1
|
Song J, Huang G, Wei F, Meng J, Zhang K. High-Performance Flexible Strain Sensors: The Role of In-Situ Cross-Linking and Interface Engineering in Liquid Metal-Carbon Nanotube-PDMS Composites. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2281-2292. [PMID: 39704192 DOI: 10.1021/acsami.4c17983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The increasing demand for high-performance strain sensors has driven the development of innovative composite systems. This study focused on enhancing the performance of composites by integrating liquid metal, carbon nanotubes, and polydimethylsiloxane (PDMS) in an innovative approach that involved advanced interface engineering, filler synergy, and in situ cross-linking of PDMS in solution. Surface modification of liquid metal with allyl disulfide and hydrogen-containing polydimethylsiloxane significantly improved its stability and dispersion within the polymer matrix. Through in situ cross-linking in solution and subsequent segment rearrangement after solvent evaporation, a continuous filler network was formed within the composite. The composites exhibited enhanced thermal stability, achieving a thermal conductivity of up to 2.13 W/(m·K) while simultaneously attaining a high electrical conductivity of 416 S/cm. The composite demonstrated excellent thermal management capabilities, alongside remarkable mechanical properties, including over 400% elongation at break and a low modulus of 0.587 MPa, even at high filler content. These attributes make the composite highly suitable for flexible strain sensor applications. Notably, the composite demonstrated outstanding strain sensing capabilities, effectively monitoring both human motion and handwriting. This work highlighted the critical roles of interface modification, filler interactions, and in situ cross-linking in achieving significant improvements in thermal, electrical, and sensing performance, thereby advancing the potential applications of flexible electronic materials.
Collapse
Affiliation(s)
- Jianan Song
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China
| | - Guangxing Huang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China
| | - Feng Wei
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China
| | - Jiajia Meng
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China
| | - Kan Zhang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212000, PR China
| |
Collapse
|
2
|
Zhexembekova A, Lim S, Lee C, Kim YT, Lee CY. A Liquid Metal Balloon for the Exfoliation of an Ultrathin and Uniform Gallium Oxide Layer. Molecules 2024; 29:5894. [PMID: 39769983 PMCID: PMC11677224 DOI: 10.3390/molecules29245894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on Ga2O3 provides a versatile platform for device fabrication. As an example application, we fabricated a chemiresistive gas sensor for detecting simulants of chemical warfare agents (CWAs), including diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), and triethyl phosphate (TEP). The sensor exhibited reversible responses, high sensitivity, and low limits of detection (13 ppb for DIMP, 28 ppb for DMMP, and 53 ppb for TEP). These findings highlight the potential of Ga2O3 films derived from liquid metal balloons for integrating CNTs into functional electronic devices.
Collapse
Affiliation(s)
- Anar Zhexembekova
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Seongyeop Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Cheongha Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Yun-Tae Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Yuan Q, Fang H, Wu X, Wu J, Luo X, Peng R, Xu S, Yan S. Self-Adhesive, Biocompatible, Wearable Microfluidics with Erasable Liquid Metal Plasmonic Hotspots for Glucose Detection in Sweat. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66810-66818. [PMID: 37903285 DOI: 10.1021/acsami.3c11746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Sweat is a noninvasive metabolite that can provide clinically meaningful information about physical conditions without harming the body. Glucose, a vital component in sweat, is closely related to blood glucose levels, and changes in its concentration can reflect the health status of diabetics. We introduce a self-adhesive, wearable microfluidic chip with erasable liquid metal plasmonic hotspots for the precise detection of glucose concentration in sweat. The self-adhesive, wearable microfluidic chip is made from modified polydimethylsiloxane (PDMS) with enhanced stickiness, enabling conformal contact with the skin, and can collect, deliver, and store sweat. The plasmonic hotspots are located inside the microfluidic channel, are generated by synthesizing silver nanostructures on liquid metal, and can be removed in the alkaline solution. It indicates the erasable and reproducible nature of the plasmonic hotspots. The detection method is based on surface-enhanced Raman spectroscopy (SERS), which allows for accurate detection of the glucose concentration. To enhance the sensitive detection of glucose, the SERS substrate is modified by 4-mercaptophenylboronic acid to achieve the limit of detection of 1 ng/L glucose, which is much lower than the physiological conditions (7.2-25.2 μg/L). The developed microfluidic chip is soft, stretchable, and nontoxic, bringing new possibilities to wearable sweat-sensing devices.
Collapse
Affiliation(s)
- Qingwei Yuan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Hui Fang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiuru Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xie Luo
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ran Peng
- College of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Zeng C, Shen X, Shen K, Bao L, Liao G, Shen J. Boosted the thermal conductivity of liquid metal via bridging diamond particles with graphite. J Colloid Interface Sci 2024; 680:643-656. [PMID: 39531882 DOI: 10.1016/j.jcis.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The liquid metal (LM) composite is regarded as having potential and wide-ranging applications in electronic thermal management. Enhancing the thermal conductivity of LM is a crucial matter. Herein, a novel LM composite of eutectic gallium-indium (EGaIn)/diamond/graphite was developed. A highest thermal conductivity of 133 ± 3 W m-1 K-1 was achieved, 411 % higher than that of the matrix. The bonding mechanism reveals that the interfacial adsorption energy (ΔE) of graphite and EGaIn can be effectively decreased by the functional groups of graphite (by -108 % for -OH and -125 % for -CO) and the oxide of EGaIn (by -64 %). Furthermore, the ΔE of diamond and EGaIn can be significantly reduced through the oxidation of EGaIn (by -83 %) and the H-terminal of diamond (by -187 %). The thermal conductance mechanism suggests that a 3 vol% graphite content in the EGaIn/40 vol% diamond/graphite composite can form an excellent thermal conductance bridge among diamond particles. However, the thermal conductivity of the composite significantly decreased when too much graphite was added due to the tendency of the graphite to coat the diamond particles. There was no significant change in the melting point of EGaIn after being mixed with diamond and graphite. The EGaIn/diamond/graphite composite also demonstrated excellent thermal management performance in LED lamps and CPU heat dissipation as a thermal interface material, particularly in high-power electronic devices. This work presents the potential to enhance the thermal conductivity of LM-based composite by bridging spheroidal particles with a flaky material.
Collapse
Affiliation(s)
- Chengzong Zeng
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China.
| | - Xia Shen
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Kun Shen
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Linzhao Bao
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Guangyin Liao
- School of Electronics and IoT, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, PR China
| | - Jun Shen
- State Key Laboratory of Mechanical Transmission, College of Material Science and Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
5
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
6
|
Krisnadi F, Kim S, Im S, Chacko D, Vong MH, Rykaczewski K, Park S, Dickey MD. Printable Liquid Metal Foams That Grow When Watered. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308862. [PMID: 38252810 DOI: 10.1002/adma.202308862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Pastes and "foams" containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty-like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide-lined air "pockets" into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4-5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors "grow," fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved.
Collapse
Affiliation(s)
- Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seoyeon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Sooik Im
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dennis Chacko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Sungjune Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
7
|
Polo-Garzon F, Wu Z, Li Y, Zhang J, Yu X, Toups E, Lopez-Honorato E, Damron JT, Foster JC, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Meyer HM. Low-temperature dechlorination of polyvinyl chloride (PVC) for production of H 2 and carbon materials using liquid metal catalysts. SCIENCE ADVANCES 2024; 10:eadm9963. [PMID: 39047094 PMCID: PMC11268417 DOI: 10.1126/sciadv.adm9963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Polyvinyl chloride (PVC) is ubiquitous in everyday life; however, it is not recycled because it degrades uncontrollably into toxic products above 250°C. Therefore, it is of interest to controllably dechlorinate PVC at mild temperatures to generate narrowly distributed carbon materials. We present a catalytic route to dechlorinate PVC (~90% reduction of Cl content) at mild temperature (200°C) to produce gas H2 (with negligible coproduction of corrosive gas HCl) and carbon materials using Ga as a liquid metal (LM) catalyst. A LM was used to promote intimate contact between PVC and the catalytic sites. During dechlorination of PVC, Cl is sequestrated in the carbonaceous solid product. Later, chlorine is easily removed with an acetone wash at room temperature. The Ga LM catalyst is reusable, outperforms a traditional supported metal catalyst, and successfully converts (untreated) discarded PVC pipe.
Collapse
Affiliation(s)
- Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Junyan Zhang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Xinbin Yu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Elena Toups
- University of New Orleans, New Orleans, LA 70148 (USA)
| | - Eddie Lopez-Honorato
- Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Joshua T. Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Jeffrey C. Foster
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | - Luke L. Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| | | | - Harry M. Meyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA)
| |
Collapse
|
8
|
Jiang H, Yuan B, Guo H, Pan F, Meng F, Wu Y, Wang X, Ruan L, Zheng S, Yang Y, Xiu Z, Li L, Wu C, Gong Y, Yang M, Lu W. Malleable, printable, bondable, and highly conductive MXene/liquid metal plasticine with improved wettability. Nat Commun 2024; 15:6138. [PMID: 39033166 PMCID: PMC11271265 DOI: 10.1038/s41467-024-50541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
Integration of functional fillers into liquid metals (LM) induces rheology modification, enabling the free-form shaping of LM at the micrometer scale. However, integrating non-chemically modified low-dimensional materials with LM to form stable and uniform dispersions remain a great challenge. Herein, we propose a solvent-assisted dispersion (SAD) method that utilizes the fragmentation and reintegration of LM in volatile solvents to engulf and disperse fillers. This method successfully integrates MXene uniformly into LM, achieving better internal connectivity than the conventional dry powder mixing (DPM) method. Consequently, the MXene/LM (MLM) coating exhibits high electromagnetic interference (EMI) shielding performance (105 dB at 20 μm, which is 1.6 times that of coatings prepared by DPM). Moreover, the rheological characteristic of MLM render it malleable and facilitates direct printing and adaptation to diverse structures. This study offers a convenient method for assembling LM with low-dimensional materials, paving the way for the development of multifunctional soft devices.
Collapse
Affiliation(s)
- Haojie Jiang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Bin Yuan
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Hongtao Guo
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Fei Pan
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Fanmao Meng
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Yongpeng Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiao Wang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Lingyang Ruan
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Shuhuai Zheng
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Yang Yang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Zheng Xiu
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Lixin Li
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Changsheng Wu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore
| | - Yongqing Gong
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Menghao Yang
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, China.
| |
Collapse
|
9
|
Agarwal R, Mohamad A. Gallium-based liquid metals as smart responsive materials: Morphological forms and stimuli characterization. Adv Colloid Interface Sci 2024; 329:103183. [PMID: 38788305 DOI: 10.1016/j.cis.2024.103183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Gallium-based liquid metals (GaLMs) have garnered monumental attention from the scientific community due to their diverse actuation characteristics. These metals possess remarkable characteristics, including high surface tension, excellent electrical and thermal conductivity, phase transformation behaviour, minimal viscosity and vapour pressure, lack of toxicity, and biocompatibility. In addition, GaLMs have melting points that are either lower or near room temperature, making them incredibly beneficial when compared to solid metals since they can be easily deformed. Thus, there has been significant progress in developing multifunctional devices using GaLMs, including bio-devices, flexible and self-healing circuits, and actuators. Despite numerous reports on these liquid metals (LMs), there is an urgent need for consolidated and coherent literature regarding their actuation principles linked to the targeted application. This will ensure that the reader gets the flavour of physics behind the actuation mechanism and how it can be utilized in diverse fields. Moreover, the actuation mechanism has been scattered in the literature, and thus, the primary motive of this review is to provide a one-stop solution for the actuation mechanism and the associated dynamics while directing the readers to specialized literature. Thus, addressing this issue, we thoroughly examine and present a detailed account of the actuation mechanisms of GaLMs while highlighting the science behind them. We also discuss the various morphologies of GaLMs and their crucial physical characteristics which decide their targeted application. Furthermore, we also delve into commonly held beliefs about GaLMs in the literature, such as their toxicity and antibacterial properties, to offer readers a more accurate understanding. Finally, we have explored several key unanswered aspects of the LM that should be explored in future research. The core strength of this review lies in its simplistic approach in offering a starting point for researchers venturing this innovative field, while we make use of existing literature to develop a comprehensive understanding.
Collapse
Affiliation(s)
- Rahul Agarwal
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Abdulmajeed Mohamad
- Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
10
|
Kim JH, Kim S, Dickey MD, So JH, Koo HJ. Interface of gallium-based liquid metals: oxide skin, wetting, and applications. NANOSCALE HORIZONS 2024; 9:1099-1119. [PMID: 38716614 DOI: 10.1039/d4nh00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Gallium-based liquid metals (GaLMs) are promising for a variety of applications-especially as a component material for soft devices-due to their fluidic nature, low toxicity and reactivity, and high electrical and thermal conductivity comparable to solid counterparts. Understanding the interfacial properties and behaviors of GaLMs in different environments is crucial for most applications. When exposed to air or water, GaLMs form a gallium oxide layer with nanoscale thickness. This "oxide nano-skin" passivates the metal surface and allows for the formation of stable microstructures and films despite the high-surface tension of liquid metal. The oxide skin easily adheres to most smooth surfaces. While it enables effective printing and patterning of the GaLMs, it can also make the metals challenging to handle because it adheres to most surfaces. The oxide also affects the interfacial electrical resistance of the metals. Its formation, thickness, and composition can be chemically or electrochemically controlled, altering the physical, chemical, and electrical properties of the metal interface. Without the oxide, GaLMs wet metallic surfaces but do not wet non-metallic substrates such as polymers. The topography of the underlying surface further influences the wetting characteristics of the metals. This review outlines the interfacial attributes of GaLMs in air, water, and other environments and discusses relevant applications based on interfacial engineering. The effect of surface topography on the wetting behaviors of the GaLMs is also discussed. Finally, we suggest important research topics for a better understanding of the GaLMs interface.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Energy and Chemical Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, Ansan-si, 15588, Republic of Korea.
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
11
|
Li X, Hou K, Long Y, Song K. LM-Gel Plasticine Based on Binary Cooperative with Kneadable Shaping and Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38711229 DOI: 10.1021/acsami.4c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Liquid metal (LM)-based polymers have received growing interest for wearable health monitoring, electronic skins, and soft robotics. However, fabricating multifunctional LM-based polymers, in particular, featuring a convenient shaping ability while offering excellent deformability and conductivity remains a challenge. To overcome this obstacle, here, we propose a strategy to prepare LM-Gel "plasticine" (LGP) with great deformability, which is composed of a PVA (poly(vinyl alcohol)) soft network and an LM conductive phase. LGP can be easily constructed into different shapes such as plasticine and can be applied to different conditions (such as building a 3D circuit, circuit repair, and switch). Meanwhile, LGP has great conductivity (2.3 × 104 S/m) after surface annealing. Besides, LGP has a good electric heating performance, which shows the potential for application in wearable heating devices. Thus, this approach not only provides a way to prepare LM-polymer plasticine but also provides a novel perspective toward extending the applied range of LM-polymer composites.
Collapse
Affiliation(s)
- Xingchao Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yue Long
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| | - Kai Song
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| |
Collapse
|
12
|
Chung WG, Jang J, Cui G, Lee S, Jeong H, Kang H, Seo H, Kim S, Kim E, Lee J, Lee SG, Byeon SH, Park JU. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. NATURE NANOTECHNOLOGY 2024; 19:688-697. [PMID: 38225357 PMCID: PMC11106006 DOI: 10.1038/s41565-023-01587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024]
Abstract
Electronic retinal prostheses for stimulating retinal neurons are promising for vision restoration. However, the rigid electrodes of conventional retinal implants can inflict damage on the soft retina tissue. They also have limited selectivity due to their poor proximity to target cells in the degenerative retina. Here we present a soft artificial retina (thickness, 10 μm) where flexible ultrathin photosensitive transistors are integrated with three-dimensional stimulation electrodes of eutectic gallium-indium alloy. Platinum nanoclusters locally coated only on the tip of these three-dimensional liquid-metal electrodes show advantages in reducing the impedance of the stimulation electrodes. These microelectrodes can enhance the proximity to the target retinal ganglion cells and provide effective charge injections (72.84 mC cm-2) to elicit neural responses in the retina. Their low Young's modulus (234 kPa), owing to their liquid form, can minimize damage to the retina. Furthermore, we used an unsupervised machine learning approach to effectively identify the evoked spikes to grade neural activities within the retinal ganglion cells. Results from in vivo experiments on a retinal degeneration mouse model reveal that the spatiotemporal distribution of neural responses on their retina can be mapped under selective localized illumination areas of light, suggesting the restoration of their vision.
Collapse
Affiliation(s)
- Won Gi Chung
- Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Jiuk Jang
- Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Gang Cui
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Han Jeong
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haisu Kang
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Hunkyu Seo
- Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Sumin Kim
- Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Enji Kim
- Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Junwon Lee
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Geol Lee
- School of Chemical Engineering, Pusan National University, Busan, Republic of Korea.
- Department of Organic Material Science and Engineering, Pusan National University, Busan, Republic of Korea.
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Eye Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jang-Ung Park
- Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
14
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
15
|
Park YG, Kwon YW, Koh CS, Kim E, Lee DH, Kim S, Mun J, Hong YM, Lee S, Kim JY, Lee JH, Jung HH, Cheon J, Chang JW, Park JU. In-vivo integration of soft neural probes through high-resolution printing of liquid electronics on the cranium. Nat Commun 2024; 15:1772. [PMID: 38413568 PMCID: PMC10899244 DOI: 10.1038/s41467-024-45768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Current soft neural probes are still operated by bulky, rigid electronics mounted to a body, which deteriorate the integrity of the device to biological systems and restrict the free behavior of a subject. We report a soft, conformable neural interface system that can monitor the single-unit activities of neurons with long-term stability. The system implements soft neural probes in the brain, and their subsidiary electronics which are directly printed on the cranial surface. The high-resolution printing of liquid metals forms soft neural probes with a cellular-scale diameter and adaptable lengths. Also, the printing of liquid metal-based circuits and interconnections along the curvature of the cranium enables the conformal integration of electronics to the body, and the cranial circuit delivers neural signals to a smartphone wirelessly. In the in-vivo studies using mice, the system demonstrates long-term recording (33 weeks) of neural activities in arbitrary brain regions. In T-maze behavioral tests, the system shows the behavior-induced activation of neurons in multiple brain regions.
Collapse
Affiliation(s)
- Young-Geun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Yong Won Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Enji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Dong Ha Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Sumin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Jongmin Mun
- Department of Statistics and Data Science, Yonsei University, Seoul, 03722, South Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| | - Ju-Young Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea.
- Department of Chemistry, Yonsei University, Seoul, 03722, South Korea.
| | - Jin Woo Chang
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, 02841, South Korea.
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea.
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
16
|
Sakorikar T, Mihaliak N, Krisnadi F, Ma J, Kim TI, Kong M, Awartani O, Dickey MD. A Guide to Printed Stretchable Conductors. Chem Rev 2024; 124:860-888. [PMID: 38291556 DOI: 10.1021/acs.chemrev.3c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Printing of stretchable conductors enables the fabrication and rapid prototyping of stretchable electronic devices. For such applications, there are often specific process and material requirements such as print resolution, maximum strain, and electrical/ionic conductivity. This review highlights common printing methods and compatible inks that produce stretchable conductors. The review compares the capabilities, benefits, and limitations of each approach to help guide the selection of a suitable process and ink for an intended application. We also discuss methods to design and fabricate ink composites with the desired material properties (e.g., electrical conductance, viscosity, printability). This guide should help inform ongoing and future efforts to create soft, stretchable electronic devices for wearables, soft robots, e-skins, and sensors.
Collapse
Affiliation(s)
- Tushar Sakorikar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikolas Mihaliak
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tae-Il Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi 16419, South Korea
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Omar Awartani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
17
|
Qiao X, Zhang Y, Wang L, Zhou S, Pang X. Simple preparation of lignosulfonate stabilized eutectic gallium/indium liquid metal nanodroplets through ball milling process. Int J Biol Macromol 2024; 254:127809. [PMID: 37926321 DOI: 10.1016/j.ijbiomac.2023.127809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
The combination of biomass and liquid metal (LM) makes the preparation process "greener" and application of LM composite materials more sustainable. Here we reported the solvent free preparation of lignosulfonate (LS) stabilized eutectic gallium/indium (EGaIn) LM nanodroplets through ball milling (BM), which was recognized to be efficient and environmentally-friendly alternatives to solution-based methods. By regulating the BM frequency and milling time, uniform LM nanodroplets with a size <200 nm can be achieved. Moreover, the surface of the EGaIn nanodroplets was covered by LS molecules, owing to the hydrogen bond formed between Ga2O3 and LS. Hydrophilic LS shell endowed the LS@EGaIn nanodroplets excellent colloidal stability in the aqueous media. The elongation at break and fracture strength of hydrogel with the addition of LS@EGaIn significantly improved with the addition of LS@EGaIn. Besides, the conductivity and excellent stress responsibility of the LS@EGaIn composite hydrogel illustrated its potential application as s a stress sensor, flexible wearable devices and other related applications. Moreover, it was predicted that LS can be replaced by other synthesized or biological macromolecules, and induced the formation of types of LM based composite materials through such a simple method.
Collapse
Affiliation(s)
- Xiaoguang Qiao
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou 451191, China; Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuhan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Linan Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shuzhen Zhou
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
19
|
Liu S, Xu Z, Li G, Li Z, Ye Z, Xu Z, Chen W, Jin D, Ma X. Ultrasonic-Enabled Nondestructive and Substrate-Independent Liquid Metal Ink Sintering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301292. [PMID: 37316967 PMCID: PMC10427386 DOI: 10.1002/advs.202301292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Printing or patterning particle-based liquid metal (LM) ink is a good strategy to overcome poor wettability of LM for its circuits' preparation in flexible and printed electronics. Subsequently, a crucial step is to recover conductivity of LM circuits consisting of insulating LM micro/nano-particles. However, most widely used mechanical sintering methods based on hard contact such as pressing, may not be able to contact the LM patterns' whole surface conformally, leading to insufficient sintering in some areas. Hard contact may also break delicate shapes of the printed patterns. Hereby, an ultrasonic-assisted sintering strategy that can not only preserve original morphology of the LM circuits but also sinter circuits on various substrates of complex surface topography is proposed. The influencing factors of the ultrasonic sintering are investigated empirically and interpreted with theoretical understanding by simulation. LM circuits encapsulated inside soft elastomer are successfully sintered, proving feasibility in constructing stretchable or flexible electronics. By using water as energy transmission medium, remote sintering without any direct contact with substrate is achieved, which greatly protect LM circuits from mechanical damage. In virtue of such remote and non-contact manipulation manner, the ultrasonic sintering strategy would greatly advance the fabrication and application scenarios of LM electronics.
Collapse
Affiliation(s)
- Sanhu Liu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zhiwu Xu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Guoqiang Li
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Zhengwei Li
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Zihan Ye
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Zirong Xu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- School of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Wenjun Chen
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Dongdong Jin
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001China
- Sauvage Laboratory for Smart MaterialsSchool of Materials Science and EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenGuangdong518055China
| |
Collapse
|
20
|
Kim H, Kim J, Ryu KH, Lee J, Kim HJ, Hyun J, Koo J. Embedded Direct Ink Writing 3D Printing of UV Curable Resin/Sepiolite Composites with Nano Orientation. ACS OMEGA 2023; 8:23554-23565. [PMID: 37426231 PMCID: PMC10323950 DOI: 10.1021/acsomega.3c01165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023]
Abstract
Among the various 3D printing methods, direct ink writing (DIW) through extrusion directly affects the microstructure and properties of materials. However, use of nanoparticles at high concentrations is restricted due to difficulties in sufficient dispersion and the deteriorated physical properties of nanocomposites. Thus, although there are many studies on filler alignment with high-viscosity materials with a weight fraction higher than 20 wt %, not much research has been done with low-viscosity nanocomposites with less than 5 phr. Interestingly, the alignment of anisotropic particles improves the physical properties of the nanocomposite at a low concentration of nanoparticles with DIW. The rheological behavior of ink is affected by the alignment of anisotropic sepiolite (SEP) at a low concentration using the embedded 3D printing method, and silicone oil complexed with fumed silica is used as a printing matrix. A significant increase in mechanical properties is expected compared to conventional digital light processing. We clarify the synergistic effect of the SEP alignment in a photocurable nanocomposite material through physical property investigations.
Collapse
Affiliation(s)
- Hoon Kim
- Lab.
of Adhesion & Bio-Composites, Program in Environmental Materials
Science, Seoul National University, Seoul 08826, Republic of Korea
- Graphy
Inc., Seoul 08826, Republic of Korea
| | - Jaehwan Kim
- Program
in Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang-Hyun Ryu
- Lab.
of Adhesion & Bio-Composites, Program in Environmental Materials
Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiho Lee
- Graphy
Inc., Seoul 08826, Republic of Korea
| | - Hyun-Joong Kim
- Lab.
of Adhesion & Bio-Composites, Program in Environmental Materials
Science, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Hyun
- Program
in Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research
Institute of Agriculture and Life Sciences, and Bioresources, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaseung Koo
- Department
of Organic Materials Engineering, Chungnam
National University, Daejeon 34134, Republic
of Korea
| |
Collapse
|
21
|
Ma J, Krisnadi F, Vong MH, Kong M, Awartani OM, Dickey MD. Shaping a Soft Future: Patterning Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205196. [PMID: 36044678 DOI: 10.1002/adma.202205196] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Indexed: 05/12/2023]
Abstract
This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non-spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e-skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.
Collapse
Affiliation(s)
- Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Omar M Awartani
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
22
|
Hossain KZ, Monwar M, Khan MR. Reactive etching of gallium oxide on eutectic gallium indium (eGaIn) with chlorosilane vapor to induce differential wetting. SOFT MATTER 2023; 19:3199-3206. [PMID: 37073821 DOI: 10.1039/d3sm00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Differentially wettable surfaces are well sought after in energy, water, health care, separation science, self-cleaning, biology, and other lab-on-chip applications-however, most demonstrations of realizing differential wettability demand complex processes. Herein, we chemically etch gallium oxide (Ga2O3) from in-plane patterns (2D) of eutectic gallium indium (eGaIn) to demonstrate a differentially wettable interface using chlorosilane vapor. We produce 2D patterns of eGaIn on bare glass slides in native air using cotton swabs as paint brushes. Exposing the entire system to chlorosilane vapor induces chemical etching of the oxide layer, which recovers the high-surface energy of eGaIn, to produce nano-to-mm droplets on the pre-patterned area. We rinse the entire system with deionized (DI) water to achieve differentially wettable surfaces. Measurements of contact angles using a goniometer confirmed hydrophobic and hydrophilic interfaces. Scanning electron microscopy (SEM) images confirmed the distribution and energy dispersive spectra (EDS) exhibited the elemental compositions of the micro-to-nano droplets after silanization (silane treatment). Also, we demonstrated two proofs of concept, i.e., open-ended microfluidics and differential wettability on curved interfaces, to demonstrate the advanced applications of the current work. This straightforward approach using two soft materials (silane and eGaIn) to achieve differential wettability on laboratory-grade glass slides and other surfaces has future implications for nature-inspired self-cleaning surfaces in nanotechnologies, bioinspired and biomimetic open-channel microfluidics, coatings, and fluid-structure interactions.
Collapse
Affiliation(s)
- Kazi Zihan Hossain
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - Momena Monwar
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| | - M Rashed Khan
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA.
| |
Collapse
|
23
|
Murakami K, Isano Y, Asada J, Usami N, Isoda Y, Takano T, Matsuda R, Ueno K, Fuchiwaki O, Ota H. Self-assembling bilayer wiring with highly conductive liquid metal and insulative ion gel layers. Sci Rep 2023; 13:5929. [PMID: 37045927 PMCID: PMC10097700 DOI: 10.1038/s41598-023-32580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Ga-based liquid metals (LMs) are expected to be suitable for wiring highly deformable devices because of their high electrical conductivity and stable resistance to extreme deformation. Injection and printed wiring, and wiring using LM-polymer composites are the most popular LM wiring approaches. However, additional processing is required to package the wiring after LM patterning, branch and interrupt wiring shape, and ensure adequate conductivity, which results in unnecessary wiring shape changes and increased complexity of the wiring methods. In this study, we propose an LM-polymer composite comprising LM particles and ion gel as a flexible matrix material with low viscosity and specific gravity before curing. Moreover, the casting method is used for wire patterning, and the material is cured at room temperature to ensure that the upper insulative layer of the ion gel self-assembles simultaneously with the formation of LM wiring in the lower layer. High conductivity and low resistance change rate of the formed wiring during deformation are achieved without an activation process. This ion gel-LM bilayer wiring can be used for three-dimensional wiring by stacking. Furthermore, circuits fabricated using ion gel-LM bilayer wiring exhibit stable operation. Therefore, the proposed method can significantly promote the development of flexible electronic devices.
Collapse
Affiliation(s)
- Koki Murakami
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Yuji Isano
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Juri Asada
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Natsuka Usami
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Yutaka Isoda
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Tamami Takano
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Ryosuke Matsuda
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Ohmi Fuchiwaki
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
| | - Hiroki Ota
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
| |
Collapse
|
24
|
Han N, Yao X, Wang Y, Huang W, Niu M, Zhu P, Mao Y. Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human-Machine Interaction. BIOSENSORS 2023; 13:393. [PMID: 36979605 PMCID: PMC10046871 DOI: 10.3390/bios13030393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Epidermal electronics offer an important platform for various on-skin applications including electrophysiological signals monitoring and human-machine interactions (HMI), due to their unique advantages of intrinsic softness and conformal interfaces with skin. The widely used nondegradable synthetic materials may produce massive electronic waste to the ecosystem and bring safety issues to human skin. However, biomaterials extracted from nature are promising to act as a substitute material for the construction of epidermal electronics, owing to their diverse characteristics of biocompatibility, biodegradability, sustainability, low cost and natural abundance. Therefore, the development of natural biomaterials holds great prospects for advancement of high-performance sustainable epidermal electronics. Here, we review the recent development on different types of biomaterials including proteins and polysaccharides for multifunctional epidermal electronics. Subsequently, the applications of biomaterials-based epidermal electronics in electrophysiological monitoring and HMI are discussed, respectively. Finally, the development situation and future prospects of biomaterials-based epidermal electronics are summarized. We expect that this review can provide some inspirations for the development of future, sustainable, biomaterials-based epidermal electronics.
Collapse
|
25
|
Cai S, Ghasemian MB, Rahim MA, Baharfar M, Yang J, Tang J, Kalantar-Zadeh K, Allioux FM. Formation of inorganic liquid gallium particle-manganese oxide composites. NANOSCALE 2023; 15:4291-4300. [PMID: 36745406 DOI: 10.1039/d2nr06384k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gallium (Ga) is a low melting point post-transition metal that, under mild mechanical agitation, can form micron and submicron-sized particles with combined fluid-like and metallic properties. In this work, an inorganic network of Ga liquid metal particles was synthesised via spontaneous formation of manganese (Mn) oxide species on their liquid metallic surfaces forming an all-inorganic composite. The micron-sized Ga particles formed by sonication were connected together by Mn oxide nanostructures spontaneously established from the reduction of a Mn salt in aqueous solution slightly above the melting point of Ga. The formed Mn oxide nanostructures were found to coalesce from the surface of the Ga particles into a continuous inorganic network. The morphology of the composites could be altered by varying the Mn salt concentration and by performing post-treatment annealing. The composites presented a shell of various Mn oxide nanostructures including wrinkled sheets, rods and nanoneedles, around spherical liquid Ga particles, and a liquid metal core. The photoelectric and optical properties of the composites were thoroughly characterised, which revealed decreasing bandgaps and valence band edge characteristics as a function of increased Mn oxide coverage. The photoluminescence properties of the composites could be also engineered by increasing the Mn oxide coverage. The all-inorganic liquid Ga composite could be formed via a straightforward reduction reaction of a Mn-rich salt at the surface of liquid Ga particles with tunable surface properties for future optoelectronic applications.
Collapse
Affiliation(s)
- Shengxiang Cai
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
26
|
Cao J, Li X, Liu Y, Zhu G, Li RW. Liquid Metal-Based Electronics for On-Skin Healthcare. BIOSENSORS 2023; 13:84. [PMID: 36671919 PMCID: PMC9856137 DOI: 10.3390/bios13010084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 05/28/2023]
Abstract
Wearable devices are receiving growing interest in modern technologies for realizing multiple on-skin purposes, including flexible display, flexible e-textiles, and, most importantly, flexible epidermal healthcare. A 'BEER' requirement, i.e., biocompatibility, electrical elasticity, and robustness, is first proposed here for all the on-skin healthcare electronics for epidermal applications. This requirement would guide the designing of the next-generation on-skin healthcare electronics. For conventional stretchable electronics, the rigid conductive materials, e.g., gold nanoparticles and silver nanofibers, would suffer from an easy-to-fail interface with elastic substrates due to a Young's modulus mismatch. Liquid metal (LM) with high conductivity and stretchability has emerged as a promising solution for robust stretchable epidermal electronics. In addition, the fundamental physical, chemical, and biocompatible properties of LM are illustrated. Furthermore, the fabrication strategies of LM are outlined for pure LM, LM composites, and LM circuits based on the surface tension control. Five dominant epidermal healthcare applications of LM are illustrated, including electrodes, interconnectors, mechanical sensors, thermal management, and biomedical and sustainable applications. Finally, the key challenges and perspectives of LM are identified for the future research vision.
Collapse
Affiliation(s)
- Jinwei Cao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Xin Li
- School of Integrated Circuits and Beijing National Research Centre for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Guang Zhu
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
27
|
Chung WG, Kim E, Song H, Lee J, Lee S, Lim K, Jeong I, Park JU. Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Won Gi Chung
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Hayoung Song
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Kyeonghee Lim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
28
|
Biswas S, Melton LD, Nelson ARJ, Le Brun AP, Heinrich F, McGillivray DJ, Xu AY. The Assembly Mechanism and Mesoscale Architecture of Protein-Polysaccharide Complexes Formed at the Solid-liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12551-12561. [PMID: 36194692 DOI: 10.1021/acs.langmuir.2c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-polysaccharide composite materials have generated much interest due to their potential use in medical science and biotechnology. A comprehensive understanding of the assembly mechanism and the mesoscale architecture is needed for fabricating protein-polysaccharide composite materials with desired properties. In this study, complex assemblies were built on silica surfaces through a layer-by-layer (LbL) approach using bovine beta-lactoglobulin variant A (βLgA) and pectin as model protein and polysaccharide, respectively. We demonstrated the combined use of quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR) for elucidating the assembly mechanism as well as the internal architecture of the protein-polysaccharide complexes formed at the solid-liquid interface. Our results show that βLgA and pectin interacted with each other and formed a cohesive matrix structure at the interface consisting of intertwined pectin chains that were cross-linked by βLgA-rich domains. Although the complexes were fabricated in an LbL fashion, the complexes appeared to be relatively homogeneous with βLgA and pectin molecules spatially distributed within the matrix structure. Our results also demonstrate that the density of βLgA-pectin complex assemblies increased with both the overall and local charge density of pectin molecules. Therefore, the physical properties of the protein-polysaccharide matrix structure, including density and level of hydration, can be tuned by using polysaccharides with varying charge patterns, thus promoting the development of composite materials with desired properties.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| | - Laurence D Melton
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland1142, New Zealand
| | - Andrew R J Nelson
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, New South Wales2232, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, ANSTO, Locked Bag 2001, Kirrawee DC, New South Wales2232, Australia
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania15213, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland20899, United States
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland1142, New Zealand
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana70803, United States
| |
Collapse
|
29
|
Kim M, Hwang JC, Min S, Park YG, Kim S, Kim E, Seo H, Chung WG, Lee J, Cho SW, Park JU. Multimodal Characterization of Cardiac Organoids Using Integrations of Pressure-Sensitive Transistor Arrays with Three-Dimensional Liquid Metal Electrodes. NANO LETTERS 2022; 22:7892-7901. [PMID: 36135332 PMCID: PMC9562461 DOI: 10.1021/acs.nanolett.2c02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Herein, we present an unconventional method for multimodal characterization of three-dimensional cardiac organoids. This method can monitor and control the mechanophysiological parameters of organoids within a single device. In this method, local pressure distributions of human-induced pluripotent stem-cell-derived cardiac organoids are visualized spatiotemporally by an active-matrix array of pressure-sensitive transistors. This array is integrated with three-dimensional electrodes formed by the high-resolution printing of liquid metal. These liquid-metal electrodes are inserted inside an organoid to form the intraorganoid interface for simultaneous electrophysiological recording and stimulation. The low mechanical modulus and low impedance of the liquid-metal electrodes are compatible with organoids' soft biological tissue, which enables stable electric pacing at low thresholds. In contrast to conventional electrophysiological methods, this measurement of a cardiac organoid's beating pressures enabled simultaneous treatment of electrical therapeutics using a single device without any interference between the pressure signals and electrical pulses from pacing electrodes, even in wet organoid conditions.
Collapse
Affiliation(s)
- Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Chul Hwang
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Sungjin Min
- Department
of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Geun Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Suran Kim
- Department
of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department
of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic of Korea
- KIURI
Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
30
|
Wang Q, Ji X, Liu X, Liu Y, Liang J. Viscoelastic Metal-in-Water Emulsion Gel via Host-Guest Bridging for Printed and Strain-Activated Stretchable Electrodes. ACS NANO 2022; 16:12677-12685. [PMID: 35926219 PMCID: PMC9413406 DOI: 10.1021/acsnano.2c04299] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 05/28/2023]
Abstract
Stretchable conductive electrodes that can be made by printing technology with high resolution is desired for preparing wearable electronics. Printable inks composed of liquid metals are ideal candidates for these applications, but their practical applications are limited by their low stability, poor printability, and low conductivity. Here, thixotropic metal-in-water (M/W) emulsion gels (MWEGs) were designed and developed by stabilizing and bridging liquid metal droplets (LMDs) via a host-guest polymer. In the MWEGs, the hydrophilic main chain of the host-guest polymers emulsified and stabilized LMDs via coordination bonds. The grafted cyclodextrin and adamantane groups formed dynamic inclusion complexes to bridge two neighboring LMDs, leading to the formation of a dynamically cross-linked network of LMDs in the aqueous phase. The MWEGs exhibited viscoelastic and shear-thinning behavior, making them ideal for direct three-dimensional (3D) and screen printing with a high resolution (∼65 μm) to assemble complex patterns consisting of ∼95 wt % liquid metal. When stretching the printed patterns, strong host-guest interactions guaranteed that the entire droplet network was cross-linked, while the brittle oxide shell of the droplets ruptured, releasing the liquid metal core and allowing it to fuse into continuous conductive pathways under an ultralow critical strain (<1.5%). This strain-activated conductivity exceeded 15800 S/cm under a large strain of 800% and exhibited long-term cyclic stability and robustness.
Collapse
Affiliation(s)
- Qi Wang
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
| | - Xinyi Ji
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
| | - Xue Liu
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
| | - Yang Liu
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
- College
of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Jiajie Liang
- School
of Materials Science and Engineering, National Institute for Advanced
Materials, Nankai University, Tianjin 300350, P.R. China
- Key
Laboratory of Functional Polymer Materials of Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300350, P.R. China
- Tianjin
Key Laboratory of Metal and Molecule-Based Material Chemistry and
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
31
|
Lee GH, Woo H, Yoon C, Yang C, Bae JY, Kim W, Lee DH, Kang H, Han S, Kang SK, Park S, Kim HR, Jeong JW, Park S. A Personalized Electronic Tattoo for Healthcare Realized by On-the-Spot Assembly of an Intrinsically Conductive and Durable Liquid-Metal Composite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204159. [PMID: 35702762 DOI: 10.1002/adma.202204159] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Conventional electronic (e-) skins are a class of thin-film electronics mainly fabricated in laboratories or factories, which is incapable of rapid and simple customization for personalized healthcare. Here a new class of e-tattoos is introduced that can be directly implemented on the skin by facile one-step coating with various designs at multi-scale depending on the purpose of the user without a substrate. An e-tattoo is realized by attaching Pt-decorated carbon nanotubes on gallium-based liquid-metal particles (CMP) to impose intrinsic electrical conductivity and mechanical durability. Tuning the CMP suspension to have low-zeta potential, excellent wettability, and high-vapor pressure enables conformal and intimate assembly of particles directly on the skin in 10 s. Low-cost, ease of preparation, on-skin compatibility, and multifunctionality of CMP make it highly suitable for e-tattoos. Demonstrations of electrical muscle stimulators, photothermal patches, motion artifact-free electrophysiological sensors, and electrochemical biosensors validate the simplicity, versatility, and reliability of the e-tattoo-based approach in biomedical engineering.
Collapse
Affiliation(s)
- Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Heejin Woo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chanwoong Yoon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Congqi Yang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae-Young Bae
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Wonsik Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Do Hoon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seungmin Han
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, 567 Baekje-daero, Jeonju, 54896, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
32
|
Sanchez-Botero L, Shah DS, Kramer-Bottiglio R. Are Liquid Metals Bulk Conductors? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109427. [PMID: 35293649 DOI: 10.1002/adma.202109427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Stretchable electronics have potential in wide-reaching applications including wearables, personal health monitoring, and soft robotics. Many recent advances in stretchable electronics leverage liquid metals, particularly eutectic gallium-indium (EGaIn). A variety of EGaIn electromechanical behaviors have been reported, ranging from bulk conductor responses to effectively strain-insensitive responses. However, numerous measurement techniques have been used throughout the literature, making it difficult to directly compare the various proposed formulations. Here, the electromechanical responses of EGaIn found in the literature is reviewed and pure EGaIn is investigated using three electrical resistance measurement techniques: four point probe, two point probe, and Wheatstone bridge. The results indicate substantial differences in measured electromechanical behavior between the three methods, which can largely be accounted for by correcting for a fixed offset corresponding to the resistances of various parts of the measurement circuits. Yet, even accounting for several of these sources of experimental error, the average relative change in resistance of EGaIn is found to be lower than that predicted by the commonly used bulk conductor assumption, referred to as Pouillet's law. Building upon recent theories proposed in the literature, possible explanations for the discrepancies are discussed. Finally, suggestions are provided on experimental design to enable reproducible and interpretable research.
Collapse
Affiliation(s)
- Lina Sanchez-Botero
- School of Engineering & Applied Science, Yale University, New Haven, CT, 06511, USA
| | - Dylan S Shah
- School of Engineering & Applied Science, Yale University, New Haven, CT, 06511, USA
| | | |
Collapse
|
33
|
Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108855. [PMID: 35246886 DOI: 10.1002/adma.202108855] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.
Collapse
Affiliation(s)
- M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Alianna Maguire
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Neethu T Pottackal
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Maruf Md Ikram
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
34
|
Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot 2022; 7:eabl7344. [PMID: 35675450 DOI: 10.1126/scirobotics.abl7344] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin). This could be attained through either innovative schemes for developing distributed electronics or repurposing the neuromorphic circuits developed for other sensory modalities such as vision and audio. This Review highlights the hardware implementations of various computational building blocks for e-skin and the ways they can be integrated to potentially realize human skin-like or peripheral nervous system-like functionalities. The neural-like sensing and data processing are discussed along with various algorithms and hardware architectures. The integration of ultrathin neuromorphic chips for local computation and the printed electronics on soft substrate used for the development of e-skin over large areas are expected to advance robotic interaction as well as open new avenues for research in medical instrumentation, wearables, electronics, and neuroprosthetics.
Collapse
Affiliation(s)
- Fengyuan Liu
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Sweety Deswal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| | | | - Mohsen Kaboli
- Department of Research, New Technologies, Innovation, BMW Group, Parkring 19, 85748 Garching bei Munchen, Germany.,Cognitive Robotics and Tactile Intelligence Group, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, UK
| |
Collapse
|
35
|
Park Y, Yun I, Chung WG, Park W, Lee DH, Park J. High-Resolution 3D Printing for Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104623. [PMID: 35038249 PMCID: PMC8922115 DOI: 10.1002/advs.202104623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/04/2021] [Indexed: 05/17/2023]
Abstract
The ability to form arbitrary 3D structures provides the next level of complexity and a greater degree of freedom in the design of electronic devices. Since recent progress in electronics has expanded their applicability in various fields in which structural conformability and dynamic configuration are required, high-resolution 3D printing technologies can offer significant potential for freeform electronics. Here, the recent progress in novel 3D printing methods for freeform electronics is reviewed, with providing a comprehensive study on 3D-printable functional materials and processes for various device components. The latest advances in 3D-printed electronics are also reviewed to explain representative device components, including interconnects, batteries, antennas, and sensors. Furthermore, the key challenges and prospects for next-generation printed electronics are considered, and the future directions are explored based on research that has emerged recently.
Collapse
Affiliation(s)
- Young‐Geun Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Insik Yun
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Won Gi Chung
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
- Center for NanomedicineInstitute for Basic Science (IBS)Seoul03722Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
36
|
Murakami K, Tochinai R, Tachibana D, Isano Y, Matsuda R, Nakamura F, Kurotaki Y, Isoda Y, Yamane M, Sugita Y, Fukuda J, Ueno K, Miki N, Fuchiwaki O, Ota H. Direct Wiring of Liquid Metal on an Ultrasoft Substrate Using a Polyvinyl Alcohol Lift-off Method. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7241-7251. [PMID: 35084813 DOI: 10.1021/acsami.1c20628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, wiring and system construction on ultrasoft materials such as biological tissues and hydrogels have been proposed for advanced wearable devices, implantable devices, and soft robotics. Among the soft conductive materials, Ga-based liquid metals (LMs) are both biocompatible and ultrasoft, making them a good match for electrodes on the ultrasoft substrates. However, gels and tissues are softer and less wettable to the LMs than conventional soft substrates such as Ecoflex and polydimethylsiloxane. In this study, we demonstrated the transfer of LM paste composed of Ga-based LM and Ni nanoparticles onto ultrasoft substrates such as biological tissue and gels using sacrificial polyvinyl alcohol (PVA) films. The LM paste pattern fabricated on the PVA film adhered to the ultrasoft substrate along surface irregularities and was transferred without being destroyed by the PVA film before the PVA's dissolution in water. The minimum line width that could be wired was approximately 165 μm. Three-dimensional wiring, such as the helical structure on the gel fiber surface, is also possible. Application of this transfer method to tissues using LM paste wiring allowed the successful stimulation of the vagus nerve in rats. In addition, we succeeded in transferring a temperature measurement system fabricated on a PVA film onto the gel. The connection between the solid-state electrical element and the LM paste was stable and maintained the functionality of the temperature-sensing system. This fundamental study of wiring fabrication and system integration can contribute to the development of advanced electric devices based on ultrasoft substrates.
Collapse
Affiliation(s)
- Koki Murakami
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ryota Tochinai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daiki Tachibana
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yuji Isano
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ryosuke Matsuda
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Fumika Nakamura
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yuta Kurotaki
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yutaka Isoda
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Monami Yamane
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yuya Sugita
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Junji Fukuda
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kazuhide Ueno
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Norihisa Miki
- Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ohmi Fuchiwaki
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Hiroki Ota
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
37
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
38
|
Krings EJ, Zhang H, Sarin S, Shield JE, Ryu S, Markvicka EJ. Lightweight, Thermally Conductive Liquid Metal Elastomer Composite with Independently Controllable Thermal Conductivity and Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104762. [PMID: 34723427 DOI: 10.1002/smll.202104762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Lightweight and elastically deformable soft materials that are thermally conductive are critical for emerging applications in wearable computing, soft robotics, and thermoregulatory garments. To overcome the fundamental heat transport limitations in soft materials, room temperature liquid metal (LM) has been dispersed in elastomer that results in soft and deformable materials with unprecedented thermal conductivity. However, the high density of LMs (>6 g cm-3 ) and the typically high loading (⩾85 wt%) required to achieve the desired properties contribute to the high density of these elastomer composites, which can be problematic for large-area, weight-sensitive applications. Here, the relationship between the properties of the LM filler and elastomer composite is systematically studied. Experiments reveal that a multiphase LM inclusion with a low-density phase can achieve independent control of the density and thermal conductivity of the elastomer composite. Quantitative design maps of composite density and thermal conductivity are constructed to rationally guide the selection of filler properties and material composition. This new multiphase material architecture provides a method to fine-tune material composition to independently control material and functional properties of soft materials for large-area and weight-sensitive applications.
Collapse
Affiliation(s)
- Ethan J Krings
- Smart Materials and Robotics Laboratory, Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Haipeng Zhang
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Suchit Sarin
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jeffery E Shield
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Sangjin Ryu
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Eric J Markvicka
- Smart Materials and Robotics Laboratory, Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
39
|
Asada J, Usami N, Ota H, Watanabe M, Ueno K. Liquid Metal–Ionic Liquid Composite Gels for Soft, Mixed Electronic–Ionic Conductors. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juri Asada
- Department of Chemistry and Life Science Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Natsuka Usami
- Department of Chemistry and Life Science Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Hiroki Ota
- Department of Mechanical Engineering Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Masayoshi Watanabe
- Advanced Chemical Energy Research Centre (ACERC) Institute of Advanced Sciences Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
- Advanced Chemical Energy Research Centre (ACERC) Institute of Advanced Sciences Yokohama National University 79‐5 Tokiwadai, Hodogaya‐ku Yokohama 240‐8501 Japan
| |
Collapse
|
40
|
Cho YH, Park YG, Kim S, Park JU. 3D Electrodes for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005805. [PMID: 34013548 DOI: 10.1002/adma.202005805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Indexed: 05/08/2023]
Abstract
In recent studies related to bioelectronics, significant efforts have been made to form 3D electrodes to increase the effective surface area or to optimize the transfer of signals at tissue-electrode interfaces. Although bioelectronic devices with 2D and flat electrode structures have been used extensively for monitoring biological signals, these 2D planar electrodes have made it difficult to form biocompatible and uniform interfaces with nonplanar and soft biological systems (at the cellular or tissue levels). Especially, recent biomedical applications have been expanding rapidly toward 3D organoids and the deep tissues of living animals, and 3D bioelectrodes are getting significant attention because they can reach the deep regions of various 3D tissues. An overview of recent studies on 3D bioelectronic devices, such as the use of electrical stimulations and the recording of neural signals from biological subjects, is presented. Subsequently, the recent developments in materials and fabrication processing to 3D micro- and nanostructures are introduced, followed by broad applications of these 3D bioelectronic devices at various in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Yo Han Cho
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
41
|
Moon S, Kim H, Lee K, Park J, Kim Y, Choi SQ. 3D Printable concentrated liquid metal composite with high thermal conductivity. iScience 2021; 24:103183. [PMID: 34703989 PMCID: PMC8524151 DOI: 10.1016/j.isci.2021.103183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Heat dissipation materials in which fillers are dispersed in a polymer matrix typically do not exhibit both high thermal conductivity (k) and processability due to a trade-off. In this paper, we fabricate heat dissipation composites which overcome the trade-off using liquid metal (LM). By exceeding the conventional filler limit, ten times higher k is achieved for a 90 vol% LM composite compared with k of 50 vol% LM composite. Further, an even higher k is achieved by introducing h-BN between the LM droplets, and the highest k in this study was 17.1 W m-1 K-1. The LM composite is processable at room temperature and used as inks for 3D printing. This combination of high k and processability not only allows heat dissipation materials to be processed on demand under ambient conditions but it also increases the surface area of the LM composite, which enables rapid heat dissipation.
Collapse
Affiliation(s)
- Sumin Moon
- Department of Chemical and Biomolecular Engineering and KINC, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hanul Kim
- Department of Chemical and Biomolecular Engineering and KINC, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyoungmun Lee
- Department of Chemical and Biomolecular Engineering and KINC, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jinwon Park
- Department of Chemical and Biomolecular Engineering and KINC, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Yunho Kim
- Advanced Functional Polymers Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering and KINC, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
42
|
Luitz M, Lunzer M, Goralczyk A, Mader M, Bhagwat S, Warmbold A, Helmer D, Kotz F, Rapp BE. High Resolution Patterning of an Organic-Inorganic Photoresin for the Fabrication of Platinum Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101992. [PMID: 34337801 PMCID: PMC11469048 DOI: 10.1002/adma.202101992] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Platinum (Pt) is an interesting material for many applications due to its high chemical resilience, outstanding catalytic activity, high electrical conductivity, and high melting point. However, microstructuring and especially 3D microstructuring of platinum is a complex process, based on expensive and specialized equipment often suffering from very slow processing speeds. In this work, organic-inorganic photoresins, which can be structured using direct optical lithography as well as two-photon lithography (TPL) with submicrometer resolution and high-throughput is presented. The printed structures are subsequently converted to high-purity platinum using thermal debinding of the binder and reduction of the salt. With this technique, complex 3D structures with a 3D resolution of 300 nm were fabricated. At a layer thickness of 35 nm, the patterns reach a high conductivity of 67% compared to bulk platinum. Microheaters, thermocouple sensors as well as a Lab-on-a-Chip system are presented as exemplary applications. This technology will enable a broad range of application from electronics, sensing and heating elements to 3D photonics and metamaterials.
Collapse
Affiliation(s)
- Manuel Luitz
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK) University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | | | - Andreas Goralczyk
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK) University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | - Markus Mader
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK) University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | - Sagar Bhagwat
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK) University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
| | - Andreas Warmbold
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Dorothea Helmer
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK) University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
- FIT Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
| | - Frederik Kotz
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK) University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
| | - Bastian E. Rapp
- Laboratory of Process TechnologyNeptunLabDepartment of Microsystems Engineering (IMTEK) University of FreiburgGeorges‐Köhler‐Allee 10379110FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan‐Meier‐Straße 2179104FreiburgGermany
- FIT Freiburg Center of Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 10579110FreiburgGermany
| |
Collapse
|
43
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: https:/doi.org/10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
|
44
|
Balani SB, Ghaffar SH, Chougan M, Pei E, Şahin E. Processes and materials used for direct writing technologies: A review. RESULTS IN ENGINEERING 2021; 11:100257. [DOI: 10.1016/j.rineng.2021.100257] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
|
45
|
Park Y, Lee G, Jang J, Yun SM, Kim E, Park J. Liquid Metal-Based Soft Electronics for Wearable Healthcare. Adv Healthc Mater 2021; 10:e2002280. [PMID: 33724723 DOI: 10.1002/adhm.202002280] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/24/2021] [Indexed: 12/19/2022]
Abstract
Wearable healthcare devices have garnered substantial interest for the realization of personal health management by monitoring the physiological parameters of individuals. Attaining the integrity between the devices and the biological interfaces is one of the greatest challenges to achieving high-quality body information in dynamic conditions. Liquid metals, which exist in the liquid phase at room temperatures, are advanced intensively as conductors for deformable devices because of their excellent stretchability and self-healing ability. The unique surface chemistry of liquid metals allows the development of various sensors and devices in wearable form. Also, the biocompatibility of liquid metals, which is verified through numerous biomedical applications, holds immense potential in uses on the surface and inside of a living body. Here, the recent progress of liquid metal-based wearable electronic devices for healthcare with respect to the featured properties and the processing technologies is discussed. Representative examples of applications such as biosensors, neural interfaces, and a soft interconnection for devices are reviewed. The current challenges and prospects for further development are also discussed, and the future directions of advances in the latest research are explored.
Collapse
Affiliation(s)
- Young‐Geun Park
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Ga‐Yeon Lee
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| | - Jiuk Jang
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Su Min Yun
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| | - Jang‐Ung Park
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
- Nano Science Technology Institute Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
46
|
Li Z, Guo Y, Zong Y, Li K, Wang S, Cao H, Teng C. Ga Based Particles, Alloys and Composites: Fabrication and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2246. [PMID: 34578561 PMCID: PMC8471900 DOI: 10.3390/nano11092246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Abstract
Liquid metal (LM) materials, including pure gallium (Ga) LM, eutectic alloys and their composites with organic polymers and inorganic nanoparticles, are cutting-edge functional materials owing to their outstanding electrical conductivity, thermal conductivity, extraordinary mechanical compliance, deformability and excellent biocompatibility. The unique properties of LM-based materials at room temperatures can overcome the drawbacks of the conventional electronic devices, particularly high thermal, electrical conductivities and their fluidic property, which would open tremendous opportunities for the fundamental research and practical applications of stretchable and wearable electronic devices. Therefore, research interest has been increasingly devoted to the fabrication methodologies of LM nanoparticles and their functional composites. In this review, we intend to present an overview of the state-of-art protocols for the synthesis of Ga-based materials, to introduce their potential applications in the fields ranging from wearable electronics, energy storage batteries and energy harvesting devices to bio-applications, and to discuss challenges and opportunities in future studies.
Collapse
Affiliation(s)
- Zhi Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yiming Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Yufen Zong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Kai Li
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Shuang Wang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.G.); (Y.Z.)
| | - Chao Teng
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.L.); (K.L.); (S.W.)
| |
Collapse
|
47
|
Jang J, Park YG, Cha E, Ji S, Hwang H, Kim GG, Jin J, Park JU. 3D Heterogeneous Device Arrays for Multiplexed Sensing Platforms Using Transfer of Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101093. [PMID: 34142400 DOI: 10.1002/adma.202101093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Indexed: 05/28/2023]
Abstract
Despite recent substantial advances in perovskite materials, their 3D integration capability for next-generation electronic devices is limited owing to their inherent vulnerability to heat and moisture with degradation of their remarkable optoelectronic properties during fabrication processing. Herein, a facile method to transfer the patterns of perovskites to planar or nonplanar surfaces using a removable polymer is reported. After fabricating perovskite devices on this removable polymer film, the conformal attachment of this film on target surfaces can place the entire devices on various substrates by removing this sacrificial film. This transfer method enables the formation of a perovskite image sensor array on a soft contact lens, and in vivo tests using rabbits demonstrate its wearability. Furthermore, 3D heterogeneous integration of a perovskite photodetector array with an active-matrix array of pressure-sensitive silicon transistors using this transfer method demonstrates the formation of a multiplexed sensing platform detecting distributions of light and tactile pressure simultaneously.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
- KIURI Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunkyung Cha
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sangyoon Ji
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunbin Hwang
- School of Materials Science and Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Gon Guk Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungho Jin
- School of Materials Science and Engineering, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
- KIURI Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
48
|
Chen C, Li S, Notten PHL, Zhang Y, Hao Q, Zhang X, Lei W. 3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24785-24794. [PMID: 34013732 DOI: 10.1021/acsami.1c03997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three-dimensional (3D) printing method has been developed for preparing a lithium anode base on 3D-structured copper mesh current collectors. Through in situ observations and computer simulations, the deposition behavior and mechanism of lithium ions in the 3D copper mesh current collector are clarified. Benefiting from the characteristics that the large pores can transport electrolyte and provide space for dendrite growth, and the small holes guide the deposition of dendrites, the 3D Cu mesh anode exhibits excellent deposition and stripping capability (50 mAh cm-2), high-rate capability (50 mA cm-2), and a long-term stable cycle (1000 h). A full lithium battery with a LiFePO4 cathode based on this anode exhibits a good cycle life. Moreover, a 3D fully printed lithium-sulfur battery with a 3D printed high-load sulfur cathode can easily charge mobile phones and light up 51 LED indicators, which indicates the great potential for the practicability of lithium-metal batteries with the characteristic of high energy densities. Most importantly, this unique and simple strategy is also able to solve the dendrite problem of other secondary metal batteries. Furthermore, this method has great potential in the continuous mass production of electrodes.
Collapse
Affiliation(s)
- Chenglong Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei street, Xuanwu District, Nanjing City 210094, Jiangsu Province, China
| | - Shaopeng Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Peter H L Notten
- Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Forschungszentrum Jülich (IEK-9), D-52425 Jülich, Germany
| | - Yuehua Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China
| | - Qingli Hao
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei street, Xuanwu District, Nanjing City 210094, Jiangsu Province, China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technology, College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei street, Xuanwu District, Nanjing City 210094, Jiangsu Province, China
| |
Collapse
|
49
|
Shin H, Seo H, Chung WG, Joo BJ, Jang J, Park JU. Recent progress on wearable point-of-care devices for ocular systems. LAB ON A CHIP 2021; 21:1269-1286. [PMID: 33704299 DOI: 10.1039/d0lc01317j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The eye is a complex sensory organ that contains abundant information for specific diseases and pathological responses. It has emerged as a facile biological interface for wearable healthcare platforms because of its excellent accessibility. Recent advances in electronic devices have led to the extensive research of point-of-care (POC) systems for diagnosing and monitoring diseases by detecting the biomarkers within the eye. Among these systems, contact lenses, which make direct contact with the ocular surfaces, have been utilized as one of the promising candidates for non-invasive POC testing of various diseases. The continuous and long-term measurement from the sensor allows the patients to manage their symptoms in an effective and convenient way. Herein, we review the progress of contact lens sensors in terms of the materials, methodologies, device designs, and target biomarkers. The anatomical structure and biological mechanisms of the eye are also discussed to provide a comprehensive understanding of the principles of contact lens sensors. Intraocular pressure and glucose, which are the representative biomarkers found in the eyes, can be measured with the biosensors integrated with contact lenses for the diagnosis of glaucoma and diabetes. Furthermore, contact lens sensors for various general pathologies as well as other ocular diseases are also considered, thereby providing the prospects for further developments of smart contact lenses as a future POC system.
Collapse
Affiliation(s)
- Haein Shin
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
50
|
Jang J, Kim J, Shin H, Park YG, Joo BJ, Seo H, Won JE, Kim DW, Lee CY, Kim HK, Park JU. Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. SCIENCE ADVANCES 2021; 7:eabf7194. [PMID: 33789904 PMCID: PMC8011975 DOI: 10.1126/sciadv.abf7194] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Wearable electronic devices that can monitor physiological signals of the human body to provide biomedical information have been drawing extensive interests for sustainable personal health management. Here, we report a human pilot trial of a soft, smart contact lens and a skin-attachable therapeutic device for wireless monitoring and therapy of chronic ocular surface inflammation (OSI). As a diagnostic device, this smart contact lens enables real-time measurement of the concentration of matrix metalloproteinase-9, a biomarker for OSI, in tears using a graphene field-effect transistor. As a therapeutic device, we also fabricated a stretchable and transparent heat patch attachable on the human eyelid conformably. Both diagnostic and therapeutic devices can be incorporated using a smartphone for their wireless communications, thereby achieving instantaneous diagnosis of OSI and automated hyperthermia treatments. Furthermore, in vivo tests using live animals and human subjects confirm their good biocompatibility and reliability as a noninvasive, mobile health care solution.
Collapse
Affiliation(s)
- Jiuk Jang
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Joohee Kim
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Haein Shin
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Young-Geun Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- 3KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Byung Jun Joo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Hunkyu Seo
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Jong-Eun Won
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Dentistry, Korea University Guro Hospital, Seoul 08308, Republic of Korea
- Institute of Clinical Dental Research, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Dai Woo Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea
- Bio-Medical Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, South Korea
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, South Korea.
- Bio-Medical Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, South Korea
| | - Jang-Ung Park
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- 3KIURI Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|