1
|
Citron MP, Zang X, Leithead A, Meng S, Rose Ii WA, Murray E, Fontenot J, Bilello J, Beshore DC, Howe JA. Evaluation of A Non-Nucleoside Inhibitor of the RSV RNA-Dependent RNA Polymerase in Translatable Animals Models. J Infect 2024:106325. [PMID: 39454831 DOI: 10.1016/j.jinf.2024.106325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Respiratory Syncytial Virus (RSV) causes severe respiratory infections and concomitant disease resulting in significant morbidity and mortality in infants, elderly, and immunocompromised adults. Vaccines, monoclonal antibodies, and small molecule antivirals are now either available, or in development, to prevent and treat RSV infections. Although, rodent and non-rodent preclinical animal models have been used to evaluate these emerging agents there is still a need to improve our understanding of the pharmacokinetic (PK)-pharmacodynamic (PD) relationships, within and between animal models to enable better design of human challenge studies and clinical trials. Herein, we report a PKPD evaluation of MRK-1, a novel small molecule non-nucleoside inhibitor of the RSV L polymerase protein, in the semi-permissive cotton rat and African green monkey models of RSV infection. These studies demonstrate a strong relationship between in vitro activity, in vivo drug exposure, and pharmacodynamic efficacy as well as revealing limitations of the cotton rat RSV model. Additionally, we report unexpected horizontal transmission of human RSV between co-housed African green monkeys, as well as a lack of drug specific resistant mutant generation. Taken together these studies further our understanding of these semi-permissive animal models and offer the potential for expansion of their preclinical utility in evaluating novel RSV therapeutic agents.
Collapse
Affiliation(s)
- Michael P Citron
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA.
| | - Xiaowei Zang
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Andrew Leithead
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Shi Meng
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - William A Rose Ii
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Edward Murray
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - Jane Fontenot
- The University of Louisiana New Iberia Research Center, New Iberia, LA 70560, United States
| | - John Bilello
- Discovery Virology, Gilead Sciences Inc., Foster City, California 94404, United States
| | - Douglas C Beshore
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| | - John A Howe
- Discovery, Preclinical and Translational Medicine, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
2
|
Rasool AT, Li E, Nazir A. Recent advances in natural products and derivatives with antiviral activity against respiratory syncytial virus (RSV). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-24. [PMID: 39425923 DOI: 10.1080/10286020.2024.2417211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Respiratory syncytial virus (RSV) is a widespread viral infection that causes millions of high-risk illnesses annually. Medicinal herbs such as ginseng root, echinacea purpurea, and radix astragali have a positive effect on antiviral activity by preventing viral adhesion, syncytial development, inhibiting viral internalization, relieving respiratory inflammation, strengthening the immune system, and stimulating the release of interferons. The potential benefits of natural products in terms of lower costs, better patient outcomes, and fewer adverse effects are discussed. This review examines the current evidence on the prevention and control of RSV with natural ingredients and the challenges and opportunities in clinical practice.
Collapse
Affiliation(s)
- Ameena Tur Rasool
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu210093, China
| | - Erguang Li
- Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu210093, China
| | - Ahsan Nazir
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| |
Collapse
|
3
|
Grosse S, Cooymans L, Embrechts W, McGowan D, Jacoby E, Stoops B, Gupta K, Ackermann M, Alnajjar S, Guillemont J, Jin Z, Kesteleyn B, Matcha K, Sriboonyapirat P, Truong A, Van Den Berg J, Yu X, Herschke F, Roymans D, Raboisson P, Rigaux P, Jonckers THM. Discovery of gem-Dimethyl-hydroxymethylpyridine Derivatives as Potent Non-nucleoside RSV Polymerase Inhibitors. J Med Chem 2024; 67:13723-13736. [PMID: 39105710 DOI: 10.1021/acs.jmedchem.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Respiratory syncytial virus (RSV) is an RNA virus infecting the upper and lower respiratory tract and is recognized as a major respiratory health threat, particularly to older adults, immunocompromised individuals, and young children. Around 64 million children and adults are infected every year worldwide. Despite two vaccines and a new generation monoclonal antibody recently approved, no effective antiviral treatment is available. In this manuscript, we present the medicinal chemistry efforts resulting in the identification of compound 28 (JNJ-8003), a novel RSV non-nucleoside inhibitor displaying subnanomolar activity in vitro as well as prominent efficacy in mice and a neonatal lamb models.
Collapse
Affiliation(s)
- Sandrine Grosse
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Ludwig Cooymans
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Werner Embrechts
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Edgar Jacoby
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kusum Gupta
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | | | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, U.K
| | | | - Zhinan Jin
- Janssen Pharmaceutica NV, Brisbane, California 94005, United States
| | - Bart Kesteleyn
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Kiran Matcha
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | | | - Anh Truong
- Neuron23 Inc. 343 Oyster Point Blvd, South San Francisco, California 94080, United States
| | - Joke Van Den Berg
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Xiaodi Yu
- Janssen Pharmaceutica NV, Spring House, Pennsylvania 19477 United States
| | - Florence Herschke
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Dirk Roymans
- DNS Life Sciences Consulting, Brandhoefstraat 63, 2300 Turnhout, Belgium
| | - Pierre Raboisson
- Galapagos, General De Wittelaan L112, A3, 2800 Mechelen, Belgium
| | - Peter Rigaux
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Tim H M Jonckers
- Janssen Research & Development, Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| |
Collapse
|
4
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
5
|
Kesteleyn B, Herschke F, Darville N, Stoops B, Jacobs T, Jacoby E, Shaffer P, Lammens L, Van Rompaey D, Matcha K, Martinez Lamenca C, Coesemans E, Hache G, Pieters S, Lecomte M, Hu L, Demin S, Milligan C, Abeywickrema P, De Bruyn S, Van Den Berg J, Ysebaert N, De Zwart L, Nájera I, Rigaux P, Roymans D, Jonckers THM. Spiro-Azetidine Oxindoles as Long-Acting Injectables for Pre-Exposure Prophylaxis against Respiratory Syncytial Virus Infections. J Med Chem 2024; 67:10986-11002. [PMID: 38932487 DOI: 10.1021/acs.jmedchem.4c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants, the elderly, and immune-compromised patients. While a half-life extended monoclonal antibody and 2 vaccines have recently been approved for infants and the elderly, respectively, options to prevent disease in immune-compromised patients are still needed. Here, we describe spiro-azetidine oxindoles as small molecule RSV entry inhibitors displaying favorable potency, developability attributes, and long-acting PK when injected as an aqueous suspension, suggesting their potential to prevent complications following RSV infection over a period of 3 to 6 months with 1 or 2 long-acting intramuscular (IM) or subcutaneous (SC) injections in these immune-compromised patients.
Collapse
Affiliation(s)
- Bart Kesteleyn
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Florence Herschke
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Nicolas Darville
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Bart Stoops
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Tom Jacobs
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Edgar Jacoby
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Paul Shaffer
- Janssen Research & Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Lieve Lammens
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Dries Van Rompaey
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Kiran Matcha
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | | | - Erwin Coesemans
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Geerwin Hache
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Serge Pieters
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Morgan Lecomte
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Lili Hu
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Samuel Demin
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Cynthia Milligan
- Janssen Research & Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Pravien Abeywickrema
- Janssen Research & Development, 1400 McKean Rd, Spring House, Pennsylvania 19477, United States
| | - Suzanne De Bruyn
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Joke Van Den Berg
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Nina Ysebaert
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Loeckie De Zwart
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Isabel Nájera
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Peter Rigaux
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Dirk Roymans
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| | - Tim H M Jonckers
- Janssen Research & Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse 2340, Belgium
| |
Collapse
|
6
|
Sake SM, Zhang X, Rajak MK, Urbanek-Quaing M, Carpentier A, Gunesch AP, Grethe C, Matthaei A, Rückert J, Galloux M, Larcher T, Le Goffic R, Hontonnou F, Chatterjee AK, Johnson K, Morwood K, Rox K, Elgaher WAM, Huang J, Wetzke M, Hansen G, Fischer N, Eléouët JF, Rameix-Welti MA, Hirsch AKH, Herold E, Empting M, Lauber C, Schulz TF, Krey T, Haid S, Pietschmann T. Drug repurposing screen identifies lonafarnib as respiratory syncytial virus fusion protein inhibitor. Nat Commun 2024; 15:1173. [PMID: 38332002 PMCID: PMC10853176 DOI: 10.1038/s41467-024-45241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.
Collapse
Affiliation(s)
- Svenja M Sake
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Xiaoyu Zhang
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Manoj Kumar Rajak
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Melanie Urbanek-Quaing
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Antonia P Gunesch
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christina Grethe
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Alina Matthaei
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | | | | | | | - Katharina Rox
- Department of Chemical Biology, Helmholtz Center of Infection Research, Braunschweig, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jiabin Huang
- Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Wetzke
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
| | - Gesine Hansen
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
| | - Nicole Fischer
- Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, Université de Versailles St. Quentin; UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, France
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Helmholtz International Lab for Anti-infectives, HZI, Braunschweig, Germany
| | - Elisabeth Herold
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Martin Empting
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Luebeck-Borstel-Riems, Luebeck, Germany
| | - Sibylle Haid
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Helmholtz International Lab for Anti-infectives, HZI, Braunschweig, Germany.
| |
Collapse
|
7
|
Aloisio GM, Nagaraj D, Murray AM, Schultz EM, McBride T, Aideyan L, Nicholson EG, Henke D, Ferlic-Stark L, Rajan A, Kambal A, Johnson HL, Mosa E, Stossi F, Blutt SE, Piedra PA, Avadhanula V. Pediatric human nose organoids demonstrate greater susceptibility, epithelial responses, and cytotoxicity than adults during RSV infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578466. [PMID: 38352333 PMCID: PMC10862794 DOI: 10.1101/2024.02.01.578466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Respiratory syncytial virus (RSV) is a common cause of respiratory infections, causing significant morbidity and mortality, especially in young children. Why RSV infection in children is more severe as compared to healthy adults is not fully understood. In the present study, we infect both pediatric and adult human nose organoid-air liquid interface (HNO-ALIs) cell lines with two contemporary RSV isolates and demonstrate how they differ in virus replication, induction of the epithelial cytokine response, cell injury, and remodeling. Pediatric HNO-ALIs were more susceptible to early RSV replication, elicited a greater overall cytokine response, demonstrated enhanced mucous production, and manifested greater cellular damage compared to their adult counterparts. Adult HNO-ALIs displayed enhanced mucus production and robust cytokine response that was well controlled by superior regulatory cytokine response and possibly resulted in lower cellular damage than in pediatric lines. Taken together, our data suggest substantial differences in how pediatric and adult upper respiratory tract epithelium responds to RSV infection. These differences in epithelial cellular response can lead to poor mucociliary clearance and predispose infants to a worse respiratory outcome of RSV infection.
Collapse
Affiliation(s)
- Gina M. Aloisio
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Divya Nagaraj
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ashley M. Murray
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Emily M. Schultz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Trevor McBride
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Letisha Aideyan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Erin G. Nicholson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - David Henke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Laura Ferlic-Stark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah L. Johnson
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Elina Mosa
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Sun BW, Zhang PP, Wang ZH, Yao X, He ML, Bai RT, Che H, Lin J, Xie T, Hui Z, Ye XY, Wang LW. Prevention and Potential Treatment Strategies for Respiratory Syncytial Virus. Molecules 2024; 29:598. [PMID: 38338343 PMCID: PMC10856762 DOI: 10.3390/molecules29030598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a significant viral pathogen that causes respiratory infections in infants, the elderly, and immunocompromised individuals. RSV-related illnesses impose a substantial economic burden worldwide annually. The molecular structure, function, and in vivo interaction mechanisms of RSV have received more comprehensive attention in recent times, and significant progress has been made in developing inhibitors targeting various stages of the RSV replication cycle. These include fusion inhibitors, RSV polymerase inhibitors, and nucleoprotein inhibitors, as well as FDA-approved RSV prophylactic drugs palivizumab and nirsevimab. The research community is hopeful that these developments might provide easier access to knowledge and might spark new ideas for research programs.
Collapse
Affiliation(s)
- Bo-Wen Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng-Peng Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zong-Hao Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Meng-Lan He
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui-Ting Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Che
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing Lin
- Drug Discovery, Hangzhou Haolu Pharma Co., Hangzhou 311121, China;
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (B.-W.S.); (P.-P.Z.); (Z.-H.W.); (X.Y.); (M.-L.H.); (R.-T.B.); (H.C.); (T.X.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
9
|
Le Rouzic A, Fix J, Vinck R, Kappler-Gratias S, Volmer R, Gallardo F, Eléouët JF, Keck M, Cintrat JC, Barbier J, Gillet D, Galloux M. A New Derivative of Retro-2 Displays Antiviral Activity against Respiratory Syncytial Virus. Int J Mol Sci 2023; 25:415. [PMID: 38203585 PMCID: PMC10778932 DOI: 10.3390/ijms25010415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most common cause of bronchiolitis and pneumonia in newborns, with all children being infected before the age of two. Reinfections are very common throughout life and can cause severe respiratory infections in the elderly and immunocompromised adults. Although vaccines and preventive antibodies have recently been licensed for use in specific subpopulations of patients, there is still no therapeutic treatment commonly available for these infections. Here, we investigated the potential antiviral activity of Retro-2.2, a derivative of the cellular retrograde transport inhibitor Retro-2, against hRSV. We show that Retro-2.2 inhibits hRSV replication in cell culture and impairs the ability of hRSV to form syncytia. Our results suggest that Retro-2.2 treatment affects virus spread by disrupting the trafficking of the viral de novo synthetized F and G glycoproteins to the plasma membrane, leading to a defect in virion morphogenesis. Taken together, our data show that targeting intracellular transport may be an effective strategy against hRSV infection.
Collapse
Affiliation(s)
- Adrien Le Rouzic
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Jenna Fix
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
| | - Robin Vinck
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
| | | | - Romain Volmer
- INRAE, IHAP, UMR 1225, ENVT, 31300 Toulouse, France;
| | - Franck Gallardo
- NeoVirTech SAS, 1 Place Pierre Potier, 31000 Toulouse, France; (S.K.-G.); (F.G.)
| | - Jean-François Eléouët
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
| | - Mathilde Keck
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Jean-Christophe Cintrat
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, 91191 Gif-sur-Yvette, France;
| | - Julien Barbier
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Daniel Gillet
- CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.V.); (M.K.); (J.B.)
| | - Marie Galloux
- INRAE Unité de Virologie et Immunologie Moléculaires (VIM), Université Paris-Saclay-Versailles St Quentin, 78350 Jouy-en-Josas, France; (A.L.R.); (J.F.); (J.-F.E.)
| |
Collapse
|
10
|
Kryshchyshyn-Dylevych A, Kaminskyy D, Lesyk R. In-vitro antiviral screening of some thiopyranothiazoles. Chem Biol Interact 2023; 386:110738. [PMID: 37816448 DOI: 10.1016/j.cbi.2023.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Thiopyranothiazoles represent a promising class of drug-like molecules with broad pharmacological profiles. Some novel derivatives of isothiochromeno[4a,4-d]thiazole and chromeno[4',3':4,5]thiopyrano[2,3-d]thiazole were synthesized and screened against diverse viruses: coronavirus SARS, Influenza Viruses of type A and type B, Adeno- and Rhinovirus, Dengue Fever Virus, Respiratory Syncytial Virus, Rift Valley Fever Virus, Tacaribe Virus, Venezuelan Equine Encephalitis Virus, as well as Vaccinia and Human Cytomegalovirus. The antiviral activity assays revealed highly active isothiochromeno[4a,4-d]thiazole bearing phenazone fragment towards Influenza Virus type A (H1N1) with the selectivity index (SI) within 150. 5,8-Dihydro-2H-[1,3]thiazolo [5',4':5,6]thiopyrano [2,3-d][1,3]thiazol-2,6(3H)-diones showed moderate antiviral activity against influenza viruses and SARS-CoV. The obtained data indicate thiopyranothiazoles as promising class of fused 4-thiazolidinone derivatives possessing antiviral effects.
Collapse
Affiliation(s)
- Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine.
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| |
Collapse
|
11
|
Zhu S, Ye Z, Chen MJ, Wang L, Wang YZ, Zhang KN, Li WB, Ding HM, Li Z, Zhang J. Mechanistic study on the side arm effect in a palladium/Xu-Phos-catalyzed enantioselective alkoxyalkenylation of γ-hydroxyalkenes. Nat Commun 2023; 14:7611. [PMID: 37993423 PMCID: PMC10665319 DOI: 10.1038/s41467-023-43202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Recently, the asymmetric bifunctionalization of alkenes has received much attention. However, the development of enantioselective alkoxyalkenylation has posed a considerable challenge and has lagged largely behind. Herein, we report a new palladium-catalyzed enantioselective alkoxyalkenylation reaction, using a range of primary, secondary, and tertiary γ-hydroxy-alkenes with alkenyl halides. By employing newly identified Xu-Phos (Xu8 and Xu9) with a suitable side-arm adjacent to the PCy2 motif, a series of allyl-substituted tetrahydrofurans were obtained in good yields with up to 95% ee. Besides (E)-alkenyl halides, (Z)-alkenyl halide was also examined and provided the corresponding (Z)-product as a single diastereomer, supporting a stereospecific oxidative addition and reductive elimination step. Moreover, deuterium labeling and VCD experiments were employed to determine a cis-oxypalladation mechanism. DFT calculations helped us gain deeper insight into the side-arm effect on the chiral ligand. Finally, the practicability of this method is further demonstrated through a gram-scale synthesis and versatile transformations of the products.
Collapse
Affiliation(s)
- Shuai Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Zihao Ye
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China
| | - Ming-Jie Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China
| | - Yu-Zhuo Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Ke-Nan Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Wen-Bo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Han-Ming Ding
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China.
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China.
- School of Chemistry & Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P.R. China.
| |
Collapse
|
12
|
Xu J, Xue Y, Bolinger AA, Li J, Zhou M, Chen H, Li H, Zhou J. Therapeutic potential of salicylamide derivatives for combating viral infections. Med Res Rev 2023; 43:897-931. [PMID: 36905090 PMCID: PMC10247541 DOI: 10.1002/med.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/09/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
13
|
Kleiner VA, O Fischmann T, Howe JA, Beshore DC, Eddins MJ, Hou Y, Mayhood T, Klein D, Nahas DD, Lucas BJ, Xi H, Murray E, Ma DY, Getty K, Fearns R. Conserved allosteric inhibitory site on the respiratory syncytial virus and human metapneumovirus RNA-dependent RNA polymerases. Commun Biol 2023; 6:649. [PMID: 37337079 DOI: 10.1038/s42003-023-04990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are related RNA viruses responsible for severe respiratory infections and resulting disease in infants, elderly, and immunocompromised adults1-3. Therapeutic small molecule inhibitors that bind to the RSV polymerase and inhibit viral replication are being developed, but their binding sites and molecular mechanisms of action remain largely unknown4. Here we report a conserved allosteric inhibitory site identified on the L polymerase proteins of RSV and HMPV that can be targeted by a dual-specificity, non-nucleoside inhibitor, termed MRK-1. Cryo-EM structures of the inhibitor in complexes with truncated RSV and full-length HMPV polymerase proteins provide a structural understanding of how MRK-1 is active against both viruses. Functional analyses indicate that MRK-1 inhibits conformational changes necessary for the polymerase to engage in RNA synthesis initiation and to transition into an elongation mode. Competition studies reveal that the MRK-1 binding pocket is distinct from that of a capping inhibitor with an overlapping resistance profile, suggesting that the polymerase conformation bound by MRK-1 may be distinct from that involved in mRNA capping. These findings should facilitate optimization of dual RSV and HMPV replication inhibitors and provide insights into the molecular mechanisms underlying their polymerase activities.
Collapse
Affiliation(s)
- Victoria A Kleiner
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | | | | | | | - Yan Hou
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | - He Xi
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
14
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
15
|
Investigation of the Fuzzy Complex between RSV Nucleoprotein and Phosphoprotein to Optimize an Inhibition Assay by Fluorescence Polarization. Int J Mol Sci 2022; 24:ijms24010569. [PMID: 36614009 PMCID: PMC9820559 DOI: 10.3390/ijms24010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The interaction between Respiratory Syncytial Virus phosphoprotein P and nucleoprotein N is essential for the formation of the holo RSV polymerase that carries out replication. In vitro screening of antivirals targeting the N-P protein interaction requires a molecular interaction model, ideally consisting of a complex between N protein and a short peptide corresponding to the C-terminal tail of the P protein. However, the flexibility of C-terminal P peptides as well as their phosphorylation status play a role in binding and may bias the outcome of an inhibition assay. We therefore investigated binding affinities and dynamics of this interaction by testing two N protein constructs and P peptides of different lengths and composition, using nuclear magnetic resonance and fluorescence polarization (FP). We show that, although the last C-terminal Phe241 residue is the main determinant for anchoring P to N, only longer peptides afford sub-micromolar affinity, despite increasing mobility towards the N-terminus. We investigated competitive binding by peptides and small compounds, including molecules used as fluorescent labels in FP. Based on these results, we draw optimized parameters for a robust RSV N-P inhibition assay and validated this assay with the M76 molecule, which displays antiviral properties, for further screening of chemical libraries.
Collapse
|
16
|
Cao D, Gooneratne I, Mera C, Vy J, Royal M, Huang B, Park Y, Manjunath A, Liang B. Analysis of Template Variations on RNA Synthesis by Respiratory Syncytial Virus Polymerase. Viruses 2022; 15:47. [PMID: 36680087 PMCID: PMC9863079 DOI: 10.3390/v15010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a significant threat to infants and elderly individuals globally. Currently, there are no effective therapies or treatments for RSV infection because of an insufficient understanding of the RSV viral machinery. In this study, we investigated the effects of the template variations on RNA synthesis by the RSV polymerase through in vitro RNA synthesis assays. We confirmed the previously reported back-priming activity of the RSV polymerase, which is likely due to the secondary structure of the RNA template. We found that the expansion of the hairpin loop size of the RNA template abolishes the RSV polymerase back-priming activity. At the same time, it seemingly does not affect the de novo RNA synthesis activities of the RSV polymerase. Interestingly, our results show that the RSV polymerase also has a new primer-based terminal extension activity that adds nucleotides to the template and primer in a nonspecific manner. We also mapped the impact of the RNA 5' chemical group on its mobility in a urea-denaturing RNA gel shift assay. Overall, these results enhance our knowledge about the RNA synthesis processes of the RSV polymerase and may guide future therapeutic efforts to develop effective antiviral drugs for RSV treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Respiratory Syncytial Virus Two-Step Infection Screen Reveals Inhibitors of Early and Late Life Cycle Stages. Antimicrob Agents Chemother 2022; 66:e0103222. [PMID: 36346232 PMCID: PMC9765014 DOI: 10.1128/aac.01032-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline. We used a two-step screen that interrogates compound efficacy after primary infection and a consecutive virus passaging. We resynthesized selected hit molecules and profiled their activities with hRSV lentiviral pseudotype cell entry, replicon, and time-of-addition assays. The breadth of antiviral activity was tested against recent RSV clinical strains and human coronavirus (hCoV-229E), and in pseudotype-based entry assays with non-RSV viruses. Screening 6,048 molecules, we identified 23 primary candidates, of which 13 preferentially scored in the first and 10 in the second rounds of infection, respectively. Two of these molecules inhibited hRSV cell entry and selected for F protein resistance within the fusion peptide. One molecule inhibited transcription/replication in hRSV replicon assays, did not select for phenotypic hRSV resistance and was active against non-hRSV viruses, including hCoV-229E. One compound, identified in the second round of infection, did not measurably inhibit hRSV cell entry or replication/transcription. It selected for two coding mutations in the G protein and was highly active in differentiated BCi-NS1.1 lung cells. In conclusion, we identified four new hRSV inhibitor candidates with different modes of action. Our findings build an interesting platform for medicinal chemistry-guided derivatization approaches followed by deeper phenotypical characterization in vitro and in vivo with the aim of developing highly potent hRSV drugs.
Collapse
|
18
|
Nemolochnova AG, Rogachev AD, Salnikova OP, Khomenko TM, Volcho KP, Yarovaya OI, Fatianova AV, Pokrovsky AG, Salakhutdinov NF. Stability Study, Quantification Method and Pharmacokinetics Investigation of a Coumarin-Monoterpene Conjugate Possessing Antiviral Properties against Respiratory Syncytial Virus. Pharmaceuticals (Basel) 2022; 15:1158. [PMID: 36145379 PMCID: PMC9504583 DOI: 10.3390/ph15091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
The stability of a new coumarin derivative, agent K-142, bearing α-pinene residue and possessing antiviral activity against respiratory syncytial virus (RSV) was studied in whole mice blood in vitro, and a method for its quantification in this matrix was developed and validated. The sample preparation method was precipitation of whole blood with a mixture of 0.2 M ZnSO4 with MeOH (2:8 v/v) containing 2-adamantylamine hydrochloride as an internal standard (IS). Analysis was carried out by HPLC-MS/MS using reversed phase chromatography and a triple quadrupole mass spectrometer 6500 QTRAP (SCIEX) in multiple reaction monitoring (MRM) mode. The transitions 351.2 → 217.1 Da and 152.2 → 93.1/107.2 Da were monitored for K-142 and the IS, respectively. The method was validated in terms of selectivity, calibration curve, LLOQ, accuracy and precision, stability, recovery and carry over. The developed method was used for a pharmacokinetics study of the compound after its oral administration to mice at a dose of 20 mg/kg.
Collapse
Affiliation(s)
- Arina G. Nemolochnova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent’ev ave, 9, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov St. 2, 630090 Novosibirsk, Russia
| | - Artem D. Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent’ev ave, 9, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov St. 2, 630090 Novosibirsk, Russia
| | - Olga P. Salnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent’ev ave, 9, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov St. 2, 630090 Novosibirsk, Russia
| | - Tatyana M. Khomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent’ev ave, 9, 630090 Novosibirsk, Russia
| | - Konstantin P. Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent’ev ave, 9, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent’ev ave, 9, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov St. 2, 630090 Novosibirsk, Russia
| | - Alina V. Fatianova
- Faculty of Natural Sciences, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov St. 2, 630090 Novosibirsk, Russia
| | - Andrey G. Pokrovsky
- Faculty of Natural Sciences, V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov St. 2, 630090 Novosibirsk, Russia
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent’ev ave, 9, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Gong Y, Zhang W, Chen L, Lin R, Zhou R, Salter R. Nitro-Activated Nucleobase Exchange in the Synthesis of 2'-Fluoro-2'-Deoxyribonucleosides. J Org Chem 2022; 87:9330-9342. [PMID: 35759615 DOI: 10.1021/acs.joc.2c01093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functionalized nucleosides bearing pyrimidine or purine bases can be prepared by activation of accessible pyrimidine nucleosides and subsequent transglycosylation. Nitration of lumicitabine, a 2'-fluoro-2'-deoxycytidine class antiviral agent, and its 2'-fluoro-2'-deoxyuridine precursor produce the same 5-nitro-2'-fluoro-2'-deoxyuridine. Under Vorbrüggen conditions, 5-nitrouracil serves as the leaving nucleobase and enables exchange with pyrimidine and purine nucleobases to anomeric 2'-fluoro-2'-deoxyribonucleosides in favor of β-anomers generally. The strategy is also applied in the isotopic labeling of 2'-fluoro-2'-deoxyuridines.
Collapse
Affiliation(s)
- Yong Gong
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Wei Zhang
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Lu Chen
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Ronghui Lin
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Ronghui Zhou
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Rhys Salter
- Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
20
|
Sourimant J, Lieber CM, Yoon JJ, Toots M, Govindarajan M, Udumula V, Sakamoto K, Natchus MG, Patti J, Vernachio J, Plemper RK. Orally efficacious lead of the AVG inhibitor series targeting a dynamic interface in the respiratory syncytial virus polymerase. SCIENCE ADVANCES 2022; 8:eabo2236. [PMID: 35749502 PMCID: PMC9232112 DOI: 10.1126/sciadv.abo2236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infections in infants and the immunocompromised, yet no efficient therapeutic exists. We have identified the AVG class of allosteric inhibitors of RSV RNA synthesis. Here, we demonstrate through biolayer interferometry and in vitro RNA-dependent RNA polymerase (RdRP) assays that AVG compounds bind to the viral polymerase, stalling the polymerase in initiation conformation. Resistance profiling revealed a unique escape pattern, suggesting a discrete docking pose. Affinity mapping using photoreactive AVG analogs identified the interface of polymerase core, capping, and connector domains as a molecular target site. A first-generation lead showed nanomolar potency against RSV in human airway epithelium organoids but lacked in vivo efficacy. Docking pose-informed synthetic optimization generated orally efficacious AVG-388, which showed potent efficacy in the RSV mouse model when administered therapeutically. This study maps a druggable target in the RSV RdRP and establishes clinical potential of the AVG chemotype against RSV disease.
Collapse
Affiliation(s)
- Julien Sourimant
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Carolin M. Lieber
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Mart Toots
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | - Venkata Udumula
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Joseph Patti
- Aviragen Therapeutics Inc, Alpharetta, GA 30009, USA
| | | | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
21
|
Urvashi, Senthil Kumar JB, Das P, Tandon V. Development of Azaindole-Based Frameworks as Potential Antiviral Agents and Their Future Perspectives. J Med Chem 2022; 65:6454-6495. [PMID: 35477274 PMCID: PMC9063994 DOI: 10.1021/acs.jmedchem.2c00444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/29/2022]
Abstract
The azaindole (AI) framework continues to play a significant role in the design of new antiviral agents. Modulating the position and isosteric replacement of the nitrogen atom of AI analogs notably influences the intrinsic physicochemical properties of lead compounds. The intra- and intermolecular interactions of AI derivatives with host receptors or viral proteins can also be fine tuned by carefully placing the nitrogen atom in the heterocyclic core. This wide-ranging perspective article focuses on AIs that have considerable utility in drug discovery programs against RNA viruses. The inhibition of influenza A, human immunodeficiency, respiratory syncytial, neurotropic alpha, dengue, ebola, and hepatitis C viruses by AI analogs is extensively reviewed to assess their plausible future potential in antiviral drug discovery. The binding interaction of AIs with the target protein is examined to derive a structural basis for designing new antiviral agents.
Collapse
Affiliation(s)
- Urvashi
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
- Department of Chemistry, University of
Delhi, New Delhi 110007, India
| | - J. B. Senthil Kumar
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute
of Technology (ISM), Dhanbad 826004, India
| | - Vibha Tandon
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
| |
Collapse
|
22
|
Chang J. 4'-Modified Nucleosides for Antiviral Drug Discovery: Achievements and Perspectives. Acc Chem Res 2022; 55:565-578. [PMID: 35077644 DOI: 10.1021/acs.accounts.1c00697] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modified nucleosides show therapeutic promise for antiviral therapies. However, issues including the emergence of drug resistance, toxicity, and coinfections have posed new challenges for nucleoside-based antiviral drug discovery, particularly in the era of the coronavirus disease 2019 (COVID-19) pandemic. Chemical manipulation could impact the antiviral potency, safety, and drug resistance of nucleosides. Generally, modified nucleosides are difficult to recognize by intracellular important enzymes as substrates and thus exhibit low toxicity. 4'-Modified nucleosides represent an important subclass of modified nucleosides for antiviral therapies. To prevent the occurrence of drug resistance, 4'-modified nucleosides should have 3'-OH, which should also be chemically unreactive for proviral DNA biosynthesis. The absence of 3'-OH may explain the occurrence of drug resistance for censavudine. The introduction of 4'-substituents improves enzymatic and acidic stability and makes the nucleosides more lipophilic, thus improving cell permeability and bioavailability. Steric hindrance between the 4'-substituent and 3'-OH changes the furanose conformation to the 3'-endo type, in which the oxygen lone pair on the furanose ring could not form an oxocarbonium ion for glycolysis. Currently, seven 4'-modified nucleoside drug candidates such as azvudine (also known as FNC), islatravir, censavudine, balapiravir, lumicitabine, AL-335, and 4-azidothymidine have progressed into clinical stages for treating viral infections. Of note, FNC was officially approved by NMPA in July 2021 for use in adult patients with high HIV-1 virus loads (nos. H20210035 and H20210036), providing an alternative therapeutic for patients with HIV-1. The long-term cellular retention of FNC suggests its potential as a long-lasting pre-exposure prophylaxis (PrEP) agent for preventing HIV-1 infection. Mechanistically, FNC not only inhibited HIV-1 reverse transcription and replication but also restored A3G expression in peripheral blood CD4+ T cells in HIV-1 patients receiving FNC. The 4'-azido group in azvudine stabilizes the 3'-C-endo (north) conformation by steric effects and the formation of an intramolecular hydrogen bond with the 3'-OH group, thus decreasing the nucleophilicity of 3'-OH. The north conformation may also enhance the phosphorylation efficiency of FNC by cellular kinases. Encouragingly, FNC, islatravir, and balapiravir show promise for the treatment of coronaviruses, of which FNC has advanced to phase 3 clinical trials in different countries to treat patients with COVID-19 (clinical trial numbers: NCT04668235 and NCT04425772). FNC cured the COVID-19 disease in almost all patients and showed better therapeutic efficacy than remdesivir. In this Account, we provide an overview of 4'-modified nucleoside analogs in clinical stages for antiviral therapies, highlighting the drug discovery strategies, structure-activity relationship studies, and preclinical/clinical studies and also give our perspectives on nucleoside-based antiviral drug discovery.
Collapse
Affiliation(s)
- Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Sourimant J, Lieber CM, Aggarwal M, Cox RM, Wolf JD, Yoon JJ, Toots M, Ye C, Sticher Z, Kolykhalov AA, Martinez-Sobrido L, Bluemling GR, Natchus MG, Painter GR, Plemper RK. 4'-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication. Science 2022; 375:161-167. [PMID: 34855509 PMCID: PMC9206510 DOI: 10.1126/science.abj5508] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4′-fluorouridine (4′-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4′-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.
Collapse
Affiliation(s)
- Julien Sourimant
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Megha Aggarwal
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Robert M Cox
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Mart Toots
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Chengin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Zachary Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Alexander A Kolykhalov
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA,Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | | | - Gregory R Bluemling
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA,Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA,Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA,Corresponding author:
| |
Collapse
|
24
|
Abstract
Circular RNAs (circRNAs) are a new class of noncoding RNAs that have gained increased attention. DNA virus infections have been reported to induce modifications in cellular circRNA transcriptomes and express viral circRNAs. However, the identification and expression of cellular and viral circRNAs are unknown in the context of respiratory syncytial virus (RSV), a human RNA virus with no effective treatments or vaccines. Here, we report a comprehensive identification of the cellular and viral circRNAs induced by RSV infection in A549 cells with high-throughput sequencing. In total, 53,719 cellular circRNAs and 2,280 differentially expressed cellular circRNAs were identified. Trend analysis further identified three significant expression pattern clusters, which were related to the antiviral immune response according to gene enrichment analysis. Subsequent results showed that not only RSV infection but also poly(I·C) treatment and another RNA virus infection induced the upregulation of the top 10 circRNAs from the focused cluster. The top 10 circRNAs generally inhibit RSV replication in turn. Moreover, 1,254 viral circRNAs were identified by the same circRNA sequencing. The induced expression of viral circRNAs by RSV infection was found not only in A549 cells but also in HEp-2 cells. Additionally, we profiled the general characteristics of both cellular and viral circRNAs such as back-splicing signals, etc. Collectively, RSV infection induced the differential expression of cellular circRNAs, some of which affected RSV infection, and RSV also expressed viral circRNAs. Our study reveals novel layers of host-RSV interactions and identifies cellular or viral circRNAs that may be novel therapeutic targets or biomarkers. IMPORTANCE Noncoding RNAs (ncRNAs) demonstrate substantial roles in cell-virus interactions. Circular RNAs (circRNAs) are a newly identified class of ncRNAs that have gained increased attention recently. DNA virus infections have been reported to induce modifications in cellular circRNA transcriptomes and express viral circRNAs. However, the identification and expression of cellular and viral circRNAs are unknown in the context of respiratory syncytial virus (RSV), a human RNA virus with no effective treatments or vaccines. Here, we report a comprehensive identification of the cellular and viral circRNAs induced by RSV infection by high-throughput sequencing. We revealed that RSV infection induces the differential expression of cellular circRNAs, some of which affected RSV infection, and that RSV also expresses viral circRNAs. Our study reveals novel layers of host-RSV interactions and identifies cellular or viral circRNAs that may be novel therapeutic targets or biomarkers.
Collapse
|
25
|
Cichero E, Calautti A, Francesconi V, Tonelli M, Schenone S, Fossa P. Probing In Silico the Benzimidazole Privileged Scaffold for the Development of Drug-like Anti-RSV Agents. Pharmaceuticals (Basel) 2021; 14:ph14121307. [PMID: 34959708 PMCID: PMC8707824 DOI: 10.3390/ph14121307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Targeting the fusion (F) protein has been recognized as a fruitful strategy for the development of anti-RSV agents. Despite the considerable efforts so far put into the development of RSV F protein inhibitors, the discovery of adequate therapeutics for the treatment of RSV infections is still awaiting a positive breakthrough. Several benzimidazole-containing derivatives have been discovered and evaluated in clinical trials, with only some of them being endowed with a promising pharmacokinetic profile. In this context, we applied a computational study based on a careful analysis of a number of X-ray crystallographic data of the RSV F protein, in the presence of different clinical candidates. A deepen comparison of the related electrostatic features and H-bonding motifs allowed us to pave the way for the following molecular dynamic simulation of JNJ-53718678 and then to perform docking studies of the in-house library of potent benzimidazole-containing anti-RSV agents. The results revealed not only the deep flexibility of the biological target but also the most relevant and recurring key contacts supporting the benzimidazole F protein inhibitor ability. Among them, several hydrophobic interactions and π-π stacking involving F140 and F488 proved to be mandatory, as well as H-bonding to D486. Specific requirements turning in RSV F protein binding ability were also explored thanks to structure-based pharmacophore analysis. Along with this, in silico prediction of absorption, distribution, metabolism, excretion (ADME) properties, and also of possible off-target events was performed. The results highlighted once more that the benzimidazole ring represents a privileged scaffold whose properties deserve to be further investigated for the rational design of novel and orally bioavailable anti-RSV agents.
Collapse
Affiliation(s)
- Elena Cichero
- Correspondence: (E.C.); (M.T.); Tel.: +39-010-353-8350 (E.C.); +39-010-353-8378 (M.T.)
| | | | | | - Michele Tonelli
- Correspondence: (E.C.); (M.T.); Tel.: +39-010-353-8350 (E.C.); +39-010-353-8378 (M.T.)
| | | | | |
Collapse
|
26
|
Khomenko TM, Shtro AA, Galochkina AV, Nikolaeva YV, Petukhova GD, Borisevich SS, Korchagina DV, Volcho KP, Salakhutdinov NF. Monoterpene-Containing Substituted Coumarins as Inhibitors of Respiratory Syncytial Virus (RSV) Replication. Molecules 2021; 26:7493. [PMID: 34946573 PMCID: PMC8708370 DOI: 10.3390/molecules26247493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Anna A. Shtro
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Anastasia V. Galochkina
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Yulia V. Nikolaeva
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Galina D. Petukhova
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Chemistry Institute of the Ufa Federal Research Center, 71 Octyabrya pr., 450054 Ufa, Russia;
| | - Dina V. Korchagina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| |
Collapse
|
27
|
Interactions between the Nucleoprotein and the Phosphoprotein of Pneumoviruses: Structural Insight for Rational Design of Antivirals. Viruses 2021; 13:v13122449. [PMID: 34960719 PMCID: PMC8706346 DOI: 10.3390/v13122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Pneumoviruses include pathogenic human and animal viruses, the most known and studied being the human respiratory syncytial virus (hRSV) and the metapneumovirus (hMPV), which are the major cause of severe acute respiratory tract illness in young children worldwide, and main pathogens infecting elderly and immune-compromised people. The transcription and replication of these viruses take place in specific cytoplasmic inclusions called inclusion bodies (IBs). These activities depend on viral polymerase L, associated with its cofactor phosphoprotein P, for the recognition of the viral RNA genome encapsidated by the nucleoprotein N, forming the nucleocapsid (NC). The polymerase activities rely on diverse transient protein-protein interactions orchestrated by P playing the hub role. Among these interactions, P interacts with the NC to recruit L to the genome. The P protein also plays the role of chaperone to maintain the neosynthesized N monomeric and RNA-free (called N0) before specific encapsidation of the viral genome and antigenome. This review aims at giving an overview of recent structural information obtained for hRSV and hMPV P, N, and more specifically for P-NC and N0-P complexes that pave the way for the rational design of new antivirals against those viruses.
Collapse
|
28
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System‐Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Chunpu Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Qian Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Run Wang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xu Han
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry China Pharmaceutical University 24 Tong Jia Xiang Nanjing Jiangsu 210009 China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences 555 Zu Chong Zhi Road Shanghai 201203 China
- School of Pharmaceutical Science and Technology Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
29
|
Cyclophilin A Inhibits Human Respiratory Syncytial Virus (RSV) Replication by Binding to RSV-N through Its PPIase Activity. J Virol 2021; 95:e0056321. [PMID: 34011546 PMCID: PMC8274602 DOI: 10.1128/jvi.00563-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most common pathogen which causes acute lower respiratory infection (ALRI) in infants. Recently, virus-host interaction has become a hot spot of virus-related research, and it needs to be further elaborated for RSV infection. In this study, we found that RSV infection significantly increased the expression of cyclophilin A (cypA) in clinical patients, mice, and epithelial cells. Therefore, we evaluated the function of cypA in RSV replication and demonstrated that virus proliferation was accelerated in cypA knockdown host cells but restrained in cypA-overexpressing host cells. Furthermore, we proved that cypA limited RSV replication depending on its PPIase activity. Moreover, we performed liquid chromatography-mass spectrometry, and the results showed that cypA could interact with several viral proteins, such as RSV-N, RSV-P, and RSV-M2-1. Finally, the interaction between cypA and RSV-N was certified by coimmunoprecipitation and immunofluorescence. Those results provided strong evidence that cypA may play an inhibitory role in RSV replication through interaction with RSV-N via its PPIase activity. IMPORTANCE RSV-N, packed in the viral genome to form the ribonucleoprotein (RNP) complex, which is recognized by the RSV RNA-dependent RNA polymerase (RdRp) complex to initiate viral replication and transcription, plays an indispensable role in the viral biosynthesis process. cypA, binding to RSV-N, may impair this function by weakening the interaction between RSV-N and RSV-P, thus leading to decreased viral production. Our research provides novel insight into cypA antiviral function, including binding to viral capsid protein to inhibit viral replication, which may be helpful for new antiviral drug exploration.
Collapse
|
30
|
Fang F, Hu S, Li C, Wang Q, Wang R, Han X, Zhou Y, Liu H. Catalytic System-Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angew Chem Int Ed Engl 2021; 60:21327-21333. [PMID: 34180572 DOI: 10.1002/anie.202105857] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Indexed: 12/13/2022]
Abstract
A catalytic system-controlled divergent reaction strategy was here reported to construct four types of intriguing spiroheterocyclic skeletons from simple and readily available starting materials via a precise chemical bond activation/[n+1] annulation cascade. The tetraazaspiroheterocyclic and trizazspiroheterocyclic scaffolds could be independently constructed by a selective N-N bond activation/[n+1] annulation cascade, a C(sp2 )-H activation/[4+1] annulation and a novel tandem C(sp2 )-H/C(sp3 )-H bond activation/[4+1] annulation strategy, along with a broad scope of substrates, moderate to excellent yields and valuable transformations. More importantly, in these transformations, we are the first time to capture a N-N bond activation and a C(sp3 )-H bond activation of pyrazolidinones under different catalytic system.
Collapse
Affiliation(s)
- Feifei Fang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Shulei Hu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Qian Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Run Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Hong Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
31
|
Xu J, Wu W, Chen H, Xue Y, Bao X, Zhou J. Substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues potently inhibit respiratory syncytial virus (RSV) replication and RSV infection-associated inflammatory responses. Bioorg Med Chem 2021; 39:116157. [PMID: 33895704 DOI: 10.1016/j.bmc.2021.116157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children, and specific treatment for RSV infections remains unavailable. We herein reported a series of substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent RSV inhibitors. Among them, six low cytotoxic compounds (11, 12, 15, 22, 26, and 28) have been identified and selected to study associated inhibitory mechanisms. All these compounds suppressed not only the viral replication but also RSV-induced IRF3 and NF-κB activation and associated production of cytokines/chemokines. The two most potent compounds (15 and 22) were selected for further molecular mechanism studies associated with their suppression effect on RSV-activated IRF3 and NF-κB. These two compounds decreased RSV-induced IRF3 phosphorylation at serine 396 and p65 phosphorylation at serine 536 at both early and late infection phases. In addition, compound 22 also inhibited RSV-induced p65 phosphorylation at serine 276 at the late phase of RSV infection.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Wenzhe Wu
- Department of Pediatrics, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, and University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States; Sealy Center for Molecular Medicine, and University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States.
| |
Collapse
|
32
|
Sourimant J, Lieber CM, Aggarwal M, Cox RM, Wolf JD, Yoon JJ, Toots M, Ye C, Sticher Z, Kolykhalov AA, Martinez-Sobrido L, Bluemling GR, Natchus MG, Painter GR, Plemper RK. 4'-Fluorouridine is a broad-spectrum orally efficacious antiviral blocking respiratory syncytial virus and SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.19.444875. [PMID: 34031658 PMCID: PMC8142655 DOI: 10.1101/2021.05.19.444875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UNLABELLED The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and the elderly. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and SARS-CoV-2 with high selectivity index in cells and well-differentiated human airway epithelia. Polymerase inhibition in in vitro RdRP assays established for RSV and SARS-CoV-2 revealed transcriptional pauses at positions i or i +3/4 post-incorporation. Once-daily oral treatment was highly efficacious at 5 mg/kg in RSV-infected mice or 20 mg/kg in ferrets infected with SARS-CoV-2 WA1/2020 or variant-of-concern (VoC) isolate CA/2020, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2 and related RNA virus infections. ONE-SENTENCE SUMMARY 4'-Fluorouridine is an orally available ribonucleoside analog that efficiently treats RSV and SARS-CoV-2 infections in vivo .
Collapse
|
33
|
Cockerill GS, Angell RM, Bedernjak A, Chuckowree I, Fraser I, Gascon-Simorte J, Gilman MSA, Good JAD, Harland R, Johnson SM, Ludes-Meyers JH, Littler E, Lumley J, Lunn G, Mathews N, McLellan JS, Paradowski M, Peeples ME, Scott C, Tait D, Taylor G, Thom M, Thomas E, Villalonga Barber C, Ward SE, Watterson D, Williams G, Young P, Powell K. Discovery of Sisunatovir (RV521), an Inhibitor of Respiratory Syncytial Virus Fusion. J Med Chem 2021; 64:3658-3676. [PMID: 33729773 DOI: 10.1021/acs.jmedchem.0c01882] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RV521 is an orally bioavailable inhibitor of respiratory syncytial virus (RSV) fusion that was identified after a lead optimization process based upon hits that originated from a physical property directed hit profiling exercise at Reviral. This exercise encompassed collaborations with a number of contract organizations with collaborative medicinal chemistry and virology during the optimization phase in addition to those utilized as the compound proceeded through preclinical and clinical evaluation. RV521 exhibited a mean IC50 of 1.2 nM against a panel of RSV A and B laboratory strains and clinical isolates with antiviral efficacy in the Balb/C mouse model of RSV infection. Oral bioavailability in preclinical species ranged from 42 to >100% with evidence of highly efficient penetration into lung tissue. In healthy adult human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a significant reduction in viral load and symptoms compared to placebo.
Collapse
Affiliation(s)
- G Stuart Cockerill
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Richard M Angell
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Alexandre Bedernjak
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Irina Chuckowree
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Ian Fraser
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Jose Gascon-Simorte
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Morgan S A Gilman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James A D Good
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Rachel Harland
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Sara M Johnson
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, United States
| | - John H Ludes-Meyers
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward Littler
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - James Lumley
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Graham Lunn
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Neil Mathews
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael Paradowski
- Medicines Discovery Institute, Cardiff University, Cardiff, Wales CF10 3AT, U.K
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43205, United States
| | - Claire Scott
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Dereck Tait
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, U.K
| | - Michelle Thom
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, U.K
| | - Elaine Thomas
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| | | | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, Cardiff, Wales CF10 3AT, U.K
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gareth Williams
- Sussex Drug Discovery Centre, University of Sussex, Brighton, England BN1 9QJ, U.K
| | - Paul Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kenneth Powell
- Reviral Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, U.K
| |
Collapse
|
34
|
Lam van TV, Heindl MR, Schlutt C, Böttcher-Friebertshäuser E, Bartenschlager R, Klebe G, Brandstetter H, Dahms SO, Steinmetzer T. The Basicity Makes the Difference: Improved Canavanine-Derived Inhibitors of the Proprotein Convertase Furin. ACS Med Chem Lett 2021; 12:426-432. [PMID: 33732412 PMCID: PMC7957917 DOI: 10.1021/acsmedchemlett.0c00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
![]()
Furin activates numerous
viral glycoproteins, and its inhibition
prevents virus replication and spread. Through the replacement of
arginine by the less basic canavanine, new inhibitors targeting furin
in the trans-Golgi network were developed. These inhibitors exert
potent antiviral activity in cell culture with much lower toxicity
than arginine-derived analogues, most likely due to their reduced
protonation in the blood circulation. Thus, despite its important
physiological functions, furin might be a suitable antiviral drug
target.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Christine Schlutt
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | | | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Sven O. Dahms
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
35
|
Firouzi M, Sherkatolabbasieh H, Shafizadeh S. Clinical Signs, Prevention and Treatment of Viral Infections in Infants. Infect Disord Drug Targets 2021; 22:e160921190908. [PMID: 33511936 DOI: 10.2174/1871526521666210129145317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/22/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Certain infectious diseases are common in infants than any other age groups and are associated with morbidities in childhood and adulthood, and even mortality in severe cases. Environment, epidemic and maternal immunity are the main causes of these infections. Early diagnosis using molecular methods and treatment is therefore important to prevent future complications. Vaccines are recommended during infancy and childhood to prevent these infections. This review highlights some of the most commonly reported viral infections in children, their clinical signs, prevention and treatment.
Collapse
Affiliation(s)
- Majid Firouzi
- Department of Pediatrics, Faculty of Medicine, Lorestan University of Medical Sciences, Khoramabad. Iran
| | | | - Shiva Shafizadeh
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khoramabad. Iran
| |
Collapse
|
36
|
New Look at RSV Infection: Tissue Clearing and 3D Imaging of the Entire Mouse Lung at Cellular Resolution. Viruses 2021; 13:v13020201. [PMID: 33525646 PMCID: PMC7912480 DOI: 10.3390/v13020201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) is the major cause of severe acute respiratory tract illness in young children worldwide and a main pathogen for the elderly and immune-compromised people. In the absence of vaccines or effective treatments, a better characterization of the pathogenesis of RSV infection is required. To date, the pathophysiology of the disease and its diagnosis has mostly relied on chest X-ray and genome detection in nasopharyngeal swabs. The development of new imaging approaches is instrumental to further the description of RSV spread, virus-host interactions and related acute respiratory disease, at the level of the entire lung. METHODS By combining tissue clearing, 3D microscopy and image processing, we developed a novel visualization tool of RSV infection in undissected mouse lungs. RESULTS Whole tissue analysis allowed the identification of infected cell subtypes, based on both morphological traits and position within the cellular network. Furthermore, 3D imaging was also valuable to detect the cytoplasmic viral factories, also called inclusion bodies, a hallmark of RSV infection. CONCLUSIONS Whole lung clearing and 3D deep imaging represents an unprecedented visualization method of infected lungs to allow insight into RSV pathophysiology and improve the 2D histology analyses.
Collapse
|
37
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Elkina NA, Burgart YV, Shchegolkov EV, Krasnykh OP, Maslova VV, Triandafilova GA, Solodnikov SS, Muryleva AA, Misiurina MA, Slita AV, Zarubaev VV, Saloutin VI. Competitive routes to cyclizations of polyfluoroalkyl-containing 2-tolylhydrazinylidene-1,3-diketones with 3-aminopyrazoles into bioactive pyrazoloazines. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Cox RM, Sourimant J, Toots M, Yoon JJ, Ikegame S, Govindarajan M, Watkinson RE, Thibault P, Makhsous N, Lin MJ, Marengo JR, Sticher Z, Kolykhalov AA, Natchus MG, Greninger AL, Lee B, Plemper RK. Orally efficacious broad-spectrum allosteric inhibitor of paramyxovirus polymerase. Nat Microbiol 2020; 5:1232-1246. [PMID: 32661315 PMCID: PMC7529989 DOI: 10.1038/s41564-020-0752-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Paramyxoviruses such as human parainfluenza virus type-3 (HPIV3) and measles virus (MeV) are a substantial health threat. In a high-throughput screen for inhibitors of HPIV3 (a major cause of acute respiratory infection), we identified GHP-88309-a non-nucleoside inhibitor of viral polymerase activity that possesses unusual broad-spectrum activity against diverse paramyxoviruses including respiroviruses (that is, HPIV1 and HPIV3) and morbilliviruses (that is, MeV). Resistance profiles of distinct target viruses overlapped spatially, revealing a conserved binding site in the central cavity of the viral polymerase (L) protein that was validated by photoaffinity labelling-based target mapping. Mechanistic characterization through viral RNA profiling and in vitro MeV polymerase assays identified a block in the initiation phase of the viral polymerase. GHP-88309 showed nanomolar potency against HPIV3 isolates in well-differentiated human airway organoid cultures, was well tolerated (selectivity index > 7,111) and orally bioavailable, and provided complete protection against lethal infection in a Sendai virus mouse surrogate model of human HPIV3 disease when administered therapeutically 48 h after infection. Recoverees had acquired robust immunoprotection against reinfection, and viral resistance coincided with severe attenuation. This study provides proof of the feasibility of a well-behaved broad-spectrum allosteric antiviral and describes a chemotype with high therapeutic potential that addresses major obstacles of anti-paramyxovirus drug development.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Negar Makhsous
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Michelle J Lin
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Jose R Marengo
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Zachary Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | | | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Targeting the Respiratory Syncytial Virus N 0-P Complex with Constrained α-Helical Peptides in Cells and Mice. Antimicrob Agents Chemother 2020; 64:AAC.00717-20. [PMID: 32660994 PMCID: PMC7508628 DOI: 10.1128/aac.00717-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.
Collapse
|
41
|
Xu Y, Shen M, Zhang X, Fan X. Selective Synthesis of Pyrazolo[1,2- a]pyrazolones and 2-Acylindoles via Rh(III)-Catalyzed Tunable Redox-Neutral Coupling of 1-Phenylpyrazolidinones with Alkynyl Cyclobutanols. Org Lett 2020; 22:4697-4702. [PMID: 32463683 DOI: 10.1021/acs.orglett.0c01475] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An unprecedented divergent synthesis of pyrazolo[1,2-a]pyrazolones and 2-acylindoles via Rh(III)-catalyzed [4 + 1] or [3 + 2] annulation of 1-phenylpyrazolidinones with alkynyl cyclobutanols through redox-neutral multiple bond activation by using -NH and -OH units as directing groups is presented. Notably, different annulation reactions were selectively achieved by simply adjusting the reaction conditions. With features such as simple procedures, easily accessible substrates, and high regio/chemoselectivity, these methods may find wide applications in related areas.
Collapse
Affiliation(s)
- Yuanshuang Xu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengyang Shen
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
42
|
Ferla S, Manganaro R, Benato S, Paulissen J, Neyts J, Jochmans D, Brancale A, Bassetto M. Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein. Bioorg Med Chem 2020; 28:115401. [PMID: 32143992 DOI: 10.1016/j.bmc.2020.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 11/27/2022]
Abstract
Respiratory syncytial virus (RSV) is the main cause of lower respiratory tract diseases in infants and young children, with potentially serious and fatal consequences associated with severe infections. Despite extensive research efforts invested in the identification of therapeutic measures, no vaccine is currently available, while treatment options are limited to ribavirin and palivizumab, which both present significant limitations. While clinical and pre-clinical candidates mainly target the viral fusion protein, the nucleocapsid protein or the viral polymerase, our focus has been the identification of new antiviral compounds targeting the viral M2-1 protein, thanks to the presence of a zinc-ejecting group in their chemical structure. Starting from an anti-RSV hit we had previously identified with an in silico structure-based approach, we have designed, synthesised and evaluated a new series of dithiocarbamate analogues, with which we have explored the antiviral activity of this scaffold. The findings presented in this work may provide the basis for the identification of a new antiviral lead to treat RSV infections.
Collapse
Affiliation(s)
- Salvatore Ferla
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK.
| | - Roberto Manganaro
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Sara Benato
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Jasmine Paulissen
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Marcella Bassetto
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK; Department of Chemistry, Swansea University, Swansea, UK
| |
Collapse
|
43
|
Makarem S. Three‐component electrosynthesis of spirooxindole‐pyran derivatives through a simple and efficient method. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somayeh Makarem
- Department of Chemistry, Karaj BranchIslamic Azad University Karaj Iran
| |
Collapse
|
44
|
Yang F, Xiao Y, Lu R, Chen B, Liu F, Wang L, Yao H, Wu N, Wu H. Generation of neutralizing and non-neutralizing monoclonal antibodies against H7N9 influenza virus. Emerg Microbes Infect 2020; 9:664-675. [PMID: 32193996 PMCID: PMC7144216 DOI: 10.1080/22221751.2020.1742076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/08/2023]
Abstract
The H7N9 viruses have been circulating for six years. The insertion of a polybasic cleavage site in the haemagglutinin (HA) protein of H7N9 has resulted in the emergence of a highly pathogenic (HP) avian influenza virus. Currently, there are limited studies on neutralizing monoclonal antibodies(mAbs) against HP H7N9 AIVs. In this study, mice were immunized with inactivated H7N9 vaccine of A/ZJU01/PR8/2013 to produce murine mAbs. Finally, two murine mAbs against the HA of low pathogenic (LP) virus were produced and characterized. Characterization included determining mAbs binding breadth and affinity, in vitro neutralization capacity, and potential in vivo protection. Two of these mAbs, 1H10 and 2D1, have been identified to have therapeutic and prophylactic efficacy against the HP strain in mouse passive transfer-viral challenge experiments. The mAb 1H10 was most efficacious, even if the treatment-time was as late as 72 h post-infection, or the therapeutic dose was as low as 1 mg/kg; and it was confirmed to have haemagglutination inhibition and neutralizing activity on both LP-and HP-H7N9 strains. Further study indicated that the protection provided by 2D1 was mediated by antibody-dependent cellular cytotoxicity. The mAbs described here provide promising results and merit further development into potential antiviral therapeutics for H7N9 infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibody-Dependent Cell Cytotoxicity
- Broadly Neutralizing Antibodies/immunology
- Cell Line
- Epitope Mapping
- Female
- Hemagglutination Tests
- Hemagglutinin Glycoproteins, Influenza Virus
- Immunization, Passive
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/metabolism
- Influenza A Virus, H7N9 Subtype/pathogenicity
- Mice
- Mice, Inbred BALB C
- Mutation
- Neutralization Tests
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/therapy
- Phylogeny
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Rufeng Lu
- Department of Emergency, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Liyan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
45
|
Blockus S, Sake SM, Wetzke M, Grethe C, Graalmann T, Pils M, Le Goffic R, Galloux M, Prochnow H, Rox K, Hüttel S, Rupcic Z, Wiegmann B, Dijkman R, Rameix-Welti MA, Eléouët JF, Duprex WP, Thiel V, Hansen G, Brönstrup M, Haid S, Pietschmann T. Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Res 2020; 177:104774. [PMID: 32197980 DOI: 10.1016/j.antiviral.2020.104774] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 10/25/2022]
Abstract
Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 μM and 4.97 μM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.
Collapse
Affiliation(s)
- Sebastian Blockus
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Svenja M Sake
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Martin Wetzke
- Department for Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Christina Grethe
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Clinic for Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Marina Pils
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ronan Le Goffic
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy-en-Josas, France
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy-en-Josas, France
| | - Hans Prochnow
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Stephan Hüttel
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeljka Rupcic
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bettina Wiegmann
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany; Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Ronald Dijkman
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Switzerland
| | - Marie-Anne Rameix-Welti
- UMR1173, Institute National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles St. Quentin, Montigny-le-Bretonneux, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy-en-Josas, France
| | - W Paul Duprex
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Sibylle Haid
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
46
|
Hayden FG, Whitley RJ. Respiratory Syncytial Virus Antivirals: Problems and Progress. J Infect Dis 2020; 222:1417-1421. [DOI: 10.1093/infdis/jiaa029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Richard J Whitley
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
47
|
Zhang GN, Li Q, Zhao J, Zhang X, Xu Z, Wang Y, Fu Y, Shan Q, Zheng Y, Wang J, Zhu M, Li Z, Cen S, He J, Wang Y. Design and synthesis of 2-((1H-indol-3-yl)thio)-N-phenyl-acetamides as novel dual inhibitors of respiratory syncytial virus and influenza virus A. Eur J Med Chem 2020; 186:111861. [PMID: 31734025 DOI: 10.1016/j.ejmech.2019.111861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023]
Abstract
Respiratory syncytial virus (RSV) and influenza A virus (IAV) are two of the most common viruses that cause substantial morbidity and mortality in infants, young children, elderly persons, and immunocompromised individuals worldwide. Currently, there are no licensed vaccines or selective antiviral drugs against RSV infections and most IAV strains become resistant to clinical anti-influenza drug. Here, we described the discovery of a series of 2-((1H-indol-3-yl)thio)-N-phenyl-acetamide as novel and potent RSV and IAV dual inhibitors. Thirty-five derivatives were designed, prepared, and evaluated for their anti-RSV and anti-IAV activities. Among the tested compounds, 14'c, 14'e, 14'f, 14'h, and 14'i exhibited excellent activity against both RSV and IAV, which showed low micromolar to sub-micromolar EC50 values. Further, compounds 14'c and 14'e were identified as the most promising dual inhibitors with lesser cytotoxicity than the clinical drug, ribavirin. These findings may contribute to the development of a lead compound for the treatment of RSV and/or IAV infections.
Collapse
Affiliation(s)
- Guo-Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Qiang Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xuandi Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Zhuxin Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yuanhui Fu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Qi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yanpeng Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ziqiang Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Jinsheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
48
|
Ludeke B, Fearns R. The respiratory syncytial virus polymerase can perform RNA synthesis with modified primers and nucleotide analogs. Virology 2019; 540:66-74. [PMID: 31739186 DOI: 10.1016/j.virol.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/03/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Respiratory syncytial virus (RSV) is significant for public health, capable of causing respiratory tract disease in infants, the elderly and the immunocompromised. The RSV polymerase is an attractive target for antiviral drug development, but as yet, there is no high throughput assay for analyzing RSV polymerase activity, specifically. In this study, using a primer elongation assay as a basis, we analyzed the tolerance of the RSV polymerase for modifications at the 5' end of the primer, and nucleotide analogs. The RSV polymerase was found to accept primers containing 5' biotin or digoxygenin modifications, and nucleotide analogs that are reactive or fluorescent, including 5-ethynyl UTP, 8-azido ATP, 2-amino PTP, and thieno-GTP. These findings provide a menu of options for developing non-isotopic high throughput assays for RSV polymerase RNA synthesis activity, and yield insight regarding the molecular biology of the polymerase complex.
Collapse
Affiliation(s)
- Barbara Ludeke
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA.
| |
Collapse
|
49
|
Gilman MSA, Liu C, Fung A, Behera I, Jordan P, Rigaux P, Ysebaert N, Tcherniuk S, Sourimant J, Eléouët JF, Sutto-Ortiz P, Decroly E, Roymans D, Jin Z, McLellan JS. Structure of the Respiratory Syncytial Virus Polymerase Complex. Cell 2019; 179:193-204.e14. [PMID: 31495574 PMCID: PMC7111336 DOI: 10.1016/j.cell.2019.08.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.
Collapse
Affiliation(s)
- Morgan S A Gilman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Cheng Liu
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Amy Fung
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Ishani Behera
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Paul Jordan
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Nina Ysebaert
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Julien Sourimant
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Zhinan Jin
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
50
|
Zheng X, Liang C, Wang L, Miao K, Wang B, Zhang W, Chen D, Wu G, Zhu W, Guo L, Feng S, Gao L, Shen HC, Yun H. Discovery of (aza)indole derivatives as novel respiratory syncytial virus fusion inhibitors. MEDCHEMCOMM 2019; 10:970-973. [PMID: 31303995 DOI: 10.1039/c9md00178f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
A new class of indole derivatives (3) have been identified as potent RSV fusion inhibitors. SAR exploration revealed that 5-Cl and the sulfonyl side chain of the indole scaffold are crucial for anti-RSV activity. Further optimization led to the discovery of a cyclic sulfone (8i) with 2 nM anti-RSV activity and a much improved PK profile compared to the non-cyclic sulfone counterpart.
Collapse
Affiliation(s)
- Xiufang Zheng
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Chungen Liang
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Lisha Wang
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Kun Miao
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Baoxia Wang
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Weixing Zhang
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Dongdong Chen
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Guolong Wu
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Wei Zhu
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Lei Guo
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Song Feng
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Lu Gao
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Hong C Shen
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| | - Hongying Yun
- Roche Innovation Center Shanghai , Building 5, Lane 720, Cai Lun Road , Shanghai 201203 , China .
| |
Collapse
|