1
|
Zhu D, Dai J, Jia J, Kanagaraj T, Rajalakshmi K, Muthusamy S, Geng L, Yuan G. Biogenic synthesis of N-doped carbon dots from S. cumini seeds for prostate cancer biomarker citrate detection, its live cancer cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125568. [PMID: 39706072 DOI: 10.1016/j.saa.2024.125568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Citrate is a potential biomarker for early stage detection of prostate cancer (PC), its concentration significantly dropped to 2-20 mM in PC patients. Herein, a cheap, simple, and reliable citrate sensor was proposed based on the biogenic synthesis of nitrogen-doped carbon dots (N-CDs) derived from the biowaste of Syzygiumcumini (S. cumini) seeds. The prepared N-CDs were characterized by TEM, FT-IR and spectral studies. The average size of the N-CDs was found to be 2.4 nm, the presence of -OH and -NH2 functional groups on the surface of N-CDs was confirmed by FT-IR analysis. The N-CDs possess the highest emission at 414 nm and cause quenching after reacting with citrate, which is due to the possible hydrogen bonding interactions between the probe and citrate. The probe expressed the lowest limit of detection of 3.5 nM, high selectivity, high interfering ability (1000-fold), provided a stable response at 5 min of reaction time, good biocompatibility, and delivered a contrast bioimage with different concentrations of citrate. The N-CDs were utilized to detect citrate in human urine samples, obtained good recovery results, and validated with the high-performance liquid chromatography method.
Collapse
Affiliation(s)
- Dongwei Zhu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212013, PR China
| | - Jindong Dai
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, and School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212013, PR China
| | - Thangamani Kanagaraj
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, and School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kanagaraj Rajalakshmi
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, and School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Selvaraj Muthusamy
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, and School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Lina Geng
- Department of Clinical Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, PR China.
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University; Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Sun Q, Liu J, Gou Y, Chen T, Shen X, Wang T, Li Y, He H, Deng H, Hua Y. Determination of veterinary drugs in foods of animal origin by QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). J Chromatogr A 2025; 1744:465726. [PMID: 39893914 DOI: 10.1016/j.chroma.2025.465726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
A method using QuEChERS coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the determination of the residues of 19 veterinary drugs in ten animal-derived matrices, including beef, pork, sheep, horse, chicken, prawn, fish, liver, milk, and fat. This method was based on the enactment of veterinary drug compounds by Korea, Canada, the United States, and the European Union in recent years. The samples were extracted using 85% acetonitrile and separated on an ACQUITY UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm) with a gradient elution of methanol-0.2% formic acid water as the mobile phase. The detection of the analytes was achieved through the use of positive ion electrospray ionization (ESI) and multiple reaction monitoring (MRM) modes, while the quantification was conducted via the matrix-matched external standard method. Following optimization, the linearity of the target veterinary residues in the ten matrices was observed to be satisfactory, having a range of 0.5-50.0 ng/mL (R2 > 0.991). The limits of detection (LOD) were in the range of 0.01-1.29 μg/kg, while the limits of quantification (LOQ) were in the range of 0.02-4.31 μg/kg. The recoveries were observed to be in the range of 60.6-117.7 %, with relative standard deviations (RSDs) of ≤20.6 %. The method is straightforward and highly sensitive, and it satisfies the maximum limits set by the relevant standards of Korea, Canada, the USA, and the EU. It is well-suited for the rapid screening, qualitative, and quantitative analyses of metomidate, acetanilide, dl-methylephedrine, and other substances in foods of animal origin, providing technical assistance for cross-border food safety and testing.
Collapse
Affiliation(s)
- Qianran Sun
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Jun Liu
- Technology Center, Chengdu Customs, Chengdu 610041, China.
| | - Yuan Gou
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Tieyuan Chen
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Xiaofang Shen
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Tao Wang
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Yongli Li
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Huizhen He
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Huidan Deng
- Technology Center, Chengdu Customs, Chengdu 610041, China
| | - Yi Hua
- Technology Center, Chengdu Customs, Chengdu 610041, China
| |
Collapse
|
3
|
Lu MJ, Zhao KH, Zhang SQ, Cai XB, Kandegama W, Chen MX, Sun Y, Li XY. Research Progress of Biosensor Based on Organic Photoelectrochemical Transistor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17746-17761. [PMID: 39079007 DOI: 10.1021/acs.jafc.4c04191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In order to solve the food safety problem better, it is very important to develop a rapid and sensitive technology for detecting food contamination residues. Organic photoelectrochemical transistor (OPECT) biosensor rely on the photovoltage generated by a semiconductor upon excitation by light to regulate the conductivity of the polymer channels and realize biosensor analysis under zero gate bias. This technology integrates the excellent characteristics of photoelectrochemical (PEC) bioanalysis and the high sensitivity and inherent amplification ability of organic electrochemical transistor (OECT). Based on this, OPECT biosensor detection has been proven to be superior to traditional biosensor detection methods. In this review, we summarize the research status of OPECT biosensor in disease markers and food residue analysis, the basic principle, classification, and biosensing mechanism of OPECT biosensor analysis are briefly introduced, and the recent applications of biosensor analysis are discussed according to the signal strategy. We mainly introduced the OPECT biosensor analysis methods applied in different fields, including the detection of disease markers and food hazard residues such as prostate-specific antigen, heart-type fatty acid binding protein, T-2 toxin detection in milk samples, fat mass and objectivity related protein, ciprofloxacin in milk. The OPECT biosensor provides considerable development potential for the construction of safety analysis and detection platforms in many fields, such as agriculture and food, and hopes to provide some reference for the future development of biosensing analysis methods with higher selectivity, faster analysis speed and higher sensitivity.
Collapse
Affiliation(s)
- Meng-Jiao Lu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kun-Hong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shan-Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiao-Bo Cai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Wishwajith Kandegama
- Department of Horticulture and Landscape Gardening, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila 60170 Sri Lanka
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology Ministry of Education, College of Chemistry Central China Normal University, Wuhan 430079, China
| | - Xiang-Yang Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Rideout H, Cook AJC, Whetton AD. Understanding the Cryptosporidium species and their challenges to animal health and livestock species for informed development of new, specific treatment strategies. FRONTIERS IN PARASITOLOGY 2024; 3:1448076. [PMID: 39817173 PMCID: PMC11732131 DOI: 10.3389/fpara.2024.1448076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 01/18/2025]
Abstract
Cryptosporidium species are parasitic organisms of vertebrates with a worldwide distribution. They have an important impact globally upon human and animal health, and livestock productivity. The life cycle of these species is complex and difficult to disrupt to improve human health, animal health, food security and economic growth. This may contribute to the fact that no new treatment strategy has been widely accepted or applied in livestock for years. Here we consider the natural history of these parasites, their biochemistry and economic impact. Using recent developments in understanding these parasites we then consider viable and affordable approaches to enhancing control of their effects on livestock. These are based on advances in drug discovery, omics research and artificial intelligence applications to human and veterinary medicine that indicate putative new therapeutic approaches.
Collapse
Affiliation(s)
- Hannah Rideout
- Veterinary Health Innovation Engine, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Alasdair J. C. Cook
- Veterinary Health Innovation Engine, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Anthony D. Whetton
- Veterinary Health Innovation Engine, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
5
|
Verma R, Dhingra G, Singh G, Singh J, Dureja N, Malik AK. Efficient Turn-On Zr Based Metal Organic Framework Fluorescent Sensor for Ultrafast Detection of Danofloxacin in Milk Samples. J Fluoresc 2024; 34:1631-1642. [PMID: 37578675 DOI: 10.1007/s10895-023-03379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Metal organic framework, UiO-67 was synthesized by coordinating Zr(IV) with 4,4'-biphenyldicarboxylic acid (BPDC) ligand. Morphology and crystallinity of MOF was confirmed with FE-SEM and PXRD procedure. Danofloxacin (DANO), a veterinary fluoroquinolone antibiotic, was detected in milk by employing UiO-67 as "turn-on" fluorescent sensor. Original photoluminescent (PL) efficiency of UiO-67 sensor was enhanced on its electronic interaction with DANO molecule. Significant PL efficiency enhancement, lower detection limit 0.49 ng/mL (1.37 nM), swift detection (time < 1 min), and excellent linear correlation (R2 = 0.9988) indicated extraordinary sensitivity of developed UiO-67 sensor for DANO. Selectivity and performance of sensor was unaltered in presence of interfering species and detection results were obtained under permissible variation limits. Method applied successfully for ultra-trace detection of DANO residues in milk samples.
Collapse
Affiliation(s)
- Rajpal Verma
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
- Dr. B. R. Ambedkar Govt. College, Dabwali, Sirsa, Haryana, 125104, India
| | - Gaurav Dhingra
- Punjabi University Constituent College, Ghanaur, Patiala, Punjab, 140702, India
| | - Gurdeep Singh
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
| | - Jaswinder Singh
- Dr. B. R. Ambedkar Govt. College, Dabwali, Sirsa, Haryana, 125104, India
| | - Nidhi Dureja
- Department of Chemistry, Atma Ram Sanatan Dharam College, New Delhi, 110021, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
6
|
Ortiz-Martínez M, Molina González JA, Ramírez García G, de Luna Bugallo A, Justo Guerrero MA, Strupiechonski EC. Enhancing Sensitivity and Selectivity in Pesticide Detection: A Review of Cutting-Edge Techniques. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1468-1484. [PMID: 38726957 DOI: 10.1002/etc.5889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 04/12/2024] [Indexed: 06/27/2024]
Abstract
The primary goal of our review was to systematically explore and compare the state-of-the-art methodologies employed in the detection of pesticides, a critical component of global food safety initiatives. New approach methods in the fields of luminescent nanosensors, chromatography, terahertz spectroscopy, and Raman spectroscopy are discussed as precise, rapid, and versatile strategies for pesticide detection in food items and agroecological samples. Luminescent nanosensors emerge as powerful tools, noted for their portability and unparalleled sensitivity and real-time monitoring capabilities. Liquid and gas chromatography coupled to spectroscopic detectors, stalwarts in the analytical chemistry field, are lauded for their precision, wide applicability, and validation in diverse regulatory environments. Terahertz spectroscopy offers unique advantages such as noninvasive testing, profound penetration depth, and bulk sample handling. Meanwhile, Raman spectroscopy stands out with its nondestructive nature, its ability to detect even trace amounts of pesticides, and its minimal requirement for sample preparation. While acknowledging the maturity and robustness of these techniques, our review underscores the importance of persistent innovation. These methodologies' significance extends beyond their present functions, highlighting their adaptability to meet ever-evolving challenges. Environ Toxicol Chem 2024;43:1468-1484. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mónica Ortiz-Martínez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Ciudad de México, México
- Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, México
| | - Jorge Alberto Molina González
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Gonzalo Ramírez García
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Andrés de Luna Bugallo
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla, Santiago de Querétaro, México
| | - Manuel Alejandro Justo Guerrero
- Istituto Nanoscienze and Scuola Normale Superiore, National Enterprise for nanoScience and nanoTechnology Consiglio Nazionale della Richerche, Pisa, Italy
| | | |
Collapse
|
7
|
Wei D, Lv S, Zuo J, Liang S, Wang J, He T, Liu L. Fabrication of chitosan-based fluorescent hydrogel membranes cross-linked with bisbenzaldehyde for efficient selective detection and adsorption of Fe 2. Int J Biol Macromol 2024; 270:132088. [PMID: 38723821 DOI: 10.1016/j.ijbiomac.2024.132088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Chitosan, as a natural biomass material, is green, recyclable, sustainable and well biocompatible. The molecular chain is rich in active groups such as amino and hydroxyl groups, and its preparation of fluorescent probes has the advantages of biocompatibility and efficient detection performance. In this study, a bis(benzaldehyde) (BHD) fluorescent functional molecule was designed. Then a series of fluorescent chitosan-based hydrogel films (CSBHD) were prepared using chitosan as raw material and BHD as cross-linking agent. As a fluorescent probe for metal ions, CSBHD was able to efficiently detect Fe2+ with a linear correlation of fluorescence intensity in the range of 0-160 μM, and the limit of detection (LOD) was 0.55 μM. Moreover, it has excellent adsorption performance for Fe2+ ions, with a maximum adsorption capacity of 223.5 g/mg at 500 mg/L Fe2+ concentration. Finally, we characterised the structure and microscopic morphology of CSBHD films and found that CSBHD as a hydrogel film has a high cross-linking density, good water resistance, excellent thermal stability, strong resistance to swelling, and excellent stability in cycling tests. Hence, it has great potential for application in adsorption and detection of Fe2+ ions. It also provides a good strategy for the application of chitosan based fluorescent probe materials in environmental monitoring and heavy metal ion adsorption.
Collapse
Affiliation(s)
- Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jingjing Zuo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shan Liang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jialin Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Sudewi S, Sai Sashank PV, Kamaraj R, Zulfajri M, Huang GG. Understanding Antibiotic Detection with Fluorescence Quantum Dots: A Review. J Fluoresc 2024:10.1007/s10895-024-03743-4. [PMID: 38771407 DOI: 10.1007/s10895-024-03743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The utilization of fluorescent quantum dots (FL QDs) has gained significant traction in the realm of antibiotic detection, owing to their exceptional FL properties and versatility. Various types of QDs have been tailored to exhibit superior FL characteristics, employing diverse capping agents such as metals, surfactants, polymers, and biomass to protect and stabilize their surfaces. In their evolution, FL QDs have demonstrated both "turn-off" and "turn-on" mechanisms in response to the presence of analytes, offering promising avenues for biosensing applications. This review article provides a comprehensive overview of the recent advancements in antibiotic detection utilizing FL QDs as biosensors. It encompasses an extensive examination of different types of FL QDs, including carbon, metal, and core-shell QDs, deployed for the detection of antibiotics. Furthermore, the synthesis methods employed for the fabrication of various FL QDs are elucidated, shedding light on the diverse approaches adopted in their preparation. Moreover, this review delves into the intricate sensing mechanisms underlying FL QDs-based antibiotic detection. Various mechanisms, such as photoinduced electron transfer, electron transfer, charge transfer, Forster resonance energy transfer, static quenching, dynamic quenching, inner filter effect, hydrogen bonding, and aggregation-induced emission, are discussed in detail. These mechanisms provide a robust scientific rationale for the detection of antibiotics using FL QDs, showcasing their potential for sensitive and selective sensing applications. Finally, the review addresses current challenges and offers perspectives on the future improvement of FL QDs in sensing applications. Insights into overcoming existing limitations and harnessing emerging technologies are provided, charting a course for the continued advancement of FL QDs-based biosensing platforms in the field of antibiotic detection.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado, 95115, Indonesia
| | - Penki Venkata Sai Sashank
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh, 23245, Indonesia.
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
9
|
Peng B, Xie Y, Lai Q, Liu W, Ye X, Yin L, Zhang W, Xiong S, Wang H, Chen H. Pesticide residue detection technology for herbal medicine: current status, challenges, and prospects. ANAL SCI 2024; 40:581-597. [PMID: 38367162 DOI: 10.1007/s44211-024-00515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 02/19/2024]
Abstract
The domains of cancer therapy, disease prevention, and health care greatly benefit from the use of herbal medicine. Herbal medicine has become the mainstay of developing characteristic agriculture in the planting area increasing year by year. One of the most significant factors in affecting the quality of herbal medicines is the pesticide residue problem caused by pesticide abuse during the cultivation of herbal medicines. It is urgent to solve the problem of detecting pesticide residues in herbal medicines efficiently and rapidly. In this review, we provide a comprehensive description of the various methods used for pesticide residue testing, including optical detection, the enzyme inhibition rate method, molecular detection methods, enzyme immunoassays, lateral immunochromatographic, nanoparticle-based detection methods, colorimetric immunosensor, chemiluminescence immunosensor, smartphone-based immunosensor, etc. On this basis, we systematically analyze the mechanisms and some of the findings of the above detection strategies and discuss the challenges and prospects associated with the development of pesticide residue detection tools.
Collapse
Affiliation(s)
- Bin Peng
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Yueliang Xie
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Qingfu Lai
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wen Liu
- Guangdong Agriculture Industry Business Polytechnic, Guangzhou, 510000, China
| | - Xuelan Ye
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Li Yin
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Wanxin Zhang
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Suqin Xiong
- Guangzhou Huashang Vocational College, Guangzhou, 510000, China
| | - Heng Wang
- Guangdong Haid Group Co., Ltd, Guangzhou, 510000, China.
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Chen H, Liu Z, Li L, Cai X, Xiang L, Wang S. Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5526-5541. [PMID: 38457666 DOI: 10.1021/acs.jafc.3c09237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.
Collapse
Affiliation(s)
- Huimin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Zhiyu Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liheng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Leiwen Xiang
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou 350300, P. R. China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
11
|
Cao H, Han Y, Chen Z, Ding X, Ye T, Yuan M, Yu J, Wu X, Hao L, Yin F, Xu F. A smartphone sensing platform for the sensitive and selective detection of clothianidin based on MIP-functionalized lanthanide MOF. Mikrochim Acta 2024; 191:172. [PMID: 38433173 DOI: 10.1007/s00604-024-06217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/17/2024] [Indexed: 03/05/2024]
Abstract
A novel molecularly imprinted nanomaterial (Eu (BTC)-MPS@MIP) was synthesized on the surface of silanized europium-based metal-organic frameworks (Eu (BTC)-MPS) using 1, 3, 5-benzotrioic acid (H3BTC) as a ligand. The resulting Eu (BTC)-MPS@MIP was applied to constructing a smartphone sensing platform for the sensitive and selective detection of clothianidin (CLT) in vegetables. The synthesized Eu (BTC)-MPS@MIP demonstrated the successful formation of a typical core-shell structure featuring a shell thickness of approximately 70 - 80 nm. The developed sensing platform based on Eu (BTC)-MPS@MIP exhibited sensitivity in CLT detection with a detection limit of 4 µg/L and a linear response in the range 0.01 - 10 mg/L at excitation and emission wavelengths of 365 nm and 617 nm, respectively. The fluorescence sensing platform displayed excellent specificity for CLT detection, as evidenced by a high imprinting factor of 3.1. This specificity is primarily attributed to the recognition sites in the molecularly imprinted polymer (MIP) layer. When applied to spiked vegetable samples, the recovery of CLT ranged from 78.9 to 102.0%, with relative standard deviation (RSD) values falling between 2.2 and 6.2%. The quenching mechanism of Eu (BTC)-MPS@MIP toward CLT can be attributed to the inner filter effect (IFE), resulting from the optimal spectral overlap between the absorption spectrum of CLT and the excitation spectra of Eu (BTC)-MPS@MIP. The proposed method has the potential for extension to the detection of other pesticides by replacing the MIP recognition probes.
Collapse
Affiliation(s)
- Hui Cao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Yiyi Han
- Shanghai Center of Agri-Products Quality and Safety, Shanghai, 201708, People's Republic of China
| | - Zixin Chen
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Xiner Ding
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Tai Ye
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Min Yuan
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Jinsong Yu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Xiuxiu Wu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Liling Hao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Fengqin Yin
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China
| | - Fei Xu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516, Jungong Road, P.O. Box 454, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
12
|
Wei L, Zhu D, Cheng Q, Gao Z, Wang H, Qiu J. Aptamer-Based fluorescent DNA biosensor in antibiotics detection. Food Res Int 2024; 179:114005. [PMID: 38342532 DOI: 10.1016/j.foodres.2024.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The inappropriate employment of antibiotics across diverse industries has engendered profound apprehensions concerning their cumulative presence within human bodies and food commodities. Consequently, many nations have instituted stringent measures limiting the admissible quantities of antibiotics in food items. Nonetheless, conventional techniques employed for antibiotic detection prove protracted and laborious, prompting a dire necessity for facile, expeditious, and uncomplicated detection methodologies. In this regard, aptamer-based fluorescent DNA biosensors (AFBs) have emerged as a sanguine panacea to surmount the limitations of traditional detection modalities. These ingenious biosensors harness the binding prowess of aptamers, singular strands of DNA/RNA, to selectively adhere to specific target antibiotics. Notably, the AFBs demonstrate unparalleled selectivity, affinity, and sensitivity in detecting antibiotics. This comprehensive review meticulously expounds upon the strides achieved in AFBs for antibiotic detection, particularly emphasizing the labeling modality and the innovative free-label approach. It also elucidates the design principles behind a diverse array of AFBs. Additionally, a succinct survey of signal amplification strategies deployed within these biosensors is provided. The central objective of this review is to apprise researchers from diverse disciplines of the contemporary trends in AFBs for antibiotic detection. By doing so, it aspires to instigate a concerted endeavor toward the development of heightened sensitivity and pioneering AFBs, thereby contributing to the perpetual advancement of antibiotic detection methodologies.
Collapse
Affiliation(s)
- Luke Wei
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Dingze Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiuyue Cheng
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Honglei Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
13
|
Li Y, Lu H, Xu S. The construction of dual-emissive ratiometric fluorescent probes based on fluorescent nanoparticles for the detection of metal ions and small molecules. Analyst 2024; 149:304-349. [PMID: 38051130 DOI: 10.1039/d3an01711g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
With the rapid development of fluorescent nanoparticles (FNPs), such as CDs, QDs, and MOFs, the construction of FNP-based probes has played a key role in improving chemical sensors. Ratiometric fluorescent probes exhibit distinct advantages, such as resistance to environmental interference and achieving visualization. Thus, FNP-based dual-emission ratiometric fluorescent probes (DRFPs) have rapidly developed in the field of metal ion and small molecule detection in the past few years. In this review, firstly we introduce the fluorescence sensing mechanisms; then, we focus on the strategies for the fabrication of DRFPs, including hybrid FNPs, single FNPs with intrinsic dual emission and target-induced new emission, and DRFPs based on auxiliary nanoparticles. In the section on hybrid FNPs, methods to assemble two types of FNPs, such as chemical bonding, electrostatic interaction, core satellite or core-shell structures, coordination, and encapsulation, are introduced. In the section on single FNPs with intrinsic dual emission, methods for the design of dual-emission CDs, QDs, and MOFs are discussed. Regarding target-induced new emission, sensitization, coordination, hydrogen bonding, and chemical reaction induced new emissions are discussed. Furthermore, in the section on DRFPs based on auxiliary nanoparticles, auxiliary nanomaterials with the inner filter effect and enzyme mimicking activity are discussed. Finally, the existing challenges and an outlook on the future of DRFP are presented. We sincerely hope that this review will contribute to the quick understanding and exploration of DRFPs by researchers.
Collapse
Affiliation(s)
- Yaxin Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Hongzhi Lu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| | - Shoufang Xu
- Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China.
| |
Collapse
|
14
|
Nepfumbada C, Mthombeni NH, Sigwadi R, Ajayi RF, Feleni U, Mamba BB. Functionalities of electrochemical fluoroquinolone sensors and biosensors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3394-3412. [PMID: 38110684 PMCID: PMC10794289 DOI: 10.1007/s11356-023-30223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 12/20/2023]
Abstract
Fluoroquinolones (FQs) are a class of broad-spectrum antimicrobial agents that are used to treat variety of infectious diseases. This class of antibiotics was being used for patients exhibiting early symptoms of a human respiratory disease known as the COVID-19 virus. As a result, this outbreak causes an increase in drug-resistant strains and environmental pollution, both of which pose serious threats to biota and human health. Thus, to ensure public health and prevent antimicrobial resistance, it is crucial to develop effective detection methods for FQs determination in water bodies even at trace levels. Due to their characteristics like specificity, selectivity, sensitivity, and low detection limits, electrochemical biosensors are promising future platforms for quick and on-site monitoring of FQs residues in a variety of samples when compared to conventional detection techniques. Despite their excellent properties, biosensor stability continues to be a problem even today. However, the integration of nanomaterials (NMs) could improve biocompatibility, stability, sensitivity, and speed of response in biosensors. This review concentrated on recent developments and contemporary methods in FQs biosensors. Furthermore, a variety of modification materials on the electrode surface are discussed. We also pay more attention to the practical applications of electrochemical biosensors for FQs detection. In addition, the existing challenges, outlook, and promising future perspectives in this field have been proposed. We hope that this review can serve as a bedrock for future researchers and provide new ideas for the development of electrochemical biosensors for antibiotics detection in the future.
Collapse
Affiliation(s)
- Collen Nepfumbada
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Nomcebo H Mthombeni
- Department of Chemical Engineering, Faculty of the Built Environment, Durban University of Technology, Steve Biko Campus, Durban, 4001, South Africa
| | - Rudzani Sigwadi
- Department of Chemical Engineering, University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Rachel F Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa.
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
15
|
Hu C, Feng J, Cao Y, Chen L, Li Y. Deep eutectic solvents in sample preparation and determination methods of pesticides: Recent advances and future prospects. Talanta 2024; 266:125092. [PMID: 37633040 DOI: 10.1016/j.talanta.2023.125092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
This review summarizes recent advances of deep eutectic solvents (DESs) in sample preparation and determination methods of pesticides in food, environmental, and biological matrices since 2019. Emphasis is placed on new DES categories and emerging microextraction techniques. The former incorporate hydrophobic deep eutectic solvents, magnetic deep eutectic solvents, and responsive switchable deep eutectic solvents, while the latter mainly include dispersive liquid-liquid microextraction, liquid-liquid microextraction based on in-situ formation/decomposition of DESs, single drop microextraction, hollow fiber-liquid phase microextraction, and solid-phase microextraction. The principles, applications, advantages, and limitations of these microextraction techniques are presented. Besides, the use of DESs in chromatographic separation, electrochemical biosensors, fluorescent sensors, and surface-enhanced Raman spectroscopy are discussed. This review is expected to provide a valuable reference for extracting and detecting pesticides or other hazardous contaminants in the future.
Collapse
Affiliation(s)
- Cong Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianan Feng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Lizhu Chen
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201203, China.
| |
Collapse
|
16
|
Yi Y, Hou J, Bi X, Luo L, Li L, You T. Simple and sensitive fluorescence sensing of methyl parathion based on the inner filter effect of p-nitrophenol on nitrogen-doped titanium carbide quantum dots. LUMINESCENCE 2023. [PMID: 38148625 DOI: 10.1002/bio.4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 12/28/2023]
Abstract
It is of great significance to develop an effective method for methyl parathion (MP) detection. Herein, a novel nitrogen-doped titanium carbide quantum dots (N-Ti3 C2 QDs) was prepared and used to construct a simple and sensitive fluorescence sensing platform of MP by making use of inner filter effect (IFE). The prepared N-Ti3 C2 QDs can exhibit strong blue fluorescence at 434 nm. Meanwhile, MP could hydrolyze to produce p-nitrophenol (p-NP) under alkaline conditions, which showed a characteristic ultraviolet-visible (UV-visible) absorption peak at 405 nm, resulting in the fluorescence of N-Ti3 C2 QDs is effectively quenched by p-NP. In addition, the investigation of time-resolved fluorescence decays indicated that the corresponding quenching mechanism of p-NP on N-Ti3 C2 QDs is due to the IFE. After optimizing the conditions, the as-developed fluorescence sensing platform displayed wide detection range (0.1-30 μg mL-1 ) and low detection limit (0.036 μg mL-1 ) for MP, and it was also successfully applied for MP analysis in real water samples, thus it is expected that this simple, sensitive and enzyme-free sensing platform shows great applications.
Collapse
Affiliation(s)
- Yinhui Yi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jieling Hou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoya Bi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lijun Luo
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Libo Li
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tianyan You
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
17
|
Phimmasone S, Boonsri P, Siangproh W, Ratanawimarnwong N, Jittangprasert P, Mantim T, Limchoowong N, Songsrirote K. Carbon dots derived from citric acid and urea as fluorometric probe for determining melamine contamination in infant formula sample. Methods Appl Fluoresc 2023; 12:015003. [PMID: 37647911 DOI: 10.1088/2050-6120/acf547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Melamine has been intentionally added into food products to increase the protein count at less cost, especially in dairy products for infant resulting in serious adverse effects on health of consumers. Therefore, this study aimed to develop a method to quantify melamine in dairy products based on the change of fluorescent properties of carbon dots (CDs) as sensing probe. CDs with green-fluorescent emission were synthesized from citric acid and urea under microwave irradiation. The synthesized CDs emitted fluorescence at the maximum wavelength of 538 nm with excitation wavelength of 410 nm. Thus, they provided high sensitivity and selectivity on melamine detection by which fluorescent emission of the CDs was increasingly quenched upon increasing melamine concentrations. Optimal conditions for melamine determination using the CDs was under pH 6, volume ratio between CDs and sample of 2:8 and reaction time of 15 min. The developed method provided high precision of melamine determination with less than 5% of %RSD (n = 5), wide detection range from 1.0 to 200.0 ppm, and high sensitivity with limit of detection (LOD) of 0.47 ppm and limit of quantification (LOQ) of 1.56 ppm, which is within the regulated level by the Food and Drug Administration of the United States for melamine in dairy products. Several analytical characterization techniques were conducted to elucidate the reaction mechanism between CDs and melamine, and the hydrogen bonding interaction was proposed.
Collapse
Affiliation(s)
- Souliyanh Phimmasone
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
| | - Pornthip Boonsri
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
- Center of Excellence in Agricultural Innovation and Food Safety, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Nuanlaor Ratanawimarnwong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
- Center of Excellence in Agricultural Innovation and Food Safety, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Piyada Jittangprasert
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
- Center of Excellence in Agricultural Innovation and Food Safety, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Thitirat Mantim
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
- Center of Excellence in Agricultural Innovation and Food Safety, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Nunticha Limchoowong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
- Center of Excellence in Agricultural Innovation and Food Safety, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Kriangsak Songsrirote
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand
- Center of Excellence in Agricultural Innovation and Food Safety, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| |
Collapse
|
18
|
Pratiwi R, Ramadhanti SP, Amatulloh A, Megantara S, Subra L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023; 12:3422. [PMID: 37761131 PMCID: PMC10527676 DOI: 10.3390/foods12183422] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.
Collapse
Affiliation(s)
- Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Shinta Permata Ramadhanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Asyifa Amatulloh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Laila Subra
- Faculty of Bioeconomic, Food and Health Sciences, University of Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| |
Collapse
|
19
|
Hou F, Sun S, Abdullah SW, Tang Y, Li X, Guo H. The application of nanoparticles in point-of-care testing (POCT) immunoassays. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2154-2180. [PMID: 37114768 DOI: 10.1039/d3ay00182b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Covid-19 pandemic has led to greater recognition of the importance of the fast and timely detection of pathogens. Recent advances in point-of-care testing (POCT) technology have shown promising results for rapid diagnosis. Immunoassays are among the most extensive POCT assays, in which specific labels are used to indicate and amplify the immune signal. Nanoparticles (NPs) are above the rest because of their versatile properties. Much work has been devoted to NPs to find more efficient immunoassays. Herein, we comprehensively describe NP-based immunoassays with a focus on particle species and their specific applications. This review describes immunoassays along with key concepts surrounding their preparation and bioconjugation to show their defining role in immunosensors. The specific mechanisms, microfluidic immunoassays, electrochemical immunoassays (ELCAs), immunochromatographic assays (ICAs), enzyme-linked immunosorbent assays (ELISA), and microarrays are covered herein. For each mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining the biosensing and related point-of-care (POC) utility. Given their maturity, some specific applications using different nanomaterials are discussed in more detail. Finally, we outline future challenges and perspectives to give a brief guideline for the development of appropriate platforms.
Collapse
Affiliation(s)
- Fengping Hou
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd (LIBP), Subsidiary Company of China National Biotec Group Company Limited (CNBG), 730046 Lanzhou, China.
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, Gansu, P. R. China.
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Korah BK, Thara CR, John N, John BK, Mathew S, Mathew B. Microwave abetted synthesis of carbon dots and its triple mode applications in tartrazine detection, manganese ion sensing and fluorescent ink. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Yu Y, Zhang L, Gao X, Feng Y, Wang H, Lei C, Yan Y, Liu S. Research Progress in the Synthesis of Carbon Dots and Their Application in Food Analysis. BIOSENSORS 2022; 12:1158. [PMID: 36551125 PMCID: PMC9775108 DOI: 10.3390/bios12121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Food safety is connected to public health, making it crucial to protecting people's health. Food analysis and detection can assure food quality and effectively reduce the entry of harmful foods into the market. Carbon dots (CDs) are an excellent choice for food analysis and detection attributable to their advantages of good optical properties, water solubility, high chemical stability, easy functionalization, excellent bleaching resistance, low toxicity, and good biocompatibility. This paper focuses on the optical properties, synthesis methods, and applications of CDs in food analysis and detection, including the recent advances in food nutritional composition analysis and food quality detection, such as food additives, heavy metal ions, foodborne pathogens, harmful organic pollutants, and pH value. Moreover, this review also discusses the potentially toxic effects, current challenges, and prospects of CDs in basic research and applications. We hope that this review can provide valuable information to lay a foundation for subsequent research on CDs and promote the exploration of CDs-based sensing for future food detection.
Collapse
Affiliation(s)
- Yuan Yu
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Lili Zhang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Gao
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuanmiao Feng
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongyuan Wang
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Caihong Lei
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Yanhong Yan
- Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuiping Liu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
23
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Li H, Su C, Liu N, Lv T, Yang C, Lu Q, Sun C, Yan X. Carbon Dot-Anchored Cobalt Oxyhydroxide Composite-Based Hydrogel Sensor for On-Site Monitoring of Organophosphorus Pesticides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53340-53347. [PMID: 36380517 DOI: 10.1021/acsami.2c17450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of a portable, quantitative, and user-friendly sensor for on-site monitoring of organophosphorus pesticides (OPs) is significantly urgent to guarantee food safety. Herein, a carbon dot/cobalt oxyhydroxide composite (CD/CoOOH)-based fluorescent hydrogel sensor is constructed for precisely quantifying OPs using a homemade portable auxiliary device. As a fluorescence signal indicator, the orange-emissive CD/CoOOH composite is encapsulated into an agarose hydrogel kit for amplifying the detection signals, shielding background interference, and enhancing stability. Acetylcholinesterase (AChE) catalyzes the hydrolysis of the substrate to produce thiocholine, which induces the decomposition of CoOOH and makes the fluorescence enhancement of the hydrogel platform possible. OPs can specifically block the AChE activity to limit thiocholine production, resulting in a decrease in platform fluorescence. The image color of the fluorescent hydrogel kit is transformed into digital information using a homemade auxiliary device, achieving on-site quantitative detection of paraoxon (model target) with a detection limit of 10 ng mL-1. Harnessing CD/CoOOH composite signatures, hydrogel encapsulation, and portable optical devices, the proposed fluorescence hydrogel platform demonstrated high sensitivity and good anti-interference performance in agricultural sample analysis, indicating considerable potential in the on-site application.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Changshun Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ni Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Ting Lv
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Chuanyu Yang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Qi Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, P. R. China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Jilin Province, Changchun 130012, P. R. China
| |
Collapse
|
25
|
Fluorometric/electrochemical dual-channel sensors based on carbon quantum dots for the detection and information anti-counterfeiting. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Wei T, Zhang T, Tang M. An overview of quantum dots-induced immunotoxicity and the underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119865. [PMID: 35944776 DOI: 10.1016/j.envpol.2022.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) have bright luminescence and excellent photostability. New synthesis techniques and strategies also enhance QDs properties for specific applications. With the continuous expansion of the applications, QDs-mediated immunotoxicity has become a major concern. The immune system has been confirmed to be an important target organ of QDs and is sensitive to QDs. Herein, review immunotoxic effects caused by QDs and the underlying mechanisms. Firstly, QDs exposure-induced modulation in immune cell maturation and differentiation is summarized, especially pre-exposed dendritic cells (DCs) and their regulatory roles in adaptive immunity. Cytokines are usually recognized as biomarkers of immunotoxicity, therefore, variation of cytokines mediated by QDs is also highlighted. Moreover, the activation of the complement system induced by QDs is discussed. Accumulated results have suggested that QDs disrupt the immune response by regulating intracellular oxidative stress (reactive oxygen species) levels, autophagy formation, and expressions of pro-inflammatory mediators. Furthermore, several signalling pathways play a key role in the disruption. Finally, some difficulties worthy of further consideration are proposed. Because there are still challenges in biomedical and clinical applications, this review hopes to provide information that could be useful in exploring the mechanisms associated with QD-induced immunotoxicity.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
27
|
Zhang L, Zheng Y, Shao H, Xiao M, Sun J, Jin M, Jin F, Wang J, Abd El-Aty AM, She Y. Development of a time-resolved fluorescence microsphere Eu lateral flow test strip based on a molecularly imprinted electrospun nanofiber membrane for determination of fenvalerate in vegetables. Front Nutr 2022; 9:957745. [PMID: 36204370 PMCID: PMC9531596 DOI: 10.3389/fnut.2022.957745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fenvalerate residues in fruits and vegetables may result in biological immune system disorders. Current sensor detection methods are harsh due to the shortcomings of antibody preparation and preservation conditions. Therefore, developing a recognition material with strong specificity, good stability, and low cost is of practical significance in designing a sensitive, simple, and rapid method. This study used precipitation polymerization to synthesize molecularly imprinted polymers (MIPs). The MIP was prepared into a fiber membrane using the electrostatic spinning method. After that, the fenvalerate hapten-mouse IgG-Eu fluorescent probe was synthesized, and the side flow chromatography strip was constructed to determine fenvalerate in vegetables using the immunocompetition method. The results showed that the adsorption capacity of MIP to fenvalerate was 3.65, and the adsorption capacity on MIPFM (an electrospinning membrane containing the fenvalerate MIPs) was five times that of free MIP. The test strip showed good linearity with R 2 = 0.9761 within the range of 50 μg/L-1,000 μg/L. In conclusion, substituting fenvalerate monoclonal antibodies with a molecularly imprinted electrospinning membrane is ideal for rapid onsite detection of pyrethroids.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiliu Zheng
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Shao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xiao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Jianchun Sun
- Inspection and Testing Center of Agricultural Products of Tibetan Autonomous Region, Lhasa, China
| | - Maojun Jin
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fen Jin
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Li H, Huang X, Huang J, Bai M, Hu M, Guo Y, Sun X. Fluorescence Assay for Detecting Four Organophosphorus Pesticides Using Fluorescently Labeled Aptamer. SENSORS (BASEL, SWITZERLAND) 2022; 22:5712. [PMID: 35957269 PMCID: PMC9371145 DOI: 10.3390/s22155712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In this work, we reported a rapid and sensitive fluorescence assay in homogenous solution for detecting organophosphorus pesticides by using tetramethylrhodamine (TAMRA)-labeled aptamer and its complementary DNA (cDNA) with extended guanine (G) bases. The hybridization of cDNA and aptamer drew TAMRA close to repeated G bases, then the fluorescence of TAMRA was quenched by G bases due to the photoinduced electron transfer (PET). Upon introducing the pesticide target, the aptamer bound to pesticide instead of cDNA because of the competition between pesticide and cDNA. Thus, the TAMRA departed from G bases, resulting in fluorescence recovery of TAMRA. Under optimal conditions, the limits of detection for phorate, profenofos, isocarbophos, and omethoate were 0.333, 0.167, 0.267, and 0.333 µg/L, respectively. The method was also used in the analysis of profenofos in vegetables. Our fluorescence design was simple, rapid, and highly sensitive, which provided a means for monitoring the safety of agricultural products.
Collapse
Affiliation(s)
- He Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; (H.L.); (X.H.); (J.H.); (M.B.); (M.H.); (Y.G.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Xue Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; (H.L.); (X.H.); (J.H.); (M.B.); (M.H.); (Y.G.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; (H.L.); (X.H.); (J.H.); (M.B.); (M.H.); (Y.G.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Mengyuan Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; (H.L.); (X.H.); (J.H.); (M.B.); (M.H.); (Y.G.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; (H.L.); (X.H.); (J.H.); (M.B.); (M.H.); (Y.G.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; (H.L.); (X.H.); (J.H.); (M.B.); (M.H.); (Y.G.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, China; (H.L.); (X.H.); (J.H.); (M.B.); (M.H.); (Y.G.)
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo 255049, China
| |
Collapse
|
29
|
Zhang L, Zhao M, Xiao M, Im MH, Abd El-Aty AM, Shao H, She Y. Recent Advances in the Recognition Elements of Sensors to Detect Pyrethroids in Food: A Review. BIOSENSORS 2022; 12:402. [PMID: 35735550 PMCID: PMC9220870 DOI: 10.3390/bios12060402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
The presence of pyrethroids in food and the environment due to their excessive use and extensive application in the agriculture industry represents a significant threat to public health. Therefore, the determination of the presence of pyrethroids in foods by simple, rapid, and sensitive methods is warranted. Herein, recognition methods for pyrethroids based on electrochemical and optical biosensors from the last five years are reviewed, including surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), chemiluminescence, biochemical, fluorescence, and colorimetric methods. In addition, recognition elements used for pyrethroid detection, including enzymes, antigens/antibodies, aptamers, and molecular-imprinted polymers, are classified and discussed based on the bioreceptor types. The current research status, the advantages and disadvantages of existing methods, and future development trends are discussed. The research progress of rapid pyrethroid detection in our laboratory is also presented.
Collapse
Affiliation(s)
- Le Zhang
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Mingqi Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Ming Xiao
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810000, China;
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongsan 38453, Korea;
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Hua Shao
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| | - Yongxin She
- Institute of Quality Standards & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (M.Z.)
| |
Collapse
|
30
|
Biomass-derived carbon dots as a sensitive and selective dual detection platform for fluoroquinolones and tetracyclines. Anal Bioanal Chem 2022; 414:4935-4951. [PMID: 35579676 DOI: 10.1007/s00216-022-04119-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 01/24/2023]
Abstract
A novel carbon dot (CD) was synthesized through the facile and simple hydrothermal method from Curcuma amada, as the precursor for the first time. These CDs with an average diameter of 4.6 nm display blue fluorescence, with excitation/emission maxima at 360/445 nm and a quantum yield of 14.1%. It exhibited high stability under different conditions and was characterized using various techniques. These CDs can be employed as a dual-sensing platform to detect tetracyclines and fluoroquinolones, two antibiotic classes. Even though antibiotics are regarded as an inevitable commodity, overuse and improper management of discarded antibiotics pose a severe threat to the environment. Herein, we developed a dual-sensing, biocompatible sensor with high selectivity and sensitivity to detect antibiotics. CD was employed as a fluorescence probe and detected tetracycline and fluoroquinolone antibiotic through inner filter effect-based fluorescence quenching and hydrogen bonding-based enhancement process, respectively. The linear range was 0-16 μM and the detection limit was 33 nM for tetracycline and 2 nM for fluoroquinolone antibiotic. As an electrochemical probe, CD selectively detected tetracycline with a lower detection limit of 0.5 nM over a linear range of 0-16 μM. Using both methods, a real sample analysis of the developed sensor exhibited accurate reliability and precision.
Collapse
|
31
|
Zhang W, Zhong H, Zhao P, Shen A, Li H, Liu X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Liu Z, Liu S, Gao D, Li Y, Tian Y, Bai E. An Optical Sensing Platform for Beta-Glucosidase Activity Using Protein-Inorganic Hybrid Nanoflowers. J Fluoresc 2022; 32:669-680. [PMID: 35040029 DOI: 10.1007/s10895-021-02859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
In this work, a convenient and dual-signal readout optical sensing platform for the sensitively and selectively determination of beta-glucosidase (β-Glu) activity was reported using protein-inorganic hybrid nanoflowers [BSA-Cu3(PO4)2·3H2O] possessing peroxidase-mimicking activity. The nanoflowers (NFs) were facilely synthesized through a self-assembled synthesis strategy at room temperature. The as-prepared NFs could catalytically convert the colorless and non-fluorescent Amplex Red into colored and highly fluorescent resorufin in the presence of hydrogen peroxide via electron transfer process. β-Glu could hydrolyze cyanogenic glycoside, using amygdalin (Amy) as a model, into cyanide ions (CN-), which can subsequently efficiently suppress the catalytic activity of NFs, accompanied with the fluorescence decrease and the color fading. The concentration of CN- was controlled by β-Glu-triggered enzymatic reaction of Amy. Thus, a sensing system was established for fluorescent and visual determination of β-Glu activity. Under the optimum conditions, the present fluorescent and visual bimodal sensing platform exhibited good sensitivity for β-Glu activity assay with a detection limit of 0.33 U·L-1. The sensing platform was further applied to determinate β-Glu in real samples and satisfactory results were attained. Additionally, the optical sensing system can potentially be a promising candidate for β-Glu inhibitors screening.
Collapse
Affiliation(s)
- Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.,School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun Jilin, 130024, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yanan Li
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ye Tian
- Jilin Province Product Quality Supervision Testing Institute, Changchun, 130012, People's Republic of China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
33
|
Chen S, Yun SN, Liu Y, Yu R, Tu Q, Wang J, Yuan MS. A highly selective and sensitive CdS fluorescent quantum dot for the simultaneous detection of multiple pesticides. Analyst 2022; 147:3258-3265. [DOI: 10.1039/d2an00575a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We presented one-pot prepared CdS fluorescent quantum dots (QDs) which can sensitively and selectively detect three different organic pesticides.
Collapse
Affiliation(s)
- Siyu Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shu-Na Yun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yujiao Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
34
|
Su B, Liao S, Zhu H, Ge S, Liu Y, Wang J, Chen H, Wang L. Fabrication of a 2D metal-organic framework (MOF) nanosheet colloidal system and investigation of its fluorescence response to pesticide molecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5700-5710. [PMID: 34825672 DOI: 10.1039/d1ay01837j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides, as a type of toxic chemicals widely used for a long time, not only pollute the environment but also affect people's health and cause serious harm to the human body, soil and environment. Therefore, it is very necessary to exploit a portable and environmentally friendly method to detect pesticides with high sensitivity. Herein, a new luminescent metal-organic framework ([Zn(TPYBDC)·H2O]n, TPYBDC2- = 4'-(pyridin-4-yl)-[2,2':6',2''-terpyridine]-4,4''-dicarboxylate) with 2D coordination layers has been designed and assembled using 4'-(pyridin-4-yl)-[2,2':6',2''-terpyridine]-4,4''-dicarboxylic acid as the ligand. The as-synthesized Zn-LMOF was exfoliated to ultrathin 2D nanosheets (4-5 nm) to form a luminescence colloidal sensor by destroying the weak interaction between the coordination layers such as H-bonding between the matrix H2O and the coordination carboxyl oxygen, and the π-π interactions among the interlayer conjugated aromatic rings. Investigation of its recognition and detection ability towards chemical pesticides shows that it can sensitively detect pesticides such as imidacloprid, nitenpyram and dinotefuran via fluorescence quenching effect with very low detection limit (LOD). Using imidacloprid as a typical case, a LOD value of 0.562 μM and recoveries for the simulated agricultural environmental samples in the range of 94-115% suggests that the as-fabricated 2D Zn-MOF nanosheet colloidal sensor (Zn-LMOF probe) is a most promising candidate for sensing chemical pesticides.
Collapse
Affiliation(s)
- Boya Su
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Shengyun Liao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haitao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Shuxian Ge
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Yan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Jingyao Wang
- Safety and Technical of Industrial Products Center, Tianjin Customs District, Tianjin, 300308, China
| | - Hui Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Lidong Wang
- Rotam CropScience Limited Company, No. 16 Huangshan Road, Modern Industrial Park, Hangu of TEDA, Tianjin, 300457, China.
| |
Collapse
|
35
|
Wang Z, Liu Q, Leng J, Liu H, Zhang Y, Wang C, An W, Bao C, Lei H. The green synthesis of carbon quantum dots and applications for sulcotrione detection and anti-pathogen activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Wang J, Teng X, Wang Y, Si S, Ju J, Pan W, Wang J, Sun X, Wang W. Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116430] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
|
38
|
Lim S, Kuang Y, Ardoña HAM. Evolution of Supramolecular Systems Towards Next-Generation Biosensors. Front Chem 2021; 9:723111. [PMID: 34490210 PMCID: PMC8416679 DOI: 10.3389/fchem.2021.723111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Supramolecular materials, which rely on dynamic non-covalent interactions, present a promising approach to advance the capabilities of currently available biosensors. The weak interactions between supramolecular monomers allow for adaptivity and responsiveness of supramolecular or self-assembling systems to external stimuli. In many cases, these characteristics improve the performance of recognition units, reporters, or signal transducers of biosensors. The facile methods for preparing supramolecular materials also allow for straightforward ways to combine them with other functional materials and create multicomponent sensors. To date, biosensors with supramolecular components are capable of not only detecting target analytes based on known ligand affinity or specific host-guest interactions, but can also be used for more complex structural detection such as chiral sensing. In this Review, we discuss the advancements in the area of biosensors, with a particular highlight on the designs of supramolecular materials employed in analytical applications over the years. We will first describe how different types of supramolecular components are currently used as recognition or reporter units for biosensors. The working mechanisms of detection and signal transduction by supramolecular systems will be presented, as well as the important hierarchical characteristics from the monomers to assemblies that contribute to selectivity and sensitivity. We will then examine how supramolecular materials are currently integrated in different types of biosensing platforms. Emerging trends and perspectives will be outlined, specifically for exploring new design and platforms that may bring supramolecular sensors a step closer towards practical use for multiplexed or differential sensing, higher throughput operations, real-time monitoring, reporting of biological function, as well as for environmental studies.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States
| | - Herdeline Ann M Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, CA, United States.,Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, United States.,Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
39
|
Ding R, Chen Y, Wang Q, Wu Z, Zhang X, Li B, Lin L. Recent advances in quantum dots-based biosensors for antibiotic detection. J Pharm Anal 2021; 12:355-364. [PMID: 35811614 PMCID: PMC9257440 DOI: 10.1016/j.jpha.2021.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/21/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rui Ding
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Qiusu Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zhengzhang Wu
- Jiangsu Conat Biological Products Co., Ltd., Taixing, Jiangsu, 225400, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author.
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Corresponding author. .
| |
Collapse
|
40
|
Liu J, Li Y, Liu L, Gao Y, Zhang Y, Yin Z, Pi F, Sun X. Current Progress on Antibiotic Sensing Based on Ratiometric Fluorescent Sensors. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:176-184. [PMID: 32747994 DOI: 10.1007/s00128-020-02946-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics, which can be used as veterinary drugs, are widely used in the prevention and treatment of infectious diseases for animals. However, overuse of antibiotics had caused serious problems on food contamination and human harm. For control such public issues, several of techniques have been in recent years. Ratiometric fluorescent (RF) technique, as one of the most promising strategies for quantitatively evaluated analytes, had been extensively developed for the readily measurements on the two different fluorescent emission intensities. In this review, the construction strategies for recent RF sensors will be mainly focused on. Meanwhile, the recent advances and new tendencies for detection of antibiotics based on RF technique shall be introduced. Finally, outlooks on the opportunities and challenges for quantitative fluorescence sensing on antibiotics will be summarized.
Collapse
Affiliation(s)
- Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yueying Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Ziye Yin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Zhang X, Zou X, Wang Z, Wang Y, Zhang Y, Liu Z, Zhang T, Wang Y, Zhang G, Tian Y. Development of a quantum dot
s
‐based strip immunoassay for the detection of pyrimethanil in fruit and vegetable samples. J Food Saf 2021. [DOI: 10.1111/jfs.12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoyu Zhang
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Xiaonan Zou
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Zhiyu Wang
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Ying Wang
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Yi Zhang
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Zejing Liu
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Tiantian Zhang
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Yihui Wang
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Guifang Zhang
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| | - Yunlong Tian
- Yantai Center for Disease Control and Prevention Yantai People's Republic of China
| |
Collapse
|
42
|
Xing X, Yao L, Yan C, Xu Z, Xu J, Liu G, Yao B, Chen W. Recent progress of personal glucose meters integrated methods in food safety hazards detection. Crit Rev Food Sci Nutr 2021; 62:7413-7426. [PMID: 34047213 DOI: 10.1080/10408398.2021.1913990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Development of personal glucose meters (PGMs) for blood glucose monitoring and management by the diabetic patients has been a long history since its first invention in 1968 and commercial application in 1975. The main reasons for its wide acceptance and popularity can be attributed mainly to the easy operation, test-to-result model, low cost, and small volume of sample required for blood glucose concentration test. During past decades, advances in analytical techniques have repurposed the use of PGMs into a general point-of-care testing platform for a variety of non-glucose targets, especially the food hazards. In this review, we summarized the recent published research using PGMs to detect the food safety hazards of mycotoxins, illegal additives, pathogen bacteria, and pesticide and veterinary drug residues detection with PGMs. The progress on PGM-based detection achieved in food safety have been carefully compared and analyzed. Furthermore, the current bottlenecks and challenges for practical applications of PGM for hazards detection in food safety have also been proposed.
Collapse
Affiliation(s)
- Xiuguang Xing
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Li Yao
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Yan
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, China
| | - Zhenlin Xu
- Guangdong Provincial Key Lab of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, China
| | - Bangben Yao
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, China
| | - Wei Chen
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
43
|
Zhu X, Jiang W, Zhao Y, Liu H, Sun B. Single, dual and multi-emission carbon dots based optosensing for food safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Lin Z, Liu X, Li Y, Li C, Yang L, Ma K, Zhang Z, Huang H. Electrochemical aptasensor based on Mo 2C/Mo 2N and gold nanoparticles for determination of chlorpyrifos. Mikrochim Acta 2021; 188:170. [PMID: 33891178 DOI: 10.1007/s00604-021-04830-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Two-dimensional Mo2C/Mo2N composites were synthesized by high temperature ball milling and used as support materials for fabricating a chlorpyrifos (CPF) aptasensor. Gold nanoparticles (Au NPs) were electrodeposited on the surface of a Mo2C/Mo2N-modified electrode to connect with the ferrocene (Fc) probe via Au-S bonds. The Fc probe can hybridize with the aptamer probe to form a double-stranded structure. The addition of CPF made the double strands melt and the Fc probe approached the surface of the electrode, thereby resulting in amplification of the electrochemical response. The current response of the aptasensor for detecting CPF in solutions linearly varied from 0 to 400 ng mL-1 (with a maximum at 0.98 V vs. Ag/AgCl). The Au NPs/Mo2C/Mo2N composites exhibited satisfactory electrochemical behavior due to their excellent electrical conductivity and large surface area. This ultrasensitive aptasensor showed a low limit of detection of 0.036 ng mL-1. It was applied to determine CPF in real samples with acceptable recoveries from 94.7 to 116.7%, and the relative standard deviation was from 2.57 to 7.08%.Graphical abstract Schematic diagram of the manufacturing process of the aptasensor. Electrochemical aptasensor based on Mo2C/Mo2N/Au NP composites show excellent performance in detecting CPF.
Collapse
Affiliation(s)
- Zhenfeng Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Xin Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Yangzi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Changxiang Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Liu Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Keke Ma
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Zhenwei Zhang
- Linyi Institute of Industrial Technology, Linyi, 276000, China
| | - Huayu Huang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
45
|
Rahman MM, Lee DJ, Jo A, Yun SH, Eun JB, Im MH, Shim JH, Abd El-Aty AM. Onsite/on-field analysis of pesticide and veterinary drug residues by a state-of-art technology: A review. J Sep Sci 2021; 44:2310-2327. [PMID: 33773036 DOI: 10.1002/jssc.202001105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/08/2022]
Abstract
Pesticides and veterinary drugs are generally employed to control pests and insects in crop and livestock farming. However, remaining residues are considered potentially hazardous to human health and the environment. Therefore, regular monitoring is required for assessing and legislation of pesticides and veterinary drugs. Various approaches to determining residues in various agricultural and animal food products have been reported. Most analytical methods involve sample extraction, purification (cleanup), and detection. Traditional sample preparation is time-consuming labor-intensive, expensive, and requires a large amount of toxic organic solvent, along with high probability for the decomposition of a compound before the analysis. Thus, modern sample preparation techniques, such as the quick, easy, cheap, effective, rugged, and safe method, have been widely accepted in the scientific community for its versatile application; however, it still requires a laboratory setup for the extraction and purification processes, which also involves the utilization of a toxic solvent. Therefore, it is crucial to elucidate recent technologies that are simple, portable, green, quick, and cost-effective for onsite and infield residue detections. Several technologies, such as surface-enhanced Raman spectroscopy, quantum dots, biosensing, and miniaturized gas chromatography, are now available. Further, several onsite techniques, such as ion mobility-mass spectrometry, are now being upgraded; some of them, although unable to analyze field sample directly, can analyze a large number of compounds within very short time (such as time-of-flight and Orbitrap mass spectrometry). Thus, to stay updated with scientific advances and analyze organic contaminants effectively and safely, it is necessary to study all of the state-of-art technology.
Collapse
Affiliation(s)
- Md Musfiqur Rahman
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Dong Ju Lee
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Ara Jo
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Seung Hee Yun
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology and BK 21 plus Program, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Moo-Hyeog Im
- Department of Food Engineering, Daegu University, Gyeongbuk, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Chonnam National University, Gwangju, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
46
|
Díaz-Álvarez M, Martín-Esteban A. Molecularly Imprinted Polymer-Quantum Dot Materials in Optical Sensors: An Overview of Their Synthesis and Applications. BIOSENSORS 2021; 11:bios11030079. [PMID: 33805669 PMCID: PMC7999655 DOI: 10.3390/bios11030079] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 05/03/2023]
Abstract
In the last decades analytical methods have focused on the determination of target analytes at very low concentration levels. This has been accomplished through the use of traditional analytical methods that usually require high reagent consumption, expensive equipment and long pretreatment steps. Thus, there is a demand for simple, rapid, highly selective and user-friendly detection procedures. Quantum dots (QDs) are semiconductor fluorescent nanomaterials with unique optoelectronic properties that have shown great potential for the development of fluorescence probes. Besides, the combination of QDs with molecularly imprinted polymer (MIPs), synthetic materials with selective recognition, have been proposed as useful materials in the development of optical sensors. The resulting MIP-QDs optical sensors integrate the advantages of both techniques: the high sensitivity of QDs-based fluorescence sensors and the high selectivity of MIPs. This review gives a brief overview of the strategies for the synthesis of MIPs-QDs based optical sensors, highlighting the modifications in the synthesis procedure that improve the sensor performance. Finally, a revision of recent applications in sensing and bioimaging is presented.
Collapse
|
47
|
Yi Y, Liu L, Wu Y, Zhu G. Fluorescent and Colorimetric Dual-signal Enantiomers Recognition via Enzyme Catalysis: The Case of Glucose Enantiomers Using Nitrogen-doped Silicon Quantum Dots/Silver Probe Coupled with β-D-Glucose Oxidase. ANAL SCI 2021; 37:275-281. [PMID: 32863333 DOI: 10.2116/analsci.20p228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chiral enantiomer recognition is important but facing tough challenges in the direct quantitative determination for complex samples. In this work, via chosing nitrogen-doped silicon quantum dots (N-SiQD) as optical nanoprobe and constructing N-SiQD/silver (N-SiQD/Ag NPs) complex, β-D-GOx as model enzyme and glucose enantiomers as analytes, a fluorescent and colorimetric dual-signal chiral sensing strategy was proposed herein for chiral recognition based on specific enzyme-catalyzed reaction. N-SiQD can exhibit intense fluorescence, while it can be quenched by Ag NPs owing to the formation of N-SiQD/Ag NPs. In the presence of glucose isomer, D-glucose is catalytically hydrolyzed by β-D-GOx to form H2O2 owing to the specific enzyme catalyzed reaction between D-glucose and β-D-GOx, and H2O2 can etch Ag NPs from the N-SiQD/Ag NPs probe to change the solution color from brown to colorless and restore the N-SiQD fluorescence; while these phenomena cannot be caused by L-glucose, a dual-signal sensing method was thus constructed for recognizing glucose enantiomers. It is believed that the chiral enantiomers recognition strategy via enzyme catalysis has great application for selective and quantificational detection of enantiomers in the complex sample system.
Collapse
Affiliation(s)
- Yinhui Yi
- School of the Environment and Safety Engineering, Jiangsu University.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
| | - Lirong Liu
- School of the Environment and Safety Engineering, Jiangsu University
| | - Yuntao Wu
- School of the Environment and Safety Engineering, Jiangsu University
| | - Gangbing Zhu
- School of the Environment and Safety Engineering, Jiangsu University.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences.,State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University
| |
Collapse
|
48
|
Xu Q, Wang Y, Gao P, Jiang Y. Preparation of “pomegranate”-like QD/SiO 2/poly(St- co-MAA) fluorescent nanobeads in two steps to improve stability and biocompatibility. NEW J CHEM 2021. [DOI: 10.1039/d1nj00526j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fluorescent nanobeads are widely used due to their advantages of visualization, sensitivity and the quantitative measurement of target analytes.
Collapse
Affiliation(s)
- Qianrui Xu
- School of Chemistry and Chemical Engineering
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research
- Southeast University
- China
| | - Yang Wang
- School of Chemistry and Chemical Engineering
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research
- Southeast University
- China
| | - Pengcheng Gao
- School of Chemistry and Chemical Engineering
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research
- Southeast University
- China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research
- Southeast University
- China
| |
Collapse
|
49
|
Yi Y, Zeng W, Zhu G. β-Cyclodextrin functionalized molybdenum disulfide quantum dots as nanoprobe for sensitive fluorescent detection of parathion-methyl. Talanta 2021; 222:121703. [DOI: 10.1016/j.talanta.2020.121703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
|
50
|
Zhang X, Zhu M, Jiang Y, Wang X, Guo Z, Shi J, Zou X, Han E. Simple electrochemical sensing for mercury ions in dairy product using optimal Cu 2+-based metal-organic frameworks as signal reporting. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123222. [PMID: 32590133 DOI: 10.1016/j.jhazmat.2020.123222] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A convenient sensor is developed for electrochemical assay of Hg2+ in dairy product using the optimal Cu2+-based metal-organic frameworks (Cu-MOFs) as signal reporting. Benefiting from specific recognition between Hg2+ and thymine (T)-rich DNA strands, the interferences of milk matrices are effectively eliminated, thereby greatly improving the accuracy of test results. Moreover, the suitable Cu-MOFs offer an efficient carrier for probe design, and the contained Cu2+ ions could be directly detected to output electrochemical signal of Hg2+ presence without labor- or time-intensive operations. Compared with previous methods, this sensor substantially simplifies the process of electrochemical measurement and facilitates highly sensitive, selective and rapid analysis of Hg2+ with detection limit of 4.8 fM, offering a valuable means for monitoring dairy product contamination with Hg2+.
Collapse
Affiliation(s)
- Xinai Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Minchen Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yanjuan Jiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|