1
|
Shankar G, Kumar P, Rai S, Ghosh A, Varma T, Wani MA, Kumar S, Mandloi U, Singh GK, Garg P, Kulkarni O, Srikrishna S, Kumar S, Modi G. Discovery of novel hybrid tryptamine-rivastigmine molecules as potent AChE and BChE inhibitors exhibiting multifunctional properties for the management of Alzheimer's disease. Eur J Med Chem 2025; 283:117066. [PMID: 39667052 DOI: 10.1016/j.ejmech.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Contemporary research evidence has corroborated a gradual loss of central cholinergic neurons in Alzheimer's Disease (AD). This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death in the disease. The approved drugs for AD treatment can only offer relief from symptoms without addressing the underlying pathological hallmarks of the disease. To address the limitations associated with rivastigmine (RIV), a marketed drug for AD, a series of tryptamine derivatives was designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. Enzyme inhibition studies identified compounds 6d and 6e as the lead molecules with potent inhibitors against AChE (6d, IC50: 0.99 ± 0.009 nM and 6e IC50: 7.97 ± 0.016 nM and BChE (6d, IC50: 27.79 ± 0.21 nM and 6e, IC50: 0.79 ± 0.005 nM), compared to the marketed drug Riv (AChE, IC50: 6630 ± 0.76 nM, BChE IC50 = 91 ± 0.40 nM). The molecular docking and dynamics studies corroborated the enzyme inhibition studies. The PAMPA assay strongly suggested the BBB crossing ability of the lead molecules. Further, 6d and 6e demonstrated the capability to counteract oxidative stress and Aβ1-42 in various in-vitro studies. Compound 6e exhibited remarkable radical scavenging activity in the DPPH assay (IC50: 22.91 ± 1.73 μM) compared to rivastigmine (% radical scavenging activity: 3.71 ± 0.09 at 200 μM). Interestingly, 6d and 6e exhibited promising activity in the AD Drosophila model by protecting eye phenotypes from degeneration induced by Aβ1-42 toxicity and reduced mitochondrial and cellular oxidative stress in this model. Furthermore, upon oral administration, 6d and 6e could reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice at 0.3 and 0.5 mg/kg compared to rivastigmine at 3 mg/kg and were found to have potent ex-vivo anti-ChEs properties, which are correlated with the observed pro-cognitive effects in the Morris Water Maze, likely mediated through the inhibition of both cholinesterases. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Prabhat Kumar
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Tanmaykumar Varma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Mushtaq Ahmad Wani
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Upesh Mandloi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, 824236, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Saripella Srikrishna
- Cell and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, BHU, Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P, 221005, India.
| |
Collapse
|
2
|
Sun T, Zhen T, Harakandi CH, Wang L, Guo H, Chen Y, Sun H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur J Med Chem 2024; 275:116569. [PMID: 38852337 DOI: 10.1016/j.ejmech.2024.116569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.
Collapse
Affiliation(s)
- Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | | | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanchao Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
3
|
Carles A, Hoffmann M, Scheiner M, Crouzier L, Bertrand-Gaday C, Chatonnet A, Decker M, Maurice T. The selective butyrylcholinesterase inhibitor UW-MD-95 shows symptomatic and neuroprotective effects in a pharmacological mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14814. [PMID: 38887858 PMCID: PMC11183908 DOI: 10.1111/cns.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a devastating dementia characterized by extracellular amyloid-β (Aβ) protein aggregates and intracellular tau protein deposition. Clinically available drugs mainly target acetylcholinesterase (AChE) and indirectly sustain cholinergic neuronal tonus. Butyrylcholinesterase (BChE) also controls acetylcholine (ACh) turnover and is involved in the formation of Aß aggregates and senile plaques. UW-MD-95 is a novel carbamate-based compound acting as a potent pseudo-irreversible BChE inhibitor, with high selectivity versus AChE, and showing promising protective potentials in AD. METHODS We characterized the neuroprotective activity of UW-MD-95 in mice treated intracerebroventricularly with oligomerized Aβ25-35 peptide using behavioral, biochemical, and immunohistochemical approaches. RESULTS When injected acutely 30 min before the behavioral tests (spontaneous alternation in the Y-maze, object recognition, or passive avoidance), UW-MD-95 (0.3-3 mg/kg) showed anti-amnesic effects in Aβ25-35-treated mice. When injected once a day over 7 days, it prevented Aβ25-35-induced memory deficits. This effect was lost in BChE knockout mice. Moreover, the compound prevented Aβ25-35-induced oxidative stress (assessed by lipid peroxidation or cytochrome c release), neuroinflammation (IL-6 and TNFα levels or GFAP and IBA1 immunoreactivity) in the hippocampus and cortex, and apoptosis (Bax level). Moreover, UW-MD-95 significantly reduced the increase in soluble Aβ1-42 level in the hippocampus induced by Aβ25-35. CONCLUSION UW-MD-95 appeared as a potent neuroprotective compound in the Aβ25-35 model of AD, with potentially an impact on Aβ1-42 accumulation that could suggest a novel mechanism of neuroprotection.
Collapse
Affiliation(s)
- Allison Carles
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | - Matthias Hoffmann
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Matthias Scheiner
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lucie Crouzier
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| |
Collapse
|
4
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
5
|
Ţînţaş ML, Peauger L, Barré A, Papamicaël C, Besson T, Sopkovà-de Oliveira Santos J, Gembus V, Levacher V. Design, synthesis and preliminary biological evaluation of rivastigmine-INDY hybrids as multitarget ligands against Alzheimer's disease by targeting butyrylcholinesterase and DYRK1A/CLK1 kinases. RSC Med Chem 2024; 15:963-980. [PMID: 38516603 PMCID: PMC10953492 DOI: 10.1039/d3md00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Based on a multitarget approach implementing rivastigmine-INDY hybrids 1, we identified a set of pseudo-irreversible carbamate-type inhibitors of eqBuChE that, after carbamate transfer at the active site serine residue, released the corresponding INDY analogues 2 endowed with hDYRK1A/hCLK1 kinases inhibitory properties. A SAR study and molecular docking investigation of both series of compounds 1 and 2 revealed that appropriate structural modifications at the carbamate moiety and at the N-appendage of the benzothiazole core led to potent and selective eqBuChE inhibitors with IC50 up to 27 nM and potent hDYRK1A and hCLK1 inhibitors with IC50 up to 106 nM and 17 nM respectively. Pleasingly, identification of the matched pair of compounds 1b/2b with a good balance between inhibition of eqBuChE and hDYRK1A/hCLK1 kinases (IC50 = 68 nM and IC50 = 529/54 nM, respectively) further validated our multitarget approach based on a sequential mechanism of action. In addition, target compound 1b exhibited a suitable ADMET profile, including good brain permeability and high stability in PBS, encouraging further biological investigation as a drug candidate.
Collapse
Affiliation(s)
- Mihaela-Liliana Ţînţaş
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, COBRA UMR 6014, Normandie Univ INC3M FR 3038 F-76000 Rouen France
| | | | - Anaïs Barré
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, COBRA UMR 6014, Normandie Univ INC3M FR 3038 F-76000 Rouen France
| | - Cyril Papamicaël
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, COBRA UMR 6014, Normandie Univ INC3M FR 3038 F-76000 Rouen France
| | - Thierry Besson
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, COBRA UMR 6014, Normandie Univ INC3M FR 3038 F-76000 Rouen France
| | - Jana Sopkovà-de Oliveira Santos
- UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ. Bd Becquerel F-14032 Caen France
| | - Vincent Gembus
- VFP Therapies 15 rue François Couperin 76000 Rouen France
| | - Vincent Levacher
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, COBRA UMR 6014, Normandie Univ INC3M FR 3038 F-76000 Rouen France
| |
Collapse
|
6
|
Li L, Chen H, Liu M, Zhu Q, Zhang H, de Ruiter G, Bi X. Silver-Catalyzed Dearomative Skeletal Editing of Indazoles by Donor Carbene Insertion. Chemistry 2024; 30:e202304227. [PMID: 38199953 DOI: 10.1002/chem.202304227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Given the prevalence of heterocyclic scaffolds in drug-related molecules, converting these highly modular heterocyclic scaffolds into structural diversified and dearomatized analogs is an ideal strategy for improving their physicochemical and pharmacokinetic properties. Here, we described an efficient method for silver carbene-mediated dearomative N-N bond cleavage leading to skeletal hopping between indazole and 1,2-dihydroquinazoline via a highly selective single-carbon insertion procedure. Using this methodology, a series of dihydroquinazoline analogues with diarylmethylene-substituted quaternary carbon centers were constructed with excellent yields and good functional group compatibility, which was further illustrated by the late-stage diversification of important pharmaceutically active ingredients. DFT calculations indicated that the silver catalyst not only induces the formation of the silver carbene, but also activates the diazahexatriene intermediate, which plays a crucial role in the formation of the C-N bond.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Menglin Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Qingwen Zhu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongru Zhang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
7
|
Singh YP, Kumar N, Chauhan BS, Garg P. Carbamate as a potential anti-Alzheimer's pharmacophore: A review. Drug Dev Res 2023; 84:1624-1651. [PMID: 37694498 DOI: 10.1002/ddr.22113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative brain disorder, which leads to loss of memory and other cognitive dysfunction. The underlying mechanisms of AD pathogenesis are very complex and still not fully explored. Cholinergic neuronal loss, accumulation of amyloid plaque, metal ions dyshomeostasis, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial dysfunction are major hallmarks of AD. The current treatment options for AD are acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and NMDA receptor antagonists (memantine). These FDA-approved drugs mainly provide symptomatic relief without addressing the pathological aspects of disease progression. So, there is an urgent need for novel drug development that not only addresses the basic mechanisms of the disease but also shows the neuroprotective property. Various research groups across the globe are working on the development of multifunctional agents for AD amelioration using different core scaffolds for their design, and carbamate is among them. Rivastigmine was the first carbamate drug investigated for AD management. The carbamate fragment, a core scaffold of rivastigmine, act as a potential inhibitor of acetylcholinesterase. In this review, we summarize the last 10 years of research conducted on the modification of carbamate with different substituents which primarily target ChE inhibition, reduce oxidative stress, and modulate Aβ aggregation.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
8
|
Chen T, Sang S, Wei Y, Ge Y, Jin J, Bian Y, Pei Y, Li N, Sun H, Chen Y. The structural modification and biological evaluation of tetrahydrothienopyridine derivatives as selective BChE inhibitors. Bioorg Med Chem Lett 2023; 93:129436. [PMID: 37549853 DOI: 10.1016/j.bmcl.2023.129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
A series of tetrahydrothienopyridine derivatives have been designed, synthesized, and evaluated as selective BChE inhibitors. Compounds were analyzed via HRMS, 1H NMR, and 13C NMR. The inhibitory effects were evaluated according to the method of Ellman et al. 6n was the most potent and selective inhibitor against BChE (eeAChE IC50 = 686.4 ± 478.6 μM, eqBChE IC50 = 10.5 ± 5.0 nM, SI = 6.5*104, hBChE IC50 = 32.5 ± 6.5 nM). Cell-based assays have confirmed the low neurotoxicity of 6a and 6n and their moderate neuroprotective effects. Compounds 6a and 6n provide novel chemical entities for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jisheng Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nianguang Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Spatz P, Steinmüller SAM, Tutov A, Poeta E, Morilleau A, Carles A, Deventer MH, Hofmann J, Stove CP, Monti B, Maurice T, Decker M. Dual-Acting Small Molecules: Subtype-Selective Cannabinoid Receptor 2 Agonist/Butyrylcholinesterase Inhibitor Hybrids Show Neuroprotection in an Alzheimer's Disease Mouse Model. J Med Chem 2023; 66:6414-6435. [PMID: 37127287 PMCID: PMC10184129 DOI: 10.1021/acs.jmedchem.3c00541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the synthesis and characterization of merged human butyrylcholinesterase (hBChE) inhibitor/cannabinoid receptor 2 (hCB2R) ligands for the treatment of neurodegeneration. In total, 15 benzimidazole carbamates were synthesized and tested for their inhibition of human cholinesterases, also with regard to their pseudoirreversible binding mode and affinity toward both cannabinoid receptors in radioligand binding studies. After evaluation in a calcium mobilization assay as well as a β-arrestin 2 (βarr2) recruitment assay, two compounds with balanced activities on both targets were tested for their immunomodulatory effect on microglia activation and regarding their pharmacokinetic properties and blood-brain barrier penetration. Compound 15d, containing a dimethyl carbamate motif, was further evaluated in vivo, showing prevention of Aβ25-35-induced learning impairments in a pharmacological mouse model of Alzheimer's disease for both short- and long-term memory responses. Additional combination studies proved a synergic effect of BChE inhibition and CB2R activation in vivo.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sophie A M Steinmüller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Anna Tutov
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Axelle Morilleau
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Allison Carles
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
10
|
Pseudo-irreversible butyrylcholinesterase inhibitors: Structure-activity relationships, computational and crystallographic study of the N-dialkyl O-arylcarbamate warhead. Eur J Med Chem 2023; 247:115048. [PMID: 36586299 DOI: 10.1016/j.ejmech.2022.115048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Alongside reversible butyrylcholinesterase inhibitors, a plethora of covalent butyrylcholinesterase inhibitors have been reported in the literature, typically pseudo-irreversible carbamates. For these latter, however, most cases lack full confirmation of their covalent mode of action. Additionally, the available reports regarding the structure-activity relationships of the O-arylcarbamate warhead are incomplete. Therefore, a follow-up on a series of pseudo-irreversible covalent carbamate human butyrylcholinesterase inhibitors and the structure-activity relationships of the N-dialkyl O-arylcarbamate warhead are presented in this study. The covalent mechanism of binding was tested by IC50 time-dependency profiles, and sequentially and increasingly confirmed by kinetic analysis, whole protein LC-MS, and crystallographic analysis. Computational studies provided valuable insights into steric constraints and identified problematic, bulky carbamate warheads that cannot reach and carbamoylate the catalytic Ser198. Quantum mechanical calculations provided further evidence that steric effects appear to be a key factor in determining the covalent binding behaviour of these carbamate cholinesterase inhibitors and their duration of action. Additionally, the introduction of a clickable terminal alkyne moiety into one of the carbamate N-substituents and in situ derivatisation with azide-containing fluorophore enabled fluorescent labelling of plasma human butyrylcholinesterase. This proof-of-concept study highlights the potential of this novel approach and for these compounds to be further developed as clickable molecular probes for investigating tissue localisation and activity of cholinesterases.
Collapse
|
11
|
Lu X, Qin N, Liu Y, Du C, Feng F, Liu W, Chen Y, Sun H. Design, synthesis, and biological evaluation of aromatic tertiary amine derivatives as selective butyrylcholinesterase inhibitors for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 243:114729. [DOI: 10.1016/j.ejmech.2022.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/27/2022]
|
12
|
Wang Y, Long L, Yu Q, Zhang H, Li X, Zhuo L, Wang S, Wang Z. Discovery of carbamate-based Salicylic acid derivatives as novel Cholinesterase inhibitor. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Wu J, Zhang H, Wang Y, Yin G, Li Q, Zhuo L, Chen H, Wang Z. From tryptamine to the discovery of efficient multi-target directed ligands against cholinesterase-associated neurodegenerative disorders. Front Pharmacol 2022; 13:1036030. [PMID: 36518670 PMCID: PMC9742383 DOI: 10.3389/fphar.2022.1036030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 11/26/2023] Open
Abstract
A novel class of benzyl-free and benzyl-substituted carbamylated tryptamine derivatives (CDTs) was designed and synthesized to serve as effective building blocks for the development of novel multi-target directed ligands (MTDLs) for the treatment of neurological disorders linked to cholinesterase (ChE) activity. The majority of them endowed butyrylcholinesterase (BuChE) with more substantial inhibition potency than acetylcholinesterase (AChE), according to the full study of ChE inhibition. Particularly, hybrids with dibenzyl groups (2b-2f, 2j, 2o, and 2q) showed weak or no neuronal toxicity and hepatotoxicity and single-digit nanomolar inhibitory effects against BuChE. Through molecular docking and kinetic analyses, the potential mechanism of action on BuChE was first investigated. In vitro H2O2-induced HT-22 cells assay demonstrated the favorable neuroprotective potency of 2g, 2h, 2j, 2m, 2o, and 2p. Besides, 2g, 2h, 2j, 2m, 2o, and 2p endowed good antioxidant activities and COX-2 inhibitory effects. This study suggested that this series of hybrids can be applied to treat various ChE-associated neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as promising building blocks for further structure modification to develop efficient MTDLs.
Collapse
Affiliation(s)
- Junbo Wu
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Honghua Zhang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Gaofeng Yin
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qien Li
- Tibetan Medical College, Qinghai University, Xining, Qinghai, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongjin Chen
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen Wang
- Department of Colorectal Surgery, The Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Kelebekli L. Synthesis and hydrolysis of monocarbamate from allylic 1,4-dicarbamate: Bis-homodichloroinositol. Carbohydr Res 2022; 522:108681. [PMID: 36166876 DOI: 10.1016/j.carres.2022.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022]
Abstract
The synthesis of novel bis-homodichloroinositol with a configuration similar to that of conduritol-D is reported for the first time. The photooxygenation of cis-dichloro-diene obtained using cyclooctatetraene as the starting molecule afforted the tricyclic endoperoxide. The reduction of the endoperoxide with thiourea gave the corresponding allylic cis-diol. Formation of the bis-carbamate groups with p-TsNCO of allylic cis-diol followed by the [(dba)3Pd2CHCl3] in the presence of trimethylsilyl azide, gave a new monocarbamate as well as oxazolidinone derivative. Oxidation of the double bond in the monocarbamate with osmium tetraoxide followed by acetylation furnished the desired monocarbamate triacetate. Eventually, the desired halogenated bicyclo[4.2.0] inositol (bis-homodichloroinositol) were obtained in high yield by hydrolysis of the acetate groups and monocarbanate group by potassium carbonate in methanol. Characterization of all the synthesized compounds were performed by FT-IR, 1H NMR, 13C NMR, COSY (2D-NMR), HRMS, and Elemental Analysis techniques.
Collapse
Affiliation(s)
- Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey.
| |
Collapse
|
15
|
Spatz P, Zimmermann T, Steinmüller S, Hofmann J, Maurice T, Decker M. Novel benzimidazole-based pseudo-irreversible butyrylcholinesterase inhibitors with neuroprotective activity in an Alzheimer's disease mouse model. RSC Med Chem 2022; 13:944-954. [PMID: 36092149 PMCID: PMC9384809 DOI: 10.1039/d2md00087c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/19/2022] [Indexed: 09/17/2023] Open
Abstract
As levels of acetylcholinesterase (AChE) decrease while levels of butyrylcholinesterase (BChE) increase in later stages of Alzheimer's disease (AD), BChE stands out as a promising target for treatment of AD. Therefore, several benzimidazole-carbamates were designed based on docking studies to inhibit BChE selectively over AChE, while retaining a reasonable solubility. Synthesized molecules exhibit IC50 values from 2.4 μM down to 3.7 nM with an overall highly hBChE-selective profile of the designed compound class. After evaluation of potential neurotoxicity, the most promising compound was further investigated in vivo. Compound 11d attenuates Aβ25-35-induced learning impairments in both spontaneous alternation and passive avoidance responses at a very low dosage of 0.03 mg kg-1, proving selective BChE inhibition to lead to effective neuroprotectivity in AD.
Collapse
Affiliation(s)
- Philipp Spatz
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Thomas Zimmermann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Sophie Steinmüller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| | - Tangui Maurice
- MMDN, University of Montpellier, EPHE, INSERM F-34095 Montpellier France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg Am Hubland D-97074 Germany
| |
Collapse
|
16
|
Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z. Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer's disease. Eur J Med Chem 2022; 240:114606. [PMID: 35858523 DOI: 10.1016/j.ejmech.2022.114606] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), as the fourth leading cause of death among the elderly worldwide, has brought enormous challenge to the society. Due to its extremely complex pathogeneses, the development of multi-target directed ligands (MTDLs) becomes the major strategy for combating AD. Carbamate moiety, as an essential building block in the development of MTDLs, exhibits structural similarity to neurotransmitter acetylcholine (ACh) and has piqued extensive attention in discovering multifunctional cholinesterase inhibitors. To date, numerous preclinical studies demonstrate that carbamate-based cholinesterase inhibitors can prominently increase the level of ACh and improve cognition impairments and behavioral deficits, providing a privileged strategy for the treatment of AD. Based on the recent research focus on the novel cholinesterase inhibitors with multiple biofunctions, this review aims at summarizing and discussing the most recent studies excavating the potential carbamate-based MTDLs with cholinesterase inhibition efficacy, to accelerate the pace of pleiotropic cholinesterase inhibitors for coping AD.
Collapse
Affiliation(s)
- Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yuying Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuelin Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuzhi Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
17
|
Discovery of carbamate-based N-salicyloyl tryptamine derivatives as novel pleiotropic agents for the treatment of Alzheimer's disease. Bioorg Chem 2022; 127:105993. [PMID: 35834980 DOI: 10.1016/j.bioorg.2022.105993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 12/22/2022]
Abstract
In this work, based on the potential anti-AD molecule previously studied by our group, we continue to introduce different substituents at different positions to improve both drug-like properties and on target activities. 33 N-salicyloyl tryptamine-carbamate hybrids were designed, synthesized and evaluated as cholinesterase inhibitors. H327 was the most potent BChE inhibitor (eqBChE IC50 = 0.057 ± 0.005 μM), and showed threefold improved inhibitory potency than the positive drug rivastigmine (eqBChE IC50 = 0.19 ± 0.001 μM). In addition, H327 as a pseudo-irreversible BChE inhibitor was endowed with neuroprotective, antioxidative and anti-neuroinflammatory properties. Cytotoxicity and acute toxicity tests confirmed the safety of compound H327. The pharmacokinetics study showed that compound H327 had a longer T1/2 time and higher bioavailability than the lead compound 1 g. Compound H327 was able to cross the blood-brain barrier (BBB) in vivo. Moreover, the behavioral tests showed that compound H327 could significantly improve scopolamine-induced cognitive impairment in vivo. Overall, these results demonstrated that compound H327 is a promising multi-target agent for the treatment of AD.
Collapse
|
18
|
Zhang Z, Cheng M, Guo J, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Design, synthesis and biological evaluation of novel pyrazolone derivatives as selective butyrylcholinesterase inhibitors with antioxidant activity against Alzheimer's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Scheiner M, Sink A, Hoffmann M, Vrigneau C, Endres E, Carles A, Sotriffer C, Maurice T, Decker M. Photoswitchable Pseudoirreversible Butyrylcholinesterase Inhibitors Allow Optical Control of Inhibition in Vitro and Enable Restoration of Cognition in an Alzheimer's Disease Mouse Model upon Irradiation. J Am Chem Soc 2022; 144:3279-3284. [PMID: 35138833 DOI: 10.1021/jacs.1c13492] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To develop tools to investigate the biological functions of butyrylcholinesterase (BChE) and the mechanisms by which BChE affects Alzheimer's disease (AD), we synthesized several selective, nanomolar active, pseudoirreversible photoswitchable BChE inhibitors. The compounds were able to specifically influence different kinetic parameters of the inhibition process by light. For one compound, a 10-fold difference in the IC50-values (44.6 nM cis, 424 nM trans) in vitro was translated to an "all or nothing" response with complete recovery in a murine cognition-deficit AD model at dosages as low as 0.3 mg/kg.
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Sink
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Cassandre Vrigneau
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Erik Endres
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Allison Carles
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius-Maximilian-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
20
|
Singh YP, Kumar N, Priya K, Chauhan BS, Shankar G, Kumar S, Singh GK, Srikrishna S, Garg P, Singh G, Rai G, Modi G. Exploration of Neuroprotective Properties of a Naturally Inspired Multifunctional Molecule (F24) against Oxidative Stress and Amyloid β Induced Neurotoxicity in Alzheimer's Disease Models. ACS Chem Neurosci 2022; 13:27-42. [PMID: 34931800 DOI: 10.1021/acschemneuro.1c00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD) are manifested as an increase in the level of oxidative stress and aggregation of the amyloid-β protein. In vitro, in vivo, and in silico experiments were designed and carried out with multifunctional cholinergic inhibitor, F24 (EJMC-7a) to explore its neuroprotective effects in AD models. The neuroprotection ability of F24 was tested in SH-SY5Y cells, a widely used neuronal cell line. The pretreatment and subsequent co-treatment of SH-SY5Y cells with different doses of F24 was effective in rescuing the cells from H2O2 induced neurotoxicity. F24 treated cells were found to be effective in the reduction of cellular reactive oxygen species, DNA damage, and Aβ1-42 induced neurotoxicity, which validated its neuroprotective effectiveness. F24 exhibited efficacy in an in vivo Drosophila model by rescuing eye phenotypes from degeneration caused by Aβ toxicity. Further, computational studies were carried out to monitor the interaction between F24 and Aβ1-42 aggregates. The computational studies corroborated our in vitro and in vivo studies suggesting Aβ1-42 aggregation modulation ability of F24. The brain entry ability of F24 was studied in the parallel artificial membrane permeability assay. Finally, F24 was tested at doses of 1 and 2.5 mg/kg in the Morris water maze AD model. The neuroprotective properties shown by F24 strongly suggest that multifunctional features of this molecule provide symptomatic relief and act as a disease-modifying agent in the treatment of AD. The results from our experiments strongly indicated that natural template-based F24 could serve as a lead molecule for further investigation to explore multifunctional therapeutic agents for AD management.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Brijesh Singh Chauhan
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, 824236 Bihar, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
21
|
Haghighijoo Z, Zamani L, Moosavi F, Emami S. Therapeutic potential of quinazoline derivatives for Alzheimer's disease: A comprehensive review. Eur J Med Chem 2022; 227:113949. [PMID: 34742016 DOI: 10.1016/j.ejmech.2021.113949] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Quinazolines are considered as a promising class of bioactive heterocyclic compounds with broad properties. Particularly, the quinazoline scaffold has an impressive role in the design and synthesis of new CNS-active drugs. The drug-like properties and pharmacological characteristics of quinazoline could lead to different drugs with various targets. Among CNS disorders, Alzheimer's disease (AD) is a progressive neurodegenerative disorder with memory loss, cognitive decline and language dysfunction. AD is a complex and multifactorial disease therefore, the need for finding multi-target drugs against this devastative disease is urgent. A literature survey revealed that quinazoline derivatives have diverse therapeutic potential for AD as modulators/inhibitors of β-amyloid, tau protein, cholinesterases, monoamine oxidases, and phosphodiesterases as well as other protective effects. Thus, we describe here the most relevant and recent studies about anti-AD agents with quinazoline structure which can further aid the development and discovery of new anti-AD agents.
Collapse
Affiliation(s)
- Zahra Haghighijoo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Leila Zamani
- Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
22
|
Yao Y, Su S, Wu N, Wu W, Jiang H. The cobalt( ii)-catalyzed acyloxylation of picolinamides with bifunctional silver carboxylate via C–H bond activation. Org Chem Front 2022. [DOI: 10.1039/d2qo01131j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cobalt(ii)-catalyzed C–H bond acyloxylation of picolinamides with bifunctional silver carboxylate has been developed. The mild and practical esterification provides an atom-economic route to access to polysubstituted naphthalene compounds.
Collapse
Affiliation(s)
- Yongqi Yao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Nan Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510641 Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Wu J, Kou X, Ju H, Zhang H, Yang A, Shen R. Design, synthesis and biological evaluation of naringenin carbamate derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2021; 49:128316. [PMID: 34391893 DOI: 10.1016/j.bmcl.2021.128316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 01/14/2023]
Abstract
A series of naringenin derivatives were designed and synthesized as multifunctional anti-Alzheimer's disease (AD) agents. The results showed that these derivatives displayed moderate-to-good acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities at the micromolar range (IC50, 12.91 ~ 62.52 μM for AChE and 0.094 ~ 13.72 μM for BuChE). Specifically, compound 1 showed the highest inhibitory activity against BuChE with the IC50 value of (0.094 ± 0.0054) μM. A Lineweaver-Burk plot and molecular docking studies demonstrated that 1 targeted both the catalytically active site (CAS) and the peripheral anion site (PAS) of BuChE. Besides, all derivatives showed excellent hydroxyl free radicals (·OH) scavenging ability than vitamin C and cyclic voltammetry results displayed that 1 could effectively scavenge superoxide anion radical (·O2-). In addition, compound 1 displayed good metal chelating properties and had anti-Aβ aggregation activities. Therefore, compound 1 might be the potential anti-AD agent for further developments.
Collapse
Affiliation(s)
- Jiarui Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Xiaodi Kou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hui Ju
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Hongwei Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Aihong Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Rui Shen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
24
|
Further SAR studies on natural template based neuroprotective molecules for the treatment of Alzheimer's disease. Bioorg Med Chem 2021; 46:116385. [PMID: 34481338 DOI: 10.1016/j.bmc.2021.116385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
In our earlier paper, we described ferulic acid (FA) template based novel series of multifunctional cholinesterase (ChE) inhibitors for the management of AD. This report has further extended the structure-activity relationship (SAR) studies of this series of molecules in a calibrated manner to improve upon the ChEs inhibition and antioxidant property to identify the novel potent multifunctional molecules. To investigate the effect of replacement of phenylpiperazine ring with benzylpiperazine, increase in the linker length between FA and substituted phenyl ring, and replacement of indole moiety with tryptamine on this molecular template, three series of novel molecules were developed. All synthesized compounds were tested for their acetyl and butyryl cholinestrases (AChE and BChE) inhibitory properties. Enzyme inhibition and PAS binding studies identified compound 13b as a lead molecule with potent inhibitor property towards AChE/BChE (AChE IC50 = 0.96 ± 0.14 µM, BChE IC50 = 1.23 ± 0.23 µM) compared to earlier identified lead molecule EJMC-G (AChE IC50 = 5.74 ± 0.13 μM, BChE IC50 = 14.05 ± 0.10 μM, respectively). Molecular docking and dynamics studies revealed that 13b fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Trp86, Ser125, Glu202, Trp 286, Phe295, Tyr 337 in AChE, and with Trp 82, Gly115, Tyr128, and Ser287 in BChE. The compound, 13b was found to be three times more potent antioxidant in a DPPH assay (IC50 = 20.25 ± 0.26 µM) over the earlier identified EJMC-B (IC50 = 61.98 ± 0.30 µM) and it also was able to chelate iron. Co-treatment of 13b with H2O2, significantly attenuated and reversed H2O2-induced toxicity in the SH-SY5Y cells. The parallel artificial membrane permeability assay-blood brain barrier (PAMPA-BBB) revealed that 13b could cross BBB efficiently. Finally, the in-vivo efficacy of 13b at dose of 10 mg/kg in scopolamine AD model has been demonstrated. The present study strongly suggests that the naturally inspired multifunctional molecule 13b may behave as a potential novel therapeutic agent for AD management.
Collapse
|
25
|
Magar P, Parravicini O, Štěpánková Š, Svrčková K, Garro AD, Jendrzejewska I, Pauk K, Hošek J, Jampílek J, Enriz RD, Imramovský A. Novel Sulfonamide-Based Carbamates as Selective Inhibitors of BChE. Int J Mol Sci 2021; 22:9447. [PMID: 34502357 PMCID: PMC8430704 DOI: 10.3390/ijms22179447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.
Collapse
Affiliation(s)
- Pratibha Magar
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| | - Oscar Parravicini
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Katarina Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Adriana D. Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | | | - Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| | - Jan Hošek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Josef Jampílek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina; (O.P.); (A.D.G.)
| | - Aleš Imramovský
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; (P.M.); (K.P.)
| |
Collapse
|
26
|
Jiang X, Zhang Z, Zuo J, Wu C, Zha L, Xu Y, Wang S, Shi J, Liu XH, Zhang J, Tang W. Novel cannabidiol-carbamate hybrids as selective BuChE inhibitors: Docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer's disease. Eur J Med Chem 2021; 223:113735. [PMID: 34371367 DOI: 10.1016/j.ejmech.2021.113735] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023]
Abstract
Cannabidiol (CBD) and rivastigmine have been launched as drugs for treating dementia and cholinesterases (ChEs) are ideal drug targets. This study focused on developing novel ChE inhibitors as drug leads against dementia through molecular modeling and fragment reassembly approaches. A potent carbamate fragment binding to active site gorge of BuChE was found via a docking-based structural splicing approach, thus, 17 novel compounds were designed by structural reassembly. Compound C16 was identified as a highly selective potent BuChE inhibitor (IC50 = 5.3 nM, SI > 4000), superior to CBD (IC50 = 0.67 μM). C16 possessed BBB penetrating ability, benign safety, neuroprotection, antioxidant and pseudo-irreversible BuChE inhibition (Kd = 13 nM, k2 = 0.26 min-1), showing good drug-like properties. In vivo studies confirmed that C16 significantly ameliorated the scopolamine-induced cognition impairment, almost entirely recovered the Aβ1-42 (icv)-impaired cognitive function to the normal level, showed better behavioral performance than donepezil and good anti-amyloidogenic effect. Hence, the potential BuChE inhibitor C16 can be developed as a promising disease-modifying treatment of AD.
Collapse
Affiliation(s)
- Xia Jiang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Ziwen Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jiawei Zuo
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Chengyao Wu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Liang Zha
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Yingying Xu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Sheng Wang
- Center for Scientific Research, Anhui Medical University, Hefei, 230032, China
| | - Jingbo Shi
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xin-Hua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230041, China.
| | - Wenjian Tang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
27
|
Sukumaran SD, Nasir SB, Tee JT, Buckle MJC, Othman R, Rahman NA, Lee VS, Bukhari SNA, Chee CF. Analogues of 2'-hydroxychalcone with modified C4-substituents as the inhibitors against human acetylcholinesterase. J Enzyme Inhib Med Chem 2021; 36:130-137. [PMID: 33243025 PMCID: PMC7822063 DOI: 10.1080/14756366.2020.1847100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A series of C4-substituted tertiary nitrogen-bearing 2′-hydroxychalcones were designed and synthesised based on a previous mixed type acetylcholinesterase inhibitor. Majority of the 2′-hydroxychalcone analogues displayed a better inhibition against acetylcholinesterase (AChE) than butyrylcholinesterase (BuChE). Among them, compound 4c was identified as the most potent AChE inhibitor (IC50: 3.3 µM) and showed the highest selectivity for AChE over BuChE (ratio >30:1). Molecular docking studies suggested that compound 4c interacts with both the peripheral anionic site (PAS) and catalytic anionic site (CAS) regions of AChE. ADMET analysis confirmed the therapeutic potential of compound 4c based on its blood–brain barrier penetrating. Overall, the results suggest that this 2′-hydroxychalcone deserves further investigation into the therapeutic lead for Alzheimer’s disease (AD).
Collapse
Affiliation(s)
- Sri Devi Sukumaran
- Faculty of Medicine, Department of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Shah Bakhtiar Nasir
- Faculty of Science, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jia Ti Tee
- Faculty of Science, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Michael J C Buckle
- Faculty of Medicine, Department of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Faculty of Medicine, Department of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abd Rahman
- Faculty of Science, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Faculty of Science, Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Scheiner M, Hoffmann M, He F, Poeta E, Chatonnet A, Monti B, Maurice T, Decker M. Selective Pseudo-irreversible Butyrylcholinesterase Inhibitors Transferring Antioxidant Moieties to the Enzyme Show Pronounced Neuroprotective Efficacy In Vitro and In Vivo in an Alzheimer's Disease Mouse Model. J Med Chem 2021; 64:9302-9320. [PMID: 34152756 DOI: 10.1021/acs.jmedchem.1c00534] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A series of multitarget-directed ligands (MTDLs) was designed by functionalizing a pseudo-irreversible butyrylcholinesterase (BChE) inhibitor. The obtained hybrids were investigated in vitro regarding their hBChE and hAChE inhibition, their enzyme kinetics, and their antioxidant physicochemical properties (DPPH, ORAC, metal chelating). In addition, in vitro assays were applied to investigate antioxidant effects using murine hippocampal HT22 cells and immunomodulatory effects on the murine microglial N9 cell line. The MTDLs retained their antioxidative properties compared to the parent antioxidant-moieties in vitro and the inhibition of hBChE was maintained in the submicromolar range. Representative compounds were tested in a pharmacological Alzheimer's disease (AD) mouse model and demonstrated very high efficacy at doses as low as 0.1 mg/kg. The most promising compound was also tested in BChE-/- mice and showed reduced efficacy. In vivo neuroprotection by BChE inhibition can be effectively enhanced by incorporation of structurally diverse antioxidant moieties.
Collapse
Affiliation(s)
- Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Feng He
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Arnaud Chatonnet
- DMEM, University of Montpellier, INRAE, 34060 Montpellier, France
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Tangui Maurice
- MMDN, University of Montpellier, INSERM, EPHE, 34095 Montpellier, France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, Julius Maximilian University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
29
|
Nazari M, Rezaee E, Hariri R, Akbarzadeh T, Tabatabai SA. Novel 1,2,4-oxadiazole derivatives as selective butyrylcholinesterase inhibitors: Design, synthesis and biological evaluation. EXCLI JOURNAL 2021; 20:907-921. [PMID: 34121977 PMCID: PMC8192883 DOI: 10.17179/excli2021-3569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive mental disorder that brings a huge economic burden to the healthcare systems. During this illness, acetylcholine levels in the cholinergic systems gradually diminish, which results in severe memory loss and cognitive impairments. Moreover, Butyrylcholinesterase (BuChE) enzyme participates in cholinergic neurotransmission regulation by playing a prominent role in the latter phase of AD. In this study, based on donepezil, which is an effective acetylcholinesterase (AChE) inhibitor, a series of 1,2,4-oxadiazole compounds were designed, synthesized and their inhibitory activities towards AChE and BuChE enzymes were evaluated. Some structures exhibited a higher selectivity rate towards BuChE in comparison to donepezil. Notably, compound 6n with an IC50 value of 5.07 µM and an SI ratio greater than 19.72 showed the highest potency and selectivity towards BuChE enzyme. The docking result revealed that compound 6n properly fitted the active site pocket of BuChE enzyme, and formed desirable lipophilic interactions and hydrogen bonds. Moreover, according to in silico ADME studies, these compounds have proper potential for being developed as new oral anti-Alzheimer's agents (Figure 1(Fig. 1)).
Collapse
Affiliation(s)
- Maryam Nazari
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Mozaffarnia S, Teimuri-Mofrad R, Rashidi MR. Synthesis of 2-amino-3-cyano-4H-pyran derivatives using GO-Fc@Fe3O4 nanohybrid as a novel recyclable heterogeneous nanocatalyst and preparation of tacrine-naphthopyran hybrids as AChE inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Gentzsch C, Hoffmann M, Ohshima Y, Nose N, Chen X, Higuchi T, Decker M. Synthesis and Initial Characterization of a Selective, Pseudo-irreversible Inhibitor of Human Butyrylcholinesterase as PET Tracer. ChemMedChem 2021; 16:1427-1437. [PMID: 33645891 PMCID: PMC8247983 DOI: 10.1002/cmdc.202000942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Indexed: 02/06/2023]
Abstract
The enzyme butyrylcholinesterase (BChE) represents a promising target for imaging probes to potentially enable early diagnosis of neurodegenerative diseases like Alzheimer's disease (AD) and to monitor disease progression in some forms of cancer. In this study, we present the design, facile synthesis, in vitro and preliminary ex vivo and in vivo evaluation of a morpholine-based, selective inhibitor of human BChE as a positron emission tomography (PET) tracer with a pseudo-irreversible binding mode. We demonstrate a novel protecting group strategy for 18 F radiolabeling of carbamate precursors and show that the inhibitory potency as well as kinetic properties of our unlabeled reference compound were retained in comparison to the parent compound. In particular, the prolonged duration of enzyme inhibition of such a morpholinocarbamate motivated us to design a PET tracer, possibly enabling a precise mapping of BChE distribution.
Collapse
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius-Maximilians-University of WürzburgAm Hubland97074WürzburgGermany
| | - Matthias Hoffmann
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius-Maximilians-University of WürzburgAm Hubland97074WürzburgGermany
| | - Yasuhiro Ohshima
- Comprehensive Heart Failure CenterUniversity Hospital of WürzburgAm Schwarzenberg 1597078WürzburgGermany
- Department of Nuclear MedicineUniversity Hospital of WürzburgOberdürrbacher Straße 697080WürzburgGermany
| | - Naoko Nose
- Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama University2-5-1 Shikata-cho, Kita-kuOkayamaJapan
| | - Xinyu Chen
- Department of Nuclear MedicineUniversity Hospital of AugsburgStenglinstraße 286156AugsburgGermany
- Comprehensive Heart Failure CenterUniversity Hospital of WürzburgAm Schwarzenberg 1597078WürzburgGermany
- Department of Nuclear MedicineUniversity Hospital of WürzburgOberdürrbacher Straße 697080WürzburgGermany
| | - Takahiro Higuchi
- Comprehensive Heart Failure CenterUniversity Hospital of WürzburgAm Schwarzenberg 1597078WürzburgGermany
- Department of Nuclear MedicineUniversity Hospital of WürzburgOberdürrbacher Straße 697080WürzburgGermany
- Graduate School of MedicineDentistry and Pharmaceutical SciencesOkayama University2-5-1 Shikata-cho, Kita-kuOkayamaJapan
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius-Maximilians-University of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
32
|
Discovery, biological evaluation and molecular dynamic simulations of butyrylcholinesterase inhibitors through structure-based pharmacophore virtual screening. Future Med Chem 2021; 13:769-784. [PMID: 33759552 DOI: 10.4155/fmc-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Butyrylcholinesterase (BChE) is a crucial therapeutic target because it is associated with multiple pathological elements of Alzheimer's disease (AD). An integrated computational strategy was employed to exploit effective BChE inhibitors. Methods & results: Ten compounds derived from the Enamine database by structure-based pharmacophore virtual screening were further evaluated for biological activity; out of the ten, only five had an IC50 of less than 100 μM. Among these five compounds, a new molecule, 970180, presented the most potency against BChE, with an IC50 of 4.24 ± 0.16 μM, and acted as a mixed-type inhibitor. Molecular dynamic simulations and absorption, distribution, metabolism and excretion prediction further confirmed its high potential as a good candidate of BChE inhibitor. Furthermore, cytotoxicity of molecule 970180 was not observed at concentrations up to 50 μM, and the molecule also showed a prominent neuroprotective effect compared with tacrine at 25 and 50 μM. Conclusion: This study provides an effective structure-based pharmacophore virtual screening method to discover BChE inhibitors and provide new choices for the development of BChE inhibitors, which may be beneficial for AD patients.
Collapse
|
33
|
Singh YP, Rai H, Singh G, Singh GK, Mishra S, Kumar S, Srikrishna S, Modi G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer's disease. Eur J Med Chem 2021; 215:113278. [PMID: 33662757 DOI: 10.1016/j.ejmech.2021.113278] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is an age-related multifactorial neurodegenerative disorder characterized by severe central cholinergic neuronal loss, gradually contributing to cognitive dysfunction and impaired motor activity, resulting in the brain's cell death at the later stages of AD. Although the etiology of AD is not well understood, however, several factors such as oxidative stress, deposition of amyloid-β (Aβ) peptides to form Aβ plaques, intraneuronal accumulation of hyperphosphorylated tau protein, and low level of acetylcholine are thought to play a major role in the pathogenesis of AD. There is practically no drug for AD treatment that can address the basic factors responsible for the neurodegeneration and slow down the disease progression. The currently available therapies for AD in the market focus on providing only symptomatic relief without addressing the aforesaid basic factors responsible for the neurodegeneration. Ferulic acid (FA) is a phenol derivative from natural sources and serves as a potential pharmacophore that exerts multiple pharmacological properties such as antioxidant, neuroprotection, Aβ aggregation modulation, and anti-inflammatory. Several FA based hybrid analogs are under investigation as a multi-target directed ligand (MTDLs) to develop novel hybrid compounds for the treatment of AD. In the present review article, we are focused on the critical pathogenic factors responsible for the onset of AD followed by the developments of FA pharmacophore-based hybrids compounds as a novel multifunctional therapeutic agent to address the limitations associated with available treatment for AD. The rationale behind the development of these compounds and their pharmacological activities in particular to their ChE inhibition (ChEI), neuroprotection, antioxidant property, Aβ aggregation modulation, and metal chelation ability, are discussed in detail. We have also discussed the discovery of caffeic and cinnamic acids based MTDLs for AD. This review paper provides an in-depth insight into the research progress and current status of these novel therapeutics in AD and prospects for developing a druggable molecule with desired pharmacological affinity and reduced toxicity for the management of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Sunil Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
34
|
TuĞrak M, GÜl Hİ, Anil B, GÜlÇİn İ. Synthesis and pharmacological effects of novel benzenesulfonamides carrying benzamide moiety as carbonic anhydrase and acetylcholinesterase inhibitors. Turk J Chem 2020; 44:1601-1609. [PMID: 33488256 PMCID: PMC7763114 DOI: 10.3906/kim-2007-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/08/2020] [Indexed: 01/24/2023] Open
Abstract
N
-(1-(4-Methoxyphenyl)-3-oxo-3-((4-(
N
-(substituted)sulfamoyl)phenyl)amino)prop-1-en-1-yl)benzamides
3a – g
were designed since sulfonamide and benzamide pharmacophores draw great attention in novel drug design due to their wide range of bioactivities including acetylcholinesterase (AChE) and human carbonic anhydrase I and II (hCA I and hCA II) inhibitory potencies. Structure elucidation of the compounds was carried out by 1H NMR, 13C NMR, and HRMS spectra. In vitro enzyme assays showed that the compounds had significant inhibitory potential against hCA I, hCA II, and AChE enzymes at nanomolar levels. Ki values were in the range of 4.07 ± 0.38 – 29.70 ± 3.18 nM for hCA I and 10.68 ± 0.98 – 37.16 ± 7.55 nM for hCA II while Ki values for AChE were in the range of 8.91 ± 1.65 – 34.02 ± 5.90 nM. The most potent inhibitors
3g
(Ki = 4.07 ± 0.38 nM, hCA I),
3c
(Ki = 10.68 ± 0.98 nM, hCA II
)
, and
3f
(Ki = 8.91 ± 1.65 nM, AChE) can be considered as lead compounds of this study with their promising bioactivity results. Secondary sulfonamides showed promising enzyme inhibitory effects on AChE while primary sulfonamide derivative was generally effective on hCA I and hCA II isoenzymes.
Collapse
Affiliation(s)
- Mehtap TuĞrak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Halise İnci GÜl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum Turkey
| | - Barış Anil
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey
| | - İlhami GÜlÇİn
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum Turkey
| |
Collapse
|
35
|
Blaikie L, Kay G, Kong Thoo Lin P. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer's disease. Bioorg Med Chem Lett 2020; 30:127505. [PMID: 32822761 DOI: 10.1016/j.bmcl.2020.127505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/17/2020] [Indexed: 01/16/2023]
Abstract
A number of novel naphthalimido and phthalimido vanillin derivatives were synthesised, and evaluated as antioxidants and cholinesterase inhibitors in vitro. Antioxidant activity was assessed using DPPH, FRAP, and ORAC assays. All compounds demonstrated enhanced activity compared to the parent compound, vanillin. They also exhibited BuChE selectivity in Ellman's assay. A lead compound, 2a (2-(3-(bis(4-hydroxy-3-methoxybenzyl)amino)propyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione), was identified and displayed strong antioxidant activity (IC50 of 16.67 µM in the DPPH assay, a 25-fold increase in activity compared to vanillin in the FRAP assay, and 9.43 TE in the ORAC assay). Furthermore, 2a exhibited potent BuChE selectivity, with an IC50 of 0.27 µM which was around 53-fold greater than the corresponding AChE inhibitory activity. Molecular modelling studies showed that molecules with bulkier groups, as in 2a, exhibited better BuChE selectivity. This work provides a promising basis for the development of multi-target hybrid compounds based on vanillin as potential AD therapeutics.
Collapse
Affiliation(s)
- Laura Blaikie
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland, United Kingdom
| | - Graeme Kay
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland, United Kingdom
| | - Paul Kong Thoo Lin
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland, United Kingdom.
| |
Collapse
|
36
|
Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H. Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Med Res Rev 2020; 41:858-901. [PMID: 33103262 DOI: 10.1002/med.21745] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Structural information of butyrylcholinesterase (BChE) and its variants associated with several diseases are discussed here. Pure human BChE has been proved safe and effective in treating organophosphorus (OPs) poisoning and has completed Phase 1 and 2 pharmacokinetic (PK) and safety studies. The introduction of specific mutations into native BChE to endow it a self-reactivating property has gained much progress in producing effective OPs hydrolases. The hydrolysis ability of native BChE on cocaine has been confirmed but was blocked to clinical application due to poor PK properties. Several BChE mutants with elevated cocaine hydrolysis activity were published, some of which have shown safety and efficiency in treating cocaine addiction of human. The increased level of BChE in progressed Alzheimer's disease patients made it a promising target to elevate acetylcholine level and attenuate cognitive status. A variety of selective BChE inhibitors with high inhibitory activity published in recent years are reviewed here. BChE could influence the weight and insulin secretion and resistance of BChE knockout (KO) mice through hydrolyzing ghrelin. The BChE-ghrelin pathway could also regulate aggressive behaviors of BChE-KO mice.
Collapse
Affiliation(s)
- Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Baichen Xiong
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China.,Institute of Food and Pharmaceuticals Research, Jiangsu Food and Pharmaceuticals Science College, Nanjing, China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
37
|
New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25173915. [PMID: 32867324 PMCID: PMC7504258 DOI: 10.3390/molecules25173915] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023] Open
Abstract
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer’s disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC50 (AChE) = 0.131 ± 0.01 µM (five times more potent than tacrine), IC50(BChE) = 0.0680 ± 0.0014 µM, and 17.5 ± 1.5% propidium displacement at 20 µM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
Collapse
|
38
|
Kumar V, De P, Ojha PK, Saha A, Roy K. A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:1601-1627. [DOI: 10.2174/1568026620666200616142753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023]
Abstract
Background:
Alzheimer’s disease (AD), a neurological disorder, is the most common cause
of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine
(ACh) neurotransmitter, but in the case of Alzheimer’s disease (AD), BuChE activity gradually
increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh
plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain,
and thus, is involved in memory consolidation in these sites.
Methods:
In this work, we have developed a partial least squares (PLS)-regression based two dimensional
quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes
of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization
for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant
descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using
stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique
and at the end best subset selection prior to development of final model thus reducing noise in the
input. Partial least squares (PLS) regression technique was employed for the development of the final
model while model validation was performed using various stringent validation criteria.
Results:
The results obtained from the QSAR model suggested that the quality of the model is acceptable
in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2
Pred= 0.657) validation parameters.
The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen
bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model
further suggests that the presence of hydrophobic features like long carbon chain would increase the
BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen
bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.
Conclusion:
Furthermore, molecular docking studies have been carried out to understand the molecular
interactions between the ligand and receptor, and the results are then correlated with the structural features
obtained from the QSAR models. The information obtained from the QSAR models are well corroborated
with the results of the docking study.
Collapse
Affiliation(s)
- Vinay Kumar
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Priyanka De
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Probir Kumar Ojha
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92 APC Road, Kolkata 700 032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
39
|
Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Mozaffarnia S, Teimuri-Mofrad R, Rashidi MR. Design, synthesis and biological evaluation of 2,3-dihydro-5,6-dimethoxy-1H-inden-1-one and piperazinium salt hybrid derivatives as hAChE and hBuChE enzyme inhibitors. Eur J Med Chem 2020; 191:112140. [PMID: 32088494 DOI: 10.1016/j.ejmech.2020.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
2,3-Dihydro-5,6-dimethoxy-2-[4-(4-alkyl-4-methylpiperazinium-1-yl)benzylidine]-1H-inden-1-one halide salt derivatives as a novel donepezil hybrid analogs with the property of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzyme inhibition were designed and synthesized via N-alkylation reaction of 2,3-dihydro-5,6-dimethoxy-2-[4-(4-methylpiperazin-1-yl)benzylidene]-1H-inden-1-one with some alkyl halides. Biological tests demonstrated that most of the synthesized compounds have moderate to good inhibitory activities effect on cholinesterase enzymes. Among them, 10e showed the best profile as a selected compound for inhibition of hAChE (IC50 = 0.32) and hBuChE (IC50 = 0.43 μM) enzymes. Kinetic analysis and molecular docking led to a better understanding of this compound. Kinetic studies disclosed that 10e inhibited acetylcholinesterase in mixed-type and butyrylcholinesterase in non-competitive type. The toxicity results showed that 10e is less toxic than donepezil and has better inhibitory activity against hBuChE when compared to donepezil or Galantamine. Other performed experiments revealed that 10e has an anti-β amyloid effect which is capable of reducing ROS, LDH and MDA also possing positive effect on TAC. On the other hand, it has shown a good anti-inflammation effect.
Collapse
Affiliation(s)
- Sakineh Mozaffarnia
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Acharya V, Mal S, Kilaru JP, Montgomery MG, Deshpande SH, Sonawane RP, Manjunath BN, Pal S. Synthesis of Carbamates from Alkyl Bromides and Secondary Amines Using Silver Carbonate. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vanitha Acharya
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
- Department of Chemistry; Mangalore University, Mangalagangothri; 576119 Karnataka India
| | - Sanjib Mal
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Jagadeesh P. Kilaru
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Mark G. Montgomery
- Jealott's Hill International Research Centre; Syngenta; 42 6EY Bracknell Berkshire United Kingdom
| | | | - Ravindra P. Sonawane
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Bhanu N. Manjunath
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| | - Sitaram Pal
- Santa Monica Works, Corlim, Ilhas; Syngenta Biosciences Pvt. Ltd.; 403110 Goa India
| |
Collapse
|
42
|
Xie J, Liang R, Wang Y, Huang J, Cao X, Niu B. Progress in Target Drug Molecules for Alzheimer's Disease. Curr Top Med Chem 2020; 20:4-36. [DOI: 10.2174/1568026619666191203113745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/20/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that 4 widespread in the elderly.
The etiology of AD is complicated, and its pathogenesis is still unclear. Although there are many
researches on anti-AD drugs, they are limited to reverse relief symptoms and cannot treat diseases.
Therefore, the development of high-efficiency anti-AD drugs with no side effects has become an urgent
need. Based on the published literature, this paper summarizes the main targets of AD and their drugs,
and focuses on the research and development progress of these drugs in recent years.
Collapse
Affiliation(s)
- Jiayang Xie
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Ruirui Liang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yajiang Wang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Junyi Huang
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Bing Niu
- School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
43
|
Tetrahydroquinoline-Isoxazole/Isoxazoline Hybrid Compounds as Potential Cholinesterases Inhibitors: Synthesis, Enzyme Inhibition Assays, and Molecular Modeling Studies. Int J Mol Sci 2019; 21:ijms21010005. [PMID: 31861333 PMCID: PMC6981637 DOI: 10.3390/ijms21010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023] Open
Abstract
A series of 44 hybrid compounds that included in their structure tetrahydroquinoline (THQ) and isoxazole/isoxazoline moieties were synthesized through the 1,3-dipolar cycloaddition reaction (1,3-DC) from the corresponding N-allyl/propargyl THQs, previously obtained via cationic Povarov reaction. In vitro cholinergic enzymes inhibition potential of all compounds was tested. Enzyme inhibition assays showed that some hybrids exhibited significant potency to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Especially, the hybrid compound 5n presented the more effective inhibition against AChE (4.24 µM) with an acceptable selectivity index versus BChE (SI: 5.19), while compound 6aa exhibited the greatest inhibition activity on BChE (3.97 µM) and a significant selectivity index against AChE (SI: 0.04). Kinetic studies were carried out for compounds with greater inhibitory activity of cholinesterases. Structure–activity relationships of the molecular hybrids were analyzed, through computational models using a molecular cross-docking algorithm and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy approach, which indicated a good correlation between the experimental inhibition values and the predicted free binding energy.
Collapse
|
44
|
Cai R, Wang LN, Fan JJ, Geng SQ, Liu YM. New 4-N-phenylaminoquinoline derivatives as antioxidant, metal chelating and cholinesterase inhibitors for Alzheimer’s disease. Bioorg Chem 2019; 93:103328. [DOI: 10.1016/j.bioorg.2019.103328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
|
45
|
Discovery of Selective Butyrylcholinesterase (BChE) Inhibitors through a Combination of Computational Studies and Biological Evaluations. Molecules 2019; 24:molecules24234217. [PMID: 31757047 PMCID: PMC6930573 DOI: 10.3390/molecules24234217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 11/17/2022] Open
Abstract
As there are increased levels and activity of butyrylcholiesterase (BChE) in the late stage of Alzheimer’s disease (AD), development of selective BChE inhibitors is of vital importance. In this study, a workflow combining computational technologies and biological assays were implemented to identify selective BChE inhibitors with new chemical scaffolds. In particular, a pharmacophore model served as a 3D search query to screen three compound collections containing 3.0 million compounds. Molecular docking and cluster analysis were performed to increase the efficiency and accuracy of virtual screening. Finally, 15 compounds were retained for biological investigation. Results revealed that compounds 8 and 18 could potently and highly selectively inhibit BChE activities (IC50 values < 10 μM on human BChE, selectivity index BChE > 30). These active compounds with novel scaffolds provided us with a good starting point to further design potent and selective BChE inhibitors, which may be beneficial for the treatment of AD.
Collapse
|
46
|
Krátký M, Štěpánková Š, Houngbedji NH, Vosátka R, Vorčáková K, Vinšová J. 2-Hydroxy- N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules 2019; 9:biom9110698. [PMID: 31694272 PMCID: PMC6920847 DOI: 10.3390/biom9110698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer’s disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman’s spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5–228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine—an established cholinesterases inhibitor used in the treatment of Alzheimer’s disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Rudolf Vosátka
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
47
|
Hoffmann M, Stiller C, Endres E, Scheiner M, Gunesch S, Sotriffer C, Maurice T, Decker M. Highly Selective Butyrylcholinesterase Inhibitors with Tunable Duration of Action by Chemical Modification of Transferable Carbamate Units Exhibit Pronounced Neuroprotective Effect in an Alzheimer's Disease Mouse Model. J Med Chem 2019; 62:9116-9140. [PMID: 31609115 DOI: 10.1021/acs.jmedchem.9b01012] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, the carbamate structure of pseudo-irreversible butyrylcholinesterase (BChE) inhibitors was optimized with regard to a longer binding to the enzyme. A set of compounds bearing different heterocycles (e.g., morpholine, tetrahydroisoquinoline, benzimidazole, piperidine) and alkylene spacers (2 to 10 methylene groups between carbamate and heterocycle) in the carbamate residue was synthesized and characterized in vitro for their binding affinity, binding kinetics, and carbamate hydrolysis. These novel BChE inhibitors are highly selective for hBChE over human acetycholinesterase (hAChE), yielding short-, medium-, and long-acting nanomolar hBChE inhibitors (with a half-life of the carbamoylated enzyme ranging from 1 to 28 h). The inhibitors show neuroprotective properties in a murine hippocampal cell line and a pharmacological mouse model of Alzheimer's disease (AD), suggesting a significant benefit of BChE inhibition for a disease-modifying treatment of AD.
Collapse
Affiliation(s)
- Matthias Hoffmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Carina Stiller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Erik Endres
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Matthias Scheiner
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Christoph Sotriffer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| | - Tangui Maurice
- INSERM UMR-S1198 , University of Montpellier , Place Eugène Bataillon , Montpellier F-34095 , France
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry , Julius Maximilian University Würzburg , Am Hubland, D-97074 Würzburg , Germany
| |
Collapse
|
48
|
Overview of novel multifunctional agents based on conjugates of γ-carbolines, carbazoles, tetrahydrocarbazoles, phenothiazines, and aminoadamantanes for treatment of Alzheimer's disease. Chem Biol Interact 2019; 308:224-234. [DOI: 10.1016/j.cbi.2019.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023]
|
49
|
Zhou S, Yuan Y, Zheng F, Zhan CG. Structure-based virtual screening leading to discovery of highly selective butyrylcholinesterase inhibitors with solanaceous alkaloid scaffolds. Chem Biol Interact 2019; 308:372-376. [PMID: 31152736 PMCID: PMC6613991 DOI: 10.1016/j.cbi.2019.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Abstract
According to recent research advance, it is interesting to identify new, potent and selective inhibitors of human butyrylcholinesterase (BChE) for therapeutic treatment of both the Alzheimer's disease (AD) and heroin abuse. In this study, we carried out a structure-based virtual screening followed by in vitro activity assays, with the goal to identify new inhibitors that are selective for BChE over acetylcholinesterase (AChE). As a result, a set of new, selective inhibitors of human BChE were identified from natural products with solanaceous alkaloid scaffolds. The most active one of the natural products (compound 1) identified has an IC50 of 16.8 nM against BChE. It has been demonstrated that the desirable selectivity of these inhibitors for BChE over AChE is mainly controlled by three key residues in the active site cavity, i.e. residues Q119, A277, and A328 in BChE versus the respective residues Y124, W286, and Y337 in AChE. Based on this structural insight, future rational design of new, potent and selective BChE inhibitors may focus on these key structural differences in the active site cavity.
Collapse
Affiliation(s)
- Shuo Zhou
- Molecular Modeling and Biopharmaceutical Center, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, 789 South Limestone Street, Lexington, KY, 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536, USA.
| |
Collapse
|
50
|
Jiang CS, Ge YX, Cheng ZQ, Wang YY, Tao HR, Zhu K, Zhang H. Discovery of New Selective Butyrylcholinesterase (BChE) Inhibitors with Anti-Aβ Aggregation Activity: Structure-Based Virtual Screening, Hit Optimization and Biological Evaluation. Molecules 2019; 24:molecules24142568. [PMID: 31311169 PMCID: PMC6680840 DOI: 10.3390/molecules24142568] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, a series of selective butyrylcholinesterase (BChE) inhibitors was designed and synthesized from the structural optimization of hit 1, a 4-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)benzoic acid derivative identified by virtual screening our compound library. The in vitro enzyme assay results showed that compounds 9 ((4-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)phenyl)(pyrrolidin-1-yl)methanone) and 23 (N-(2-bromophenyl)-4-((3,4-dihydroisoquinolin-2(1H)-yl)methyl)benzamide) displayed improved BChE inhibitory activity and good selectivity towards BChE versus AChE. Their binding modes were probed by molecular docking and further validated by molecular dynamics simulation. Kinetic analysis together with molecular modeling studies suggested that these derivatives could target both the catalytic active site (CAS) and peripheral anionic site (PAS) of BChE. In addition, the selected compounds 9 and 23 displayed anti-Aβ1–42 aggregation activity in a dose-dependent manner, and they did not show obvious cytotoxicity towards SH-SY5Y neuroblastoma cells. Also, both compounds showed significantly protective activity against Aβ1-42-induced toxicity in a SH-SY5Y cell model. The present results provided a new valuable chemical template for the development of selective BChE inhibitors.
Collapse
Affiliation(s)
- Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Yong-Xi Ge
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yin-Yin Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hong-Rui Tao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Meteria Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|