1
|
Zheng LY, Zhang NY, Zheng H, Wang KM, Zhang J, Meng N, Jiang CS. Synthesis and biological evaluation of ferrostatin-based diamide derivatives as new ferroptosis inhibitors. Bioorg Med Chem Lett 2024; 113:129974. [PMID: 39332647 DOI: 10.1016/j.bmcl.2024.129974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Ferroptosis, a distinct type of cell death caused by iron and lipid peroxidation, has been associated with several diseases, including cardiovascular disorders. Ferrostatin-1 (Fer-1) is a known ferroptosis inhibitor, but its clinical application is limited by low efficacy and stability. In the present study, a series of Fer-1-based diamide derivatives was synthesized and evaluated to enhance ferroptosis inhibition and in vitro metabolic stability. The synthesized compounds were tested for their protective effects against Erastin-induced injury in human vascular endothelial cells (HUVECs). Among the derivatives, compound 36 exhibited the most potent anti-ferroptosis activity with an EC50 value of 0.58 ± 0.02 µM. Remarkably, compound 36 also demonstrated superior stability in both microsomal (human and mouse) and mouse plasma assays. These findings indicated ferroptosis inhibitor 36 as a promising hit for further developing potential therapeutic drug candidates in cardiovascular diseases.
Collapse
Affiliation(s)
- Lei-Yin Zheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hui Zheng
- Jinan University Hospital, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Zhang YF, Guo W, Zheng H, Zhang NY, Ji HL, Meng N, Zhang J, Jiang CS. Design and Synthesis of 1,4-Diformyl-Piperazine Ferrostatin-1 Derivatives as Novel Ferroptosis Inhibitors. Chem Biol Drug Des 2024; 104:e70000. [PMID: 39468754 DOI: 10.1111/cbdd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024]
Abstract
The present study focuses on the design and synthesis of novel 1,4-diformyl-piperazine-based ferrostatin-1 (Fer-1) derivatives, and their evaluation against ferroptosis activity. The synthesized compounds demonstrated significant anti-ferroptosis activity in human umbilical vascular endothelial cells (HUVECs), with Compound 24 showing the highest potency. Mechanistic studies revealed that Compound 24 effectively reduced intracellular reactive oxygen species (ROS) levels, mitigated mitochondrial damage, and enhanced glutathione peroxidase 4 (GPX4) expression. Additionally, Compound 24 exhibited improved solubility and plasma stability compared to control compounds, Fer-1 and JHL-12. These findings suggest that 1,4-diformyl-piperazine-based Fer-1 derivatives hold promise as therapeutic agents for ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Wei Guo
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hui Zheng
- Jinan University Hospital, University of Jinan, Jinan, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
3
|
Eggenhofer E, Proneth B. Ferroptosis Inhibition: A Key Opportunity for the Treatment of Ischemia/Reperfusion Injury in Liver Transplantation. Transplantation 2024:00007890-990000000-00874. [PMID: 39294870 DOI: 10.1097/tp.0000000000005199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The outcome after liver transplantation has improved in recent years, which can be attributed to superior storage and transportation conditions of the organs, as well as better peri- and postoperative management and advancements in surgical techniques. Nevertheless, there is an increasing discrepancy between the need for organs and their availability. Consequently, the mortality rate on the waiting list is high and continues to rise. One way of counteracting this trend is to increase the use of "expanded criteria donors." This means that more and more donors will be included, especially those who are older and having additional comorbidities (eg, steatosis). A major complication of any transplantation is the occurrence of ischemia/reperfusion injury (IRI), which often leads to liver dysfunction and failure. However, there have been various promising approaches to minimize IRI in recent years, but an effective and clinically applicable method to achieve a better outcome for patients after liver transplantation is still missing. Thereby, the so-called marginal organs are predominantly affected by IRI; thus, it is crucial to develop suitable and effective treatment options for patients. Recently, regulated cell death mechanisms, particularly ferroptosis, have been implicated to play a major role in IRI, including the liver. Therefore, inhibiting this kind of cell death modality presents a promising therapeutic approach for the management of this yet untreatable condition. Thus, this review provides an overview of the role of ferroptosis in liver IRI and transplantation and discusses possible therapeutic solutions based on ferroptosis inhibition to restrain IRI in marginal organs (especially steatosis and donation after circulatory death organs).
Collapse
Affiliation(s)
- Elke Eggenhofer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
4
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
5
|
Hua R, Zhao C, Xu Z, Liu D, Shen W, Yuan W, Li Y, Ma J, Wang Z, Feng S. ROS-responsive nanoparticle delivery of ferroptosis inhibitor prodrug to facilitate mesenchymal stem cell-mediated spinal cord injury repair. Bioact Mater 2024; 38:438-454. [PMID: 38770428 PMCID: PMC11103787 DOI: 10.1016/j.bioactmat.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Spinal cord injury (SCI) is a traumatic condition that results in impaired motor and sensory function. Ferroptosis is one of the main causes of neural cell death and loss of neurological function in the spinal cord, and ferroptosis inhibitors are effective in reducing inflammation and repairing SCI. Although human umbilical cord mesenchymal stem cells (Huc-MSCs) can ameliorate inflammatory microenvironments and promote neural regeneration in SCI, their efficacy is greatly limited by the local microenvironment after SCI. Therefore, in this study, we constructed a drug-release nanoparticle system with synergistic Huc-MSCs and ferroptosis inhibitor, in which we anchored Huc-MSCs by a Tz-A6 peptide based on the CD44-targeting sequence, and combined with the reactive oxygen species (ROS)-responsive drug nanocarrier mPEG-b-Lys-BECI-TCO at the other end for SCI repair. Meanwhile, we also modified the classic ferroptosis inhibitor Ferrostatin-1 (Fer-1) and synthesized a new prodrug Feborastatin-1 (Feb-1). The results showed that this treatment regimen significantly inhibited the ferroptosis and inflammatory response after SCI, and promoted the recovery of neurological function in rats with SCI. This study developed a combination therapy for the treatment of SCI and also provides a new strategy for the construction of a drug-coordinated cell therapy system.
Collapse
Affiliation(s)
- Renshuai Hua
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Chenxi Zhao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhengyu Xu
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Derong Liu
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wenyuan Shen
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Orthopedics, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Wenlu Yuan
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yan Li
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jun Ma
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhishuo Wang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shiqing Feng
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Orthopedics, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, China
| |
Collapse
|
6
|
Lu Y, Shen Z, Xu Y, Lin H, Shen L, Jin Y, Guo Y, Lu J, Li L, Zhuang Y, Jin Y, Zhuang W, Huang W, Dong X, Dai H, Che J. Discovery of New Phenyltetrazolium Derivatives as Ferroptosis Inhibitors for Treating Ischemic Stroke: An Example Development from Free Radical Scavengers. J Med Chem 2024; 67:11712-11731. [PMID: 38996382 DOI: 10.1021/acs.jmedchem.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Ferroptosis is a promising therapeutic target for injury-related diseases, yet diversity in ferroptosis inhibitors remains limited. In this study, initial structure optimization led us to focus on the bond dissociation enthalpy (BDE) of the N-H bond and the residency time of radical scavengers in a phospholipid bilayer, which may play an important role in ferroptosis inhibition potency. This led to the discovery of compound D1, exhibiting potent ferroptosis inhibition, high radical scavenging, and moderate membrane permeability. D1 demonstrated significant neuroprotection in an oxygen glucose deprivation/reoxygenation (OGD/R) model and reduced infarct volume in an in vivo stroke model upon intravenous treatment. Further screening based on this strategy identified NecroX-7 and Eriodictyol-7-O-glucoside as novel ferroptosis inhibitors with highly polar structural characteristics. This approach bridges the gap between free radical scavengers and ferroptosis inhibitors, providing a foundation for research and insights into novel ferroptosis inhibitor development.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zexu Shen
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoran Lin
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Liteng Shen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhen Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linjie Li
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuheng Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihao Zhuang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, PR China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Xiaowu Dong
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Haibin Dai
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Sheng XH, Han LC, Gong A, Meng XS, Wang XH, Teng LS, Sun XH, Xu KC, Liu ZH, Wang T, Ma JP, Zhang L. Discovery of Novel Ortho-Aminophenol Derivatives Targeting Lipid Peroxidation with Potent Antiferroptotic Activities. J Med Chem 2024; 67:9536-9551. [PMID: 38822802 DOI: 10.1021/acs.jmedchem.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
The concept of ferroptosis inhibition has gained growing recognition as a promising therapeutic strategy for addressing a wide range of diseases. Here, we present the discovery of four series of ortho-aminophenol derivatives as potential ferroptosis inhibitors beginning with the endogenous substance 3-hydroxyanthranilic acid (3-HA) by employing quantum chemistry techniques, in vitro and in vivo assays. Our findings reveal that these ortho-aminophenol derivatives exhibit unique intra-H bond interactions, compelling ortho-amines to achieve enhanced alignment with the aromatic π-system, thereby expanding their activity. Notably, compounds from all four series display remarkable activity against RSL3-induced ferroptosis, showcasing an activity 100 times more than that of 3-HA. Furthermore, these compounds also demonstrate robust in vivo efficacy in protecting mice from kidney ischemia-reperfusion injury and acetaminophen-induced hepatotoxicity. In summary, we provide four distinct series of active scaffolds that significantly expand the chemical space of ferroptosis inhibitors, serving as valuable insights for future structural modifications.
Collapse
Affiliation(s)
- Xie-Huang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Li-Cong Han
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Ao Gong
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Xiang-Shuai Meng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Xin-Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Lin-Song Teng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, China
| | - Xiao-Han Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Kuo-Chen Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, China
| | - Zhao-Hua Liu
- The Model Animal Research Center, Cheeloo College of Medicine, Shandong University, Jinan 250014, China
| | - Ting Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Jian-Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, China
| |
Collapse
|
8
|
Ji HL, Zhang YF, Zhang NY, Wang KM, Meng N, Zhang J, Jiang CS. Design, synthesis, and evaluation of formylpiperazine analogs of Ferrostatin-1 as novel improved ferroptosis inhibitors. Bioorg Med Chem 2024; 105:117716. [PMID: 38608329 DOI: 10.1016/j.bmc.2024.117716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Hua-Long Ji
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yi-Fan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Wang XX, Wang RJ, Ji HL, Liu XY, Zhang NY, Wang KM, Chen K, Liu PP, Meng N, Jiang CS. Design, synthesis, and evaluation of novel ferrostatin derivatives for the prevention of HG-induced VEC ferroptosis. RSC Med Chem 2024; 15:1198-1209. [PMID: 38665835 PMCID: PMC11042167 DOI: 10.1039/d4md00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Ferroptosis is a nonapoptotic, iron-catalyzed form of regulated cell death. It has been shown that high glucose (HG) could induce ferroptosis in vascular endothelial cells (VECs), consequently contributing to the development of various diseases. This study synthesized and evaluated a series of novel ferrostatin-1 (Fer-1) derivatives fused with a benzohydrazide moiety to prevent HG-induced VEC ferroptosis. Several promising compounds showed similar or improved inhibitory effects compared to positive control Fer-1. The most effective candidate 12 exhibited better protection against erastin-induced ferroptosis and high glucose-induced ferroptosis in VECs. Mechanistic studies revealed that compound 12 prevented mitochondrial damage, reduced intracellular ROS accumulation, upregulated the expression of GPX4, and decreased the amounts of ferrous ion, LPO and MDA in VECs. However, compound 12 still exhibited undesirable microsomal stability like Fer-1, suggesting the need for further optimization. Overall, the present findings highlight ferroptosis inhibitor 12 as a potential lead compound for treating ferroptosis-associated vascular diseases.
Collapse
Affiliation(s)
- Xin-Xin Wang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Run-Jie Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University Harbin 150040 China
| | - Hua-Long Ji
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Xiao-Yu Liu
- Evaluation Center of the New Drug, Shandong Academy of Pharmaceutical Sciences Jinan 250101 China
| | - Nai-Yu Zhang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Kai-Ming Wang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Kai Chen
- Evaluation Center of the New Drug, Shandong Academy of Pharmaceutical Sciences Jinan 250101 China
| | - Ping-Ping Liu
- Department of Gynaecology and Obstetrics, 960th Hospital of PLA Jinan 250000 China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan Jinan 250022 China
| |
Collapse
|
12
|
Calenda S, Catarzi D, Varano F, Vigiani E, Volpini R, Lambertucci C, Spinaci A, Trevisan L, Grieco I, Federico S, Spalluto G, Novello G, Salmaso V, Moro S, Colotta V. Structural Investigations on 2-Amidobenzimidazole Derivatives as New Inhibitors of Protein Kinase CK1 Delta. Pharmaceuticals (Basel) 2024; 17:468. [PMID: 38675428 PMCID: PMC11054282 DOI: 10.3390/ph17040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.
Collapse
Affiliation(s)
- Sara Calenda
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Daniela Catarzi
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Flavia Varano
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Erica Vigiani
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| | - Rosaria Volpini
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Catia Lambertucci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Andrea Spinaci
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.V.); (C.L.); (A.S.)
| | - Letizia Trevisan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy; (L.T.); (I.G.); (S.F.); (G.S.)
| | - Gianluca Novello
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (G.N.); (V.S.); (S.M.)
| | - Vittoria Colotta
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, 50019 Florence, Italy; (S.C.); (D.C.); (F.V.); (E.V.)
| |
Collapse
|
13
|
Arabpour J, Rezaei K, Khojini JY, Razi S, Hayati MJ, Gheibihayat SM. The potential role and mechanism of circRNAs in Ferroptosis: A comprehensive review. Pathol Res Pract 2024; 255:155203. [PMID: 38368664 DOI: 10.1016/j.prp.2024.155203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Cell death encompasses various mechanisms, including necrosis and apoptosis. Ferroptosis, a unique form of regulated cell death, emerged as a non-apoptotic process reliant on iron and reactive oxygen species (ROS). Distinguishing itself from other forms of cell death, ferroptosis exhibits distinct morphological, biochemical, and genetic features. Circular RNAs (circRNAs), a novel class of RNA molecules, play crucial regulatory roles in ferroptosis-mediated pathways and cellular processes. With their circular structure and stability, circRNAs function as microRNA sponges and participate in protein regulation, offering diverse mechanisms for cellular control. Accumulating evidence indicates that circRNAs are key players in diseases associated with ferroptosis, presenting opportunities for diagnostic and therapeutic applications. This study explores the regulatory roles of circRNAs in ferroptosis and their potential in diseases such as cancer, neurological disorders, and cardiovascular diseases. By investigating the relationship between circRNAs and ferroptosis, this research provides new insights into the diagnosis, treatment, and prognosis of ferroptosis-related diseases. Furthermore, the therapeutic implications of targeting circRNAs in cancer treatment and the modulation of ferroptosis pathways demonstrate the potential of circRNAs as diagnostic markers and therapeutic targets. Overall, understanding the involvement of circRNAs in regulating ferroptosis opens up new avenues for advancements in disease management.
Collapse
Affiliation(s)
- Javad Arabpour
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Shokufeh Razi
- Department of Genetics, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mohammad Gheibihayat
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
14
|
Li S, Han Q, Liu C, Wang Y, Liu F, Pan S, Zuo L, Gao D, Chen K, Feng Q, Liu Z, Liu D. Role of ferroptosis in chronic kidney disease. Cell Commun Signal 2024; 22:113. [PMID: 38347570 PMCID: PMC10860320 DOI: 10.1186/s12964-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024] Open
Abstract
Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chang Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kai Chen
- Kaifeng Renmin Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
15
|
Sheng XH, Han LC, Ma XJ, Gong A, Hao MZ, Zhu H, Meng XS, Wang T, Sun CH, Ma JP, Zhang L. Design, synthesis, and biological evaluation of 2-amino-6-methyl-phenol derivatives targeting lipid peroxidation with potent anti-ferroptotic activities. Eur J Med Chem 2024; 264:115997. [PMID: 38056303 DOI: 10.1016/j.ejmech.2023.115997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
The suppression of ferroptosis is emerging as a promising therapeutic strategy for effectively treating a wide range of diseases, including neurodegenerative disorders, organ ischemia-reperfusion injury, and inflammatory conditions. However, the clinical utility of ferroptosis inhibitors is significantly impeded by the limited availability of rational drug designs. In our previous study, we successfully unraveled the efficacy of ferrostatin-1 (Fer-1) attributed to the synergistic effect of its ortho-diamine (-NH) moiety. In this study, we present the discovery of the ortho-hydroxyl-amino moiety as a novel scaffold for ferroptosis inhibitors, employing quantum chemistry as well as in vitro and in vivo assays. 2-amino-6-methylphenol derivatives demonstrated remarkable inhibition of RSL3-induced ferroptosis, exhibiting EC50 values ranging from 25 nM to 207 nM. These compounds do not appear to modulate iron homeostasis or lipid reactive oxygen species (ROS) generation pathways. Nevertheless, they effectively prevent the accumulation of lipid peroxides in living cells. Furthermore, compound 13 exhibits good in vivo activities as it effectively protect mice from kidney ischemia-reperfusion injury. In summary, compound 13 has been identified as a potent ferroptosis inhibitor, warranting further investigation as a promising lead compound.
Collapse
Affiliation(s)
- Xie-Huang Sheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Li-Cong Han
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Xiao-Jie Ma
- Department of Rheumatology and Immunology, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Ao Gong
- Second Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250001, China
| | - Meng-Zhu Hao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Hao Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Xiang-Shuai Meng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Ting Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Chang-Hua Sun
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Jian-Ping Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China.
| | - Lei Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Tissue Engineering Laboratory, Department of Radiology, Shandong First Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014, China.
| |
Collapse
|
16
|
Singh G, Kesharwani P, Kumar Singh G, Kumar S, Putta A, Modi G. Ferroptosis and its modulators: A raising target for cancer and Alzheimer's disease. Bioorg Med Chem 2024; 98:117564. [PMID: 38171251 DOI: 10.1016/j.bmc.2023.117564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The process of ferroptosis, a recently identified form of regulated cell death (RCD) is associated with the overloading of iron species and lipid-derived ROS accumulation. Ferroptosis is induced by various mechanisms such as inhibiting system Xc, glutathione depletion, targeting excess iron, and directly inhibiting GPX4 enzyme. Also, ferroptosis inhibition is achieved by blocking excessive lipid peroxidation by targeting different pathways. These mechanisms are often related to the pathophysiology and pathogenesis of diseases like cancer and Alzheimer's. Fundamentally distinct from other forms of cell death, such as necrosis and apoptosis, ferroptosis differs in terms of biochemistry, functions, and morphology. The mechanism by which ferroptosis acts as a regulatory factor in many diseases remains elusive. Studying the activation and inhibition of ferroptosis as a means to mitigate the progression of various diseases is a highly intriguing and actively researched topic. It has emerged as a focal point in etiological research and treatment strategies. This review systematically summarizes the different mechanisms involved in the inhibition and induction of ferroptosis. We have extensively explored different agents that can induce or inhibit ferroptosis. This review offers current perspectives on recent developments in ferroptosis research, highlighting the disease's etiology and presenting references to enhance its understanding. It also explores new targets for the treatment of cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anjaneyulu Putta
- Department of Chemistry, University of South Dakota, Churchill Haines, Vermillion SD-57069, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
17
|
Zhang C, Lu Y, Zhang J, Zang A, Ren J, Zheng Z, Fan M, Xie Y. Novel 3-hydroxypyridin-4(1H)-One derivatives as ferroptosis inhibitors with iron-chelating and reactive oxygen species scavenging activities and therapeutic effect in cisplatin-induced cytotoxicity. Eur J Med Chem 2024; 263:115945. [PMID: 37976709 DOI: 10.1016/j.ejmech.2023.115945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Recent advances in understanding the role of iron and ROS in cell death suggest new therapeutic avenues to treat organ damage including acute kidney injury (AKI). Inhibiting ferroptosis was expected to have great potential for the treatment of this disease. Ferroptosis is characterized by iron-dependent lipid peroxidation and currently, a majority of reported ferroptosis inhibitors belong to either radical-trapping antioxidants or iron chelators. However, clinically used iron chelators such as deferoxamine and deferiprone have limited efficacy against ferroptosis (generally with EC50 > 100 μM), despite their proven safety. Herein, we present the rational design of novel ferroptosis inhibitors by incorporating the naturally occurring cinnamic acid scaffold and the 3-hydroxypyridin-4(1H)-one iron-chelating pharmacophore. Through ABTS˙+ radical-scavenging assay, oxygen radical absorbance capacity (ORAC) measurement, Fe3+ affinity evaluation, and anti-erastin-induced HT22 cell ferroptosis assays, we identified compound 9c as the most prospective ferroptosis inhibitor (ABTS˙+, IC50 = 4.35 ± 0.05 μM; ORCA = 23.79 ± 0.56 TE; pFe3+ = 18.59; EC50 = 14.89 ± 0.08 μM, respectively). Notably, 9c dose-dependently alleviated cell death in cisplatin-induced AKI model. Our results provide insight into the development of new ferroptosis inhibitors through rational incorporation of pharmacophores from existing ferroptosis inhibitors, and compound 9c could be a promising lead compound worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jingqi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Ren
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Miaoliang Fan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
18
|
Li C, Wu Y, Chen K, Chen R, Xu S, Yang B, Lian Z, Wang X, Wang K, Xie H, Zheng S, Liu Z, Wang D, Xu X. Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis. Cell Death Dis 2023; 14:810. [PMID: 38065978 PMCID: PMC10709349 DOI: 10.1038/s41419-023-06294-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Ferroptosis, which is driven by iron-dependent lipid peroxidation, plays an essential role in liver ischemia-reperfusion injury (IRI) during liver transplantation (LT). Gp78, an E3 ligase, has been implicated in lipid metabolism and inflammation. However, its role in liver IRI and ferroptosis remains unknown. Here, hepatocyte-specific gp78 knockout (HKO) or overexpressed (OE) mice were generated to examine the effect of gp78 on liver IRI, and a multi-omics approach (transcriptomics, proteomics, and metabolomics) was performed to explore the potential mechanism. Gp78 expression decreased after reperfusion in LT patients and mice with IRI, and gp78 expression was positively correlated with liver damage. Gp78 absence from hepatocytes alleviated liver damage in mice with IRI, ameliorating inflammation. However, mice with hepatic gp78 overexpression showed the opposite phenotype. Mechanistically, gp78 overexpression disturbed lipid homeostasis, remodeling polyunsaturated fatty acid (PUFA) metabolism, causing oxidized lipids accumulation and ferroptosis, partly by promoting ACSL4 expression. Chemical inhibition of ferroptosis or ACSL4 abrogated the effects of gp78 on ferroptosis and liver IRI. Our findings reveal a role of gp78 in liver IRI pathogenesis and uncover a mechanism by which gp78 promotes hepatocyte ferroptosis by ACSL4, suggesting the gp78-ACSL4 axis as a feasible target for the treatment of IRI-associated liver damage.
Collapse
Affiliation(s)
- Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yichao Wu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kangchen Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Beng Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaodong Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
19
|
Qiao O, Wang X, Wang Y, Li N, Gong Y. Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment. J Adv Res 2023; 54:211-222. [PMID: 36702249 PMCID: PMC10703611 DOI: 10.1016/j.jare.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Crush syndrome (CS) is a kind of traumatic and ischemic injury that seriously threatens life after prolonged compression. It is characterized by systemic inflammatory reaction, myoglobinuria, hyperkalemia and acute kidney injury (AKI). Especially AKI, it is the leading cause of death from CS. There are various cell death forms in AKI, among which ferroptosis is a typical form of cell death. However, the role of ferroptosis has not been fully revealed in CS-AKI. AIM OF REVIEW This review aimed to summarize the evidence of ferroptosis in CS-AKI and its related molecular mechanism, discuss the therapeutic significance of ferroptosis in CS-AKI, and open up new ideas for the treatment of CS-AKI. KEY SCIENTIFIC CONCEPTS OF REVIEW One of the main pathological manifestations of CS-AKI is renal tubular epithelial cell dysfunction and cell death, which has been attributed to massive deposition of myoglobin. Large amounts of myoglobin released from damaged muscle deposited in the renal tubules, impeding the normal renal tubules function and directly damaging the tubules with oxidative stress and elevated iron levels. Lipid peroxidation damage and iron overload are the distinguishing features of ferroptosis. Moreover, high levels of pro-inflammatory cytokines and damage-associated molecule pattern molecules (HMGB1, double-strand DNA, and macrophage extracellular trap) in renal tissue have been shown to promote ferroptosis. However, how ferroptosis occurs in CS-AKI and whether it can be a therapeutic target remains unclear. In our current work, we systematically reviewed the occurrence and underlying mechanism of ferroptosis in CS-AKI.
Collapse
Affiliation(s)
- Ou Qiao
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
| |
Collapse
|
20
|
Scarpellini C, Klejborowska G, Lanthier C, Hassannia B, Vanden Berghe T, Augustyns K. Beyond ferrostatin-1: a comprehensive review of ferroptosis inhibitors. Trends Pharmacol Sci 2023; 44:902-916. [PMID: 37770317 DOI: 10.1016/j.tips.2023.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/30/2023]
Abstract
Ferroptosis is an iron-catalysed form of regulated cell death, which is critically dependent on phospholipid peroxidation of cellular membranes. Ferrostatin 1 was one of the first synthetic radical-trapping antioxidants (RTAs) reported to block ferroptosis and it is widely used as reference compound. Ferroptosis has been linked to multiple diseases and the use of its inhibitors could have therapeutic potential. Although, novel biochemical pathways provide insights for different pharmacological targets, the use of lipophilic RTAs to block ferroptosis remains superior. In this Review, we provide a comprehensive overview of the different classes of ferroptosis inhibitors, focusing on endogenous and synthetic RTAs. A thorough analysis of their chemical, pharmacokinetic, and pharmacological properties and potential for in vivo use is provided.
Collapse
Affiliation(s)
- Camilla Scarpellini
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Greta Klejborowska
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Caroline Lanthier
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Behrouz Hassannia
- Ferroptosis and Inflammation Research Team, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Pathophysiology Lab, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Tom Vanden Berghe
- Ferroptosis and Inflammation Research Team, VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium; Pathophysiology Lab, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| |
Collapse
|
21
|
Puylaert P, Roth L, Van Praet M, Pintelon I, Dumitrascu C, van Nuijs A, Klejborowska G, Guns PJ, Berghe TV, Augustyns K, De Meyer GRY, Martinet W. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis 2023; 26:505-522. [PMID: 37120604 PMCID: PMC10542744 DOI: 10.1007/s10456-023-09877-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Intraplaque (IP) angiogenesis is a key feature of advanced atherosclerotic plaques. Because IP vessels are fragile and leaky, erythrocytes are released and phagocytosed by macrophages (erythrophagocytosis), which leads to high intracellular iron content, lipid peroxidation and cell death. In vitro experiments showed that erythrophagocytosis by macrophages induced non-canonical ferroptosis, an emerging type of regulated necrosis that may contribute to plaque destabilization. Erythrophagocytosis-induced ferroptosis was accompanied by increased expression of heme-oxygenase 1 and ferritin, and could be blocked by co-treatment with third generation ferroptosis inhibitor UAMC-3203. Both heme-oxygenase 1 and ferritin were also expressed in erythrocyte-rich regions of carotid plaques from ApoE-/- Fbn1C1039G+/- mice, a model of advanced atherosclerosis with IP angiogenesis. The effect of UAMC-3203 (12.35 mg/kg/day) on atherosclerosis was evaluated in ApoE-/- Fbn1C1039G+/- mice fed a western-type diet (WD) for 12 weeks (n = 13 mice/group) or 20 weeks (n = 16-21 mice/group) to distinguish between plaques without and with established IP angiogenesis, respectively. A significant decrease in carotid plaque thickness was observed after 20 weeks WD (87 ± 19 μm vs. 166 ± 20 μm, p = 0.006), particularly in plaques with confirmed IP angiogenesis or hemorrhage (108 ± 35 μm vs. 322 ± 40 μm, p = 0.004). This effect was accompanied by decreased IP heme-oxygenase 1 and ferritin expression. UAMC-3203 did not affect carotid plaques after 12 weeks WD or plaques in the aorta, which typically do not develop IP angiogenesis. Altogether, erythrophagocytosis-induced ferroptosis during IP angiogenesis leads to larger atherosclerotic plaques, an effect that can be prevented by ferroptosis inhibitor UAMC-3203.
Collapse
Affiliation(s)
- Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Melissa Van Praet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | | | | | - Greta Klejborowska
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Augustyns
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
- Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
22
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Hao YJ, Zou ZB, Xie MM, Zhang Y, Xu L, Yu HY, Ma HB, Yang XW. Ferroptosis Inhibitory Compounds from the Deep-Sea-Derived Fungus Penicillium sp. MCCC 3A00126. Mar Drugs 2023; 21:md21040234. [PMID: 37103373 PMCID: PMC10144380 DOI: 10.3390/md21040234] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Two new xanthones (1 and 2) were isolated from the deep-sea-derived fungus Penicillium sp. MCCC 3A00126 along with 34 known compounds (3-36). The structures of the new compounds were established by spectroscopic data. The absolute configuration of 1 was validated by comparison of experimental and calculated ECD spectra. All isolated compounds were evaluated for cytotoxicity and ferroptosis inhibitory activities. Compounds 14 and 15 exerted potent cytotoxicity against CCRF-CEM cells, with IC50 values of 5.5 and 3.5 μM, respectively, whereas 26, 28, 33, and 34 significantly inhibited RSL3-induced ferroptosis, with EC50 values of 11.6, 7.2, 11.8, and 2.2 μM, respectively.
Collapse
Affiliation(s)
- You-Jia Hao
- College of Marine Sciences, Shanghai Ocean University, 999 Hucheng Ring Road, Shanghai 201306, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yong Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Lin Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hao-Yu Yu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Hua-Bin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
24
|
Jiang X, Teng X, Shi H, Cao L, He L, Gu Q. Discovery and optimization of olanzapine derivatives as new ferroptosis inhibitors. Bioorg Chem 2023; 133:106393. [PMID: 36731296 DOI: 10.1016/j.bioorg.2023.106393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Ferroptosis is a new type of cell death associated with many human diseases. It is a new strategy to discover ferroptosis inhibitors for the treatment of ferroptosis-related diseases. Here the FDA-approved drug library containing 1160 molecules was screened for ferroptosis inhibitors in RSL3-induced HT22 mouse hippocampal neuronal cells. As a result, olanzapine showed potent ferroptosis inhibitory activity (EC50 = 1.18 μM). Structural optimization and the structure-activity relationships (SARs) analysis led to the synthesis of 41 new derivatives (4-44) and one known compound 45. Comparing with olanzapine, its derivative 36 showed nearly sixteen-folds improved ferroptosis inhibition and low cytotoxicity (EC50 = 0.074 μM, CC50 = 18.8 μM). Further mechanistic studies revealed that compound 36 specifically inhibited ferroptosis by its antioxidative ability. This work demonstrates that olanzapine protected RSL3-induced ferroptosis in HT22 cell, and its derivative 36 having nanomolar ferroptosis inhibitory activity merit to be developed for drugs against ferroptosis-related neurological diseases.
Collapse
Affiliation(s)
- Xiufen Jiang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China; Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Xifeng Teng
- Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China; Key Laboratory of Lingnan Medicinal Materials Production and Development, National Administration of Traditional Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Huiwen Shi
- Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Liudan Cao
- Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China
| | - Lin He
- Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China; Guangdong Provincial Engineering and Technology Research Center of Cosmetics, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
25
|
Jiang X, Wu K, Ye XY, Xie T, Zhang P, Blass BE, Bai R. Novel druggable mechanism of Parkinson's disease: Potential therapeutics and underlying pathogenesis based on ferroptosis. Med Res Rev 2023. [PMID: 36924451 DOI: 10.1002/med.21939] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/07/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
Genetics, age, environmental factors, and oxidative stress have all been implicated in the development of Parkinson's disease (PD); however, a complete understanding of its pathology remains elusive. At present, there is no cure for PD, and currently available therapeutics are insufficient to meet patient needs. Ferroptosis, a distinctive iron-dependent cell death mode characterized by lipid peroxidation and oxidative stress, has pathophysiological features similar to those of PD, including iron accumulation, reactive oxygen species-induced oxidative damage, and mitochondrial dysfunction. Ferroptosis has been identified as a specific pathway of neuronal death and is closely related to the pathogenesis of PD. Despite the similarities in the biological targets involved in PD pathogenesis and ferroptosis, the relationship between novel targets in PD and ferroptosis has been neglected in the literature. In this review, the mechanism of ferroptosis is discussed, and the potential therapeutic targets implicated in both PD and ferroptosis are compared. Furthermore, the anti-PD effects of several ferroptosis inhibitors, as well as clinical studies thereof, and the identification of novel lead compounds for the treatment of PD and the inhibition of ferroptosis are reviewed. It is hoped that this review can promote research to further elucidate the relationship between ferroptosis and PD and provide new strategies for the development of novel ferroptosis-targeting PD therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China.,Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Kaiyu Wu
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Xiang-Yang Ye
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Tian Xie
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Pengfei Zhang
- Department of Chemistry, College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Benjamin E Blass
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou, People's Republic of China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, People's Republic of China
| |
Collapse
|
26
|
Gu Y, Li Y, Wang J, Zhang L, Zhang J, Wang Y. Targeting ferroptosis: Paving new roads for drug design and discovery. Eur J Med Chem 2023; 247:115015. [PMID: 36543035 DOI: 10.1016/j.ejmech.2022.115015] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Ferroptosis, first proposed in 2012, is an iron-dependent form of regulated cell death characterized by excessive polyunsaturated fatty acid oxidation. In the past decade, researchers have revealed the formation and mechanisms of ferroptosis. Cancer drug resistance can be reversed by ferroptosis induction, and inhibiting ferroptosis has been shown to block certain disease processes. As a result, several ferroptosis-targeting drugs have been developed. However, the first-generation ferroptosis-targeting agents remain hampered from clinical use, mainly due to poor selectivity and pharmacokinetics. The discoveries of FSP1, GCH1, and other potential ferroptosis-regulating pathways independent of Xc--GSH-GPX4 provide novel targets for drug design. Recently, protein-targeted degradation and antibody-drug conjugate strategy show promise in future drug design. With novel targets, further optimizations, and new technologies, the next-generation ferroptosis-targeting agents show a promising future with improved selectivity and efficacy. In this review, we summarize mechanisms, target types, drug design, and novel technologies of ferroptosis, aiming to pave the way for future drug design and discovery in the next decade.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Yizhe Li
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
Feng Y, Tan X, Shi Z, Villamena FA, Zweier JL, Song Y, Liu Y. Trityl Quinodimethane Derivatives as Unimolecular Triple-Function Extracellular EPR Probes for Redox, pH, and Oxygen. Anal Chem 2023; 95:1057-1064. [PMID: 36602544 DOI: 10.1021/acs.analchem.2c03754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy and imaging coupled with the use of suitable probes is a promising tool for assessment of the tumor microenvironment (TME). Measurement of multiple TME parameters by EPR is very desirable but challenging. Herein, we designed and synthesized a class of negative-charged trityl quinodimethane MTPs as unimolecular triple-function extracellular probes for redox, pH, and oxygen (O2) levels. Using the deuterated analogue, dMTP5, which has an optimal pKa as well as high sensitivity to bioreduction and O2, we reasonably evaluated pH effects on efflux of reducing agents from HepG2 cells and cellular O2 consumption.
Collapse
Affiliation(s)
- Yalan Feng
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Xiaoli Tan
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Zhaojun Shi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio43210, United States
| | - Jay L Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, the Division of Cardiovascular Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio43210, United States
| | - Yuguang Song
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| | - Yangping Liu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin300070, P. R. China
| |
Collapse
|
28
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
29
|
Villanueva JW, Kwong L, Han T, Martinez SA, Shanahan MT, Kanke M, Dow LE, Danko CG, Sethupathy P. Comprehensive microRNA analysis across genome-edited colorectal cancer organoid models reveals miR-24 as a candidate regulator of cell survival. BMC Genomics 2022; 23:792. [DOI: 10.1186/s12864-022-09018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
AbstractSomatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.
Collapse
|
30
|
Bagayoko S, Meunier E. Emerging roles of ferroptosis in infectious diseases. FEBS J 2022; 289:7869-7890. [PMID: 34670020 DOI: 10.1111/febs.16244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 01/14/2023]
Abstract
In living organisms, lipid peroxidation is a continuously occurring cellular process and therefore involved in various physiological and pathological contexts. Among the broad variety of lipids, polyunsaturated fatty acids (PUFA) constitute a major target of oxygenation either when released as mediators by phospholipases or when present in membranous phospholipids. The last decade has seen the characterization of an iron- and lipid peroxidation-dependent cell necrosis, namely, ferroptosis, that involves the accumulation of peroxidized PUFA-containing phospholipids. Further studies could link ferroptosis in a very large body of (physio)-pathological processes, including cancer, neurodegenerative, and metabolic diseases. In this review, we mostly focus on the emerging involvement of lipid peroxidation-driven ferroptosis in infectious diseases, and the immune consequences. We also discuss the putative ability of microbial virulence factors to exploit or to dampen ferroptosis regulatory pathways to their own benefit.
Collapse
Affiliation(s)
- Salimata Bagayoko
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, France
| |
Collapse
|
31
|
Wang Y, Wan R, Peng W, Zhao X, Bai W, Hu C. Quercetin alleviates ferroptosis accompanied by reducing M1 macrophage polarization during neutrophilic airway inflammation. Eur J Pharmacol 2022; 938:175407. [PMID: 36417973 DOI: 10.1016/j.ejphar.2022.175407] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Ferroptosis is a kind of regulated cell death, supporting the pathological process of lung inflammation, including asthma. Quercetin (QCT), a kind of natural dietary flavonoid, exerts anti-inflammatory and anti-ferroptosis effects in various diseases. However, the role of QCT in ferroptosis-associated airway inflammation of neutrophilic asthma remains to be described. Our study aimed to investigate the therapeutic effects of QCT on neutrophilic airway inflammation of asthma. Ferrostatin-1 (Fer-1), as a kind of ferroptosis inhibitor, was used to demonstrate whether neutrophilic airway inflammation of asthma relied on ferroptosis. In our study, the alleviation effect of QCT on neutrophilic airway inflammation was similar to Fer-1. Moreover, the significantly decreased levels of ferroptosis anti-oxidant protein (GPX4 and SLC7A11), increased malondialdehyde (MDA) levels, upregulated levels of 4-hydroxynonenal (4-HNE) expression by immunohistochemistry, and distorted mitochondria morphological changes in the lung tissues suggested lung ferroptosis in neutrophilic airway inflammation, which could be reversed by QCT treatment. In vitro experiments showed that QCT reduced LPS-induced ferroptosis through upregulating cell viability and levels of ferroptosis anti-oxidant protein (SLC7A11 and GPX4), reducing inflammatory cytokines, and decreasing the levels of MDA. Furthermore, ferroptosis was accompanied by enhancing M1 phenotype in neutrophilic airway inflammation, and QCT suppressed ferroptosis by inhibiting the pro-inflammatory M1 profile in vitro and in vivo, just as Fer-1 did. In conclusion, our study found that QCT ameliorated ferroptosis-associated neutrophilic airway inflammation accompanied by inhibiting M1 macrophage polarization. QCT may be a promising ferroptosis inhibitor for neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Rongjun Wan
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wang Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xincheng Zhao
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Wenxuan Bai
- Xiangya School of Medicine, Central South University, Hunan, 410008, PR China
| | - Chengping Hu
- Department of Respiratory Medicine (Department of Respiratory and Critical Care Medicine), Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China.
| |
Collapse
|
32
|
Puylaert P, Zurek M, Rayner KJ, De Meyer GRY, Martinet W. Regulated Necrosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:1283-1306. [PMID: 36134566 DOI: 10.1161/atvbaha.122.318177] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During atherosclerosis, lipid-rich plaques are formed in large- and medium-sized arteries, which can reduce blood flow to tissues. This situation becomes particularly precarious when a plaque develops an unstable phenotype and becomes prone to rupture. Despite advances in identifying and treating vulnerable plaques, the mortality rate and disability caused by such lesions remains the number one health threat in developed countries. Vulnerable, unstable plaques are characterized by a large necrotic core, implying a prominent role for necrotic cell death in atherosclerosis and plaque destabilization. Necrosis can occur accidentally or can be induced by tightly regulated pathways. Over the past decades, different forms of regulated necrosis, including necroptosis, ferroptosis, pyroptosis, and secondary necrosis, have been identified, and these may play an important role during atherogenesis. In this review, we describe several forms of necrosis that may occur in atherosclerosis and how pharmacological modulation of these pathways can stabilize vulnerable plaques. Moreover, some challenges of targeting necrosis in atherosclerosis such as the presence of multiple death-inducing stimuli in plaques and extensive cross-talk between necrosis pathways are discussed. A better understanding of the role of (regulated) necrosis in atherosclerosis and the mechanisms contributing to plaque destabilization may open doors to novel pharmacological strategies and will enable clinicians to tackle the residual cardiovascular risk that remains in many atherosclerosis patients.
Collapse
Affiliation(s)
- Pauline Puylaert
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Michelle Zurek
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology and Centre for Infection, Immunity and Inflammation, Faculty of Medicine, University of Ottawa, ON, Canada (K.J.R.).,University of Ottawa Heart Institute, ON, Canada (K.J.R.)
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| | - Wim Martinet
- Laboratory of Physiopharmacology and Infla-Med Centre of Excellence, University of Antwerp, Belgium (P.P., M.Z., G.R.Y.D.M., W.M.)
| |
Collapse
|
33
|
Morrow JP, Mazrad ZAI, Bush AI, Kempe K. Poly(2-oxazoline) - Ferrostatin-1 drug conjugates inhibit ferroptotic cell death. J Control Release 2022; 350:193-203. [PMID: 35944752 DOI: 10.1016/j.jconrel.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Ferroptosis is a form of non-apoptotic iron induced cell death mechanism implicated in neurodegeneration, yet can be ameliorated with potent radical scavengers such as ferrostatin-1 (Fer-1). Currently, Fer-1 suffers from low water solubility, poor biodistribution profile and is unsuitable for clinical application. Fer-1 polymer-drug conjugates (PDCs) for testing as an anti-ferroptosis therapeutic candidate have yet to be described. Here, we report the synthesis and characterization of a library of water-soluble Fer-1 based poly(2-oxazoline)-drug conjugates. The cationic ring opening polymerization (CROP) of water-soluble 2-oxazoline monomers, and a novel protected aromatic aldehyde 2-oxazoline (DPhOx), produced defined copolymers, which after deprotection were available for modification with Fer-1 via reductive amination and Schiff base chemistry. The conjugates were tested for their activity against RSL3-induced ferroptosis in vitro, and first structure-activity relationships were established. Irreversibly conjugated Fer-1 PDCs possessing an arylamine structural motif showed a greatly increased anti-ferroptosis activity compared to reversibly (Schiff base) linked Fer-1. Overall, this work introduces the first active ferrostatin-PDCs and a new highly tuneable poly(2-oxazoline)-based PDC platform, which provides access to next generation polymeric nanomaterials for anti-ferroptosis applications.
Collapse
Affiliation(s)
- Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zihnil A I Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia,.
| |
Collapse
|
34
|
Farmer LA, Wu Z, Poon JF, Zilka O, Lorenz SM, Huehn S, Proneth B, Conrad M, Pratt DA. Intrinsic and Extrinsic Limitations to the Design and Optimization of Inhibitors of Lipid Peroxidation and Associated Cell Death. J Am Chem Soc 2022; 144:14706-14721. [PMID: 35921655 DOI: 10.1021/jacs.2c05252] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The archetype inhibitors of ferroptosis, ferrostatin-1 and liproxstatin-1, were identified via high-throughput screening of compound libraries for cytoprotective activity. These compounds have been shown to inhibit ferroptosis by suppressing propagation of lipid peroxidation, the radical chain reaction that drives cell death. Herein, we present the first rational design and optimization of ferroptosis inhibitors targeting this mechanism of action. Engaging the most potent radical-trapping antioxidant (RTA) scaffold known (phenoxazine, PNX), and its less reactive chalcogen cousin (phenothiazine, PTZ), we explored structure-reactivity-potency relationships to elucidate the intrinsic and extrinsic limitations of this approach. The results delineate the roles of inherent RTA activity, H-bonding interactions with phospholipid headgroups, and lipid solubility in determining activity/potency. We show that modifications which increase inherent RTA activity beyond that of the parent compounds do not substantially improve RTA kinetics in phospholipids or potency in cells, while modifications that decrease intrinsic RTA activity lead to corresponding erosions to both. The apparent "plateau" of RTA activity in phospholipid bilayers (kinh ∼ 2 × 105 M-1 s-1) and cell potency (EC50 ∼ 4 nM) may be the result of diffusion-controlled reactivity between the RTA and lipid-peroxyl radicals and/or the potential limitations on RTA turnover/regeneration by endogenous reductants. The metabolic stability of selected derivatives was assessed to identify a candidate for in vivo experimentation as a proof-of-concept. This PNX-derivative demonstrated stability in mouse liver microsomes comparable to liproxstatin-1 and was successfully used to suppress acute renal failure in mice brought on by tissue-specific inactivation of the ferroptosis regulator GPX4.
Collapse
Affiliation(s)
- Luke A Farmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jia-Fei Poon
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Omkar Zilka
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Stephanie Huehn
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Munich, Neuherberg 85764, Germany
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
35
|
Progress and Setbacks in Translating a Decade of Ferroptosis Research into Clinical Practice. Cells 2022; 11:cells11142134. [PMID: 35883577 PMCID: PMC9320262 DOI: 10.3390/cells11142134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ten years after its initial description, ferroptosis has emerged as the most intensely studied entity among the non-apoptotic forms of regulated cell death. The molecular features of ferroptotic cell death and its functional role have been characterized in vitro and in an ever-growing number of animal studies, demonstrating that it exerts either highly detrimental or, depending on the context, occasionally beneficial effects on the organism. Consequently, two contrary therapeutic approaches are being explored to exploit our detailed understanding of this cell death pathway: the inhibition of ferroptosis to limit organ damage in disorders such as drug-induced toxicity or ischemia-reperfusion injury, and the induction of ferroptosis in cancer cells to ameliorate anti-tumor strategies. However, the path from basic science to clinical utility is rocky. Emphasizing ferroptosis inhibition, we review the success and failures thus far in the translational process from basic research in the laboratory to the treatment of patients.
Collapse
|
36
|
Kolbrink B, von Samson-Himmelstjerna FA, Messtorff ML, Riebeling T, Nische R, Schmitz J, Bräsen JH, Kunzendorf U, Krautwald S. Vitamin K1 inhibits ferroptosis and counteracts a detrimental effect of phenprocoumon in experimental acute kidney injury. Cell Mol Life Sci 2022; 79:387. [PMID: 35763128 PMCID: PMC9239973 DOI: 10.1007/s00018-022-04416-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Ferroptosis, a type of iron-dependent programmed cell death distinct from apoptosis, necroptosis, and other types of cell death, is characterized by lipid peroxidation, reactive oxygen species production, and mitochondrial dysfunction. Accumulating evidence has highlighted vital roles for ferroptosis in multiple diseases, including acute kidney injury. Therefore, ferroptosis has become a major focus for translational research. However, despite its involvement in pathological conditions, there are no pharmacologic inhibitors of ferroptosis in clinical use. In the context of drug repurposing, a strategy for identifying new uses for approved drugs outside the original medical application, we discovered that vitamin K1 is an efficient inhibitor of ferroptosis. Our findings are strengthened by the fact that the vitamin K antagonist phenprocoumon significantly exacerbated ferroptotic cell death in vitro and also massively worsened the course of acute kidney injury in vivo, which is of utmost clinical importance. We therefore assign vitamin K1 a novel role in preventing ferroptotic cell death in acute tubular necrosis during acute kidney injury. Since the safety, tolerability, pharmacokinetics, and pharmacodynamics of vitamin K1 formulations are well documented, this drug is primed for clinical application, and provides a new strategy for pharmacological control of ferroptosis and diseases associated with this mode of cell death.
Collapse
Affiliation(s)
- Benedikt Kolbrink
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Fleckenstr. 4, 24105, Kiel, Germany
| | | | - Maja Lucia Messtorff
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Fleckenstr. 4, 24105, Kiel, Germany
| | - Theresa Riebeling
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Fleckenstr. 4, 24105, Kiel, Germany
| | - Raphael Nische
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Fleckenstr. 4, 24105, Kiel, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit, Institute of Pathology, University of Hannover, 30625, Hannover, Germany
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Fleckenstr. 4, 24105, Kiel, Germany
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Fleckenstr. 4, 24105, Kiel, Germany.
| |
Collapse
|
37
|
He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, Yu P. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab 2022; 60:101470. [PMID: 35304332 PMCID: PMC8980341 DOI: 10.1016/j.molmet.2022.101470] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND With long-term metabolic malfunction, diabetes can cause serious damage to whole-body tissue and organs, resulting in a variety of complications. Therefore, it is particularly important to further explore the pathogenesis of diabetes complications and develop drugs for prevention and treatment. In recent years, different from apoptosis and necrosis, ferroptosis has been recognized as a new regulatory mode of cell death and involves the regulation of nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy. Evidence shows that ferroptosis and ferritinophagy play a significant role in the occurrence and development of diabetes complications. SCOPE OF REVIEW we systematically review the current understanding of ferroptosis and ferritinophagy, focusing on their potential mechanisms, connection, and regulation, discuss their involvement in diabetes complications, and consider emerging therapeutic opportunities and the associated challenges with future prospects. MAJOR CONCLUSIONS In summary, ferroptosis and ferritinophagy are worthy targets for the treatment of diabetes complications, but their complete molecular mechanism and pathophysiological process still require further study.
Collapse
Affiliation(s)
- Jiahui He
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Panpan Xia
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK; School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Xinxi FuChen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 30006, China.
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang 330006, China.
| |
Collapse
|
38
|
Li X, Peters BBC, Tan M, He L, Yang J, Andersson PG, ZHOU TAIGANG. Mono‐N‐Alkylation of Sulfonamides with Alcohols Catalyzed by Iridium N‐Heterocyclic Carbene‐Phosphine Complexes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingzhen Li
- SWPU: Southwest Petroleum University College of Chemistry and Chemical Engineering CHINA
| | - Bram B. C. Peters
- Stockholm University: Stockholms Universitet Department of Organic Chemistry SWEDEN
| | - Min Tan
- SWPU: Southwest Petroleum University College of Chemistry and Chemical Engineering CHINA
| | - Lei He
- SWPU: Southwest Petroleum University College of Chemistry and Chemical Engineering CHINA
| | - Jianping Yang
- Stockholm University: Stockholms Universitet Department of Organic Chemistry CHINA
| | - Pher G Andersson
- Stockholm University: Stockholms Universitet Department of Organic Chemistry SWEDEN
| | - TAIGANG ZHOU
- Southwest Petroleum University College of Chemistry and Chemical Engineering Xindu Rd. 8 610500 Chengdu CHINA
| |
Collapse
|
39
|
Abstract
Ferroptosis is iron-dependent, lipid peroxidation-driven, regulated cell death that is triggered when cellular glutathione peroxidase 4 (GPX4)-mediated cellular defense is insufficient to prevent pathologic accumulation of toxic lipid peroxides. Ferroptosis is implicated in various human pathologies, including neurodegeneration, chemotherapy-resistant cancers, ischemia-reperfusion injury, and acute and chronic kidney diseases. Despite the fact that the ferroptotic process has been rigorously interrogated in multiple preclinical models, the lack of specific and readily available biomarkers to detect ferroptosis in vivo in mouse models makes it challenging to delineate its contribution to key pathologic events in vivo. Critical steps to practically evaluate ferroptosis include, but are not limited to, detecting increased cell death and pathologic accumulation of toxic lipid peroxides and testing augmentation of observed pathologic events by genetic inhibition of the glutathione-GPX4 axis or mitigation of the pathologic process by ferroptosis inhibitors. Here, we describe methods to evaluate these key features of the ferroptotic process in mice in vivo. Specifically, we describe methods to detect toxic lipid peroxides (4-hydroxynonenal) and cell death (based on terminal deoxynucleotidyl transferase dUTP nick end labeling staining) as well as a protocol to pharmacologically inhibit ferroptotic stress using liproxstatin-1. These protocols provide tools for understanding the ferroptotic process in mouse genetic or disease models. © 2022 Wiley Periodicals LLC. Basic Protocol 1: How to use liproxstatin-1 Basic Protocol 2: How to evaluate ferroptosis in mouse kidneys.
Collapse
Affiliation(s)
- Kana Ide
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Regeneration Center, Durham, NC, USA
| |
Collapse
|
40
|
Maremonti F, Meyer C, Linkermann A. Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss. J Am Soc Nephrol 2022; 33:472-486. [PMID: 35022311 PMCID: PMC8975069 DOI: 10.1681/asn.2021101293] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding nephron loss is a primary strategy for preventing CKD progression. Death of renal tubular cells may occur by apoptosis during developmental and regenerative processes. However, during AKI, the transition of AKI to CKD, sepsis-associated AKI, and kidney transplantation ferroptosis and necroptosis, two pathways associated with the loss of plasma membrane integrity, kill renal cells. This necrotic type of cell death is associated with an inflammatory response, which is referred to as necroinflammation. Importantly, the necroinflammatory response to cells that die by necroptosis may be fundamentally different from the tissue response to ferroptosis. Although mechanisms of ferroptosis and necroptosis have recently been investigated in detail, the cell death propagation during tubular necrosis, although described morphologically, remains incompletely understood. Here, we argue that a molecular switch downstream of tubular necrosis determines nephron regeneration versus nephron loss. Unraveling the details of this "switch" must include the inflammatory response to tubular necrosis and regenerative signals potentially controlled by inflammatory cells, including the stimulation of myofibroblasts as the origin of fibrosis. Understanding in detail the molecular switch and the inflammatory responses to tubular necrosis can inform the discussion of therapeutic options.
Collapse
Affiliation(s)
- Francesca Maremonti
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany .,Biotechnology Center, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
41
|
Van Coillie S, Van San E, Goetschalckx I, Wiernicki B, Mukhopadhyay B, Tonnus W, Choi SM, Roelandt R, Dumitrascu C, Lamberts L, Dams G, Weyts W, Huysentruyt J, Hassannia B, Ingold I, Lele S, Meyer E, Berg M, Seurinck R, Saeys Y, Vermeulen A, van Nuijs ALN, Conrad M, Linkermann A, Rajapurkar M, Vandenabeele P, Hoste E, Augustyns K, Vanden Berghe T. Targeting ferroptosis protects against experimental (multi)organ dysfunction and death. Nat Commun 2022; 13:1046. [PMID: 35210435 PMCID: PMC8873468 DOI: 10.1038/s41467-022-28718-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/07/2022] [Indexed: 12/26/2022] Open
Abstract
The most common cause of death in the intensive care unit (ICU) is the development of multiorgan dysfunction syndrome (MODS). Besides life-supporting treatments, no cure exists, and its mechanisms are still poorly understood. Catalytic iron is associated with ICU mortality and is known to cause free radical-mediated cellular toxicity. It is thought to induce excessive lipid peroxidation, the main characteristic of an iron-dependent type of cell death conceptualized as ferroptosis. Here we show that the severity of multiorgan dysfunction and the probability of death are indeed associated with plasma catalytic iron and lipid peroxidation. Transgenic approaches underscore the role of ferroptosis in iron-induced multiorgan dysfunction. Blocking lipid peroxidation with our highly soluble ferrostatin-analogue protects mice from injury and death in experimental non-septic multiorgan dysfunction, but not in sepsis-induced multiorgan dysfunction. The limitations of the experimental mice models to mimic the complexity of clinical MODS warrant further preclinical testing. In conclusion, our data suggest ferroptosis targeting as possible treatment option for a stratifiable subset of MODS patients.
Collapse
Affiliation(s)
- Samya Van Coillie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emily Van San
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ines Goetschalckx
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Bartosz Wiernicki
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Banibrata Mukhopadhyay
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Wulf Tonnus
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus, the Technische Universität Dresden, Dresden, Germany
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Catalina Dumitrascu
- Department of Pharmaceutical Sciences, Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Ludwig Lamberts
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert Dams
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wannes Weyts
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Jelle Huysentruyt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Behrouz Hassannia
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Irina Ingold
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.,Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Suhas Lele
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Maya Berg
- Department of Pharmaceutical Sciences, Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Ruth Seurinck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Alexander L N van Nuijs
- Department of Pharmaceutical Sciences, Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.,National Research Medical University, Laboratory of Experimental Oncology, Moscow, Russia
| | - Andreas Linkermann
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus, the Technische Universität Dresden, Dresden, Germany.,Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Mohan Rajapurkar
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Methusalem program, Ghent University, Ghent, Belgium
| | - Eric Hoste
- Intensive Care Unit, Ghent University Hospital; Ghent University, Ghent, Belgium
| | - Koen Augustyns
- Department of Pharmaceutical Sciences, Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
42
|
Lin L, Zhang MX, Zhang L, Zhang D, Li C, Li YL. Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Front Cell Dev Biol 2022; 9:809955. [PMID: 35096837 PMCID: PMC8793783 DOI: 10.3389/fcell.2021.809955] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual buildup of plaques within the vessel wall of middle-sized and large arteries. The occurrence and development of atherosclerosis and the rupture of plaques are related to the injury of vascular cells, including endothelial cells, smooth muscle cells, and macrophages. Autophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles, and the autophagy disorder of vascular cells is closely related to atherosclerosis. Pyroptosis is a proinflammatory form of regulated cell death, while ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Both of them exhibit distinct features from apoptosis, necrosis, and autophagy in morphology, biochemistry, and genetics. However, a growing body of evidence suggests that pyroptosis and ferroptosis interact with autophagy and participate in the development of cancers, degenerative brain diseases and cardiovascular diseases. This review updated the current understanding of autophagy, pyroptosis, and ferroptosis, finding potential links and their effects on atherogenesis and plaque stability, thus providing ways to develop new pharmacological strategies to address atherosclerosis and stabilize vulnerable, ruptured plaques.
Collapse
Affiliation(s)
- Lin Lin
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mu-Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Zhang
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
43
|
The multifaceted role of ferroptosis in liver disease. Cell Death Differ 2022; 29:467-480. [PMID: 35075250 PMCID: PMC8901678 DOI: 10.1038/s41418-022-00941-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of non-apoptotic cell death characterized by excessive lipid peroxidation and associated with a plethora of pathological conditions in the liver. Emerging evidence supports the notion that dysregulated metabolic pathways and impaired iron homeostasis play a role in the progression of liver disease via ferroptosis. Although the molecular mechanisms by which ferroptosis causes disease are poorly understood, several ferroptosis-associated genes and pathways have been implicated in liver disease. Here, we review the physiological role of the liver in processing nutrients, our current understanding of iron metabolism, the characteristics of ferroptosis, and the mechanisms that regulate ferroptosis. In addition, we summarize the role of ferroptosis in the pathogenesis of liver disease, including liver injury, non-alcoholic steatohepatitis, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Finally, we discuss the therapeutic potential of targeting ferroptosis for managing liver disease.
Collapse
|
44
|
Naime AA, Barbosa FVAR, Bueno DC, Curi Pedrosa R, Canto RFS, Colle D, Braga AL, Farina M. Prevention of ferroptosis in acute scenarios: an in vitro study with classic and novel anti-ferroptotic compounds. Free Radic Res 2021; 55:1062-1079. [PMID: 34895012 DOI: 10.1080/10715762.2021.2017912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ferroptosis, an iron-dependent form of cell death, has critical roles in diverse pathologies. Data on the temporal events mediating the prevention of ferroptosis are lacking. Focused on temporal aspects of cytotoxicity/protection, we investigated the effects of classic (Fer-1) and novel [2,6-di-tert-butyl-4-(2-thienylthio)phenol (C1) and 2,6-di-tert-butyl-4-(2-thienylselano)phenol (C2)] anti-ferroptotic agents against RSL3-, BSO- or glutamate-induced ferroptosis in cultured HT22 neuronal cell line, comparing their effects with those of the antioxidants trolox, ebselen and probucol. Glutamate (5 mM), BSO (25 μM) and RSL3 (50 nM) decreased approximately 40% of cell viability at 24 h. At these concentrations, none of these agents changed cell viability at 6 h after treatments; RSL3 increased lipoperoxidation from 6 h, although BSO and glutamate only did so at 12 h after treatments. At similar conditions, BSO and glutamate (but not RSL3) decreased GSH levels at 6 h after treatments. Fer-1, C1 and C2 exhibited similar protective effects against glutamate-, BSO- and RSL3-cytotoxicity, but this protection was limited when the protective agents were delivered to cells at time-points characterized by increased lipoperoxidation (but not glutathione depletion). Compared to Fer-1, C1 and C2, the anti-ferroptotic effects of trolox, ebselen and probucol were minor. Cytoprotective effects were not associated with direct antioxidant efficacies. These results indicate that the temporal window is central in affecting the efficacies of anti-ferroptotic drugs in acute scenarios; ferroptosis prevention is improbable when significant rates of lipoperoxidation were already achieved. C1 and C2 displayed remarkable cytoprotective effects, representing a promising new class of compounds to treat ferroptosis-related pathologies.
Collapse
Affiliation(s)
- Aline Aita Naime
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | - Diones Caeran Bueno
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Rozangela Curi Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Rômulo Faria Santos Canto
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Dirleise Colle
- Department of Clinical Analyses, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Antônio Luiz Braga
- Department of Chemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
45
|
Farahi L, Sinha SK, Lusis AJ. Roles of Macrophages in Atherogenesis. Front Pharmacol 2021; 12:785220. [PMID: 34899348 PMCID: PMC8660976 DOI: 10.3389/fphar.2021.785220] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that may ultimately lead to local proteolysis, plaque rupture, and thrombotic vascular disease, resulting in myocardial infarction, stroke, and sudden cardiac death. Circulating monocytes are recruited to the arterial wall in response to inflammatory insults and differentiate into macrophages which make a critical contribution to tissue damage, wound healing, and also regression of atherosclerotic lesions. Within plaques, macrophages take up aggregated lipoproteins which have entered the vessel wall to give rise to cholesterol-engorged foam cells. Also, the macrophage phenotype is influenced by various stimuli which affect their polarization, efferocytosis, proliferation, and apoptosis. The heterogeneity of macrophages in lesions has recently been addressed by single-cell sequencing techniques. This article reviews recent advances regarding the roles of macrophages in different stages of disease pathogenesis from initiation to advanced atherosclerosis. Macrophage-based therapies for atherosclerosis management are also described.
Collapse
Affiliation(s)
- Lia Farahi
- Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| | - Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aldons J. Lusis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
46
|
Xu C, Xiao Z, Wang J, Lai H, Zhang T, Guan Z, Xia M, Chen M, Ren L, He Y, Gao Y, Zhao C. Discovery of a Potent Glutathione Peroxidase 4 Inhibitor as a Selective Ferroptosis Inducer. J Med Chem 2021; 64:13312-13326. [PMID: 34506134 DOI: 10.1021/acs.jmedchem.1c00569] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Potent and selective ferroptosis regulators promote an intensive understanding of the regulation and mechanisms underlying ferroptosis, which is highly associated with various diseases. In this study, through a stepwise structure optimization, a potent and selective ferroptosis inducer was developed targeting to inhibit glutathione peroxidase 4 (GPX4), and the structure-activity relationship (SAR) of these compounds was uncovered. Compound 26a exhibited outstanding GPX4 inhibitory activity with a percent inhibition up to 71.7% at 1.0 μM compared to 45.9% of RSL-3. At the cellular level, 26a could significantly induce lipid peroxide (LPO) increase and effectively induce ferroptosis with satisfactory selectivity (the value of 31.5). The morphological analysis confirmed the ferroptosis induced by 26a. Furthermore, 26a significantly restrained tumor growth in a mouse 4T1 xenograft model without obvious toxicity.
Collapse
Affiliation(s)
- Congjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhanghong Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hualu Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zilin Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Lingling Ren
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuanfeng He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuqi Gao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
47
|
Abstract
Significance: Iron is an essential element required for growth and proper functioning of the body. However, an excess of labile ferrous iron increases the risk of oxidative stress-induced injury due to the high reactivity of the unpaired reactive electrons of both ferrous iron and oxygen. This high reactivity can be exemplified in the outside world by one of its consequences, rust formation. In cells, this redox-active iron is involved in the formation of lipid radicals. Recent Advances: Defect or insufficient membrane-protective mechanisms can result in iron-catalyzed excessive lipid peroxidation and subsequent cell death, now conceptualized as ferroptosis. Growing reports propose the detrimental role of iron and ferroptosis in many experimental disease models such as ischemia-reperfusion, acute and chronic organ injuries. Critical Issues: This review first provides a snapshot of iron metabolism, followed by a brief introduction of the molecular mechanisms of ferroptosis, as an iron-dependent lipid peroxidation-driven mode of cell death. Upon describing how iron dysbiosis affects ferroptosis induction, we elaborate on the detrimental role of the iron-ferroptosis axis in several diseases. Future Directions: Despite compelling findings suggesting a role of ferroptosis in experimental animal models, the exact contribution of ferroptosis in human contexts still needs further investigation. Development of reliable ferroptosis biomarkers will be an important step in characterizing ferroptosis in human disease. This can provide therapeutic opportunities aiming at targeting ferroptosis in human diseases. Antioxid. Redox Signal. 35, 487-509.
Collapse
Affiliation(s)
- Behrouz Hassannia
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium.,Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
48
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P, Xiong Y. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 2021; 7:193. [PMID: 34312370 PMCID: PMC8313570 DOI: 10.1038/s41420-021-00579-w] [Citation(s) in RCA: 295] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/06/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis, a recently identified and iron-dependent cell death, differs from other cell death such as apoptosis, necroptosis, pyroptosis, and autophagy-dependent cell death. This form of cell death does not exhibit typical morphological and biochemical characteristics, including cell shrinkage, mitochondrial fragmentation, nuclear condensation. The dysfunction of lipid peroxide clearance, the presence of redox-active iron as well as oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are three essential features of ferroptosis. Iron metabolism and lipid peroxidation signaling are increasingly recognized as central mediators of ferroptosis. Ferroptosis plays an important role in the regulation of oxidative stress and inflammatory responses. Accumulating evidence suggests that ferroptosis is implicated in a variety of cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure, indicating that targeting ferroptosis will present a novel therapeutic approach against cardiovascular diseases. Here, we provide an overview of the features, process, function, and mechanisms of ferroptosis, and its increasingly connected relevance to oxidative stress, inflammation, and cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yajun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xueyi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guodong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuru Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiling Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lu Qian
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Ping Liu
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
49
|
Abstract
In the last decade, the role of apoptosis in the pathophysiology of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD) progression has been revisited as our understanding of ferroptosis and necroptosis has emerged. A growing body of evidence, reviewed here, ascribes a central pathophysiological role for ferroptosis and necroptosis to AKI, nephron loss, and acute tubular necrosis. We will introduce concepts to the non-cell-autonomous manner of kidney tubular injury during ferroptosis, a phenomenon that we refer to as a "wave of death." We hypothesize that necroptosis might initiate cell death propagation through ferroptosis. The remaining necrotic debris requires effective removal processes to prevent a secondary inflammatory response, referred to as necroinflammation. Open questions include the differences in the immunogenicity of ferroptosis and necroptosis, and the specificity of necrostatins and ferrostatins to therapeutically target these processes to prevent AKI-to-CKD progression and end-stage renal disease.
Collapse
|
50
|
Stockwell BR, Jiang X. The Chemistry and Biology of Ferroptosis. Cell Chem Biol 2021; 27:365-375. [PMID: 32294465 DOI: 10.1016/j.chembiol.2020.03.013] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 01/09/2023]
Abstract
Ferroptosis is a recently described form of cell death driven by iron-dependent lipid peroxidation. This type of cell death was first observed in response to treatment of tumor cells with a small-molecule chemical probe named erastin. Most subsequent advances in understanding the mechanisms governing ferroptosis involved the use of genetic screens and small-molecule probes. We describe herein the utility and limitations of chemical probes that have been used to analyze and perturb ferroptosis, as well as mechanistic studies of ferroptosis that benefitted from the use of these probes and genetic screens. We also suggest probes for ferroptosis and highlight mechanistic questions surrounding this form of cell death that will be a high priority for exploration in the future.
Collapse
Affiliation(s)
- Brent R Stockwell
- Department of Chemistry and Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Xuejun Jiang
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|