1
|
Wang S, Pu J, Xu S, Tian Y, Shu Q, Zou R, Zhang T. Flexible and Multifunctional Composites with Highly Strain Sensing and Impact Resistance Properties. Polymers (Basel) 2024; 16:1544. [PMID: 38891490 PMCID: PMC11174733 DOI: 10.3390/polym16111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The development of smart protective clothing will help detect injuries from contact sports, traffic collisions, and other accidents. The combination of ecoflex, spacer fabric, and graphene-based aerogel provides a multifunctional composite. It shows a strain sensitivity of 17.71 at the strain range of 40~55%, a pressure sensitivity of 0.125 kPa-1 at the pressure range of 0~15 kPa, and a temperature sensitivity of -0.648 °C-1. After 50 impact tests, its protection coefficient only dropped from 60% to 55%. Additionally, it shows thermal insulation properties. The compression and impact process results of finite element numerical simulation analysis are in good agreement with the experimental results. The ecoflex/aerogel/spacer fabric sensor exhibits a simple structure, large pressure strain, high sensitivity, flexibility, and ease of fabrication, making it a candidate for smart protective clothing resistant to impact loads.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (S.W.); (J.P.)
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St., Shapingba District, Chongqing 400044, China
| | - Jianyu Pu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (S.W.); (J.P.)
| | - Shuquan Xu
- Southwest Technology and Engineering Research Institute, Chongqing 400039, China; (Y.T.); (Q.S.)
| | - Yuanhao Tian
- Southwest Technology and Engineering Research Institute, Chongqing 400039, China; (Y.T.); (Q.S.)
| | - Qian Shu
- Southwest Technology and Engineering Research Institute, Chongqing 400039, China; (Y.T.); (Q.S.)
| | - Rui Zou
- School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
| | - Tonghua Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (S.W.); (J.P.)
| |
Collapse
|
2
|
Zhu WB, Wang YY, Fan T, Zhu Y, Tang ZH, Huang P, Li YQ, Fu SY. Comprehensive Investigation of the Temperature-Dependent Electromechanical Behaviors of Carbon Nanotube/Polymer Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8170-8179. [PMID: 38581390 DOI: 10.1021/acs.langmuir.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
The performances of flexible piezoresistive sensors based on polymer nanocomposites are significantly affected by the environmental temperature; therefore, comprehensively investigating the temperature-dependent electromechanical response behaviors of conductive polymer nanocomposites is crucial for developing high-precision flexible piezoresistive sensors in a wide-temperature range. Herein, carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composites widely used for flexible piezoresistive sensors were prepared, and then the temperature-dependent electrical, mechanical, and electromechanical properties of the optimized CNT/PDMS composite in the temperature range from -150 to 150 °C were systematically investigated. At a low temperature of -150 °C, the CNT/PDMS composite becomes brittle with a compressive modulus of ∼1.2 MPa and loses its elasticity and reversible sensing capability. At a high temperature (above 90 °C), the CNT/PDMS composite softens, shows a fluid-like mechanical property, and loses its reversible sensing capability. In the temperature range from -60 to 90 °C, the CNT/PDMS composite exhibits good elasticity and reversible sensing behaviors and its modulus, resistivity, and sensing sensitivity decrease with an increasing temperature. At room temperature (30 °C), the CNT/PDMS composite exhibits better mechanical and piezoresistive stability than those at low and high temperatures. Given that environmental temperature changes have significant effects on the sensing performances of conductive polymer composites, the effect of ambient temperature changes must be considered when flexible piezoresistive sensors are designed and fabricated.
Collapse
Affiliation(s)
- Wei-Bin Zhu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - You-Yong Wang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, Hubei 442002, People's Republic of China
| | - Ting Fan
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China
| | - Yu Zhu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhen-Hua Tang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuan-Qing Li
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Shao-Yun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
3
|
Ma J, Vaghani DP, Im S, Kong M, Shamsi M, Wei S, Vong MH, Dickey MD. Injection Molding of Liquid Metal by Harnessing Nonstick Molds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10931-10941. [PMID: 38377555 DOI: 10.1021/acsami.3c16692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The fluid nature of liquid metals combined with their ability to form a solid native oxide skin enables them to be patterned in ways that would be challenging for solid metals. The present work shows a unique way of patterning liquid metals by injecting liquid metals into a mold. The mold contains a nonstick coating that enables the removal of the mold, thereby leaving just the liquid metal on the target substrate. This approach offers the simplicity and structural control of molding but without having the mold become part of the device. Thus, the metal can be encapsulated with very soft polymers that collapse if used as microchannels. The same mold can be used multiple times for high-volume patterning of liquid metal. The injection molding method is rapid and reliably produces structures with complex geometries on both flat and curved surfaces. We demonstrate the method by fabricating an elastomeric Joule heater and an electroadhesive soft gripper to show the potential of the method for soft and stretchable devices.
Collapse
Affiliation(s)
- Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dhwanil P Vaghani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sooik Im
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Mohammad Shamsi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shuzhen Wei
- Wilson College of Textiles, NC State University, Raleigh, North Carolina 27695, United States
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Vanskeviče I, Kinka M, Banys J, Macutkevič J, Schaefer S, Selskis A, Fierro V, Celzard A. Dielectric and Ultrasonic Properties of PDMS/TiO 2 Nanocomposites. Polymers (Basel) 2024; 16:603. [PMID: 38475287 DOI: 10.3390/polym16050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This work presents the dielectric and ultrasonic properties of polydimethylsiloxane (PDMS) nanocomposites filled with titanium dioxide nanoparticles. The dielectric study was performed over a very broad range of frequencies (20 Hz-3 THz). The dielectric permittivity was almost frequency-independent in all the composites at room temperature over the whole range of measurement frequencies, and the dielectric losses were very low under these conditions (less than 2). The dielectric permittivity strongly increases with the nanoparticle concentration according to the Maxwell-Garnet model. Therefore, the investigated composites are suitable for various flexible electronic applications, particularly in the microwave and terahertz frequency ranges. Dielectric dispersion and increased attenuation of ultrasonic waves were observed at lower temperatures (below 280 K) due to the relaxation of polymer molecules at the PDMS/TiO2 interface and in the polymer matrix. The relaxation time followed the Vogel-Vulcher law, while the freezing temperature increased with the titanium dioxide concentration due to interactions between the polymer molecules and nanoparticles. The significant hysteresis in the ultrasonic properties indicated that titanium dioxide acts as a crystallization center. This is confirmed by the correlation between the hysteresis in the ultrasonic properties and the structure of the composites. The small difference in the activation energy values obtained from the ultrasonic and dielectric investigations is related to the fact that the dielectric dispersion is slightly broader than the Debye-type dielectric dispersion.
Collapse
Affiliation(s)
- Ieva Vanskeviče
- Faculty of Physics, Vilnius University, Sauletekio 9/3, LT-10222 Vilnius, Lithuania
| | - Martynas Kinka
- Faculty of Physics, Vilnius University, Sauletekio 9/3, LT-10222 Vilnius, Lithuania
| | - Jūras Banys
- Faculty of Physics, Vilnius University, Sauletekio 9/3, LT-10222 Vilnius, Lithuania
| | - Jan Macutkevič
- Center for Physical Science and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Sebastien Schaefer
- Institut Jean Lamour-IJL, Université de Lorraine, CNRS, 88000 Épinal, France
| | - Algirdas Selskis
- Center for Physical Science and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Vanessa Fierro
- Institut Jean Lamour-IJL, Université de Lorraine, CNRS, 88000 Épinal, France
| | - Alain Celzard
- Institut Jean Lamour-IJL, Université de Lorraine, CNRS, 88000 Épinal, France
- Institut Universitaire de France-IUF, 75231 Paris, France
| |
Collapse
|
5
|
Kuwajima Y, Yamaguchi Y, Yamada Y, Morita T, Wiranata A, Minaminosono A, Hosoya N, Kakehi Y, Maeda S. Pocketable and Smart Electrohydrodynamic Pump for Clothes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1883-1891. [PMID: 38096263 PMCID: PMC10788827 DOI: 10.1021/acsami.3c15274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Seamlessly fusing fashion and functionality can redefine wearable technology and enhance the quality of life. We propose a pocketable and smart electrohydrodynamic pump (PSEP) with self-sensing capability for wearable thermal controls. Overcoming the constraints of traditional liquid-cooled wearables, PSEP with dimensions of 10 × 2 × 1.05 cm and a weight of 10 g is sufficiently compact to fit into a shirt pocket, providing stylish and unobtrusive thermal control. Silent operation coupled with the unique self-sensing ability to monitor the flow rate ensures system reliability without cumbersome additional components. The significant contribution of our study is the formulation and validation of a theoretical model for self-sensing in EHD pumps, thereby introducing an innovative functionality to EHD pump technology. PSEP can deliver temperature changes of up to 3 °C, considerably improving personal comfort. Additionally, the PSEP system features an intuitive, smartphone-compatible interface for seamless wireless control and monitoring, enhancing user interaction and convenience. Furthermore, the ability to detect and notify users of flow blockages, achieved by self-sensing, ensures an efficient and long-term operation. Through its blend of compact design, intelligent functionality, and stylish integration into daily wear, PSEP reshapes the landscape of wearable thermal control technology and offers a promising avenue for enhancing personal comfort in daily life.
Collapse
Affiliation(s)
- Yu Kuwajima
- Department
of Engineering Science and Mechanics, Shibaura
Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Yuya Yamaguchi
- Department
of Engineering Science and Mechanics, Shibaura
Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Yuhei Yamada
- Living
Systems Materialogy Research Group, International Research Frontiers
Initiative, Tokyo Institute of Technology, 4259, Nagatsuta-Cho, Midori-Ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takafumi Morita
- The
University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ardi Wiranata
- Department
of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
| | - Ayato Minaminosono
- Department
of Engineering Science and Mechanics, Shibaura
Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Naoki Hosoya
- Department
of Engineering Science and Mechanics, Shibaura
Institute of Technology, 3-7-5, Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Yasuaki Kakehi
- The
University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Shingo Maeda
- Department
of Mechanical Engineering, Tokyo Institute
of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
6
|
Zhou Y, Xu B, Zhou P, Chen X, Jiao G, Li H. Gold@mesoporous polydopamine nanoparticles modified self-healing hydrogel for sport-injuring therapy. Int J Biol Macromol 2023; 253:127441. [PMID: 37839604 DOI: 10.1016/j.ijbiomac.2023.127441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Sports-related damage is a prevalent issue, which a combination therapy including photothermal irradiation, self-healing dressing and antibacterial treatment is an effective way to rehabilitate it. In the study, a multifunctional hydrogel was developed to meet the requirement. Firstly, mesoporous polydopamine (MPDA) was prepared, where gold nanoparticles (Au NPs) were formed in its mesoporous structure, to construct Au@MPDA NPs with nanosize about 200 nm. Synergetic and efficient photothermal effect was achieved by the combination of the two photothermal agents. The Au@MPDA NPs were then added to modify polyvinyl alcohol-carboxymethyl chitosan-borax (PCB) hydrogel. Via rheological property characterization, cell experiments and antibacterial evaluation, high photothermal efficiency and effective antibacterial activity of Au@MPDA@PCB hydrogel was obtained with the aid of Au@MPDA NPs, together with self-healing property. When treated in motion-related tissue, the modified hydrogel showed excellent adaptive property and photothermal effect in situ. This study is beneficial for developing a novel rehabilitation treatment strategy for sports-related injuries.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Baoyong Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Pan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Xiaohui Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Genlong Jiao
- Department of Orthopaedics, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan 523560, China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
7
|
Chowdhury AH, Jafarizadeh B, Baboukani AR, Pala N, Wang C. Monitoring and analysis of cardiovascular pulse waveforms using flexible capacitive and piezoresistive pressure sensors and machine learning perspective. Biosens Bioelectron 2023; 237:115449. [PMID: 37356409 DOI: 10.1016/j.bios.2023.115449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/07/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
The growing interest in flexible electronics for physiological monitoring, particularly using flexible pressure sensors for cardiovascular pulse waveforms monitoring, has potential applications in cuffless blood pressure measurement and early diagnosis of cardiovascular disease. High sensitivity, fast response time, good pressure resolution and a high signal-to-noise ratio are essential for effective pulse waveform detection. This review focuses on flexible capacitive and piezoresistive pressure sensors, which have seen significant enhancements due to their simple operation, superior performance, wide range of materials, and easy fabrication. The comparison of sensing methods for acquiring pulse waveforms from the wrist artery, device integration configurations, high-quality pulse waveforms collection, and performance analysis of capacitive and piezoresistive sensors are discussed. The review also covers the use of machine learning for analyzing pulse waveforms for cardiovascular disease diagnosis and cuff-less blood pressure monitoring. Lastly, it provides perspectives on current challenges and further advancements in the field.
Collapse
Affiliation(s)
- Azmal Huda Chowdhury
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, 33174, USA
| | - Borzooye Jafarizadeh
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, 33174, USA
| | - Amin Rabiei Baboukani
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, 33174, USA
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL, 33174, USA
| | - Chunlei Wang
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL, 33174, USA.
| |
Collapse
|
8
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
9
|
Ozkan E, Garren M, Manuel J, Douglass M, Devine R, Mondal A, Kumar A, Ashcraft M, Pandey R, Handa H. Superhydrophobic and Conductive Foams with Antifouling and Oil-Water Separation Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7610-7626. [PMID: 36700859 DOI: 10.1021/acsami.2c22180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hybrid organic-inorganic materials are attracting enormous interest in materials science due to the combination of multiple advantageous properties of both organic and inorganic components. Taking advantage of a simple, scalable, solvent-free hard-sacrificial method, we report the successful fabrication of three-dimensional hybrid porous foams by integrating two types of fillers into a poly(dimethylsiloxane) (PDMS) framework. These fillers consist of hydrophobic electrically conductive graphene (GR) nanoplatelets and hydrophobic bactericidal copper (Cu) microparticles. The fillers were utilized to create the hierarchical rough structure with low-surface-energy properties on the PDMS foam surfaces, leading to remarkable superhydrophobicity/superoleophilicity with contact angles of 158 and 0° for water and oil, respectively. The three-dimensional interconnected porous foam structures facilitated high oil adsorption capacity and excellent reusability as well as highly efficient oil/organic solvent-water separation in turbulent, corrosive, and saline environments. Moreover, the introduction of the fillers led to a significant improvement in the electrical conductivity and biofouling resistance (vs whole blood, fibrinogen, platelet cells, and Escherichia coli) of the foams. We envision that the developed composite strategy will pave a facile, scalable, and effective way for fabricating novel multifunctional hybrid materials with ideal properties that may find potential use in a broad range of biomedical, energy, and environmental applications.
Collapse
Affiliation(s)
- Ekrem Ozkan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - James Manuel
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Anil Kumar
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Morgan Ashcraft
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Rashmi Pandey
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Huang CY, Yang G, Huang P, Hu JM, Tang ZH, Li YQ, Fu SY. Flexible Pressure Sensor with an Excellent Linear Response in a Broad Detection Range for Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3476-3485. [PMID: 36621816 DOI: 10.1021/acsami.2c19465] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pressure sensing is highly demanding in wearable devices, robotics, and artificial intelligence, whereas it is still a big challenge to develop a pressure sensor with an excellent linear response in a broad detection range. Herein, a flexible and porous carbon nanotube (CNT)/carbon black (CB)/carbonyl iron powder (CIP)/silicone composite is proposed by a simple strategy of mixing, curing, and washing. Due to the porous structure induced by the sacrifice of sugar particles, an excellent linear response (R2 = 0.999) is achieved for the composite sensor by manipulating the contributions of contact resistance and tunnel resistance to the sensing performance via the alternation of CB and CNT contents. Moreover, the porous structure donates the composite sensor a low compressive modulus at a low pressure level, while the CIPs introduced lead to a high compressive modulus at a high pressure level with the assistance of an external magnetic field. As a result, the sensor produced has a wide linear response range of 80 Pa to 220 kPa, much wider than most of the linear response pressure sensors reported previously. The wide detection range is demonstrated by cyclic pressure tests in the frequency range of 0.1-5 Hz, durability tests, and monitoring human or robot motions including breathing, walking, lifting, and boxing, etc. Taking the advantages of low cost, high sensitivity, and excellent linear response in a wide pressure range, the current composite sensor is promising for precise monitoring of human motions and delicate controlling of robots.
Collapse
Affiliation(s)
- Cheng-Yi Huang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Gang Yang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Jin-Ming Hu
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Zhen-Hua Tang
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Yuan-Qing Li
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| | - Shao-Yun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
11
|
Tuli A, Singh AP. Polymer-based wearable nano-composite sensors: a review. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2023. [DOI: 10.1080/1023666x.2022.2161737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aashish Tuli
- Mechanical Engineering, UIET Panjab University, Chandigarh, India
| | | |
Collapse
|
12
|
Chen M, Li P, Wang R, Xiang Y, Huang Z, Yu Q, He M, Liu J, Wang J, Su M, Zhang M, Jian A, Ouyang J, Zhang C, Li J, Dong M, Zeng S, Wu J, Hong P, Hou C, Zhou N, Zhang D, Zhou H, Tao G. Multifunctional Fiber-Enabled Intelligent Health Agents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200985. [PMID: 35820163 DOI: 10.1002/adma.202200985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The application of wearable devices is promoting the development toward digitization and intelligence in the field of health. However, the current smart devices centered on human health have disadvantages such as weak perception, high interference degree, and unfriendly interaction. Here, an intelligent health agent based on multifunctional fibers, with the characteristics of autonomy, activeness, intelligence, and perceptibility enabling health services, is proposed. According to the requirements for healthcare in the medical field and daily life, four major aspects driven by intelligent agents, including health monitoring, therapy, protection, and minimally invasive surgery, are summarized from the perspectives of materials science, medicine, and computer science. The function of intelligent health agents is realized through multifunctional fibers as sensing units and artificial intelligence technology as a cognitive engine. The structure, characteristics, and performance of fibers and analysis systems and algorithms are reviewed, while discussing future challenges and opportunities in healthcare and medicine. Finally, based on the above four aspects, future scenarios related to health protection of a person's life are presented. Intelligent health agents will have the potential to accelerate the realization of precision medicine and active health.
Collapse
Affiliation(s)
- Min Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Pan Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Rui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuanzhuo Xiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhiheng Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Qiao Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Muyao He
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jia Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiaxi Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Minyu Su
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Manni Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Aijia Jian
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jingyu Ouyang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Chenxi Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jing Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Mengxue Dong
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Shaoning Zeng
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiawei Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ping Hong
- Beijing Sport University, Beijing, 100091, P. R. China
| | - Chong Hou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ning Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Dingyu Zhang
- Hubei Provincial Health and Health Committee, Wuhan, Hubei, 430015, P. R. China
| | - Huamin Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
13
|
A Low-modulus, Adhesive, and Highly Transparent Hydrogel for Multi-use Flexible Wearable Sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Turco A, Monteduro AG, Montagna F, Primiceri E, Frigione M, Maruccio G. The effect of synthetic conditions on piezoresistive properties of ultrasensitive carbon nanotube/PDMS 3D composites. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Oh J, Kim DY, Kim H, Hur ON, Park SH. Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7637. [PMID: 36363228 PMCID: PMC9657234 DOI: 10.3390/ma15217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Conducting polymer composites consisting of carbon nanotubes (CNTs) as a conductive filler and polydimethylsiloxane (PDMS) as a polymer matrix were fabricated to investigate their capacitive and piezoresistive effects as pressure sensors. The pressure-sensing behavior and mechanism of the composites were compared in terms of basic configuration with a parallel plate structure. Various sensing experiments, such as sensitivity, repeatability, hysteresis, and temperature dependence according to the working principle, were conducted with varying filler contents. The hysteresis and repeatability of the pressure-sensing properties were investigated using cyclic tensile tests. In addition, a temperature test was performed at selected temperatures to monitor the change in the resistance/capacitance.
Collapse
|
16
|
Turco A, Monteduro AG, Montagna F, Primiceri E, Frigione M, Maruccio G. Does Size Matter? The Case of Piezoresistive Properties of Carbon Nanotubes/Elastomer Nanocomposite Synthesized through Mechanochemistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3741. [PMID: 36364523 PMCID: PMC9658284 DOI: 10.3390/nano12213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The growing interest in piezoresistive sensors has favored the development of numerous approaches and materials for their fabrication. Within this framework, carbon nanotubes (CNTs) are often employed. However, CNTs are a heterogeneous material with different morphological characteristics in terms of length and diameter, and, so far, experimental studies have not usually considered the effect of these parameters on the final sensor performances. Here, we observe how, by simply changing the CNTs length in a solvent-free mechanochemistry fabrication method, different porous 3D elastomeric nanocomposites with different electrical and mechanical properties can be obtained. In particular, the use of longer carbon nanotubes allows the synthesis of porous nanocomposites with better mechanical stability and conductivity, and with a nine-times-lower limit of detection (namely 0.2 Pa) when used as a piezoresistive sensor. Moreover, the material prepared with longer carbon nanotubes evidenced a faster recovery of its shape and electrical properties during press/release cycles, thus allowing faster response at different pressures. These results provide evidence as to how CNTs length can be a key aspect in obtaining piezoresistive sensors with better properties.
Collapse
Affiliation(s)
- Antonio Turco
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Anna Grazia Monteduro
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Francesco Montagna
- Department of Innovation Engineering, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | | | - Mariaenrica Frigione
- Department of Innovation Engineering, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Giuseppe Maruccio
- CNR Nanotec Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
17
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
18
|
Fei Y, Jiang R, Fang W, Liu T, Saeb MR, Hejna A, Ehsani M, Barczewski M, Sajadi SM, Chen F, Kuang T. Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: From design to performance evaluation. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2022.105653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Shi S, Liang J, Qu C, Chen S, Sheng B. Ramie Fabric Treated with Carboxymethylcellulose and Laser Engraved for Strain and Humidity Sensing. MICROMACHINES 2022; 13:1309. [PMID: 36014231 PMCID: PMC9414723 DOI: 10.3390/mi13081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 05/08/2023]
Abstract
Wearable fabric sensors have attracted enormous attention due to their huge potential in human health and activity monitoring, human-machine interaction and the Internet of Things (IoT). Among natural fabrics, bast fabric has the advantage of high strength, good resilience and excellent permeability. Laser engraving, as a high throughput, patternable and mask-free method, was demonstrated to fabricate fabric sensors. In this work, we developed a simplified, cost-effective and environmentally friendly method for engraving ramie fabric (a kind of bast fabric) directly by laser under an ambient atmosphere to prepare strain and humidity sensors. We used carboxymethylcellulose (CMC) to pretreat ramie fabric before laser engraving and gained laser-carbonized ramie fabrics (LCRF) with high conductivity (65 Ω sq-1) and good permeability. The strain and humidity sensors had high sensitivity and good flexibility, which can be used for human health and activity monitoring.
Collapse
Affiliation(s)
- Shangxuan Shi
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Jiao Liang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Chenkai Qu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- Shanghai Aerospace Control Technology Institute, Shanghai 200233, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
20
|
Yen YH, Hsu CS, Lei ZY, Wang HJ, Su CY, Dai CL, Tsai YC. Laser-Induced Graphene Stretchable Strain Sensor with Vertical and Parallel Patterns. MICROMACHINES 2022; 13:1220. [PMID: 36014142 PMCID: PMC9412498 DOI: 10.3390/mi13081220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023]
Abstract
In intelligent manufacturing and robotic technology, various sensors must be integrated with equipment. In addition to traditional sensors, stretchable sensors are particularly attractive for applications in robotics and wearable devices. In this study, a piezoresistive stretchable strain sensor based on laser-induced graphene (LIG) was proposed and developed. A three-dimensional, porous LIG structure fabricated from polyimide (PI) film using laser scanning was used as the sensing layer of the strain sensor. Two LIG pattern structures (parallel and vertical) were fabricated and integrated within the LIG strain sensors. Scanning electron microscopy, an X-ray energy dispersive spectrometer, and Raman scattering spectroscopy were used to examine the microstructure of the LIG sensing layer. The performance and strain sensing properties of the parallel and vertical stretchable LIG strain sensors were investigated in tensile tests. The relative resistance changes and the gauge factors of the parallel and vertical LIG strain sensors were quantified. The parallel strain sensor achieved a high gauge factor of 15.79 in the applied strain range of 10% to 20%. It also had high sensitivity, excellent repeatability, good durability, and fast response times during the tensile experiments. The developed LIG strain sensor can be used for the real-time monitoring of human motions such like finger bending, wrist bending, and throat swallowing.
Collapse
Affiliation(s)
- Yu-Hsin Yen
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
| | - Chao-Shin Hsu
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
| | - Zheng-Yan Lei
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung City 402, Taiwan;
| | - Hsin-Jou Wang
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
| | - Ching-Yuan Su
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City 320, Taiwan;
| | - Ching-Liang Dai
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung City 402, Taiwan;
- Department of Mechanical Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Yao-Chuan Tsai
- Department of Bio-Industrial Mechatronics Engineering, National Chung Hsing University, Taichung City 402, Taiwan; (Y.-H.Y.); (C.-S.H.); (Z.-Y.L.); (H.-J.W.)
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung City 402, Taiwan;
| |
Collapse
|
21
|
Li S, Xu R, Wang J, Yang Y, Fu Q, Pan C. Ultra-stretchable, super-hydrophobic and high-conductive composite for wearable strain sensors with high sensitivity. J Colloid Interface Sci 2022; 617:372-382. [DOI: 10.1016/j.jcis.2022.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
22
|
Chen L, Zhang H, Mao Z, Wang B, Feng X, Sui X. Integrated Janus cellulosic composite with multiple thermal functions for personalized thermal management. Carbohydr Polym 2022; 288:119409. [DOI: 10.1016/j.carbpol.2022.119409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 01/04/2023]
|
23
|
Wang L, Chiang WH, Loh KJ. Topological design of strain sensing nanocomposites. Sci Rep 2022; 12:9179. [PMID: 35654931 PMCID: PMC9163329 DOI: 10.1038/s41598-022-13393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
High-performance piezoresistive nanocomposites have attracted extensive attention because of their significant potential as next-generation sensing devices for a broad range of applications, such as monitoring structural integrity and human performance. While various piezoresistive nanocomposites have been successfully developed using different material compositions and manufacturing techniques, current development procedures typically involve empirical trial and error that can be laborious, inefficient, and, most importantly, unpredictable. Therefore, this paper proposed and validated a topological design-based methodology to strategically manipulate the piezoresistive effect of nanocomposites to achieve a wide range of strain sensitivities without changing the material system. In particular, patterned nanocomposite thin films with stress-concentrating and stress-releasing topologies were designed. The strain sensing properties of the different topology nanocomposites were characterized and compared via electromechanical experiments. Those results were compared to both linear and nonlinear piezoresistive material model numerical simulations. Both the experimental and simulation results indicated that the stress-concentrating topologies could enhance strain sensitivity, whereas the stress-releasing topologies could significantly suppress bulk film piezoresistivity.
Collapse
Affiliation(s)
- Long Wang
- Department of Structural Engineering, University of California San Diego, La Jolla, CA, 92093-0085, USA.,Department of Civil and Environmental Engineering, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Kenneth J Loh
- Department of Structural Engineering, University of California San Diego, La Jolla, CA, 92093-0085, USA.
| |
Collapse
|
24
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
25
|
Li X, Chen S, Peng Y, Zheng Z, Li J, Zhong F. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3028. [PMID: 35459012 PMCID: PMC9032468 DOI: 10.3390/s22083028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 05/07/2023]
Abstract
The recent advances in wearable sensors and intelligent human-machine interfaces have sparked a great many interests in conductive fibers owing to their high conductivity, light weight, good flexibility, and durability. As one of the most impressive materials for wearable sensors, conductive fibers can be made from a variety of raw sources via diverse preparation strategies. Herein, to offer a comprehensive understanding of conductive fibers, we present an overview of the recent progress in the materials, the preparation strategies, and the wearable sensor applications related. Firstly, the three types of conductive fibers, including metal-based, carbon-based, and polymer-based, are summarized in terms of their principal material composition. Then, various preparation strategies of conductive fibers are established. Next, the primary wearable sensors made of conductive fibers are illustrated in detail. Finally, a robust outlook on conductive fibers and their wearable sensor applications are addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Zhong
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (S.C.); (Y.P.); (Z.Z.); (J.L.)
| |
Collapse
|
26
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
27
|
Wood DS, Jensen K, Crane A, Lee H, Dennis H, Gladwell J, Shurtz A, Fullwood DT, Seeley MK, Mitchell UH, Christensen WF, Bowden AE. Accurate Prediction of Knee Angles during Open-Chain Rehabilitation Exercises Using a Wearable Array of Nanocomposite Stretch Sensors. SENSORS 2022; 22:s22072499. [PMID: 35408112 PMCID: PMC9003122 DOI: 10.3390/s22072499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/14/2023]
Abstract
In this work, a knee sleeve is presented for application in physical therapy applications relating to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure knee angles during exercise, and can support at-home rehabilitation methods. The development of the device is presented. Testing was performed on eighteen subjects, and knee angles were predicted using a machine learning regressor. Subject-specific and device-specific models are analyzed and presented. Subject-specific models average root mean square errors of 7.6 and 1.8 degrees for flexion/extension and internal/external rotation, respectively. Device-specific models average root mean square errors of 12.6 and 3.5 degrees for flexion/extension and internal/external rotation, respectively. The device presented in this work proved to be a repeatable, reusable, low-cost device that can adequately model the knee's flexion/extension and internal/external rotation angles for rehabilitation purposes.
Collapse
Affiliation(s)
- David S. Wood
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Kurt Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Allison Crane
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Hyunwook Lee
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - Hayden Dennis
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - Joshua Gladwell
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA; (J.G.); (A.S.); (W.F.C.)
| | - Anne Shurtz
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA; (J.G.); (A.S.); (W.F.C.)
| | - David T. Fullwood
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Matthew K. Seeley
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - Ulrike H. Mitchell
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - William F. Christensen
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA; (J.G.); (A.S.); (W.F.C.)
| | - Anton E. Bowden
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
- Correspondence:
| |
Collapse
|
28
|
Chen F, Liu X, Liu H, Li S, Li S, Sun T, Zhao Y, Wang K. Improved interfacial performance of carbon fiber/polyetherimide composites by polyetherimide and modified graphene oxide complex emulsion type sizing agent. HIGH PERFORM POLYM 2021. [DOI: 10.1177/09540083211053742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the field of interfacial enhancement of composite, sizing method has attracted extensive attention. In this research, a new complex emulsion type sizing agent containing polyetherimide (PEI) and covalently chemical functionalized graphene oxide (GO) was first proposed to further improve the interfacial adhesion of carbon fiber (CF)/PEI composites, adapt to the high processing temperature, and overcome the shortcomings of the solution type sizing agent. The emulsion was prepared by the emulsion/solvent evaporation method. In order to avoid the agglomeration of nanomaterials on CF surface, the monomer and polymer structure of PEI was used to functionalize GO, so as to achieve better compatibility and dispersion of GO in PEI. The physicochemical state of CF surface was characterized and the successful introduction of GO was verified. The microbond test revealed that the introduction of GO further improved the IFSS compared with only PEI sizing. When GO grafted with PEI was used as the main component of the sizing agent, the IFSS reached the largest with an increasement of 55.96%. The mechanism of interfacial reinforcement was proposed. Increased ability of mechanical interlocking, the mutual solubility between PEI molecular chains, and the improvement in wettability may be beneficial to the interfacial strength. This mild and effective modification method provided theoretical guidance for the interfacial enhancement of composites and was expected to be applied in industrial production.
Collapse
Affiliation(s)
- Fan Chen
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Hansong Liu
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Shuang Li
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Shile Li
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Tianpei Sun
- School of Materials Science and Engineering, Beihang University, Beijing, China
| | - Yan Zhao
- Material Science and Engineering, Beihang University, Beijing, China
| | | |
Collapse
|
29
|
Wu S, Cui Z, Baker GL, Mahendran S, Xie Z, Zhu Y. A Biaxially Stretchable and Self-Sensing Textile Heater Using Silver Nanowire Composite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59085-59091. [PMID: 34860492 DOI: 10.1021/acsami.1c17651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable heaters have garnered significant attention from academia and industry for their great potential in thermotherapy. Silver nanowire (AgNW) is a promising conductive material for flexible and stretchable electrodes. Here, a resistive, biaxially stretchable heater based on AgNW composite is reported for the first time, where a AgNW percolation network is encased in a thin polyimide (PI) film and integrated with a highly stretchable textile. AgNW/PI is patterned with a 2D Kirigami structure, which enables constant resistance under a large tensile strain (up to uniaxial 100% strain and 50% biaxial strain). The heater can achieve a high temperature of ∼140 °C with a low current of 0.125 A, fast heating and cooling rates of ∼16.5 and ∼14.1 °C s-1, respectively, and stable performance over 400 heating cycles. A feedback control system is developed to provide constant heating temperature under a temperature change of the surrounding environment. Demonstrated applications in applying thermotherapy at the curvilinear surface of the knee using the stretchable heater illustrate its promising potential for wearable applications.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zheng Cui
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - G Langston Baker
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Siddarth Mahendran
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ziyang Xie
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
30
|
Preparation of Polydimethylsiloxane-Modified Waterborne Polyurethane Coatings for Marine Applications. Polymers (Basel) 2021; 13:polym13244283. [PMID: 34960833 PMCID: PMC8703530 DOI: 10.3390/polym13244283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
A series of waterborne polyurethane dispersions (WPUs) modified with hydroxyl-terminated polydimethylsiloxane (PDMS) were prepared by incorporating PDMS into the soft segments of polyurethane chains. The structural characteristics of the prepared samples were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and particle size analysis (PSA). The effect of PDMS content on the thermal and mechanical properties of PDMS-modified waterborne polyurethanes (PS-WPU) was investigated. In addition, the water resistance and dimensional stability of the PS-WPU were investigated by measuring its water absorption ratio and water contact angle along with universal testing machine measurements.
Collapse
|
31
|
Li Y, Chen Y, Yang Y, Gu JD, Ke K, Yin B, Yang MB. Aligned wave-like elastomer fibers with robust conductive layers via electroless deposition for stretchable electrode applications. J Mater Chem B 2021; 9:8801-8808. [PMID: 34633022 DOI: 10.1039/d1tb01441b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flexible wearable electronics play an important role in the healthcare industry due to their unique skin affinity, portability and breathability. Despite great progress, it still remains a big challenge to facilely fabricate stretchable electrodes with low resistance, excellent stability and a wide tensile range. Here, we propose a handy and time-saving strategy for the fabrication of elastomeric films consisting of wave-like fibers with a robust conductive layer of silver nanoparticles (AgNPs) immobilized using polydopamine (PDA) and silicone rubber (SR). To realize better stretchability, electrospun thermoplastic polyurethane (TPU) mats with oriented nanofibers were treated via ethanol to achieve a wavy structure, which also allowed for the decoration of AgNP precursors on the TPU surface via PDA assisted electroless deposition (ELD). Therefore, the electrodes achieved a stretchability of 120% with high electrical conductivity (486 S cm-1). The films with a reduction time of 30 min showed superior electrical conductivity indicated by a resistance increase of only 100% within 50% strain. The TPU/PDA/AgNP/SR composites with a shorter reduction time of silver precursors could monitor human motions as wearable strain sensors with a wide work strain range (0-98%) and a high sensitivity (with a gauge factor (GF) of up to 81.76) for a strain of 80-98%. Therefore, they are an excellent candidate for potential application in prospective stretchable electronics.
Collapse
Affiliation(s)
- Yan Li
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yi Chen
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Yi Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Jun-Di Gu
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Bo Yin
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
32
|
Nanoarchitectonics of highly sensitive and with large working range 3D piezoresistive microporous foam based on carbon nanotubes and elastomer. J Colloid Interface Sci 2021; 607:1436-1445. [PMID: 34583046 DOI: 10.1016/j.jcis.2021.09.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Nanocarbon/polymeric 3D porous composites have been widely developed as piezoresistive sensors due to their improved performances. Functionalized nanocarbon is usually used to allow its adsorption on the surface of porous polymeric material. However, both the functionalization and the surface localized distribution of the nanomaterial can limit the nanocarbon effect on conductivity and mechanical stability of the material thus affecting piezoresistive performances. EXPERIMENTS A novel nanoarchitectonics strategy to prepare an elastomeric/carbon nanotubes (CNTs) 3D porous piezoresistive nanocomposite is developed. The fabrication route does not require complex apparatus and CNTs chemical functionalization. Moreover, foams of any shape and dimensions can be produced with neither complex machinery and procedures nor wastes production. FINDINGS The obtained material is characterized by the presence of well dispersed pristine CNTs on both surface and bulk of the polymeric matrix. The foam exhibited improved piezoresistive properties with excellent compressive stress (>150 kPa), sensitivity at low displacement (29 kPa-1) and limit of detection for both pressure (2 Pa) and extension (130 nm). These excellent features could allow the use of the as prepared nanocomposite in different applications ranging from wearable devices to robotic or infrastructure monitoring with outstanding flexibility.
Collapse
|
33
|
Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. MICROMACHINES 2021; 12:mi12080869. [PMID: 34442491 PMCID: PMC8399896 DOI: 10.3390/mi12080869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Fiber-based thermoelectric materials and devices have the characteristics of light-weight, stability, and flexibility, which can be used in wearable electronics, attracting the wide attention of researchers. In this work, we present a review of state-of-the-art fiber-based thermoelectric material fabrication, device assembling, and its potential applications in temperature sensing, thermoelectric generation, and temperature management. In this mini review, we also shine some light on the potential application in the next generation of wearable electronics, and discuss the challenges and opportunities.
Collapse
|
34
|
Shome A, Rather AM, Borbora A, Srikrishnarka P, Baidya A, Pradeep T, Manna U. Design of a Waste Paper-Derived Chemically 'Reactive' and Durable Functional Material with Tailorable Mechanical Property Following an Ambient and Sustainable Chemical Approach. Chem Asian J 2021; 16:1988-2001. [PMID: 34061458 DOI: 10.1002/asia.202100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Indexed: 01/14/2023]
Abstract
Controlled tailoring of mechanical property and wettability is important for designing various functional materials. The integration of these characteristics with waste materials is immensely challenging to achieve, however, it can provide sustainable solutions to combat relevant environmental pollutions and other relevant challenges. Here, the strategic conversion of discarded and valueless waste paper into functional products has been introduced following a catalyst-free chemical approach to tailor both the mechanical property and water wettability at ambient conditions for sustainable waste management and controlling the relevant environmental pollution. In the current design, the controlled and appropriate silanization of waste paper allowed to modulate both the a) porosity and b) compressive modulus of the paper-derived sponges. Further, the association of 1,4-conjugate addition reaction between amine and acrylate groups allowed to obtain an unconventional waste paper-derived chemically 'reactive' sponge. The appropriate covalent modification of the residual reactive acrylate groups with selected alkylamines at ambient conditions provided a facile basis to tailor the water wettability from moderate hydrophobicity, adhesive superhydrophobicity to non-adhesive superhydrophobicity. The embedded superhydrophobicity in the waste paper-derived sponge was capable of sustaining large physical deformations, severe physical abrasions, prolonged exposure to harsh aqueous conditions, etc. Further, the waste paper-derived, extremely water-repellent sponges and membranes were successfully extended for proof-of-concept demonstration of a practically relevant outdoor application, where the repetitive remediation of oil spillages has been demonstrated following both selective absorption (25 times) of oils and gravity-driven filtration-based (50 times) separation of oils from oil/water mixtures at different harsh aqueous scenarios.
Collapse
Affiliation(s)
- Arpita Shome
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Adil M Rather
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India.,Department of Chemical and Biochemical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Pillalamarri Srikrishnarka
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai, 600036, India
| | - Avijit Baidya
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai, 600036, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai, 600036, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India.,Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
35
|
Assembly and integration of conductive polypyrrole 2D nanofilm on protein nanolayer and the multiple potential applications. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Park T, Woo HK, Jung BK, Park B, Bang J, Kim W, Jeon S, Ahn J, Lee Y, Lee YM, Kim TI, Oh SJ. Noninterference Wearable Strain Sensor: Near-Zero Temperature Coefficient of Resistance Nanoparticle Arrays with Thermal Expansion and Transport Engineering. ACS NANO 2021; 15:8120-8129. [PMID: 33792304 DOI: 10.1021/acsnano.0c09835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, non-temperature interference strain gauge sensors, which are only sensitive to strain but not temperature, are developed by engineering the properties and structure from a material perspective. The environmental interference from temperature fluctuations is successfully eliminated by controlling the charge transport in nanoparticles with thermally expandable polymer substrates. Notably, the negative temperature coefficient of resistance (TCR), which originates from the hopping transport in nanoparticle arrays, is compensated by the positive TCR of the effective surface thermal expansion with anchoring effects. This strategy successfully controls the TCR from negative to positive. A near-zero TCR (NZTCR), less than 1.0 × 10-6 K-1, is achieved through precisely controlled expansion. Various characterization methods and finite element and transport simulations are conducted to investigate the correlated electrical, mechanical, and thermal properties of the materials and elucidate the compensated NZTCR mechanism. With this strategy, an all-solution-processed, transparent, highly sensitive, and noninterference strain sensor is fabricated with a gauge factor higher than 5000 at 1% strain, as demonstrated by pulse and motion sensing, as well as the noninterference property under variable-temperature conditions. It is envisaged that the sensor developed herein is applicable to multifunctional wearable sensors or e-skins for artificial skin or robots.
Collapse
Affiliation(s)
- Taesung Park
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ho Kun Woo
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Byeonghak Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junsung Bang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Woosik Kim
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sanghyun Jeon
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junhyuk Ahn
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yunheum Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Min Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
37
|
Appiagyei AB, Han JI. Potentiometric Performance of a Highly Flexible-Shaped Trifunctional Sensor Based on ZnO/V 2O 5 Microrods. SENSORS (BASEL, SWITZERLAND) 2021; 21:2559. [PMID: 33917438 PMCID: PMC8038666 DOI: 10.3390/s21072559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/22/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022]
Abstract
A trifunctional flexible sensor was fabricated on a polyethylene terephthalate (PET) fiber surface. Synthesized ZnO and ZnO/V2O5 composite were coated on ZnO seed layer sputtered PET fiber. X-ray diffraction (XRD) and photoelectron spectroscopy (XPS) techniques confirmed the exact formation of ZnO and ZnO/V2O5. The fabricated ZnO/V2O5 on ZnO seeds base temperature sensor recorded better electrical properties and reversibility with a maximum temperature coefficient resistance (TCR) of 0.0111 °C-1. A calibration curve (R = 0.9941) within glucose concentration of (10 µM-10 mM) was obtained at +0.8 V vs. Ag/AgCl from current-voltage curves which assisted in calculating glucose sensitivity, limit of detection (LOD), limit of quantification (LOQ). The electrode achieved an outstanding performance of sensitivity (72.06 µAmM-1cm-2), LOD (174 µM), and LOQ (582 µM) at optimum deposition time. Interference from oxidation of interfering biomolecules such as ascorbic acid, dopamine, and uric acid were negligible compared to glucose. Finally, the fabricated electrode was employed as a pH sensor and displayed a pH sensitivity of 42.26 mV/pH (R = 0.9922). This fabricated ZnO/V2O5 electrode exhibited high sensitivity and a stable combined temperature, glucose, and pH sensor which is promising for development of multifunctional sensors in next generation wearables.
Collapse
Affiliation(s)
| | - Jeong In Han
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Korea;
| |
Collapse
|
38
|
Kwon G, Kim SH, Kim D, Lee K, Jeon Y, Park CS, You J. Vapor phase polymerization for electronically conductive nanopaper based on bacterial cellulose/poly(3,4-ethylenedioxythiophene). Carbohydr Polym 2021; 257:117658. [PMID: 33541667 DOI: 10.1016/j.carbpol.2021.117658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Eco-friendly conductive polymer nanocomposites have garnered attention as an effective alternative for conventional conductive nanocomposites. Here, we report the fabrication and optimization of flexible, self-standing, and conductive bacterial cellulose/poly(3,4-ethylene dioxythiophene) (BC/PEDOT) nanocomposites using the vapor phase polymerization (VPP) method. Eco-friendly bacterial cellulose (BC) is used as a flexible matrix, and the highly conductive PEDOT polymer is introduced into the BC matrix to achieve electronic conductivity. We demonstrate that vapor phase polymerized BC/PEDOT composites exhibit more than 10 times lower sheet resistance (18 Ω/square) compared to solution polymerized BC/PEDOT (188 Ω/square). The resultant BC/PEDOT fabricated could be bent up to 100 times and completely rolled up without a notable decrease in electronic performance. Moreover, bent BC/PEDOT films enable operation of a green light-emitting diode (LED) light, indicating the flexibility and stability of conductive BC/PEDOT films. Overall, this study suggests a strategy for the development of eco-friendly, flexible, and conductive nanocomposite films.
Collapse
Affiliation(s)
- Goomin Kwon
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Se-Hyun Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dabum Kim
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Kangyun Lee
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Youngho Jeon
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Jungmok You
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea.
| |
Collapse
|
39
|
Wang C, Qi H. Visualising the knowledge structure and evolution of wearable device research. J Med Eng Technol 2021; 45:207-222. [PMID: 33769166 DOI: 10.1080/03091902.2021.1891314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, the literature associated with wearable devices has grown rapidly, but few studies have used bibliometrics and a visualisation approach to conduct deep mining and reveal a panorama of the wearable devices field. To explore the foundational knowledge and research hotspots of the wearable devices field, this study conducted a series of bibliometric analyses on the related literature, including papers' production trends in the field and the distribution of countries, a keyword co-occurrence analysis, theme evolution analysis and research hotspots and trends for the future. By conducting a literature content analysis and structure analysis, we found the following: (a) The subject evolution path includes sensor research, sensitivity research and multi-functional device research. (b) Wearable device research focuses on information collection, sensor materials, manufacturing technology and application, artificial intelligence technology application, energy supply and medical applications. The future development trend will be further studied in combination with big data analysis, telemedicine and personalised precision medical application.
Collapse
Affiliation(s)
- Chen Wang
- Department of Health informatics and Management, School of Health Humanities, Peking University, Beijing, China
| | - Huiying Qi
- Department of Health informatics and Management, School of Health Humanities, Peking University, Beijing, China
| |
Collapse
|
40
|
Gong M, Yue L, Kong J, Lin X, Zhang L, Wang J, Wang D. Knittable and Sewable Spandex Yarn with Nacre-Mimetic Composite Coating for Wearable Health Monitoring and Thermo- and Antibacterial Therapies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9053-9063. [PMID: 33583174 DOI: 10.1021/acsami.1c00864] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The emerging personal healthcare has significantly propelled the development of advanced wearable electronics with novel functions of providing diagnostic information and point-of-care therapies for specific diseases. However, it is still challenging to simultaneously achieve high sensitivity for health biomonitoring and multifunction integration for point-of-care therapies in a one single flexible, lightweight yet robust fiber-based device. Here, a knittable and sewable spandex yarn with conductive nacre-mimetic composite coating has been developed through an alternant dip-coating method employing MXene nanosheets as the "brick" and polydopamine (PDA)/Ni2+ as the "mortar". The resultant spandex yarn coating with MXene/PDA/Ni2+ (MPNi@Spandex) can be assembled as a strain sensor with high sensitivity (up to 5.7 × 104 for the gauge factor), wide sensing range (∼61.2%), and low detection limit (0.11%) to monitor the biological activities of the human body. Furthermore, MPNi@Spandex displays great potential to give on-demand thermotherapy by virtue of the fast response to near-infrared irradiation, controllable surface temperature, and applicability even under sewing conditions. In addition, MPNi@Spandex knitted textiles demonstrate a strong antibacterial effect due to the sharp edges, anionic, and hydrophilic nature of MXene nanosheets. Remarkably, near-infrared irradiation further improves the bacteria-killing efficiency of an MPNi@Spandex knitted textile to more than 99.9%. This work paves the way for the design of multifunctional wearable electronics with an all-in-one theranostic platform for personal healthcare.
Collapse
Affiliation(s)
- Min Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liancong Yue
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingyi Kong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiang Lin
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Dongrui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
41
|
Wang X, Liu X, Schubert DW. Highly Sensitive Ultrathin Flexible Thermoplastic Polyurethane/Carbon Black Fibrous Film Strain Sensor with Adjustable Scaffold Networks. NANO-MICRO LETTERS 2021; 13:64. [PMID: 34138311 PMCID: PMC8187661 DOI: 10.1007/s40820-021-00592-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
In recently years, high-performance wearable strain sensors have attracted great attention in academic and industrial. Herein, a conductive polymer composite of electrospun thermoplastic polyurethane (TPU) fibrous film matrix-embedded carbon black (CB) particles with adjustable scaffold network was fabricated for high-sensitive strain sensor. This work indicated the influence of stereoscopic scaffold network structure built under various rotating speeds of collection device in electrospinning process on the electrical response of TPU/CB strain sensor. This structure makes the sensor exhibit combined characters of high sensitivity under stretching strain (gauge factor of 8962.7 at 155% strain), fast response time (60 ms), outstanding stability and durability (> 10,000 cycles) and a widely workable stretching range (0-160%). This high-performance, wearable, flexible strain sensor has a broad vision of application such as intelligent terminals, electrical skins, voice measurement and human motion monitoring. Moreover, a theoretical approach was used to analyze mechanical property and a model based on tunneling theory was modified to describe the relative change of resistance upon the applied strain. Meanwhile, two equations based from this model were first proposed and offered an effective but simple approach to analyze the change of number of conductive paths and distance of adjacent conductive particles.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Xianhu Liu
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany.
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany.
- Bavarian Polymer Institute, Dr. Mack-Strasse 77, 90762, Fürth, Germany.
| |
Collapse
|
42
|
Gong H, Cai C, Gu H, Jiang Q, Zhang D, Cheng Z. Flexible and wearable strain sensor based on electrospun carbon sponge/polydimethylsiloxane composite for human motion detection. RSC Adv 2021; 11:4186-4193. [PMID: 35424338 PMCID: PMC8694317 DOI: 10.1039/d0ra09070k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/23/2020] [Indexed: 01/01/2023] Open
Abstract
Flexible and wearable strain sensors have attracted considerable attention due to their potential applications in human motion detection. In this work, the as-fabricated strain sensor was obtained by encapsulation of electrospun carbon sponge (CS) with polydimethylsiloxane (PDMS). The formation mechanism of the self-assembled sponge has been explored. Meanwhile, the piezoresistive properties and the strain sensing mechanism of the CS/PDMS sensor were investigated. The results showed that the as-fabricated CS/PDMS sensor had high piezoresistive sensibility with a maximum gauge factor up to 130.49, superior stability and fast response to various cyclic loading with a tensile strain from 0% up to 40% and a tensile speed range of 2-18 mm min-1. Finally, all the superior performances endow the sensor with abilities to precisely detect pronunciation, human palm motion, wrist joint motion, elbow joint motion, and finger motion in real-time. These results indicate that the strain sensor based on the CS/PDMS could have promising applications in flexible and wearable devices for human motion detection.
Collapse
Affiliation(s)
- He Gong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University 2699 Qianjin Street Changchun 130012 China
- College of Information Technology, Jilin Agricultural University 2888 Xincheng Street Changchun 130118 China
| | - Chuan Cai
- College of Information Technology, Jilin Agricultural University 2888 Xincheng Street Changchun 130118 China
| | - Hongjun Gu
- College of Information Technology, Jilin Agricultural University 2888 Xincheng Street Changchun 130118 China
| | - Qiushi Jiang
- College of Resources and Environment, Jilin Agriculture University 2888 Xincheng Street Changchun 130118 China
| | - Daming Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agriculture University 2888 Xincheng Street Changchun 130118 China
| |
Collapse
|
43
|
Kanoun O, Bouhamed A, Ramalingame R, Bautista-Quijano JR, Rajendran D, Al-Hamry A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:E341. [PMID: 33419047 PMCID: PMC7825437 DOI: 10.3390/s21020341] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/20/2020] [Accepted: 01/01/2021] [Indexed: 01/15/2023]
Abstract
In the last decade, significant developments of flexible and stretchable force sensors have been witnessed in order to satisfy the demand of several applications in robotic, prosthetics, wearables and structural health monitoring bringing decisive advantages due to their manifold customizability, easy integration and outstanding performance in terms of sensor properties and low-cost realization. In this paper, we review current advances in this field with a special focus on polymer/carbon nanotubes (CNTs) based sensors. Based on the electrical properties of polymer/CNTs nanocomposite, we explain underlying principles for pressure and strain sensors. We highlight the influence of the manufacturing processes on the achieved sensing properties and the manifold possibilities to realize sensors using different shapes, dimensions and measurement procedures. After an intensive review of the realized sensor performances in terms of sensitivity, stretchability, stability and durability, we describe perspectives and provide novel trends for future developments in this intriguing field.
Collapse
Affiliation(s)
- Olfa Kanoun
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (R.R.); (J.R.B.-Q.); (D.R.); (A.A.-H.)
| | - Ayda Bouhamed
- Professorship of Measurement and Sensor Technology, Chemnitz University of Technology, 09111 Chemnitz, Germany; (R.R.); (J.R.B.-Q.); (D.R.); (A.A.-H.)
| | | | | | | | | |
Collapse
|
44
|
Zhu WB, Li YQ, Wang J, Wang YY, Huang P, Hu N, Liao K, Fu SY. High-Performance Fiber-Film Hybrid-Structured Wearable Strain Sensor from a Highly Robust and Conductive Carbonized Bamboo Aerogel. ACS APPLIED BIO MATERIALS 2020; 3:8748-8756. [PMID: 35019646 DOI: 10.1021/acsabm.0c01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bamboo, one of the most abundant biomaterials, has been used as a building material since ancient times; however, its application in functional materials has been rarely explored. Herein, a highly robust and conductive carbonized bamboo aerogel (CBA) is obtained from the natural bamboo through a simple three-step process of pulp oxidization, freeze-drying, and carbonization. The CBA obtained shows not only a low density of 0.02 g/cm3 but also a high conductivity of 6.42 S/m and remarkable elasticity with a maximum recoverable compressive strain of 60% due to its unique three-dimensional (3D) network randomly stacked with the hybrid structure of carbonized bamboo fibers and films. After encapsulation with silicone resin, the CBA/silicone composite prepared exhibits excellent flexibility and stretchability with a low Young's modulus (0.09 MPa) and a large failure strain (275%). Importantly, the CBA/silicone composite also offers remarkable strain-sensing performance with a maximum gauge factor of 30.6, a short responsive time of 50 ms, and a stable response to cyclic loading over 1000 cycles, which is comparable to those of the piezoresistive composites based on expensive nanomaterials. Moreover, the CBA/silicone composite demonstrates the capability as a wearable strain sensor for human motion recognition comprising finger bending, breathing, and throat movement. Considering the green and sustainable nature of bamboo as a raw material, combined with the excellent piezoresistive performance, low production cost, and simple preparation process, the flexible strain sensors with CBA/silicone composite as a sensing element are promising in wearable electronic devices, personalized healthcare, and artificial intelligence systems.
Collapse
Affiliation(s)
- Wei-Bin Zhu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yuan-Qing Li
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China.,State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| | - Jun Wang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - You-Yong Wang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Pei Huang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China.,State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China.,School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Kin Liao
- Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Shao-Yun Fu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China.,State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
45
|
Zhang J, Chen L, Shen B, Wang Y, Peng P, Tang F, Feng J. Highly transparent, self-healing, injectable and self-adhesive chitosan/polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111298. [DOI: 10.1016/j.msec.2020.111298] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/19/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
|
46
|
Toto E, Laurenzi S, Santonicola MG. Flexible Nanocomposites Based on Polydimethylsiloxane Matrices with DNA-Modified Graphene Filler: Curing Behavior by Differential Scanning Calorimetry. Polymers (Basel) 2020; 12:polym12102301. [PMID: 33050043 PMCID: PMC7600776 DOI: 10.3390/polym12102301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Novel silicone-based nanocomposites with varied elastic properties were prepared by blending standard polydimethylsiloxane (PDMS) with a lower viscosity component (hydroxyl-terminated PDMS) and integrating a graphene nanoplatelets (GNP) filler modified by strands of deoxyribonucleic acid (DNA). The curing behavior of these nanocomposites was studied by dynamic and isothermal differential scanning calorimetry. The activation energies of the polymerization reactions were determined using the Kissinger method and two model-free isoconversional approaches, the Ozawa-Flynn-Wall and the Kissinger-Akahira-Sunose methods. Results show that the complex trend of the curing behavior can be described using the isoconversional methods, unveiling lower activation energies for the nanocomposites with standard PDMS matrices. The role of the DNA modification of graphene on the curing behavior is also demonstrated. The curing reactions of the nanocomposites with the PDMS matrix are favored by the presence of the GNP-DNA filler. PDMS/PDMS-OH blends generate softer nanocomposites with hardness and reduced elastic modulus that can be tuned by varying the amount of the filler.
Collapse
Affiliation(s)
- Elisa Toto
- Department of Chemical Materials and Environmental Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
| | - Susanna Laurenzi
- Department of Astronautical Electrical and Energy Engineering, Sapienza University of Rome, Via Salaria 851-881, 00138 Rome, Italy;
| | - Maria Gabriella Santonicola
- Department of Chemical Materials and Environmental Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy;
- Correspondence: ; Tel.: +39-06-49766372
| |
Collapse
|
47
|
Bai S, Tang Y, Wu Y, Liu J, Liu H, Yuan W, Lu L, Mai W, Li H, Xie Y. High Voltage Microsupercapacitors Fabricated and Assembled by Laser Carving. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45541-45548. [PMID: 32909743 DOI: 10.1021/acsami.0c11935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Miniaturized and flexible power resources such as supercapacitors with resistance of high voltage play a critical role as potential energy storage devices for implantable and portable electronics because of their convenience, high power density, and long-term stability. Herein, we propose a novel strategy for the fabrication of high voltage microsupercapacitors (HVMSCs) employing porous laser-induced graphene (from polyimide films with alkalization treatment) followed by laser carving of the polyvinyl alcohol/H3PO4 gel electrolyte to realize a series assembly of supercapacitors and significantly increase the voltage resistance. The results elucidated that HVMSCs (3 mm × 21.15 mm) exhibited excellent capacitive performance including exceptional potential window (10 V), high areal capacitance (244 μF/cm2), acceptable power density (274 μW/cm2) and energy density (3.22 μW h/cm2), good electrochemical stability and flexibility at different bending status (0, 45, 90, 135, and 180°), as well as impressive voltage durability more than 5 V in smaller scale (0.5 mm × 5.5 mm). As such, the HVMSCs have great potential to be integrated with microcircuit modules for the next-generation self-powered systems and storage electronic devices in high voltage applications.
Collapse
Affiliation(s)
- Shigen Bai
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yong Tang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yaopeng Wu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junbo Liu
- Division of Electronic Engineering, Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Huilong Liu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Yuan
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Longsheng Lu
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yingxi Xie
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
48
|
Yang Z, Wang W, Bi L, Chen L, Wang G, Chen G, Ye C, Pan J. Wearable electronics for heating and sensing based on a multifunctional PET/silver nanowire/PDMS yarn. NANOSCALE 2020; 12:16562-16569. [PMID: 32749436 DOI: 10.1039/d0nr04023a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stretchable and flexible electronics built from multifunctional fibres are essential for devices in human-machine interactions, human motion monitoring and personal healthcare. However, the combination of stable heating and precision sensing in a single conducting yarn has yet to be achieved. Herein, a yarn comprising poly(ethylene terephthalate) (PET), silver nanowires (AgNWs), and polydimethylsiloxane (PDMS) was designed and prepared. The PET/AgNW/PDMS yarn exhibited high electrical conductivity at ≈3 Ω cm-1 and a large tolerance to tensile strain up to 100% its own length. Only a negligible loss of electromechanical performance was observed after 1700 strain cycles. And an excellent response to applied strain was also achieved across a huge stretching range. The PET/AgNW/PDMS yarn displayed excellent heating performance and outstanding breathability when used in a heating fabric, and excellent sensitivity for monitoring both gross and fine movements in humans when used as a sensor.
Collapse
Affiliation(s)
- Zhonglin Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wenwen Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Lili Bi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Liangjun Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guixin Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guinan Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Cui Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
49
|
Zhao X, Wang LY, Tang CY, Zha XJ, Liu Y, Su BH, Ke K, Bao RY, Yang MB, Yang W. Smart Ti 3C 2T x MXene Fabric with Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications. ACS NANO 2020; 14:8793-8805. [PMID: 32644797 DOI: 10.1021/acsnano.0c03391] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An increasing utilization of flexible healthcare electronics and biomedicine-related therapeutic materials urges the development of multifunctional wearable/flexible smart fabrics for personal therapy and health management. However, it is currently a challenge to fabricate multifunctional and on-body healthcare electronic devices with reliable mechanical flexibility, excellent breathability, and self-controllable joule heating effects. Here, we fabricate a multifunctional MXene-based smart fabric by depositing 2D Ti3C2Tx nanosheets onto cellulose fiber nonwoven fabric via special MXene-cellulose fiber interactions. Such multifunctional fabrics exhibit sensitive and reversible humidity response upon H2O-induced swelling/contraction of channels between the MXene interlayers, enabling wearable respiration monitoring application. Besides, it can also serve as a low-voltage thermotherapy platform due to its fast and stable electro-thermal response. Interestingly, water molecular extraction induces electrical response upon heating, i.e., functioning as a temperature alarm, which allows for real-time temperature monitoring for thermotherapy platform without low-temperature burn risk. Furthermore, metal-like conductivity of MXene renders the fabric an excellent Joule heating effect, which can moderately kill bacteria surrounding the wound in bacteria-infected wound healing therapy. This work introduces a multifunctional smart flexible fabric suitable for next-generation wearable electronic devices for mobile healthcare and personal medical therapy.
Collapse
Affiliation(s)
- Xing Zhao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Li-Ya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chun-Yan Tang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Xiang-Jun Zha
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Yong Liu
- Science and Technology Information Center, PetroChina West East Gas Pipeline Company, Wuhan 430074, Hubei, China
| | - Bai-Hai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| |
Collapse
|
50
|
Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902062. [PMID: 31243834 DOI: 10.1002/adma.201902062] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/28/2019] [Indexed: 05/25/2023]
Abstract
Recent advances in material innovation and structural design provide routes to flexible hybrid electronics that can combine the high-performance electrical properties of conventional wafer-based electronics with the ability to be stretched, bent, and twisted to arbitrary shapes, revolutionizing the transformation of traditional healthcare to digital healthcare. Here, material innovation and structural design for the preparation of flexible hybrid electronics are reviewed, a brief chronology of these advances is given, and biomedical applications in bioelectrical monitoring and stimulation, optical monitoring and treatment, acoustic imitation and monitoring, bionic touch, and body-fluid testing are described. In conclusion, some remarks on the challenges for future research of flexible hybrid electronics are presented.
Collapse
Affiliation(s)
- Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Shisheng Cai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Han
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xin Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yu Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhouheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihao Chen
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|