven years in a Singaporean birth cohort. METHODS We measured cord blood concentrations of eight PFAS in a sample of 430 mother-child pairs from the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) cohort. We assessed autistic traits using the Social Responsiveness Scale Second Edition (SRS-2) and its sub-scores, in which higher scores indicate more autistic traits. We estimated covariate-adjusted associations between the PFAS and SRS-2 scores using Bayesian weighted quantile sum (BWQS) regression models for the PFAS mixtures and multivariable regressions for single PFAS. We additionally evaluated effect modification by biological sex. RESULTS We observed a positive association between the PFAS mixture and SRS-2 cognition sub-scores (β per SD increase = 1.25 points, 95% CI -0.03, 2.40). Perfluorononanoic acid (PFNA) was the strongest contributor to the mixture effect. In single PFAS models, exposure to PFNA was associated with a higher SRS-2 total score (β = 0.93 points, 95% CI 0.29, 1.58), cognition sub-score (β = 1.26 points, 95% CI 0.55, 1.97), communication sub-score (β = 0.88 points, 95% CI 0.20, 1.56), and restrictive and repetitive behaviors sub-score (β = 0.93 points, 95% CI 0.23, 1.63). We also observed evidence of effect modification by sex for perfluoroundecanoic acid (PFUnDA) for the total score (p-effect modification [EM] = 0.03), cognition sub-score (p-EM = 0.03), and communication sub-score (p-EM = 0.04), with negative associations seen in females and null associations in males. DISCUSSION Cord blood PFAS concentrations were positively associated with autistic traits measured by SRS-2.
Collapse
Affiliation(s)
- Michael Mascari
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts at Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Nathan Cohen
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Meizhen Yao
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Jonathan Huang
- Thompson School of Social Work and Public Health, Office of Public Health Studies, University of Hawaii at Manoa, 2430 Campus Road, Honolulu, HI, 96822, USA.
| | - Jamil Lane
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Katherine W Reeves
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts at Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts at Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts at Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Nasser Laouali
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts at Amherst, 715 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Lourdes Mary Daniel
- Department of Child Development, KK Women's and Children's Hospital, 100 Bukit Timah Road, Singapore, 229899.
| | - Chia-Yang Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Road, Zhongzheng District, Taipei City, 100, Taiwan.
| | - Chong Yap Seng
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597.
| | - Chan Shiao-Yng
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117597; Institute for Human Development and Potential (IHDP), Agency for Science, Technology, and Research (A∗STAR), 1, #20-10 Fusionopolis Wy, Connexis, North Tower, 138632, Singapore.
| | - Michelle Z L Kee
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology, and Research (A∗STAR), 1, #20-10 Fusionopolis Wy, Connexis, North Tower, 138632, Singapore; Brain-Body Initiative, Agency for Science, Technology, and Research (A∗STAR), 1, #20-10 Fusionopolis Wy, Connexis, North Tower, 138632, Singapore.
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Youssef Oulhote
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Ogunbiyi OD, Lemos L, Brinn RP, Quinete NS. Bioaccumulation potentials of per-and polyfluoroalkyl substances (PFAS) in recreational fisheries: Occurrence, health risk assessment and oxidative stress biomarkers in coastal Biscayne Bay. ENVIRONMENTAL RESEARCH 2024; 263:120128. [PMID: 39389194 DOI: 10.1016/j.envres.2024.120128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/06/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Per-and polyfluoroalkyl substances (PFAS) are a group of synthetic, highly fluorinated, and emerging chemicals that are reported to be used for both industrial and domestic applications. Several PFAS have demonstrated persistent, bioaccumulative and toxic tendencies in marine organisms. Therefore, this research aims to characterize and quantify these compounds in both recreational fisheries and surface water samples, including estimating their bioaccumulation potentials. In addition, we assessed the potential contribution of biomonitoring tools such as oxidative stressors and morphological index on fish and ecological health. Finally, human health risk assessment was performed based on available toxicological data on limited PFAS. All PFAS were detected in at least one sample except for N-EtFOSAA in lobster which was below the method detection limit. ƩPFAS body burden ranged from 0.15 to 3.40 ng/g wet weight (ww) in blackfin tuna samples and 0.37-5.15 ng/g ww in lobster samples, respectively. Wilcoxon rank paired test (α = 0.05) shows that there is statistical significance (ρ < 0.05) of ƩPFAS between species. Bioaccumulation factors (BAF) suggest an increasing trend in PFAS classes (PFCAs < PFSAs < FTSs), with higher BAFs observed in tuna compared to lobster. Long-chain PFESAs and FASAA were reported at higher concentrations in lobster compared to Blackfin tuna due to their bioavailability through sediment-sorption interactions. Although Fulton's condition factor (FCF) indicates healthy fish conditions, oxidative stress biomarkers suggest that tuna and lobster might be under stress, which can weaken their immune system against exposure to emerging contaminants such as PFAS. Hazard risk (HR) suggests a low risk to human health based on the consumption of the studied species; however, the risk of contaminant exposure may be higher than estimated. This study is aimed at improving food safety by providing better understanding of how PFAS infiltrate into human diet and incorporating data on influence of contaminant exposure and environmental stressors on marine health.
Collapse
Affiliation(s)
- Olutobi Daniel Ogunbiyi
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151ST St, Biscayne Bay Campus, Marine Science Building, North Miami, FL, 33181, USA; Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA.
| | - Leila Lemos
- Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA
| | - Richard P Brinn
- Department of Biological Sciences -Institute of Environment-LACC, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA
| | - Natalia Soares Quinete
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151ST St, Biscayne Bay Campus, Marine Science Building, North Miami, FL, 33181, USA; Institute of Environment, Florida International University, 11200 SW 8th Street, Modesto A. Maidique Campus, Miami, FL, 33199, USA.
| |
Collapse
|
11
|
Zhang W, Lu Q, Chen H, Li Y, Hua Y, Wang J, Chen F, Zheng R. A novel high-throughput quantitative method for the determination of per- and poly-fluoroalkyl substances in human plasma based on UHPLC-Q/Orbitrap HRMS coupled with isotope internal standard. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136138. [PMID: 39467434 DOI: 10.1016/j.jhazmat.2024.136138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
A novel method for the quantitative analysis of 56 per- and polyfluoroalkyl substances (PFASs) in human plasma was established on the basis of ultrahigh performance liquid chromatography tandem quadrupole Orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS) in combination with accurate customized mass databases and isotopic internal standards. A streamlined, high-throughput, and high-recovery (RE) sample pretreatment method was developed. The method's performance was evaluated in terms of linearity, limit of quantification, RE, repeatability, reproducibility, and matrix effect. The proposed method was applied in the simultaneous analysis of 56 PFASs in human plasma, and its results demonstrated high sensitivity, accuracy, and precision. The optimized method was implemented to analyze PFASs in 135 plasma samples, and 12 components were detected. The comparative analysis of the results from 135 plasma samples with domestic and international studies revealed elevated contents of PFOA, PFOS, PFBA, and PFTrDA, the moderate amounts of PFHxS, PFUdA, PFBS, and PFHpS, and the low concentrations of PFNA and PFDA. Notably, GenX was detected in human plasma for the first time. This finding suggests that the study region is contaminated with this substance. Correlation analysis revealed a strong relationship among PFNA, PFDA, and PFUdA, implying that these substances may have similar exposure sources.
Collapse
Affiliation(s)
- Wenting Zhang
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Qiuyan Lu
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Huafeng Chen
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Yuxiang Li
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Yongyou Hua
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China
| | - Jing Wang
- School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China
| | - Fa Chen
- School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China
| | - Renjin Zheng
- Physical and Chemical Laboratory, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, Fujian, China; School of Public Health, Fujian Medical University, Fuzhou 350112, Fujian, China.
| |
Collapse
|
12
|
Li L, Cao S, Shang X, Zhang L, Guan J, Shao K, Qin N, Duan X. Occurrence of per- and polyfluoroalkyl substances in drinking water in China and health risk assessment based on a probabilistic approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136072. [PMID: 39388858 DOI: 10.1016/j.jhazmat.2024.136072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/05/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) raise concerns due to their widespread distribution, persistence, and toxicity to humans. Current studies lack the use of exposure parameters for Chinese populations and probabilistic risk assessment (PRA) to assess health risks of PFASs. To provide a scientific basis for the standards of PFASs in drinking water in China, data on concentrations of nine PFASs in 649 drinking water samples were collected from China through literature review. The highest concentration of PFASs was 17.41 ± 20.06 ng/L for perfluorobutyric acid (PFBA). Higher concentrations of PFASs were found in the southeastern coastal and in Sichuan Province. The probability of exceeding the standardized limits for drinking water for PFOA and PFOS was 2.71 % and 0.91 %. PRA and deterministic risk assessment (DRA) were used to assess non-carcinogenic risks in different age groups and provinces. Health risks of PFASs from oral exposure notably exceeded dermal contact. The Hazard Quotient (HQ) for oral exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) exceeded the acceptable level with a certain probability. The non-carcinogenic risk of exposure to PFASs in drinking water was negligible for the majority of the Chinese population. The study indicates that China should increase research on limits of PFASs in drinking water to reduce the health risks.
Collapse
Affiliation(s)
- Linqian Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Suzhen Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaochen Shang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liwen Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiacheng Guan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kan Shao
- Indiana University, School of Public Health Bloomington, Department of Environmental and Occupational Health, Bloomington, IN 47405, United States
| | - Ning Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
13
|
Li J, Sun J, Chao L, Chen J, Huang L, Kang B. Exposure, spatial distribution, and health risks of perfluoroalkyl acids in commercial fish species in the Beibu Gulf. MARINE POLLUTION BULLETIN 2024; 209:117101. [PMID: 39413479 DOI: 10.1016/j.marpolbul.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
The global distribution, persistence, bioaccumulation, and toxicity of per- and polyfluoroalkyl substances (PFAS) have received significant attention. We determined the contents of major perfluoroalkyl acids (PFAAs) in various commercial fish species from different regions of the Beibu Gulf. We detected 14 out of 17 PFAAs across all species, with PFOS (Perfluorooctanesulphonate) showing the highest detection rate, followed by PFHxS (Perfluorohexanesulfonic acid), PFPeA (Perfluorovaleric acid), and PFTrDA (Perfluorotetradecanoic acid). The concentrations of ∑PFAAs ranged from 0.22 to 7.43 ng/g (ww). Additionally, PFCAs dominated the PFAA profile (70 %) in the southern Beibu Gulf in comparison with the northern (53 %) and central Beibu Gulf (48 %). PFOS was the most abundant compound, accounting for 41 % of total PFAAs, followed by PFUdA (Perfluoroundecanoic Acid) (14 %) and PFOA (Perfluorooctanoic Acid) (12 %). The estimated daily intakes and hazard ratios of PFOS and PFOS indicate that there is no significant health risk from people consuming these fish.
Collapse
Affiliation(s)
- Jintao Li
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Le Chao
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jingrui Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541000, China
| | - Bin Kang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China.
| |
Collapse
|
14
|
Dangudubiyyam SV, Hofmann A, Yadav P, Kumar S. Per- and polyfluoroalkyl substances (PFAS) and hypertensive disorders of Pregnancy- integration of epidemiological and mechanistic evidence. Reprod Toxicol 2024; 130:108702. [PMID: 39222887 PMCID: PMC11625001 DOI: 10.1016/j.reprotox.2024.108702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Hypertensive disorders of pregnancy (HDP) remain a significant global health burden despite medical advancements. HDP prevalence appears to be rising, leading to increased maternal and fetal complications, mortality, and substantial healthcare costs. The etiology of HDP are complex and multifaceted, influenced by factors like nutrition, obesity, stress, metabolic disorders, and genetics. Emerging evidence suggests environmental pollutants, particularly Per- and polyfluoroalkyl substances (PFAS), may contribute to HDP development. OBJECTIVE This review integrates epidemiological and mechanistic data to explore the intricate relationship between PFAS exposure and HDP. EPIDEMIOLOGICAL EVIDENCE Studies show varying degrees of association between PFAS exposure and HDP, with some demonstrating positive correlations, particularly with preeclampsia. Meta-analyses suggest potential fetal sex-specific differences in these associations. MECHANISTIC INSIGHTS Mechanistically, PFAS exposure appears to disrupt vascular hemodynamics, placental development, and critical processes like angiogenesis and sex steroid regulation. Experimental studies reveal alterations in the renin-angiotensin system, trophoblast invasion, oxidative stress, inflammation, and hormonal dysregulation - all of which contribute to HDP pathogenesis. Elucidating these mechanisms is crucial for developing preventive strategies. THERAPEUTIC POTENTIAL Targeted interventions such as AT2R agonists, caspase inhibitors, and modulation of specific microRNAs show promise in mitigating adverse outcomes associated with PFAS exposure during pregnancy. KNOWLEDGE GAPS AND FUTURE DIRECTIONS Further research is needed to comprehensively understand the full spectrum of PFAS-induced placental alterations and their long-term implications for maternal and fetal health. This knowledge will be instrumental in developing effective preventive and therapeutic strategies for HDP in a changing environmental landscape.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Alissa Hofmann
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
15
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
16
|
Shen J, Mao Y, Zhang H, Lou H, Zhang L, Moreira JP, Jin F. Exposure of women undergoing in-vitro fertilization to per-and polyfluoroalkyl substances: Evidence on negative effects on fertilization and high-quality embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124474. [PMID: 38992828 DOI: 10.1016/j.envpol.2024.124474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
In April 2023, the World Health Organization (WHO) reported that 17.5% of the global adult population experience infertility. What may be the contribution of per-and polyfluoroalkyl (PFAS) to this global public health problem? This study explored the associations between in vitro fertilization (IVF) outcomes and plasma concentrations of individual PFAS and PFAS mixtures in women undergoing in vitro fertilization and embryo transfer (IVF-ET) and how these exposures might affect IVF outcomes. We analyzed 8 PFASs in plasma samples from women (N = 259) who underwent IVF treatment. In multivariable generalized linear mixed models, there were statistically significant associations of higher plasma concentrations of PFNA with reduced numbers of total retrieved oocytes [12.486 (95%CI: 0.446,25.418), p trend = 0.017], 2 PN zygotes [6.467(95%CI: 2.034,14.968), p trend = 0.007], and cleavage embryos [6.039(95%CI: 2.162,14.240), p trend = 0.008]. Similarly, there was a continuous decline in the numbers of retrieved 2 PN zygotes and cleavage embryos with increasing concentration of PFOS [6.467(95%CI: 2.034,14.968), p trend = 0.009 and 6.039(95%CI: 2.162,14.240), p trend = 0.031,respectively] and a negative association between PFHxS concentrations and clinical pregnancy during the initial cycles of frozen ET [0.525(95%CI:0.410,0.640), p trend = 0.021]. To investigate the joint effect of PFAS mixtures, a confounder-adjusted BKMR model analysis showed inverse relationship between PFAS mixtures and the number of high-quality embryos, 2 PN zygotes and cleavage embryos, to which the greatest contributors to the mixture effect are PFDeA and PFBS, respectively. It demonstrated that PFAS exposure might exert negative effects on oocyte yield, fertilization and high-quality embryo in women undergoing IVF. These findings suggest that exposure to PFAS may increase the risk of female infertility and further studies are needed to uncover the potential mechanisms underlying the reproductive effects associated with PFAS.
Collapse
Affiliation(s)
- Juan Shen
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuchan Mao
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongyan Zhang
- Hangzhou Women's Hospital, 369 Kunpeng Road, Hangzhou, China
| | - Hangying Lou
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Joaquim Paulo Moreira
- International Healthcare Management Research and Development Center (IHM_RDC), The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong, Jinan, China; Henan Normal University, School of Social Affairs, Xinxiang, China; Atlantica Instituto Universitario, Gestao em Saude, Oeiras, Portugal.
| | - Fan Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
17
|
Wang Z, Zhang B, Zhang J, Xu S, Dai Y, Ding J, Guo J, Qi X, Chang X, Wu C, Zhou Z. Prenatal exposure to per- and polyfluoroalkyl substances and sex-specific associations with offspring adiposity at 10 years of age: Metabolic perturbation plays a role. ENVIRONMENT INTERNATIONAL 2024; 192:109037. [PMID: 39353210 DOI: 10.1016/j.envint.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been suspected as potential environmental obesogens, with several mechanisms being proposed, including the role of metabolomics. However, current epidemiological studies have yielded inconclusive findings. OBJECTIVES We aimed to estimate the associations of prenatal exposure to PFAS with offspring adiposity measures, and to explore the potential metabolic pathways underlying these associations. METHODS A total of 464 mother-child pairs from the Sheyang Mini Birth Cohort Study (SMBCS) were included in this study. Cord serum concentrations of 12 PFAS and urine metabolite profiles at age 10 were obtained from the SMBCS database. Adiposity-related anthropometric measurements and body composition estimates of children aged 10 were used to assess offspring obesity. Multiple linear regression models and quantile g-computation were conducted to estimate the associations of prenatal exposure to individual and multiple PFAS with obesity at 10 years old. Metabolomics analysis was performed to characterize the biological pathways associated with PFAS exposure or obesity, subsequently identifying the overlapping metabolic pathways underlying the PFAS-obesity relationship. RESULTS Prenatal exposure to several PFAS was significantly associated with elevated obesity-related markers in 10-year-old children. After stratification by sex, the effects were more pronounced in girls. Quantile g-computation results indicated that exposure to higher levels of PFAS mixtures during pregnancy was associated with increased odds of obesity in girls, with PFNA emerging as the predominant driving compound. Untargeted metabolomics results showed that several amino acid metabolic pathways were characterized as the overlapping pathways underlying the above associations. CONCLUSIONS Taken together, our findings suggested the potential obesogenic effects of prenatal exposure to PFAS and offered insight into the possible metabolic mechanisms underlying PFAS-related offspring obesity.
Collapse
Affiliation(s)
- Zheng Wang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Boya Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| | - Sinan Xu
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
18
|
Qian B, Rayner JL, Davis GB, Trinchi A, Collis G, Kyratzis IL, Kumar A. Per- and poly-fluoroalkyl substances (PFAS) sensing: A focus on representatively sampling soil vadose zones linked to nano-sensors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116932. [PMID: 39205356 DOI: 10.1016/j.ecoenv.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a group of organo-fluorine compounds that have been broadly used in consumer and industrial products spanning virtually all sectors. They can be found as surfactants, coatings and liners, polymer additives, fire retardants, adhesives, and many more. The chemical stability of the carbon fluorine bond and amphiphilic nature of PFAS result in their persistence and mobility in the environment via soil porewater, surface water and groundwater, with potential for adverse effects on the environment and human health. There is an emergent and increasing requirement for fast, low-cost, robust, and portable methods to detect PFAS, especially in the field. There may be thousands of PFAS compounds present in soil and water at extremely low concentration (0.01-250 ppb) that require measurement, and traditional technologies for continuous environmental sensing are challenged due to the complexity of soil chemistry. This paper presents a comprehensive review of potentially rapid PFAS measurement methods, focused on techniques for representative sampling of PFAS in porewater from contaminated soil, and approaches for pre-treatment of porewater samples to eliminate these interferences to be ready for PFAS-detecting sensors. The review discusses selectivity, a key factor underlying pre-treatment and sensing performance, and explores the interactions between PFAS and various sensors. PFAS chemical nano-sensors discussed are categorized in terms of the detection mechanism (electrochemical and optical). This review aims to provide guidance and outline the current challenges and implications for future routine PFAS sensing linked to soil porewater collection, to achieve more selective and effective PFAS sensors.
Collapse
Affiliation(s)
- Bin Qian
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia.
| | - John L Rayner
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Greg B Davis
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Adrian Trinchi
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Gavin Collis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Ilias Louis Kyratzis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Anand Kumar
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| |
Collapse
|
19
|
Granby K, Bhattarai B, Johannsen N, Kotterman MJJ, Sloth JJ, Cederberg TL, Marques A, Larsen BK. Microplastics in feed affect the toxicokinetics of persistent halogenated pollutants in Atlantic salmon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124421. [PMID: 38914195 DOI: 10.1016/j.envpol.2024.124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Microplastics (MPs) are carriers of persistent organic pollutants (POPs). The influence of MPs on the toxicokinetics of POPs was investigated in a feeding experiment on Atlantic salmon (Salmo salar), in which fish were fed similar contaminant concentrations in feed with contaminants sorbed to MPs (Cont. MPs); feed with virgin MPs and contaminated feed (1:1), and feed with contaminants without MPs (Cont.). The results showed that the salmon fillets accumulated more POPs when fed with a diet where contaminants were sorbed to the MPs, despite the 125-250 μm size MPs themselves passing the intestines without absorption. Furthermore, depuration was significantly slower for several contaminants in fish fed the diet with POPs sorbed to the MPs. Modelled elimination coefficients and assimilation efficiencies of lipophilic chlorinated and brominated contaminants correlated with contaminant hydrophobicity (log Kow) within the diets and halogen classes. The more lipophilic the contaminant was, the higher was the transfer from feed to salmon fillet. The assimilation efficiency for the diet without MPs was 50-71% compared to 54-89% for the contaminated MPs diet. In addition, MPs caused a greater proportional uptake of higher molecular weight brominated congeners. In the present study, higher assimilation efficiencies and a significantly higher slope of assimilation efficiencies vs log Kow were found for the Cont. MPs diet (p = 0.029), indicating a proportionally higher uptake of higher-brominated congeners compared to the Cont. diet. Multiple variance analyses of elimination coefficients and assimilation efficiencies showed highly significant differences between the three diets for the chlorinated (p = 2E-06; 6E-04) and brominated (p = 5E-04; 4E-03) congeners and within their congeners. The perfluorinated POPs showed low assimilation efficiencies of <12%, which can be explained by faster eliminations corresponding to half-lives of 11-39 days, as well as a lower proportional distribution to the fillet, compared to e.g. the liver.
Collapse
Affiliation(s)
- Kit Granby
- Technical University of Denmark (DTU), National Food Institute, Henrik Dams Alle B201, 2800, Kgs. Lyngby, Denmark
| | - Bina Bhattarai
- Technical University of Denmark (DTU), National Food Institute, Henrik Dams Alle B201, 2800, Kgs. Lyngby, Denmark.
| | - Ninna Johannsen
- Technical University of Denmark (DTU), National Food Institute, Henrik Dams Alle B201, 2800, Kgs. Lyngby, Denmark
| | - Michiel J J Kotterman
- Wageningen Marine Research (WMR) Wageningen University and Research, Haringkade 1, 1976 CP, IJmuiden, the Netherlands
| | - Jens J Sloth
- Technical University of Denmark (DTU), National Food Institute, Henrik Dams Alle B201, 2800, Kgs. Lyngby, Denmark
| | - Tommy Licht Cederberg
- Technical University of Denmark (DTU), National Food Institute, Henrik Dams Alle B201, 2800, Kgs. Lyngby, Denmark
| | - António Marques
- Portuguese Institute for the Sea and Atmosphere (IPMA), Division of Aquaculture and Upgrading, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165, Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Bodil Katrine Larsen
- Technical University of Denmark (DTU), National Institute of Aquatic Resources, Section for Aquaculture, Niels Juelsvej 30, 9850, Hirtshals, Denmark
| |
Collapse
|
20
|
Moreira R, B Esfahani E, A Zeidabadi F, Rostami P, Thuo M, Mohseni M, Foster EJ. Hybrid graphenic and iron oxide photocatalysts for the decomposition of synthetic chemicals. COMMUNICATIONS ENGINEERING 2024; 3:114. [PMID: 39169101 PMCID: PMC11339293 DOI: 10.1038/s44172-024-00267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that resist degradation, posing a significant environmental and health risk. Current methods for removing PFAS from water are often complex and costly. Here we report a simple, cost-effective method to synthesize an iron oxide/graphenic carbon (Fe/g-C) hybrid photocatalyst for PFAS degradation. This photocatalyst efficiently degrades perfluorooctanoic acid (PFOA), a common type of PFAS, achieving over 85% removal within 3 hours under ultraviolet light. The catalyst also maintains high degradation rates over extended periods, demonstrating its stability and potential for long-term use. This innovative approach offers a promising solution for addressing PFAS contamination in water, contributing to a cleaner and healthier environment.
Collapse
Affiliation(s)
- Raphaell Moreira
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada.
- Institute of Applied and Physical Chemistry, Universität Bremen, Leobener Str. 6, D-28359, Bremen, Germany.
| | - Ehsan B Esfahani
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Fatemeh A Zeidabadi
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Pani Rostami
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Martin Thuo
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Earl J Foster
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Roth K, Yang Z, Agarwal M, Birbeck J, Westrick J, Lydic T, Gurdziel K, Petriello MC. Exposure of Ldlr-/- Mice to a PFAS Mixture and Outcomes Related to Circulating Lipids, Bile Acid Excretion, and the Intestinal Transporter ASBT. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:87007. [PMID: 39177951 PMCID: PMC11343043 DOI: 10.1289/ehp14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Previous epidemiological studies have repeatedly found per- and polyfluoroalkyl substances (PFAS) exposure associated with higher circulating cholesterol, one of the greatest risk factors for development of coronary artery disease. The main route of cholesterol catabolism is through its conversion to bile acids, which circulate between the liver and ileum via enterohepatic circulation. Patients with coronary artery disease have decreased bile acid excretion, indicating that PFAS-induced impacts on enterohepatic circulation may play a critical role in cardiovascular risk. OBJECTIVES Using a mouse model with high levels of low-density and very low-density lipoprotein (LDL and VLDL, respectively) cholesterol and aortic lesion development similar to humans, the present study investigated mechanisms linking exposure to a PFAS mixture with increased cholesterol. METHODS Male and female L d l r - / - mice were fed an atherogenic diet (Clinton/Cybulsky low fat, 0.15% cholesterol) and exposed to a mixture of 5 PFAS representing legacy, replacement, and emerging subtypes (i.e., PFOA, PFOS, PFHxS, PFNA, GenX), each at a concentration of 2 mg / L , for 7 wk. Blood was collected longitudinally for cholesterol measurements, and mass spectrometry was used to measure circulating and fecal bile acids. Transcriptomic analysis of ileal samples was performed via RNA sequencing. RESULTS After 7 wk of PFAS exposure, average circulating PFAS levels were measured at 21.6, 20.1, 31.2, 23.5, and 1.5 μ g / mL in PFAS-exposed females and 12.9, 9.7, 23, 14.3, and 1.7 μ g / mL in PFAS-exposed males for PFOA, PFOS, PFHxS, PFNA, and GenX, respectively. Total circulating cholesterol levels were higher in PFAS-exposed mice after 7 wk (352 mg / dL vs. 415 mg / dL in female mice and 392 mg / dL vs. 488 mg / dL in male mice exposed to vehicle or PFAS, respectively). Total circulating bile acid levels were higher in PFAS-exposed mice (2,978 pg / μ L vs. 8,496 pg / μ L in female mice and 1,960 pg / μ L vs. 4,452 pg / μ L in male mice exposed to vehicle or PFAS, respectively). In addition, total fecal bile acid levels were lower in PFAS-exposed mice (1,797 ng / mg vs. 682 ng / mg in females and 1,622 ng / mg vs. 670 ng / mg in males exposed to vehicle or PFAS, respectively). In the ileum, expression levels of the apical sodium-dependent bile acid transporter (ASBT) were higher in PFAS-exposed mice. DISCUSSION Mice exposed to a PFAS mixture displayed higher circulating cholesterol and bile acids perhaps due to impacts on enterohepatic circulation. This study implicates PFAS-mediated effects at the site of the ileum as a possible critical mediator of increased cardiovascular risk following PFAS exposure. https://doi.org/10.1289/EHP14339.
Collapse
Affiliation(s)
- Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Johnna Birbeck
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, Michigan, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, Michigan, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Katherine Gurdziel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Genome Sciences Core, Wayne State University, Detroit, Michigan, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
22
|
Coperchini F, Greco A, Rotondi M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects? J Endocrinol Invest 2024; 47:1863-1879. [PMID: 38522066 PMCID: PMC11266260 DOI: 10.1007/s40618-024-02339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
23
|
Wang Y, Gui J, Howe CG, Emond JA, Criswell RL, Gallagher LG, Huset CA, Peterson LA, Botelho JC, Calafat AM, Christensen B, Karagas MR, Romano ME. Association of diet with per- and polyfluoroalkyl substances in plasma and human milk in the New Hampshire Birth Cohort Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173157. [PMID: 38740209 PMCID: PMC11247473 DOI: 10.1016/j.scitotenv.2024.173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA.
| | - Jiang Gui
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Caitlin G Howe
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Jennifer A Emond
- Department of Biomedical Data Science, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Rachel L Criswell
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA; Skowhegan Family Medicine, Redington-Fairview General Hospital, Skowhegan, ME 04976, USA
| | - Lisa G Gallagher
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Carin A Huset
- Minnesota Department of Health, St. Paul, MN 55101, USA
| | - Lisa A Peterson
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Brock Christensen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| |
Collapse
|
24
|
Wang Y, Yin D, Sun X, Zhang W, Ma H, Huang J, Yang C, Wang J, Geng Q. Perfluoroalkyl sulfonate induces cardiomyocyte apoptosis via endoplasmic reticulum stress activation and autophagy flux inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172582. [PMID: 38649052 DOI: 10.1016/j.scitotenv.2024.172582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Perfluoroalkyl sulfonate (PFOS) is a commonly used chemical compound that often found in materials such as waterproofing agents, food packaging, and fire retardants. Known for its stability and persistence in the environment, PFOS can enter the human body through various pathways, including water and the food chain, raising concerns about its potential harm to human health. Previous studies have suggested a cardiac toxicity of PFOS, but the specific cellular mechanisms remained unclear. Here, by using AC16 cardiomyocyte as a model to investigate the molecular mechanisms potential the cardiac toxicity of PFOS. Our findings revealed that PFOS exposure reduced cell viability and induces apoptosis in human cardiomyocyte. Proteomic analysis and molecular biological techniques showed that the Endoplasmic Reticulum (ER) stress-related pathways were activated, while the cellular autophagy flux was inhibited in PFOS-exposed cells. Subsequently, we employed strategies such as autophagy activation and ER stress inhibition to alleviate the PFOS-induced apoptosis in AC16 cells. These results collectively suggest that PFOS-induced ER stress activation and autophagy flux inhibition contribute to cardiomyocyte apoptosis, providing new insights into the mechanisms of PFOS-induced cardiomyocyte toxicity.
Collapse
Affiliation(s)
- Yuanhao Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Da Yin
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Huan Ma
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Er Road, Guangzhou, Guangdong, China
| | - Jingnan Huang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Esurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingshan Geng
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
25
|
Xie X, Lu Y, Lei H, Cheng J, An X, Wang W, Jiang X, Xie J, Xiong Y, Wu T. Bioaccumulation and trophic transfer of per- and polyfluoroalkyl substances in a subtropical mangrove estuary food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172094. [PMID: 38575036 DOI: 10.1016/j.scitotenv.2024.172094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Mangrove estuaries are an important land-sea transitional ecosystem that is currently under various pollution pressures, while there is a lack of research on per- and polyfluoroalkyl substances (PFAS) in the organisms of mangrove estuaries. In this study, we investigated the distribution and seasonal variation of PFAS in the tissues of organisms from a mangrove estuary. The PFAS concentrations in fish tissues varied from 0.45 ng/g ww to 17.67 ng/g ww and followed the order of viscera > head > carcass > muscle, with the highest tissue burden found in the fish carcass (39.59 ng). The log BAF values of PFDoDA, PFUnDA, and PFDA in the whole fish exceeded 3.70, indicating significant bioaccumulation. The trophic transfer of PFAS in the mangrove estuary food web showed a dilution effect, which was mainly influenced by the spatial heterogeneity of PFAS distribution in the estuarine environment, and demonstrated that the gradient dilution of PFAS in the estuary habitat environment can disguise the PFAS bio-magnification in estuarine organisms, and the larger the swimming ranges of organisms, the more pronounced the bio-dilution effect. The PFOA-equivalent HRs of category A and B fish were 3.48-5.17 and 2.59-4.01, respectively, indicating that mangrove estuarine residents had a high PFAS exposure risk through the intake of estuarine fish.
Collapse
Affiliation(s)
- Xingwei Xie
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Fujian 361102, China
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China.
| | - Haojie Lei
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jianhua Cheng
- Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Fujian 361102, China
| | - Xupeng An
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Wenqing Wang
- Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Fujian 361102, China
| | - Xudong Jiang
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Jianglin Xie
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Yunting Xiong
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| | - Ting Wu
- State Key Laboratory of Marine Environmental Science and International Institute for Sustainability Science, College of the Environment and Ecology, Xiamen University, Fujian 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Fujian 361102, China
| |
Collapse
|
26
|
Sands M, Zhang X, Jensen T, La Frano M, Lin M, Irudayaraj J. PFAS assessment in fish - Samples from Illinois waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172357. [PMID: 38614344 DOI: 10.1016/j.scitotenv.2024.172357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) have been widely used in various industries, including pesticide production, electroplating, packaging, paper making, and the manufacturing of water-resistant clothes. This study investigates the levels of PFAS in fish tissues collected from four target waterways (15 sampling points) in the northwestern part of Illinois during 2021-2022. To assess accumulation, concentrations of 17 PFAS compounds were evaluated in nine fish species to potentially inform on exposure risks to local sport fishing population via fish consumption. At least four PFAS (PFHxA, PFHxS, PFOS, and PFBS) were detected at each sampling site. The highest concentrations of PFAS were consistently found in samples from the Rock River, particularly in areas near urban and industrial activities. PFHxA emerged as the most accumulated PFAS in the year 2022, while PFBS and PFOS dominated in 2021. Channel Catfish exhibited the highest PFAS content across different fish species, indicating its bioaccumulation potential across the food chain. Elevated levels of PFOS were observed in nearly all fish, indicating the need for careful consideration of fish consumption. Additional bioaccumulation data in the future years is needed to shed light on the sources and PFAS accumulation potential in aquatic wildlife in relation to exposures for potential health risk assessment.
Collapse
Affiliation(s)
- Mia Sands
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Xing Zhang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Tor Jensen
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Michael La Frano
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mindy Lin
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute of Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States.
| |
Collapse
|
27
|
Wei T, Leung JYS, Wang T. Can PFAS threaten the health of fish consumers? A comprehensive analysis linking fish consumption behaviour and health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170960. [PMID: 38365019 DOI: 10.1016/j.scitotenv.2024.170960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Despite being phased out for decades, per- and polyfluoroalkyl substances (PFAS) are still widely detected in the environment and accumulated in many aquaculture organisms for human consumption. Thus, there is growing concern about whether fish consumption can cause PFAS-associated health impacts on humans since fish is a vital protein source for global populations. Here, we assess the potential driving factors of fish consumption by analysing the aquaculture, demographic and socio-economic data across 31 provinces/municipalities in China, followed by estimating the health risk of PFAS via fish consumption. We found that per capita fish consumption was primarily driven by fish production and total area for freshwater aquaculture, while urbanization rate and median age of consumers were also important. The health risk of PFAS was low (hazard quotient <1) in most provinces, while urban consumers were more prone to PFAS than rural consumers across all provinces. Since PFAS have been phased out worldwide, their health risk to humans through fish consumption would be lower than previously thought. To reduce PFAS intake for the high-risk populations, we recommend that fish should be well cooked before consumption, preferably using water-based cooking methods, and that alternative protein sources should be consumed more as the substitute for fish.
Collapse
Affiliation(s)
- Ting Wei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
28
|
Li Y, Zhi Y, Weed R, Broome SW, Knappe DRU, Duckworth OW. Commercial compost amendments inhibit the bioavailability and plant uptake of per- and polyfluoroalkyl substances in soil-porewater-lettuce systems. ENVIRONMENT INTERNATIONAL 2024; 186:108615. [PMID: 38582061 DOI: 10.1016/j.envint.2024.108615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Compost is widely used in agriculture as fertilizer while providing a practical option for solid municipal waste disposal. However, compost may also contain per- and polyfluoroalkyl substances (PFAS), potentially impacting soils and leading to PFAS entry into food chains and ultimately human exposure risks via dietary intake. This study examined how compost affects the bioavailability and uptake of eight PFAS (two ethers, three fluorotelomer sulfonates, and three perfluorosulfonates) by lettuce (Lactuca sativa) grown in commercial organic compost-amended, PFAS spiked soils. After 50 days of greenhouse experiment, PFAS uptake by lettuce decreased (by up to 90.5 %) with the increasing compost amendment ratios (0-20 %, w/w), consistent with their decreased porewater concentrations (by 30.7-86.3 %) in compost-amended soils. Decreased bioavailability of PFAS was evidenced by the increased in-situ soil-porewater distribution coefficients (Kd) (by factors of 1.5-7.0) with increasing compost additions. Significant negative (or positive) correlations (R2 ≥ 0.55) were observed between plant bioaccumulation (or Kd) and soil organic carbon content, suggesting that compost amendment inhibited plant uptake of PFAS mainly by increasing soil organic carbon and enhancing PFAS sorption. However, short-chain PFAS alternatives (e.g., perfluoro-2-methoxyacetic acid (PFMOAA)) were effectively translocated to shoots with translocation factors > 2.9, increasing their risks of contamination in leafy vegetables. Our findings underscore the necessity for comprehensive risk assessment of compost-borne PFAS when using commercial compost products in agricultural lands.
Collapse
Affiliation(s)
- Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, United States.
| | - Yue Zhi
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, United States; Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Rebecca Weed
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, United States
| | - Stephen W Broome
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, United States
| | - Detlef R U Knappe
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, United States
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, United States
| |
Collapse
|
29
|
Aker A, Nguyen V, Ayotte P, Ricard S, Lemire M. Characterizing Important Dietary Exposure Sources of Perfluoroalkyl Acids in Inuit Youth and Adults in Nunavik Using a Feature Selection Tool. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47014. [PMID: 38683744 PMCID: PMC11057678 DOI: 10.1289/ehp13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Previous studies have identified the consumption of country foods (hunted/harvested foods from the land) as the primary exposure source of perfluoroalkyl acids (PFAA) in Arctic communities. However, identifying the specific foods associated with PFAA exposures is complicated due to correlation between country foods that are commonly consumed together. METHODS We used venous blood sample data and food frequency questionnaire data from the Qanuilirpitaa? ("How are we now?") 2017 (Q2017) survey of Inuit individuals ≥ 16 y of age residing in Nunavik (n = 1,193 ). Adaptive elastic net, a machine learning technique, identified the most important food items for predicting PFAA biomarker levels while accounting for the correlation among the food items. We used generalized linear regression models to quantify the association between the most predictive food items and six plasma PFAA biomarker levels. The estimates were converted to percent changes in a specific PFAA biomarker level per standard deviation increase in the consumption of a food item. Models were also stratified by food type (market or country foods). RESULTS Perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) were associated with frequent consumption of beluga misirak (rendered fat) [14.6%; 95% confidence interval (CI): 10.3%, 18.9%; 14.6% (95% CI: 10.1%, 19.0%)], seal liver [9.3% (95% CI: 5.0%, 13.7%); 8.1% (95% CI: 3.5%, 12.6%)], and suuvalik (fish roe mixed with berries and fat) [6.0% (95% CI: 1.3%, 10.7%); 7.5% (95% CI: 2.7%, 12.3%)]. Beluga misirak was also associated with higher concentrations of perfluorohexanesulphonic acid (PFHxS) and perfluorononanoic acid (PFNA), albeit with lower percentage changes. PFHxS, perfluorooctanoic acid (PFOA), and PFNA followed some similar patterns, with higher levels associated with frequent consumption of ptarmigan [6.1% (95% CI: 3.2%, 9.0%); 5.1% (95% CI: 1.1%, 9.1%); 5.4% (95% CI: 1.8%, 9.0%)]. Among market foods, frequent consumption of processed meat and popcorn was consistently associated with lower PFAA exposure. CONCLUSIONS Our study identifies specific food items contributing to environmental contaminant exposure in Indigenous or small communities relying on local subsistence foods using adaptive elastic net to prioritize responses from a complex food frequency questionnaire. In Nunavik, higher PFAA biomarker levels were primarily related to increased consumption of country foods, particularly beluga misirak, seal liver, suuvalik, and ptarmigan. Our results support policies regulating PFAA production and use to limit the contamination of Arctic species through long-range transport. https://doi.org/10.1289/EHP13556.
Collapse
Affiliation(s)
- Amira Aker
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
| | - Vy Nguyen
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
- University of Michigan School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Pierre Ayotte
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, Québec, Canada
| | - Sylvie Ricard
- Nunavik Regional Board of Health and Social Services, Kuujjuaq, Québec, Canada
| | - Mélanie Lemire
- Axe santé des populations et pratiques optimales en santé, Centre de recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
- Département de médecine sociale et préventive, Université Laval, Québec, Québec, Canada
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
30
|
Tang L, Yu X, Zhao W, Barceló D, Lyu S, Sui Q. Occurrence, behaviors, and fate of per- and polyfluoroalkyl substances (PFASs) in typical municipal solid waste disposal sites. WATER RESEARCH 2024; 252:121215. [PMID: 38309069 DOI: 10.1016/j.watres.2024.121215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have become a crucial environmental concern owing to their exceptional persistence, ability to bioaccumulate within ecosystems, and potential to adversely affect biota. Products and materials containing PFASs are usually discarded into municipal solid waste (MSW) at the end of their life cycle, and the fate of PFASs may differ when different disposal methods of MSWs are employed. To date, limited research has focus on the occurrence, behaviors, and fate of PFASs emitted from various MSW disposal sites. This knowledge gap may lead to an underestimation of the contribution of MSW disposal sites as a source of PFASs in the environment. In this review, we collated publications concerning PFASs from typical MSW disposal sites (i.e., landfills, incineration plants, and composting facilities) and explored the occurrence patterns and behaviors of PFASs across various media (e.g., landfill leachate/ambient air, incineration plant leachate/ash, and compost products) in these typical MSW disposal sites. In particular, this review highlighted ultrashort-chain perfluoroalkyl acids and "unknown"/emerging PFASs. Additionally, it meticulously elucidated the use of non-specific techniques and non-target analysis for screening and identifying these overlooked PFASs. Furthermore, the composition profiles, mass loads, and ecological risks of PFASs were compared across the three typical disposal methods. To the best of our knowledge, this is the first review regarding the occurrence, behaviors, and fate of PFASs in typical MSW disposal sites on a global scale, which can help shed light on the potential environmental impacts of PFASs harbored in MSWs and guide future waste management practices.
Collapse
Affiliation(s)
- Linfeng Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
31
|
Chen Y, Zhang X, Ma J, Gong J, A W, Huang X, Li P, Xie Z, Li G, Liao Q. All-in-one strategy to construct bifunctional covalent triazine-based frameworks for simultaneous extraction of per- and polyfluoroalkyl substances and polychlorinated naphthalenes in foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133084. [PMID: 38039811 DOI: 10.1016/j.jhazmat.2023.133084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) are of growing concern due to their toxic effects on the environment and human health. There is an urgent need for strategies to monitor and analyze the coexistence of PFASs and PCNs, especially in food samples at trace levels, to ensure food safety. Herein, a novel β-cyclodextrin (β-CD) derived fluoro-functionalized covalent triazine-based frameworks named CD-F-CTF was firstly synthesized. This innovative framework effectively combines the porous nature of the covalent organic framework and the host-guest recognition property of β-CD enabling the simultaneous extraction of PFASs and PCNs. Under the optimal conditions, a simple and rapid method was developed to analyze PFASs and PCNs by solid-phase extraction (SPE) based simultaneous extraction and stepwise elution (SESE) strategy for the first time. When coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), this method achieved impressive detection limits for PFASs (0.020 -0.023 ng/g) and PCNs (0.016 -0.075 ng/g). Furthermore, the excellent performance was validated in food samples with recoveries of 76.7-107 % (for PFASs) and 78.0-108 % (for PCNs). This work not only provides a simple and rapid technique for simultaneous monitoring of PFASs and PCNs in food and environmental samples, but also introduces a new idea for the designing novel adsorbents with multiple recognition sites.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wenwei A
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong Province 510623, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
32
|
Averina M, Huber S, Almås B, Brox J, Jacobsen BK, Furberg AS, Grimnes G. Early menarche and other endocrine disrupting effects of per- and polyfluoroalkyl substances (PFAS) in adolescents from Northern Norway. The Fit Futures study. ENVIRONMENTAL RESEARCH 2024; 242:117703. [PMID: 37984785 DOI: 10.1016/j.envres.2023.117703] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that are ubiquitous in the environment and include recognized persistent organic pollutants. The aim of this cross-sectional study was to investigate possible endocrine disrupting effects of different PFAS in adolescents. METHODS Serum concentrations of PFAS, thyroid, parathyroid and steroid hormones were measured in 921 adolescents aged 15-19 years in the Fit Futures study, Northern Norway. The questionnaire included data on self-reported age at menarche and puberty development score (PDS). Multiple linear and logistic regression analyses and principle component analyses (PCA) were used to assess associations of PFAS with hormones concentrations and puberty indices. RESULTS In girls, total PFAS (∑PFAS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorodecanoate (PFDA) were positively associated with dehydroepiandrosterone sulfate (DHEAS) and negatively associated with 11-deoxycorticosterone (11-DOC)/DHEAS ratio. In boys, the associations with 11-DOC/DHEAS ratio were positive for ∑PFAS, perfluoroheptanoate (PFHpA), perfluoroheptane sulfonate (PFHpS), PFOA, and PFOS. Perfluoroundecanoate (PFUnDA) was negatively associated with free thyroxine (fT4) and free triiodothyronine (fT3) in boys. PFNA and PFDA were also negatively associated with fT3 in boys. Serum parathyroid hormone concentration (PTH) was negatively associated with ∑PFAS and perfluorohexane sulfonate (PFHxS) in girls, and with PFOS in boys. PFDA and PFUnDA were positively associated with early menarche, while ∑PFAS and PFOA were positively associated with PDS in boys. No associations of PFAS with serum testosterone, follicle-stimulating hormone, or luteinizing hormone were found in either sex. In girls, PFOA was positively associated with free testosterone index (FTI). In boys, PFOA was positively associated with androstendione and 17-OH-progesterone, while PFHpA was positively associated with estradiol. CONCLUSIONS Serum concentrations of several PFAS were associated with parathyroid and steroid hormones in both sexes, and with thyroid hormones in boys, as well as with early menarche in girls and higher PDS in boys.
Collapse
Affiliation(s)
- Maria Averina
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway; Department of Clinical Medicine, Endocrinological and Geriatric Research Group, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway.
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| | - Bjørg Almås
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Haukelandsveien 22, 5009, Bergen, Norway
| | - Jan Brox
- Department of Laboratory Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| | - Bjarne K Jacobsen
- Department of Community Medicine, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway; Center for Sami Health Research, Department of Community Medicine, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway
| | - Anne-Sofie Furberg
- Department of Microbiology and Infection Control, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway; Molde University College, Britvegen 2, 6410, Molde, Norway
| | - Guri Grimnes
- Department of Clinical Medicine, Endocrinological and Geriatric Research Group, UiT - The Arctic University of Norway, Hansine Hansens veg 18, 9019, Tromsø, Norway; Division of Medicine, University Hospital of North Norway, Hansine Hansens veg 67, 9019, Tromsø, Norway
| |
Collapse
|
33
|
Chen H, Jiang J, Tang J, Xu L, Deng W, Ye K, Zeng D, Luo Y. Legacy and emerging per- and polyfluoroalkyl substances in the Shuidong bay of South China: Occurrence, partitioning behavior, and ecological risks. CHEMOSPHERE 2024; 350:141106. [PMID: 38171402 DOI: 10.1016/j.chemosphere.2023.141106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
With the phase-out of legacy per- and polyfluoroalkyl substances (PFASs), PFAS alternatives have been increasingly used in industrial production and daily life. However, available information on the occurrence of PFASs and PFAS alternatives in semi-enclosed bays remains limited. As a representative semi-enclosed bay in Guangdong Province, China, Shuidong Bay has experienced severe anthropogenic pollution (industrial, shipping, cultural, and domestic) in recent decades. Water pollution in Shuidong Bay has worsened, and PFASs have been identified as ubiquitous environmental pollutants in this bay. In this study, 23 PFASs, including 5 emerging PFASs, were analyzed in water, suspended particulate matter (SPM), and sediment samples collected from Shuidong Bay. We determined that perfluorobutanoic acid (PFBA) was the predominant PFAS compound in seawater, whereas 6:2 fluorotelomer sulfonic acid (FTS) and perfluorooctane sulfonamide acetate (FOSAA) were dominant in SPM and sediment, respectively. The sediment-water partitioning coefficients were greatly dependent on the perfluorinated carbon chain length. Chlorophyll a concentration had a significant effect on the dissolved concentrations of PFASs in seawater. The ecological risk assessment indicated that the PFASs detected in the seawater and sediment samples posed no considerable risks to aquatic organisms. This study provides a valuable reference for evaluating PFAS contamination in Shuidong Bay and conducting ecological risk assessments for aquatic organisms.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Jingyuan Jiang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Junyi Tang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Weihua Deng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Kuangmin Ye
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Danna Zeng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yuchi Luo
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
| |
Collapse
|
34
|
Sigvaldsen A, Højsager FD, Paarup HM, Beck IH, Timmermann CAG, Boye H, Nielsen F, Halldorsson TI, Nielsen C, Möller S, Barington T, Grandjean P, Jensen TK. Early-life exposure to perfluoroalkyl substances and serum antibody concentrations towards common childhood vaccines in 18-month-old children in the Odense Child Cohort. ENVIRONMENTAL RESEARCH 2024; 242:117814. [PMID: 38042520 DOI: 10.1016/j.envres.2023.117814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with reduced antibody response to childhood vaccinations. Previous studies have mostly focused on antibodies against diphtheria or tetanus, while fewer studies have assessed antibodies toward attenuated viruses, such as measles, mumps or rubella (MMR). Therefore, we set out to determine associations between prenatal and early postnatal PFAS exposure and vaccine-specific Immunoglobulin G (IgG) in the background-exposed Odense Child Cohort. Blood samples were drawn in pregnancy at gestation weeks 8-16 and from the offspring at age 18 months. In the maternal serum samples we quantified perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA). In the offspring serum samples we quantified the same five PFAS compounds and IgG towards diphtheria, tetanus and MMR. A total of 880 and 841 children were included in the analyses of diphtheria and tetanus or MMR, respectively. Multiple linear regression models were used for estimation of difference in virus-specific IgG per doubling of PFAS concentrations. Maternal PFAS concentrations were non-significantly inversely associated with most vaccine-specific antibody concentrations. Likewise, child PFAS concentrations were associated with non-significant reductions of antibodies towards tetanus and MMR. A significant reduction in the percent difference in mumps antibody concentration per doubling of child PFNA (-9.2% (95% confidence interval: -17.4;-0.2)), PFHxS (-8.3% (-15.0;-1.0) and PFOS (-7.9% (-14.8;-0.4) was found. These findings are of public health concern, as inadequate response towards childhood vaccines may represent a more general immune dysfunction.
Collapse
Affiliation(s)
- Annika Sigvaldsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.
| | - Frederik Damsgaard Højsager
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | - Iben Have Beck
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | - Henriette Boye
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark; Odense Child Cohort, Odense University Hospital, Odense, Denmark
| | - Flemming Nielsen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000, Odense, Denmark
| | | | - Christel Nielsen
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sören Möller
- Open Patient data Explorative Network, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Barington
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Philippe Grandjean
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000, Odense, Denmark; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, J.B. Winsløwsvej 17A, 5000, Odense, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|
35
|
Moon J, Mun Y. The association between per- and polyfluoroalkyl substances (PFASs) and brain, esophageal, melanomatous skin, prostate, and lung cancer using the 2003-2018 US National Health and Nutrition Examination Survey (NHANES) datasets. Heliyon 2024; 10:e24337. [PMID: 38298650 PMCID: PMC10827757 DOI: 10.1016/j.heliyon.2024.e24337] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Introduction The purpose of this study was to use the US National Health and Nutrition Examination Survey (NHANES) datasets to examine potential relationships between four per- and polyfluoroalkyl substance (PFAS) exposures and each type of cancer, specifically perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA). Methods A logistic regression analysis was performed. A directed acyclic graph was plotted to adjust for the potential confounders. Results The odds ratio (OR) of brain cancer for a one-unit increase in ln (PFHxS) was 8.16 (95 % confidence interval [CI] 2.98-68.89). The OR of esophageal cancer for one unit increase of ln (PFOA) and ln (PFOS) was 5.10 (95 % CI 1.18-17.34) and 3.97 (95 % CI 1.24-11.42), respectively. The OR of melanoma for one unit increase of ln (PFOA) and ln (PFHxS) was 1.65 (95 % CI 1.07-2.58) and 1.55 (95 % CI 1.07-2.25), respectively. The OR of prostate cancer for one unit increase of ln (PFOS) and ln (PFNA) was 1.21 (95 % CI 1.00-1.48) and 1.27 (95 % CI 1.00-1.62), respectively. The OR of lung cancer for one unit increase of ln (PFOS) and ln (PFNA) was 2.62 (95 % CI 1.24-5.83) and 2.38 (95 % CI 1.00-5.52), respectively. Discussion Considering that brain, esophageal, and melanomatous skin cancers have not been targets of epidemiologic studies regarding PFAS exposure, future studies could target these cancers as outcomes of interest.
Collapse
Affiliation(s)
- Jinyoung Moon
- Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Department of Occupational and Environmental Medicine, Inha University Hospital, 27, Inhang-ro, Jung-gu, Incheon, 22332, South Korea
- Department of Occupational and Environmental Medicine, Ewha Womans University Seoul Hospital, 260, Gonghang-daero, Gangseo-gu, Seoul, 07804, South Korea
| | - Yongseok Mun
- Department of Ophthalmology, Hallym University College of Medicine, Hallym University Kangnam Sacred Heart Hospital, 1, Singil-ro, Yeongdeungpo-gu, Seoul, 07441, South Korea
| |
Collapse
|
36
|
Zhang QY, Xu LL, Zhong MT, Chen YK, Lai MQ, Wang Q, Xie XL. Gestational GenX and PFOA exposures induce hepatotoxicity, metabolic pathway, and microbiome shifts in weanling mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168059. [PMID: 37884144 DOI: 10.1016/j.scitotenv.2023.168059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Ammonium perfluoro (2-methyl-3-oxahexanoate) (GenX), a replacement for perfluorooctanoic acid (PFOA), has been detected in multiple environmental media and biological samples worldwide. Accumulated evidence implies that GenX exposure might exert adverse health effects, although the underlying mechanisms have not been fully revealed. In this study, pregnant BALB/c mice were exposed to GenX (2 mg/kg/day), PFOA (1 mg/kg/day), or Milli-Q water by gavage from the first day of gestation (GD0) until GD21. Necropsy and tissue collection were conducted in pups at 4 weeks of age. PFOA and GenX induced similar histopathological changes in both the liver and the intestinal mucosa, accompanied by higher serum levels of alanine and aspartate aminotransferase. Moreover, the capacity of hepatic glycogen storage and intestinal mucus secretion were significantly decreased, suggesting dysfunction of liver metabolism and the intestinal mucosal barrier. A total of 637 and 352 differentially expressed genes (DEGs) were identified in the liver tissues of GenX and PFOA group, respectively. Most of the enriched pathways from the DEGs by KEGG enrichment analysis were metabolism-associated. Moreover, overexpression of CYP4A14, Sult2a1, Cpt1b, Acaa1b, Igfbp1, Irs-2 and decreased expression of Gys2 were observed in livers of GenX exposed pups, supporting the hypothesis that there was metabolic disruption. Furthermore, DNA damage and cell cycle arrest proteins (Gadd45β, p21, Ppard) were significantly increased, while cell proliferation-related proteins (Cyclin E, Myc, EGFR) were decreased by gestational GenX exposure in the pups' liver. In addition, imbalance of gut microbiota and dysfunction of the intestinal mucosa barrier might contribute to hepatotoxicity at least in part. Taken together, our results suggested that gestational GenX exposure triggered metabolic disorder, which might be responsible for the hepatotoxicity in the pups in addition to dysfunction of the intestinal mucosa barrier. This study enriches the mechanisms of GenX-induced developmental hepatotoxicity by associating metabolic disorder with intestinal homeostasis.
Collapse
Affiliation(s)
- Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Mei-Ting Zhong
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Ming-Quan Lai
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, 510515 Guangzhou, China.
| |
Collapse
|
37
|
Li J, Ye S, Zhao Z, Xue Z, Ren S, Guan Y, Sun C, Yao Q, Chen L. Association of PFDeA exposure with hypertension (NHANES, 2013-2018). Sci Rep 2024; 14:918. [PMID: 38195691 PMCID: PMC10776849 DOI: 10.1038/s41598-024-51187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) is a series of artificial compounds which is associated with human health. However, there are few studies on the relationship between PFASs and hypertension. In this study, we examined the association between different kinds of PFASs and hypertension. Multivariable logistic regression and subgroup analysis were adopted to assess the associations between PFASs and hypertension. Spline smoothing plots and linear regression were used to assess the relationship between PFASs and blood pressure. We found a positive association between serum PFDeA concentrations and the prevalence of hypertension after fully adjusting confounders (OR = 1.2, P = 0.01), but other types of PFASs showed no positive results. Subgroup analysis stratified by ethnicity showed there was a stronger relationship among non-Hispanics than Hispanics. Serum PFDeA concentrations were positively associated with systolic pressure (β = 0.7, P< 0.01) and diastolic blood pressure (β = 0.8, P< 0.01) among non-Hispanics who did not take antihypertensive drugs. This study showed that PFDeA exposure was associated with hypertension in Americans who identify as non-Hispanic. There was a positive association between PFDeA and blood pressure in non-Hispanic Americans who did not take antihypertensive drugs.
Collapse
Affiliation(s)
- Jie Li
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Suling Ye
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zeyuan Zhao
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhao Xue
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shupeng Ren
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Guan
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chuang Sun
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiying Yao
- Department of Physiology, Dalian Medical University, Dalian, China.
| | - Liang Chen
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
38
|
Cserbik D, Casas M, Flores C, Paraian A, Haug LS, Rivas I, Bustamante M, Dadvand P, Sunyer J, Vrijheid M, Villanueva CM. Concentrations of per- and polyfluoroalkyl substances (PFAS) in paired tap water and blood samples during pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:90-96. [PMID: 37749395 PMCID: PMC10907290 DOI: 10.1038/s41370-023-00581-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Dora Cserbik
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cintia Flores
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Alexandra Paraian
- Mass Spectrometry Laboratory/Organic Pollutants, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | - Line Småstuen Haug
- Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Ioar Rivas
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| |
Collapse
|
39
|
Göen T, Abballe A, Bousoumah R, Godderis L, Iavicoli I, Ingelido AM, Leso V, Müller J, Ndaw S, Porras SP, Verdonck J, Santonen T. HBM4EU chromates study - PFAS exposure in electroplaters and bystanders. CHEMOSPHERE 2024; 346:140613. [PMID: 37944767 DOI: 10.1016/j.chemosphere.2023.140613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
The study aims to reveal the exposure to perfluoroalkyl substances (PFAS) in workers in different industry sectors with exposures to hexavalent chromium (Cr(VI)). The PFAS exposure of in total 172 individuals from 4 countries was assessed by the determination of 8 perfluoroalkyl carboxylic acids and 4 perfluoroalkyl sulfonic acids in plasma samples. The participants were 52 chrome plating workers, 43 welders, 3 surface treating workers and 74 workers without any occupational Cr exposure as controls. Significant differences between workers with Cr exposure and controls were found for the perfluoroalkyl sulfonic acids, particularly for perfluorooctane sulfonic acid (PFOS). The median and maximum levels were, respectively, 4.83 and 789 μg/l for chrome plating workers, 4.97 and 1513 μg/l for welders, and 3.65 and 13.9 μg/l for controls. The considerably high PFOS exposure in Cr platers and welders can be explained by the former application of PFOS as mist suppressants in electroplating baths, which resulted in an exposure of the directly involved operators, but also of welders performing maintenance and repair service at these workplaces.
Collapse
Affiliation(s)
- Thomas Göen
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Erlangen, Germany.
| | - Annalisa Abballe
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy
| | - Radia Bousoumah
- French National Research and Safety Institute (INRS), Vandœuvre-Lès-Nancy, France
| | - Lode Godderis
- Catholic University Leuven, Centre for Environment and Health, Department of Public Health and Primary Care, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Ivo Iavicoli
- University of Naples Federico II, Department of Public Health, Naples, Italy
| | - Anna Maria Ingelido
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy
| | - Veruscka Leso
- University of Naples Federico II, Department of Public Health, Naples, Italy
| | - Johannes Müller
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Erlangen, Germany
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), Vandœuvre-Lès-Nancy, France
| | - Simo P Porras
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| | - Jelle Verdonck
- Catholic University Leuven, Centre for Environment and Health, Department of Public Health and Primary Care, Leuven, Belgium
| | - Tiina Santonen
- Finnish Institute of Occupational Health (FIOH), Helsinki, Finland
| |
Collapse
|
40
|
Andersen HR, Grandjean P, Main KM, Jensen TK, Nielsen F. Higher serum concentrations of PFAS among pesticide exposed female greenhouse workers. Int J Hyg Environ Health 2024; 255:114292. [PMID: 37952389 DOI: 10.1016/j.ijheh.2023.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Long-chained poly- and perfluoroalkyl substances (PFAS) have been used in pesticide formulations but their potential impact on human PFAS exposure has not been addressed. OBJECTIVES To investigate if occupationally pesticide exposed female greenhouse workers in Denmark had higher serum concentrations of PFAS than a comparable background population. METHODS Serum samples collected between 1996 and 2001 from 181 pregnant greenhouse workers and a contemporary urban population of 48 pregnant women were analyzed for eight PFAS: perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctane sulfonamide (FOSA), N-methyl perfluorooctane sulfonamido acetic acid (N-MeFOSAA), and N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA). RESULTS The concentrations of PFOA, PFOS, and the PFOS precursors N-MeFOSAA, N-EtFOSAA, and FOSA were higher, and PFHxS was lower, among greenhouse workers than the comparison population. After adjusting for age and parity, serum concentrations of N-MeFOSAA, N-EtFOSAA, and FOSA were 2-to-3-fold higher, and the major PFAS in serum, PFOS and PFOA, were 30-50 % higher among the greenhouse workers. CONCLUSION Higher serum concentrations of some legacy PFAS among female greenhouse workers indicate that exposure to pesticides is a potential pathway of exposure. Although PFAS use in pesticide applications may appear to be a minor source of exposure for the general population, this pathway deserves attention in risk assessment.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Philippe Grandjean
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Katharina M Main
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet and University of Copenhagen, Denmark
| | - Tina Kold Jensen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet and University of Copenhagen, Denmark
| | - Flemming Nielsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Feng QJ, Luo XJ, Ye MX, Hu KQ, Zeng YH, Mai BX. Bioaccumulation, tissue distributions, and maternal transfer of perfluoroalkyl carboxylates (PFCAs) in laying hens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167008. [PMID: 37704139 DOI: 10.1016/j.scitotenv.2023.167008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Laying hens were exposed to feeds spiked with a series of perfluoroalkyl carboxylates (PFCAs) ranging from perfluorobutanoic acid (C4) to perfluorooctadecanoic acid (C18) to investigate their bioaccumulation, tissue distribution, and maternal transfer. We found that PFCAs with longer carbon chains (>8) were more efficiently absorbed in the gastrointestinal tract than those with shorter chains (≤8), and that the rate of depuration varied inversely with the carbon chain length in a U-shaped pattern. Moreover, bioaccumulation potential increased with increasing carbon-chain length, except for C4. Distinct affinities were observed for specific carbon-chain PFCAs across various tissues, evident from their differential accumulation during both uptake and depuration phases. Specifically, C9 showed a higher affinity for serum and liver, C12 was more prevalent in yolk, C14 was notably abundant in the brain, and C18 was predominant in other tissues. Furthermore, the egg-maternal ratio (EMR) increased with increasing carbon-chain length from C7 to C11 and reached a plateau phase for C12 to C18. Our study also confirmed the key role of phospholipids in the tissue distribution and maternal transfer of long-chain PFCAs. This study sheds light on the interaction between PFCAs and biological tissues and reveals the toxicokinetic factors that influence the bioaccumulation of PFCAs. Further research is needed to identify the specific proteins or components that mediate the tissue-specific affinity for different carbon-chain lengths of PFCAs.
Collapse
Affiliation(s)
- Qun-Jie Feng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Mei-Xia Ye
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke-Qi Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
42
|
Zhao A, Wang W, Zhang R, He A, Li J, Wang Y. Tracing the Bioaccessibility of Per- and Polyfluoroalkyl Substances in Fish during Cooking Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19066-19077. [PMID: 37984055 DOI: 10.1021/acs.jafc.3c06038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The effect of cooking on the contents of per- and polyfluoroalkyl substances (PFAS) in foods has been widely studied, but whether cooking-induced structural and chemical modifications in foods affect the oral bioaccessibility of PFAS remains largely unknown. In this study, three kinds of fishes with different fat contents were selected, and the bioaccessibility of PFAS during cooking treatment (steaming and frying) was evaluated using in vitro gastrointestinal simulation with gastric lipase addition. The results showed that related to their molecular structures, the bioaccessibility of an individual PFAS varied greatly, ranging from 26.0 to 108.1%. Cooking can reduce the bioaccessibility of PFAS, and steaming is more effective than oil-frying; one of the possible reasons for this result is that the PFAS is trapped in protein aggregates after heat treatment. Fish lipids and cooking oil ingested with meals exert different effects on the bioaccessibility of PFAS, which may be related to the state of the ingested lipid/oil and the degree of unsaturation of fatty acids. Gastric lipase boosted the release of long-chain PFAS during in vitro digestion, indicating that the degree of lipolysis considerably influences the bioaccessibility of hydrophobic PFAS. Estimated weekly PFAS intakes were recalibrated using bioaccessibility data, enabling more accurate and reliable dietary exposure assessments.
Collapse
Affiliation(s)
- Ailin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Anen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
43
|
Akhbarizadeh R, Dobaradaran S, Mazzoni M, Pascariello S, Nabipour I, Valsecchi S. Occurrence and risk characterization of per- and polyfluoroalkyl substances in seafood from the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124182-124194. [PMID: 37996593 DOI: 10.1007/s11356-023-31129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Potential exposure to 14 per- and polyfluoroalkyl substances (PFAS) through seafood consumption was investigated in widely consumed seafood (Platycephalus indicus, Lethrinus nebulosus, and Penaeus semisulcatus) from the Persian Gulf. A total of 61 samples of fish and prawns were purchased from local fishers at Bushehr port (Persian Gulf, South-West of Iran) and were analyzed for PFAS compounds. In addition, potential factors influencing factor of PFAS bioaccumulation in fish and invertebrates such as age, sex, and habitat, were investigated. ƩPFAS concentrations were in the range of 2.3- 6.1 ng/g-d.w (mean = 3.9 ± 1.9) in studied species which are equal to 0.46-1.2 ng/g-w.w according to their conversion factor. Perfluorooctane sulfonic acid (PFOS) was the most abundant perfluorinated compound in studied organisms and tissues. The results of correlation analysis showed that the bioaccumulation of PFAS in aquatic organisms is significantly correlated to the length of the compound's carbon chain, the identity of anionic group, and organism's age, sex, and habitant. The risk assessment using hazard index calculation and Monte-Carlo simulation indicated that weekly consumption of prawn and fish fillets does not pose a health risk to adults but might threaten children's health. However, the risk posed by PFAS exposure via entire fish or fish liver intake is an important issue for wild marine mammals (i.e., dolphins). So, accurate and routine monitoring of PFAS in aquatic environments seems mandatory to preserve wildlife and human health in the Persian Gulf.
Collapse
Affiliation(s)
- Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Michela Mazzoni
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Simona Pascariello
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sara Valsecchi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Brugherio, Italy
| |
Collapse
|
44
|
Surma M, Sznajder-Katarzyńska K, Wiczkowski W, Piskuła M, Zieliński H. Detection of Per- and Polyfluoroalkyl Substances in High-Protein Food Products. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2589-2598. [PMID: 37671839 DOI: 10.1002/etc.5743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) belong to the emerging class of persistent organohalogenated contaminants in the environment. We determined the levels of 10 PFAS in selected samples representing different food types, with a special focus on those rich in protein such as fish, meat and meat preparations, liver, eggs, and leguminous vegetables. Such determinations were based on the Quick Easy Cheap Effective Rugged Safe extraction procedure followed by micro-high-performance liquid chromatography-tandem mass spectrometry. The most frequently found was perfluorooctanoic acid, in 84% of the food samples. However, its maximum measured concentration was 0.50 ng g-1 , in a herring sample. The highest concentrations were for perfluorobutanoic acid (35 ng g-1 measured in a pork liver sample) and perfluorooctane sulfonate (12 ng g-1 measured in a herring sample). Because these compounds may bioaccumulate in human tissues by dietary intake, further research into their impact on human health is called for. Environ Toxicol Chem 2023;42:2589-2598. © 2023 SETAC.
Collapse
Affiliation(s)
- Magdalena Surma
- Malopolska Centre of Food Monitoring, Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
| | | | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariusz Piskuła
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
45
|
Marín-García M, Fàbregas C, Argenté C, Díaz-Ferrero J, Gómez-Canela C. Accumulation and dietary risks of perfluoroalkyl substances in fish and shellfish: A market-based study in Barcelona. ENVIRONMENTAL RESEARCH 2023; 237:117009. [PMID: 37652217 DOI: 10.1016/j.envres.2023.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Since the 1940s, per- and polyfluoroalkyl substances (PFAS) have been widely produced and used in various applications due to their unique properties. Consequently, the principal exposure routes of PFAS have been broadly studied, leading to the conclusion that dietary exposure (more specifically, the consumption of fish and seafood) was one of their main contributors. Thus, developing an analytical method that determines the level of PFAS in fish and seafood has become a relevant subject. In this work, a previous analytical method has been optimized to determine 12 PFAS in fish muscle from salmon, tuna, cod, hake, sardine, anchovy, and sole, as well as in seven different seafood species (i.e., cuttlefish, octopus, squid, shrimp, Norway lobster, prawn, and mussel) by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Subsequently, the PFAS profile of the different species was studied to determine if it was consistent with that previously reviewed in the literature and to know the most relevant contribution of PFAS for each species. Finally, human exposure to PFAS through their consumption was estimated by the daily intake for seven different age/gender groups. PFAS were obtained from 0.014 to 0.818 ng g-1 wet weight in fish samples. Sardines, anchovies, and soles presented the highest PFAS levels. However, cod samples also showed some PFAS traces. Regarding seafood, PFAS levels range from 0.03 to 36.7 ng g-1 dry weight for the studied species. A higher concentration of PFAS has been found in the cephalopods' spleens and the crustaceans' heads. PFOS and PFBS were the predominant compounds in each seafood species, respectively. On the other hand, in the case of mussels, which are the less polluted species of the study, contamination by longer-chained PFAS was also observed. Finally, the total intake of PFAS due to fish and shellfish consumption for the Spanish adult population was estimated at 17.82 ng day-1. Nevertheless, none of the analyzed samples exceeded the European Food Safety Authority (EFSA) risk value for the supervised PFAS in any age/gender group reviewed.
Collapse
Affiliation(s)
- Marc Marín-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Céline Fàbregas
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Carla Argenté
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
46
|
Haron DEM, Yoneda M, Hod R, Ramli MR, Aziz MY. Assessment of 18 endocrine disrupting chemicals in tap water samples from Klang Valley, Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111062-111075. [PMID: 37801249 DOI: 10.1007/s11356-023-30022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Multiclass of endocrine disrupting chemicals (EDCs) such as nine perfluoroalkyl and polyfluoroalkyl substances (PFAS), five bisphenols, and four parabens were analysed in tap water samples from Malaysia's Klang Valley region. All samples were analysed using liquid chromatography mass tandem spectrometry (LC-MS/MS) with limit of quantitation (LOQ) ranged between 0.015 and 5 ng/mL. Fifteen of the 18 EDCs were tested positive in tap water samples, with total EDC concentrations ranging from 0.28 to 5516 ng/L for all 61 sampling point locations. In a specific area of the Klang Valley, the total concentration of EDCs was found to be highest in Hulu Langat, followed by Sepang, Putrajaya, Petaling, Kuala Lumpur, Seremban, and Gombak/Klang. PFAS and paraben were the most found EDCs in all tap water samples. Meanwhile, ethyl paraben (EtP) exhibited the highest detection rate, with 90.2% of all locations showing its presence. Over 60% of the regions showed the presence of perfluoro-n-butanoic acid (PFBA), perfluoro-n-hexanoic acid (PFHXA), perfluoro-n-octanoic acid (PFOA), perfluoro-n-nonanoic acid (PFNA), and perfluoro-1-octanesulfonate (PFOS), whereas the frequency of detection for other compounds was less than 40%. The spatial distribution and mean concentrations of EDCs in the Klang Valley regions revealed that Hulu Langat, Petaling Jaya, and Putrajaya exhibited higher levels of bisphenol A (BPA). On the other hand, Kuala Lumpur and Sepang displayed the highest mean concentrations of PFBA. In the worst scenario, the estimated daily intake (EDI) and risk quotient of some EDCs in this study exceeded the acceptable daily limits recommended by international standards, particularly for BPA, PFOA, PFOS, and PFNA, where the risk quotient (RQ) was found to be greater than 1, indicating a high risk to human health. The increasing presence of EDCs in tap water is undoubtedly a cause for concern as these substances can have adverse health consequences. This highlights the necessity for a standardised approach to evaluating EDC exposure and its direct impact on human populations' health.
Collapse
Affiliation(s)
- Didi Erwandi Mohamad Haron
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Centre of Research Service, Institute of Research Management and Services, Deputy Vice-Chancellor (Research and Renovation), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Minoru Yoneda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Rafidah Hod
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Redzuan Ramli
- Department of Environmental Management, Ministry of Environmental and Water, 62000, Putrajaya, Malaysia
| | - Mohd Yusmaidie Aziz
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
- Department of Occupational Health and Safety, Public Health Faculty, Universitas Airlangga, 60115, Surabaya, Indonesia.
| |
Collapse
|
47
|
Parvin S, Hara-Yamamura H, Kanai Y, Yamasaki A, Adachi T, Sorn S, Honda R, Yamamura H. Important properties of anion exchange resins for efficient removal of PFOS and PFOA from groundwater. CHEMOSPHERE 2023; 341:139983. [PMID: 37643650 DOI: 10.1016/j.chemosphere.2023.139983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) present in various water sources have raised a serious concern on their health risk worldwide. Anion exchange is known to be one of the effective treatment methods but the resin properties suitable for theses contaminants have not been fully understood. We examined four commercially available anion exchange resins with different properties (DIAION™ PA312, HPA25M, UBA120, and WA30) and one polymer-based adsorbent (HP20), for their PFOA and PFOS removal in the batch experiment. All or a part of the selected resins were further characterized for their functional group, surface morphology and pore size distribution. The 72 h batch experiment with the 100 mg/L PFOA or PFOS in the laboratory pure water matrix showed a superior capacity of the strong base anion exchange resins, the porous-type HPA25M and PA312, and the gel-type UBA120, for PFOA removal (92.6-97.9%). Among those resins, the high porous HPA25M was suggested most effective due to its remarkably high reaction rate and effectiveness to PFOS (99.9%). In the groundwater matrix, however, the performance of the those anion exchange resins was generally suppressed, causing up to 71% decrease in their removal rates. The least matrix impact was observed for PFOS removal by HPA25M, which indicated the resin's high selectivity to the contaminant. The physiochemical analysis indicated that the presence of relatively large pores (1 nm-10 nm) over HPA25M played an important role in the PFAS removal.
Collapse
Affiliation(s)
- Shahanaz Parvin
- Division of Environmental Design, Graduate School of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Hiroe Hara-Yamamura
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Yuma Kanai
- Division of Environmental Design, Graduate School of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Aki Yamasaki
- Specialty Materials Business Group, Mitsubishi Chemical Corporation, 1-1, Marunouchi 1-chome, Chiyoda-ku, Tokyo, 100-8251, Japan.
| | - Tadashi Adachi
- Separation Materials Group, Life Solutions Technology Center, R&D Division, Specialty Materials Business Group, Mitsubishi Chemical Corporation, 1-1, Kurosaki-Shiroishi, Yahatanishi-ku, Kitakyushu-shi, Fukuoka 806-0004, Japan.
| | - Sovannlaksmy Sorn
- Division of Environmental Design, Graduate School of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Hiroshi Yamamura
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan.
| |
Collapse
|
48
|
Rodríguez-Carrillo A, Remy S, Koppen G, Wauters N, Freire C, Olivas-Martínez A, Schillemans T, Åkesson A, Desalegn A, Iszatt N, den Hond E, Verheyen V, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Cox B, Govarts E, Baken K, Tena-Sempere M, Olea N, Schoeters G, Fernández MF. PFAS association with kisspeptin and sex hormones in teenagers of the HBM4EU aligned studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122214. [PMID: 37482334 DOI: 10.1016/j.envpol.2023.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Carmen Freire
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | | | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Agneta Åkesson
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Anteneh Desalegn
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Veerle Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Kirsten Baken
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Manuel Tena-Sempere
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Menéndez Pidal s/n. 14004., Córdoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Ctra. Madrid-Cádiz, Km. 396. 14071. Córdoba, Spain; University Hospital Reina Sofía, Menéndez Pidal s/n. 14004, Córdoba, Spain; CIBER Pathophysiology of Obesity and Nutrition, Carlos III Health Institute, Menéndez Pidal s/n. 14004. Córdoba, Spain
| | - Nicolás Olea
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Spain; Department of Radiology and Physical Medicine, School of Medicine, University of Granada, 18016 Granada, Spain.
| |
Collapse
|
49
|
Xu W, Li G, Qu H, Ma C, Zhang H, Cheng J, Li H. The Specific Removal of Perfluorooctanoic Acid Based on Pillar[5]arene-Polymer-Packed Nanochannel Membrane. ACS NANO 2023; 17:19305-19312. [PMID: 37768005 DOI: 10.1021/acsnano.3c06448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The conspicuous surface activity and exceptional chemical stability of perfluorooctanoic acid, commonly referred to as PFOA, have led to its extensive utilization across a broad spectrum of industrial and commercial products. Nonetheless, significant concerns have arisen regarding the environmental presence of PFOAs, driven by their recognized persistence, bioaccumulative nature, and potential human health risks. In the realm of sustainable agriculture, a pivotal challenge revolves around the development of specialized materials capable of effectively and selectively eliminating PFOA from the environment. This study proposes harnessing the exceptional properties of a pillar[5]arene polymer to construct a nanochannel membrane filled with tryptophan-alanine dipeptide pillar[5]arene polymer. Through the functionalization of these nanochannel membranes, we achieved a PFOA removal rate of 0.01 mmol L-1 min-1, surpassing the rates observed with other control chemicals by a factor of 4.5-15. The research on PFOA removal materials has been boosted because of the creation of this highly selective PFOA removal membrane.
Collapse
Affiliation(s)
- Weiwei Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haonan Qu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cuiguang Ma
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haifan Zhang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing Cheng
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Haibing Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
50
|
Kinkade CW, Rivera-Núñez Z, Thurston SW, Kannan K, Miller RK, Brunner J, Wong E, Groth S, O'Connor TG, Barrett ES. Per- and polyfluoroalkyl substances, gestational weight gain, postpartum weight retention and body composition in the UPSIDE cohort. Environ Health 2023; 22:61. [PMID: 37658449 PMCID: PMC10474772 DOI: 10.1186/s12940-023-01009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals found in drinking water and consumer products, resulting in ubiquitous human exposure. PFAS have been linked to endocrine disruption and altered weight gain across the lifespan. A limited and inconsistent body of research suggests PFAS may impact gestational weight gain (GWG) and postpartum body mass index (BMI), which are important predictors of overall infant and maternal health, respectively. METHODS In the Understanding Pregnancy Signals and Infant Development (UPSIDE/UPSIDE-MOMs) study (n = 243; Rochester, NY), we examined second trimester serum PFAS (PFOS: perfluorooctanesulfonic acid, PFOA: perfluorooctanoic acid, PFNA: perfluorononanoic acid, PFHxS: perfluorohexanesulfonic acid, PFDA: perfluorodecanoic acid) in relation to GWG (kg, and weekly rate of gain) and in the postpartum, weight retention (PPWR (kg) and total body fat percentage (measured by bioelectrical impedance)). We fit multivariable linear regression models examining these outcomes in relation to log-transformed PFAS in the whole cohort as well as stratified by maternal pre-pregnancy BMI (< 25 vs. = > 25 kg/m2), adjusting for demographics and lifestyle factors. We used weighted quantile sum regression to find the combined influence of the 5 PFAS on GWG, PPWR, and body fat percentage. RESULTS PFOA and PFHxS were inversely associated with total GWG (PFOA: ß = -1.54 kg, 95%CI: -2.79, -0.30; rate ß = -0.05 kg/week, 95%CI: -0.09, -0.01; PFHxS: ß = -1.59 kg, 95%CI: -3.39, 0.21; rate ß = -0.05 kg/week, 95%CI: -0.11, 0.01) and PPWR at 6 and 12 months (PFOA 6 months: ß = -2.39 kg, 95%CI: -4.17, -0.61; 12 months: ß = -4.02 kg, 95%CI: -6.58, -1.46; PFHxS 6 months: ß = -2.94 kg, 95%CI: -5.52, -0.35; 12 months: ß = -5.13 kg, 95%CI: -8.34, -1.93). PFOA was additionally associated with lower body fat percentage at 6 and 12 months (ß = -1.75, 95%CI: -3.17, -0.32; ß = -1.64, 95%CI: -3.43, 0.16, respectively) with stronger associations observed in participants with higher pre-pregnancy BMI. The PFAS mixture was inversely associated with weight retention at 12 months (ß = -2.030, 95%CI: -3.486, -0.573) amongst all participants. CONCLUSION PFAS, in particular PFOA and PFHxS, in pregnancy are associated with altered patterns of GWG and postpartum adiposity with potential implications for fetal development and long-term maternal cardiometabolic health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kurunthachalam Kannan
- Department of Environmental Medicine, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Richard K Miller
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Eunyoung Wong
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Susan Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|