1
|
Zhang D, Luo N, Xue Z, Bai Y, Xu J. Hierarchically porous ZnO derived from zeolitic imidazolate frameworks for high-sensitive MEMS NO 2 sensor. Talanta 2024; 274:125995. [PMID: 38599115 DOI: 10.1016/j.talanta.2024.125995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Three-dimensional (3D) porous metal oxide nanomaterials with controllable morphology and well-defined pore size have attracted extensive attention in the field of gas sensing. Herein, hierarchically porous ZnO-450 was obtained simply by annealing Zeolitic Imidazolate Frameworks (ZIF-90) microcrystals at an optimal temperature of 450 °C, and the effect of annealing temperature on the formation of porous nanostructure was discussed. Then the as-obtained ZnO-450 was employed as sensing materials to construct a Micro-Electro-Mechanical System (MEMS) gas sensor for detecting NO2. The MEMS sensor based on ZnO-450 displays the excellent gas-sensing performances at a lower working temperature (190 °C), such as high response value (242.18% @ 10 ppm), fast response/recovery time (9/26 s) and ultralow limit of detection (35 ppb). The ZnO-450 sensor shows better sensing performance for NO2 detection than ZnO-based composites materials or commercial ZnO nanoparticles (NPs), which are attributed to its unique hierarchically structures with high porosity and larger surface area. This ZIFs driven strategy can be expected to pave a new pathway for the design of high-performance NO2 sensors.
Collapse
Affiliation(s)
- Dan Zhang
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China; Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, 571158, Haikou, China
| | - Na Luo
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China
| | - Zhenggang Xue
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China
| | - Yueling Bai
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China.
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Navitski I, Ramanaviciute A, Ramanavicius S, Pogorielov M, Ramanavicius A. MXene-Based Chemo-Sensors and Other Sensing Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:447. [PMID: 38470777 DOI: 10.3390/nano14050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
MXenes have received worldwide attention across various scientific and technological fields since the first report of the synthesis of Ti3C2 nanostructures in 2011. The unique characteristics of MXenes, such as superior mechanical strength and flexibility, liquid-phase processability, tunable surface functionality, high electrical conductivity, and the ability to customize their properties, have led to the widespread development and exploration of their applications in energy storage, electronics, biomedicine, catalysis, and environmental technologies. The significant growth in publications related to MXenes over the past decade highlights the extensive research interest in this material. One area that has a great potential for improvement through the integration of MXenes is sensor design. Strain sensors, temperature sensors, pressure sensors, biosensors (both optical and electrochemical), gas sensors, and environmental pollution sensors targeted at volatile organic compounds (VOCs) could all gain numerous improvements from the inclusion of MXenes. This report delves into the current research landscape, exploring the advancements in MXene-based chemo-sensor technologies and examining potential future applications across diverse sensor types.
Collapse
Affiliation(s)
- Ilya Navitski
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Agne Ramanaviciute
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Organic Chemistry, State Research Institute Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania
| | - Maksym Pogorielov
- Biomedical Research Centre, Sumy State University, 2, Kharkivska Str., 40007 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, 3 Jelgavas St., LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
3
|
Wang X, Li R, Luo X, Mu J, Peng J, Yan G, Wei P, Tian Z, Huang Z, Cao Z. Enhanced CO oxidation performance over hierarchical flower-like Co 3O 4 based nanosheets via optimizing oxygen activation and CO chemisorption. J Colloid Interface Sci 2024; 654:454-465. [PMID: 37857098 DOI: 10.1016/j.jcis.2023.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/08/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Enhancing low-temperature activity is a focus for carbon monoxide (CO) elimination by catalytic oxidation. In this work, the hierarchical flower-like silver (Ag) modified cobalt oxides (Co3O4) nanosheets were prepared by solvothermal method and applied into catalytic CO oxidation. The doped Ag species in the form of AgCoO2 induced the prolongated surface Co-O bond and weaker bond intensity. Consequently, the oxygen activation/migration ability and redox capacity of Ag0.02Co were enhanced with more oxygen vacancies. The chemisorbed CO was preferentially converted to CO2 but not carbonates. The inhibited carbonates accumulation could avoid the coverage of active sites. According to Density functional theory (DFT) calculations, the electron transfer from AgCoO2 to Co3O4 promote electron donation ability of Co3O4 layer, benefiting for oxygen activation. Moreover, the longer Co-C and C-O bond length suggest the weakened chemisorption strength and higher active of CO molecule. The Ag modified Co3O4 exhibited more satisfactory activity at lower temperature. Typically, it realized 100% CO conversion at 90 °C, and displayed 6.3-fold higher reaction rate than pristine Co3O4 at 40 °C. Moreover, the Ag0.02Co exhibited outstanding long-term stability and water resistance. In summary, the optimized oxygen activation, CO chemisorption and interfacial electron transfer synergistically boosted the CO oxidation activity on Ag modified Co3O4.
Collapse
Affiliation(s)
- Xinyang Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Rui Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyu Luo
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jincheng Mu
- College of Resources and Environmental Engineering, Guizhou University, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Jianbiao Peng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhenbang Tian
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, Henan 450002, China
| | - Zuohua Huang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences, Zhengzhou, Henan 450002, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
4
|
Meenu PC, Samanta PK, Datta SP, Singh SA, Dinda S, Chakraborty C, Roy S. Electro-Oxidation Reaction of Methanol over La 2-xSr xNi 1-y(Mn/Fe/Co) yO 4+δ Ruddlesden-Popper Oxides. Inorg Chem 2024; 63:526-536. [PMID: 38109558 DOI: 10.1021/acs.inorgchem.3c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Solution combustion-synthesized Ruddlesden-Popper oxides La1.4Sr0.6Ni0.9(Mn/Fe/Co)0.1O4+δ were explored for the methanol electro-oxidation reaction. With optimal doping of Sr2+ in the A site and Co2+ in the B site, Ni3+ with t2g6 d x 2 - y 2 1 configuration in La1.4Sr0.6Ni0.9Co0.1O4+δ exhibited a tetragonal distortion with compression in axial bonds and elongation in equatorial bonds. This structural modification fostered an augmented overlap of d z 2 orbitals with axial O 2p orbitals, leading to a heightened density of states at the Fermi level. Consequently, this facilitated not only elevated electrical conductivity but also a noteworthy reduction in the charge transfer resistance. These effects collectively contributed to the exceptional methanol oxidation activity of La1.4Sr0.6Ni0.9Co0.1O4+δ, as evidenced by an impressive current density of 21.4 mA cm-2 and retention of 95% of initial current density even after 10 h of prolonged reaction. The presence of Ni3+ further played a pivotal role in the creation of NiOOH, a crucial intermediate species, facilitated by the presence of surface oxygen vacancies. These factors synergistically enabled efficient methanol oxidation. In summary, our present study not only yields substantial insights but also paves the way for a novel avenue to fine-tune the activity of Ruddlesden-Popper oxides for the successful electro-oxidation of methanol.
Collapse
Affiliation(s)
- Preetha Chandrasekharan Meenu
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Pralok K Samanta
- Department of Chemistry, School of Science, GITAM University, Hyderabad 502329, India
| | - Santanu Prasad Datta
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Satyapaul A Singh
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Srikanta Dinda
- Department of Chemical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
5
|
Hussain A, Lou B, Bushira FA, Xia S, Liu F, Guan Y, Chen W, Xu G. Ultrafast Response and High Selectivity of Diethylamine Gas Sensors at Room Temperature Using MOF-Derived 1D CuO Nano-Ellipsoids. Anal Chem 2023; 95:17568-17576. [PMID: 37988575 DOI: 10.1021/acs.analchem.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Environmental and health monitoring requires low-cost, high-performance diethylamine (DEA) sensors. Materials based on metal-organic frameworks (MOFs) can detect hazardous gases due to their large specific surface area, many metal sites, unsaturated sites, functional connectivity, and easy calcination to remove the scaffold. However, developing facile materials with high sensitivity and selectivity in harsh environments for accurate DEA detection at a low detection limit (LOD) at room temperature (RT) is challenging. In this study, p-type semiconducting porous CuOx sensing materials were synthesized using a simple solvothermal process and annealed in an argon atmosphere at three different temperatures (x = 400, 600, and 800 °C). Significant variations in particle size, specific area, crystallite size, and shape were noticed when the annealing temperature was elevated. Cu-MIL-53 annealed at 400 °C (CuO-400) has a typical nanoellipsoid (NEs) shape with a length of 61.5 nm and a diameter of 33.2 nm. Surprisingly, CuO-400 NEs showed an excellent response to DEA with an ultra-LOD (Rg/Ra = 7.3 @ 100 ppb, 55% relative humidity), excellent selectivity and sensitivity (Rg/Ra = 236 @ 15 ppm), exceptional long-term stability and repeatability, and a fast response/recovery period at RT, outperforming most previously reported materials. CuO-400 NEs have outstanding gas-sensing characteristics due to their high porosity, 1D nanostructure, unsaturated Cu sites (Cu+ and Cu2+), large specific surface area, and numerous oxygen vacancies. This study presents a generic approach to produce future CuO derived from Cu-MOFs-sensitive materials, revealing new insights into the design of effective sensors for environmental monitoring at RT.
Collapse
Affiliation(s)
- Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Shiyu Xia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Fangshuo Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi, P. R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
6
|
Wang L, Song J, Yu C. Metal-organic framework-derived metal oxides for resistive gas sensing: a review. Phys Chem Chem Phys 2023. [PMID: 38047729 DOI: 10.1039/d3cp04777f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Gas sensors with exceptional sensitivity and selectivity are vital in the real-time surveillance of noxious and harmful gases. Despite this, traditional gas sensing materials still face a number of challenges, such as poor selectivity, insufficient detection limits, and short lifespan. Metal oxides, which are derived from metal-organic framework materials (MOFs), have been widely used in the field of gas sensors because they have a high surface area and large pore volume. Incorporating metal oxides derived from MOFs into gas sensors can improve their sensitivity and selectivity, thus opening up new possibilities for the development of innovative, high-performance gas sensors. This article examines the gas sensing process of metal oxide semiconductors (MOS), evaluates the advances made in the research of different structures of MOF-derived metal oxides in resistive gas sensors, and provides information on their potential applications and future advancements.
Collapse
Affiliation(s)
- Luyu Wang
- College of Artificial Intelligence and E-Commerce, Zhejiang Gongshang University Hangzhou College of Commerce, Hangzhou, 311599, China.
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jia Song
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyang Yu
- Design-AI Laboratory, China Academy of Art, Hangzhou 310009, China
| |
Collapse
|
7
|
Zhang H, Zhao W, Meng F. Low Detection Limit and High Sensitivity 2-Butanone Gas Sensor Based on ZnO Nanosheets Decorated by Co Nanoparticles Derived from ZIF-67. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2398. [PMID: 37686906 PMCID: PMC10489766 DOI: 10.3390/nano13172398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
2-butanone has been certified to cause potential harm to the human body, environment, etc. Therefore, achieving a method for the high sensitivity and low limit detection of 2-butanone is of great significance. To achieve this goal, this article uses ZIF-67 prepared by a precipitation method as a cobalt source, and then prepares cobalt-modified zinc oxide nanosheets through a hydrothermal method. The microstructure of the materials was observed by SEM, EDS, TEM, HRTEM, XPS and XRD. The test data display that the sensor ZC2 can produce a high response (2540) to 100 ppm 2-butanone at 270 °C, which is 21 times higher than that of pure ZnO materials. Its detection limit is also optimized to 24 ppb. The sensor (ZC2) also excels in these properties: selectivity, repeatability and stability over 30 days. Further analysis indicates that the synergistic and catalytic effects of p-n heterojunction are the key sources for optimizing the performance of sensors for detecting 2-butanone.
Collapse
Affiliation(s)
- Hua Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
| | | | - Fanli Meng
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
| |
Collapse
|
8
|
Liao D, Huang J, Jiang C, Zhou L, Zheng M, Nezamzadeh-Ejhieh A, Qi N, Lu C, Liu J. A Novel Platform of MOF for Sonodynamic Therapy Advanced Therapies. Pharmaceutics 2023; 15:2071. [PMID: 37631285 PMCID: PMC10458442 DOI: 10.3390/pharmaceutics15082071] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Metal-organic frameworks (MOFs) combined with sonodynamic therapy (SDT) have been introduced as a new and efficient treatment method. The critical advantage of SDT is its ability to penetrate deep tissues and concentrate energy on the tumor site to achieve a non-invasive or minimally invasive effect. Using a sonosensitizer to generate reactive oxygen species (ROS) under ultrasound is the primary SDT-related method of killing tumor cells. In the presence of a sonosensitizer, SDT exhibits a more lethal effect on tumors. The fast development of micro/nanotechnology has effectively improved the efficiency of SDT, and MOFs have been broadly evaluated in SDT due to their easy synthesis, easy surface functionalization, high porosity, and high biocompatibility. This article reviews the main mechanism of action of sonodynamic therapy in cancer treatment, and also reviews the applications of MOFs in recent years. The application of MOFs in sonodynamic therapy can effectively improve the targeting ability of SDT and the conversion ability of reactive oxygen species, thus improving their killing ability on cancer cells. This provides new ideas for the application of micro/nano particles in SDT and cancer therapy.
Collapse
Affiliation(s)
- Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China; (D.L.); (J.H.)
| | - Jiefeng Huang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China; (D.L.); (J.H.)
| | - Chenyi Jiang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China; (D.L.); (J.H.)
| | - Luyi Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China; (D.L.); (J.H.)
| | - Mingbin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China; (D.L.); (J.H.)
| | | | - Na Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China; (D.L.); (J.H.)
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Guangdong Medical University, Dongguan 523808, China; (D.L.); (J.H.)
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524013, China
| |
Collapse
|
9
|
Wang H, Ma Q, Sun F, Shao Y, Zhang D, Sun H, Li Z, Wang Q, Qi J, Wang B. Oxygen Vacancy and Interface Effect Adjusted Hollow Dodecahedrons for Efficient Oxygen Evolution Reaction. Molecules 2023; 28:5620. [PMID: 37570592 PMCID: PMC10419998 DOI: 10.3390/molecules28155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Metal-organic frameworks (MOFs) with special morphologies provide the geometric morphology and composition basis for the construction of platforms with excellent catalytic activity. In this work, cobalt-cerium composite oxide hollow dodecahedrons (Co/Cex-COHDs) with controllable morphology and tunable composition are successfully prepared via a high-temperature pyrolysis strategy using Co/Ce-MOFs as self-sacrificial templates. The construction of the hollow structure can expose a larger surface area to provide abundant active sites and pores to facilitate the diffusion of substances. The formation and optimization of phase interface between Co3O4 and CeO2 regulate the electronic structure of the catalytic site and form a fast channel favorable to electron transport, thereby enhancing the electrocatalytic oxygen evolution activity. Based on the above advantages, the optimized Co/Ce0.2-COHDs obtained an enhanced oxygen evolution reaction (OER) performance.
Collapse
Affiliation(s)
- Huan Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Qian Ma
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Fengmin Sun
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Yachuan Shao
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Di Zhang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Huilan Sun
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Zhaojin Li
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Qiujun Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; (H.W.); (Q.M.); (F.S.); (Y.S.); (D.Z.); (H.S.); (Z.L.); (Q.W.)
| |
Collapse
|
10
|
Xu T, Wang H, Zhao J, Zhao F, Cong W, Wang G, Li J. Biotemplate synthesis of a Co 3O 4 microtube sensor for fast triethylamine detection. Dalton Trans 2023. [PMID: 37485915 DOI: 10.1039/d3dt01450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A low operating temperature and short response/recovery time are essential factors for sensors. Hence, it is necessary to create a sensor that can quickly detect target gas at a relatively low temperature. In this work, Co3O4 microtube based sensors were fabricated by a bio-template method using absorbent cotton. Co3O4 microtube sensors prepared in different concentrations of a salt solution displayed different sensitivities to triethylamine (TEA). The Co3O4-0.10 microtube sensor exhibited excellent sensitivity to TEA at 160 °C. The response of the Co3O4-0.10 sensor to 100 ppm TEA gas was 31.27 and the detection limit of TEA was 50 ppb. Meanwhile, the Co3O4-0.10 sensor also showed a short response/recovery time, such as 95 s/38 s to 100 ppm TEA, high selectivity, a good linear relationship (R2 = 0.994 for 1-100 ppm TEA and R2 = 0.991 for 50-1000 ppb TEA gas), fine repeatability and long-term stability, and strong humidity resistance. Thus, Co3O4 microtube based sensors prepared using a bio-template method have potential application prospects for the detection of TEA gas.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Heru Wang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Fangbo Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Wenbo Cong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Junqing Li
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
11
|
Liu H, Kong J, Dong Z, Zhao Y, An B, Dong J, Xu J, Wang X. Preparation of MOF-derived ZnO/Co 3O 4 nanocages and their sensing performance toward H 2S. Phys Chem Chem Phys 2023. [PMID: 37378864 DOI: 10.1039/d3cp02310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We report a type of micro-electro-mechanical system (MEMS) H2S gas sensors with excellent sensing performance at the ppb level (lowest detection limit is 5 ppb). The sensors were fabricated with ZnO/Co3O4 sensing materials derived from Zn/Co-MOFs by annealing at a suitable temperature of 500 °C. ZnO/Co3O4-500 exhibits the highest response when exposed to 10 ppb H2S gas at 120 °C, and the response/recovery times are 10 s/21 s. Moreover, it exhibits outstanding selectivity, long-term stability (retained 95% response after 45 days), and moisture resistance (only a minor fluctuation of 2% even at 90% RH). This can be ascribed to the fact that ZnO/Co3O4-500 has regular morphology, abundant oxygen vacancies (52.8%) and high specific surface area (96.5 m2 g-1). This work provides not only a high performance H2S MEMS gas sensor but also a systematic study of the effect of the annealing temperature on the sensing performance of ZnO/Co3O4 sensing materials derived from bimetal organic frameworks.
Collapse
Affiliation(s)
- Han Liu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiawei Kong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhe Dong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongmei Zhao
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Baoli An
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Junping Dong
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Nguyen HM, Mader AV, De S, Basarir F, Vapaavuori J. Controlling the Self‐Assembly of Hierarchical PS‐
b
‐P4VP Structures Prepared by Dip‐Coating and Emulsion Breath Figure Techniques. ChemistrySelect 2023. [DOI: 10.1002/slct.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Hoang M. Nguyen
- Department of Chemistry and Materials Science Aalto University Espoo 02150 Finland
| | | | - Swarnalok De
- Department of Chemistry and Materials Science Aalto University Espoo 02150 Finland
| | - Fevzihan Basarir
- Department of Chemistry and Materials Science Aalto University Espoo 02150 Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science Aalto University Espoo 02150 Finland
| |
Collapse
|
13
|
Okai Amu-Darko JN, Hussain S, Zhang X, Alothman AA, Ouladsmane M, Nazir MT, Qiao G, Liu G. Metal-organic frameworks-derived In 2O 3/ZnO porous hollow nanocages for highly sensitive H 2S gas sensor. CHEMOSPHERE 2023; 314:137670. [PMID: 36581114 DOI: 10.1016/j.chemosphere.2022.137670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The detection of hydrogen sulfide (H2S) is critical because of its potential harm and widespread presence in the oil and gas sectors. The zeolitic imidazolate framework-8 (ZIF-8) derived ZnO nanostructures manufactured as gas sensors have exceptional sensitivity and selectivity for H2S gas. In/Zn-ZIF-8 template material was synthesized by a simple one-step co-precipitation method followed by thermal annealing in air. The heat treatment resulted in In2O3/ZnO nanostructures with mixed heterostructures. The crystal structure (XRD), morphology (SEM/TEM), chemical state (XPS), surface area (BET), etc were investigated to ascertain the nature of the as-prepared material. SEM imagery revealed that the as-prepared In2O3/ZnO sensitive material had a microstructure of porous hollow nanocages with an average particle size of about 200 nm, which is beneficial to the diffusion and adsorption of gas molecules. The gas sensing performance test results of the In2O3/ZnO hollow nanocages show that their response to H2S gas is significantly improved 67.5 @50 ppm H2S (about 11 times that of pure ZnO nanocages) at an optimal temperature of 200 °C, better selectivity, lower theoretical detection limit and good linearity between gas concentration and response values. The enhanced gas sensing feat to H2S gas is mainly attributed to the formation of n-n heterojunction and the wide surface area of the newly formed In2O3/ZnO porous hollow nanocages.
Collapse
Affiliation(s)
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiangzhao Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M Tariq Nazir
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
14
|
Qi C, Zhang C, Yang Z. Engineering Co3O4 with Co defects for highly sensitive nonenzymatic detection of glucose. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
MOF-derived CoOOH nanosheets and their temperature-dependent selectivity for NOx and ethanol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Wang H, Li S, Sun G, Lu G, Bu Q, Kong X, Liu Q. Trace W-doping flocculent Co3O4 nanostructures with enhanced electrocatalytic performance for methanol oxidation reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Shi T, Hussain S, Ge C, Liu G, Wang M, Qiao G. ZIF-X (8, 67) based nanostructures for gas-sensing applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
ZIF-8 and ZIF-67 are the most investigated zeolitic imidazolate frameworks (ZIFs) materials that have aroused enormous scientific interests in numerous areas of application including electrochemistry, gas storage, separation, and sensors by reason of their fascinating structural properties. Recently, there is a rapidly growing demand for chemical gas sensors for the detection of various analytes in widespread applications including environmental pollution monitoring, clinical analysis, wastewater analysis, industrial applications, food quality, consumer products, and automobiles. In general, the key to the development of superior gas sensors is exploring innovative sensing materials. ZIF-X (8, 67) based nanostructures have demonstrated great potential as ideal sensing materials for high-performance sensing applications. In this review, the general properties and applications of ZIF-X (8, 67) including gas storage and gas adsorption are first summarized, and then the recent progress of ZIF-X (8, 67) based nanostructures for gas-sensing applications and the structure-property correlations are summarized and analyzed.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Shahid Hussain
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Chuanxin Ge
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Guiwu Liu
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Mingsong Wang
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Guanjun Qiao
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
- State Key Laboratory for Mechanical Behavior of Materials , Xi’an Jiaotong University , Xi’an 710049 , China
| |
Collapse
|
18
|
Zhang R, Lu L, Chang Y, Liu M. Gas sensing based on metal-organic frameworks: Concepts, functions, and developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128321. [PMID: 35236036 DOI: 10.1016/j.jhazmat.2022.128321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/13/2023]
Abstract
Effective detection of pollutant gases is vital for protection of natural environment and human health. There is an increasing demand for sensing devices that are equipped with high sensitivity, fast response/recovery speed, and remarkable selectivity. Particularly, attention is given to the designability of sensing materials with porous structures. Among diverse kinds of porous materials, metal-organic frameworks (MOFs) exhibit high porosity, high degree of crystallinity and exceptional chemical activity. Their strong host-guest interactions with guest molecules facilitate the application of MOFs in adsorption, catalysis and sensing systems. In particular, the tailorable framework/composition and potential for post-synthetic modification of MOFs endow them with widely promising application in gas sensing devices. In this review, we outlined the fundamental aspects and applications of MOFs for gas sensors, and discussed various techniques of monitoring gases based on MOFs as functional materials. Insights and perspectives for further challenges faced by MOFs are discussed in the end.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Lihui Lu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
19
|
Zhang Y, Xu J, Zhou J, Wang L. Metal-organic framework-derived multifunctional photocatalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63934-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Zhan M, Ge C, Hussain S, Alkorbi AS, Alsaiari R, Alhemiary NA, Qiao G, Liu G. Enhanced NO 2 gas-sensing performance by core-shell SnO 2/ZIF-8 nanospheres. CHEMOSPHERE 2022; 291:132842. [PMID: 34767849 DOI: 10.1016/j.chemosphere.2021.132842] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Timely detection of harmful, poisonous and air pollutant gases is of vital importance to the protection of human beings from exposure to rigorous gases. The development of gas-sensing devices based on sphere-like porous SnO2/ZIF-8 nanocomposites is required to overcome this challenge. Nanostructures with high surface area, more porosity and hollow interior provide plenty of active cites for high responses in metal oxide gas sensors. The engineered gas sensors have excellent sensing sensitivity (164), rapid response and recovery times (60, 45 s), and favorable selectivity for NO2 gases under 300 °C. Consequently, NO2 gas sensors based on core-shell SnO2/ZIF-8 nanospheres are regarded viable capacity industrial applicants.
Collapse
Affiliation(s)
- Mengmeng Zhan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanxin Ge
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ali S Alkorbi
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Raiedhah Alsaiari
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Nabil A Alhemiary
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
21
|
Huang C, Liu D, Wang D, Guo H, Thomas T, Attfield JP, Qu F, Ruan S, Yang M. Mesoporous Ti 0.5Cr 0.5N for trace H 2S detection with excellent long-term stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127193. [PMID: 34844341 DOI: 10.1016/j.jhazmat.2021.127193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient, accurate and reliable detection and monitoring of H2S is of significance in a wide range of areas: industrial production, medical diagnosis, environmental monitoring, and health screening. However the rapid corrosion of commercial platinum-on-carbon (Pt/C) sensing electrodes in the presence of H2S presents a fundamental challenge for fuel cell gas sensors. Herein we report a solution to the issue through the design of a sensing electrode, which is based on Pt supported on mesoporous titanium chromium nitrides (Pt/Ti0.5Cr0.5N). Its desirable characteristics are due to its high electrochemical stability and strong metal-support interactions. The Pt/Ti0.5Cr0.5N-based sensors exhibit a much smaller attenuation (1.3%) in response to H2S than Pt/C-sensor (40%), after 2 months sensing test. Furthermore, the Pt/Ti0.5Cr0.5N-based sensors exhibit negligible cross response to other interfering gases compared with hydrogen sulfide. Results of density functional theory calculation also verify the excellent long-term stability and selectivity of the gas sensor. Our work hence points to a new sensing electrode system that offers a combination of high performance and stability for fuel-cell gas sensors.
Collapse
Affiliation(s)
- Chaozhu Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Dongting Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haichuan Guo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras Adyar, Chennai 600036, India
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
| | - Fengdong Qu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Shengping Ruan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Zhang T, Wang Y, Yuan J, Fang K, Wang AJ. Heterostructured CoP·CoMoP nanocages as advanced electrocatalysts for efficient hydrogen evolution over a wide pH range. J Colloid Interface Sci 2022; 615:465-474. [PMID: 35150954 DOI: 10.1016/j.jcis.2022.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
A sustainable and environmental-friendly method to produce hydrogen with high purity is the electrochemical water splitting, but its commercialization is challenged due to lack of cost-effective electrocatalysts for hydrogen evolution reaction (HER) over a wide pH range. Herein, a series of CoP·xCoMoP heterostructured nanocages (NCs) were prepared via a dissolution-regrowth and subsequent phosphorization process using metal-organic frameworks (MOFs) as template. The three-dimensional (3D) architecture of CoP·xCoMoP is constituted by the heterostructured nanosheets composed with CoP and CoMoP phase. These noble-metal-free earth-abundant transition metal phosphide (TMP) catalysts show a pH-universal HER activity with high efficiency. Under the optimal atom ratio of Co and Mo (6:5), CoP·5CoMoP NC catalysts can deliver a current density of 10 mA cm-2 at the overpotential of 72 mV with a Tafel slope of 60.3 mV dec-1 in 1.0 M KOH solution. The same current output requires overpotential of 44 mV in 0.5 M H2SO4 solution and 151 mV in1.0 M phosphate buffered solution (PBS), respectively. The superior HER activity of CoP·5CoMoP NC catalysts can be comparable to or even better than most of noble metal-free HER electrocatalysts reported recently. In addition, CoP·5CoMoP NC catalysts also show a fairly high HER stability over a wide pH range, and their HER activity can be well kept without significant loss for long-term electrolysis. The 3D CoP·5CoMoP heterostructured catalysts hold promise as efficient and low-cost catalysts for water splitting devices over a wide pH range.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yihui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Junhua Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Life Sciences and Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Keming Fang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
23
|
Majhi SM, Ali A, Rai P, Greish YE, Alzamly A, Surya SG, Qamhieh N, Mahmoud ST. Metal-organic frameworks for advanced transducer based gas sensors: review and perspectives. NANOSCALE ADVANCES 2022; 4:697-732. [PMID: 36131834 PMCID: PMC9417493 DOI: 10.1039/d1na00798j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/11/2021] [Indexed: 05/13/2023]
Abstract
The development of gas sensing devices to detect environmentally toxic, hazardous, and volatile organic compounds (VOCs) has witnessed a surge of immense interest over the past few decades, motivated mainly by the significant progress in technological advancements in the gas sensing field. A great deal of research has been dedicated to developing robust, cost-effective, and miniaturized gas sensing platforms with high efficiency. Compared to conventional metal-oxide based gas sensing materials, metal-organic frameworks (MOFs) have garnered tremendous attention in a variety of fields, including the gas sensing field, due to their fascinating features such as high adsorption sites for gas molecules, high porosity, tunable morphologies, structural diversities, and ability of room temperature (RT) sensing. This review summarizes the current advancement in various pristine MOF materials and their composites for different electrical transducer-based gas sensing applications. The review begins with a discussion on the overview of gas sensors, the significance of MOFs, and their scope in the gas sensing field. Next, gas sensing applications are divided into four categories based on different advanced transducers: chemiresistive, capacitive, quartz crystal microbalance (QCM), and organic field-effect transistor (OFET) based gas sensors. Their fundamental concepts, gas sensing ability towards various gases, sensing mechanisms, and their advantages and disadvantages are discussed. Finally, this review is concluded with a summary, existing challenges, and future perspectives.
Collapse
Affiliation(s)
- Sanjit Manohar Majhi
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Ashraf Ali
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | | | - Yaser E Greish
- Department of Chemistry, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Sensor Group, R&D Section, Dyson Tech. Limited Malmesbury UK
| | - Naser Qamhieh
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| | - Saleh T Mahmoud
- Department of Physics, College of Science, United Arab Emirates University Al-Ain 15551 United Arab Emirates
| |
Collapse
|
24
|
Shi T, Hou H, Hussain S, Ge C, Alsaiari MA, Alkorbi AS, Liu G, Alsaiari R, Qiao G. Efficient detection of hazardous H 2S gas using multifaceted Co 3O 4/ZnO hollow nanostructures. CHEMOSPHERE 2022; 287:132178. [PMID: 34509024 DOI: 10.1016/j.chemosphere.2021.132178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The rapid increases in environmental hazardous gases have laid dangerous effects on human health. The detection of such pollutants gases is mandatory using various optimal techniques. In this paper, porous multifaceted Co3O4/ZnO nanostructures are synthesized by pyrolyzing sacrificial template of core-shell double zeolitic imidazolate frameworks (ZIFs) for gas sensing applications. The fabricated exhibit superior gas sensor response, high selectivity, fast response/recovery times, and remarkable stability and sensitivity to H2S gas. In particular, the multifaceted Co3O4/ZnO nanostructures show a maximum response of 147 at 100 ppm of H2S under optimum conditions. The remarkable gas sensing performances are mainly ascribed to high porosity, wide surface area multifaceted nanostructures, presence of heterojunctions and catalytic activity of ZnO and Co3O4, which are beneficial for H2S gas sensors industry.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haigang Hou
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Chuanxin Ge
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mabkhoot A Alsaiari
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Ali S Alkorbi
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Raiedhah Alsaiari
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
25
|
Saravanan P, Rajeswari S, Kumar JA, Rajasimman M, Rajamohan N. Bibliometric analysis and recent trends on MXene research - A comprehensive review. CHEMOSPHERE 2022; 286:131873. [PMID: 34411934 DOI: 10.1016/j.chemosphere.2021.131873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
MXene, identified as a high performance material with superior properties, has gained significant importance in the field of applications including energy storage, photo catalysis, sensing of components and environmental pollution control. This review article is a comprehensive study on scientometric review on the research studies involving MXene and its derivatives for various applications. The aim of this study is to identify the areas of priority focused during the study period (2012-2020) and evaluate the impact of the studies in terms of different parameters. Using the suitable key words, a total of 3332 documents are identified and screened with respect to yearly count of literature, type of literature, language of publication, authors, Web of science (WoS) categories, most cited literature, author contribution, name of the affiliated institution, country of author affiliation, journals and key words. In addition, collaboration behavior and citation network are reviewed using the mapping tool. The total local citation score (TLCS) and total global citation score (TGCS) are evaluated. Based on the review data, the developments in the field of MXene applications are presented with more focus on sensing applications and photocatalysis. The top two contributing countries in the chosen field of MXene research are China and USA. Based on the number of documents published, ACS Applied Materials & Interfaces and Journal of Materials Chemistry "A" are identified as the best two journals.
Collapse
Affiliation(s)
- Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugam Rajeswari
- Department of Library, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - Jagadeesan Aravind Kumar
- Department of Chemical Engineering, Sathyabama Institute of Science of Technology, Chennai, India
| | | | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, Oman.
| |
Collapse
|
26
|
Zhou S, Ji J, Qiu T, Wang L, Ni W, Li S, Yan W, Ling M, Liang C. Boosting selective H2 sensing of ZnO derived from ZIF-8 by rGO functionalization. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01374b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
H2 sensors have attracted considerable attention for safety warning of traditional industries and energy storing systems. This ZnO/rGO composite demonstrated excellent H2 sensing performances, good baseline stability and excellent selectivity.
Collapse
Affiliation(s)
- Shiyu Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiapeng Ji
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Qiu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Wenbin Ni
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Wenjun Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengdu Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
27
|
Kau N, Jindal G, Kaur R, Rana S. Progress in development of metal organic frameworks for electrochemical sensing of volatile organic compounds. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Guo L, Liu H, Peng F, Qi H. Efficient and portable cellulose-based colorimetric test paper for metal ion detection. Carbohydr Polym 2021; 274:118635. [PMID: 34702458 DOI: 10.1016/j.carbpol.2021.118635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Fabrication of metal ion detection materials generally involved problems such as high cost and complicated processes of pretreatment and operation. Herein, a novel colorimetric test paper for metal ions detection was developed based on functionalized cellulose fibers. Acetoacetyl groups were introduced on cellulose fibers by a surface esterification process. The obtained cellulose acetoacetate (CAA) fibers were made into CAA paper via a paper-making process. The CAA paper possessed robust mechanical property, thermal stability selectivity and rapid response to Fe3+ and Cu2+ ions, with an obvious naked-eye color change within 5 s. The mechanism of this visual recognition for metal ions due to that the acetoacetyl groups coordination chelated with metal ion to form six-membered ring structure, further leading to the color change of the materials. It provided a facile and universal method to prepare efficient and portable cellulose-based test paper, which has great potential in metal ion detection field.
Collapse
Affiliation(s)
- Lei Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongchen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Fang Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
29
|
Xiang M, Zhang H, Feng S, Xiao J, Li X. Nitrogen-doped carbon–cobalt-modified MnO nanowires as cathodes for high-performance lithium sulfur batteries. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Garg N, Deep A, Sharma AL. Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Wang G, Yang S, Cao L, Jin P, Zeng X, Zhang X, Wei J. Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214086] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Ethanol Sensing Properties and First Principles Study of Au Supported on Mesoporous ZnO Derived from Metal Organic Framework ZIF-8. SENSORS 2021; 21:s21134352. [PMID: 34202170 PMCID: PMC8272103 DOI: 10.3390/s21134352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022]
Abstract
It is of great significance to develop ethanol sensors with high sensitivity and low detection temperature. Hence, we prepared Au-supported material on mesoporous ZnO composites derived from a metal-organic framework ZIF-8 for the detection of ethanol gas. The obtained Au/ZnO materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM) and nitrogen adsorption and desorption isotherms. The results showed that the Au/ZnO-1.0 sample maintains a three-dimensional (3D) dodecahedron structure with a larger specific surface area (22.79 m2 g−1) and has more oxygen vacancies. Because of the unique ZIF structure, abundant surface defects and the formation of Au-ZnO Schottky junctions, an Au/ZnO-1.0 sensor has a response factor of 37.74 for 100 ppm ethanol at 250 °C, which is about 6 times that of pure ZnO material. In addition, the Au/ZnO-1.0 sensor has good selectivity for ethanol. According to density functional theory (DFT) calculations, the adsorption energy of Au/ZnO for ethanol (−1.813 eV) is significantly greater than that of pure ZnO (−0.217 eV). Furthermore, the adsorption energy for ethanol is greater than that of other gases.
Collapse
|
33
|
Wang H, Ma J, Zhang J, Feng Y, Vijjapu MT, Yuvaraja S, Surya SG, Salama KN, Dong C, Wang Y, Kuang Q, Tshabalala ZP, Motaung DE, Liu X, Yang J, Fu H, Yang X, An X, Zhou S, Zi B, Liu Q, Urso M, Zhang B, Akande AA, Prasad AK, Hung CM, Van Duy N, Hoa ND, Wu K, Zhang C, Kumar R, Kumar M, Kim Y, Wu J, Wu Z, Yang X, Vanalakar SA, Luo J, Kan H, Li M, Jang HW, Orlandi MO, Mirzaei A, Kim HW, Kim SS, Uddin ASMI, Wang J, Xia Y, Wongchoosuk C, Nag A, Mukhopadhyay S, Saxena N, Kumar P, Do JS, Lee JH, Hong S, Jeong Y, Jung G, Shin W, Park J, Bruzzi M, Zhu C, Gerald RE, Huang J. Gas sensing materials roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33. [PMID: 33794513 DOI: 10.1088/1361-648x/abf477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/01/2021] [Indexed: 05/14/2023]
Abstract
Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.
Collapse
Affiliation(s)
- Huaping Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002 Henan, People's Republic of China
| | - Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chengjun Dong
- School of Materials and Energy, Yunnan University, Kunming, People's Republic of China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming, People's Republic of China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Zamaswazi P Tshabalala
- Department of Physics, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - David E Motaung
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300, South Africa
- Department of Physics, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, People's Republic of China
| | - Junliang Yang
- School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Haitao Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xiaohong Yang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Northeastern University, Shenyang 110819, People's Republic of China
- School of Metallurgy, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xizhong An
- School of Metallurgy, Northeastern University, Shenyang 110819, People's Republic of China
| | - Shiqiang Zhou
- School of Materials Science and Engineering, Yunnan University, Kunming, People's Republic of China
| | - Baoye Zi
- School of Materials Science and Engineering, Yunnan University, Kunming, People's Republic of China
| | - Qingju Liu
- School of Materials Science and Engineering, Yunnan University, Kunming, People's Republic of China
| | - Mario Urso
- IMM-CNR and Dipartimento di Fisica e Astronomia 'Ettore Majorana', Università di Catania, via S Sofia 64, 95123 Catania, Italy
| | - Bo Zhang
- School of Internet of Things Engineering, Jiangnan University, Lihu Avenue 1800#, Wuxi, 214122, People's Republic of China
| | - A A Akande
- Department of Physics, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
- Advanced Internet of Things, CSIR NextGen Enterprises and Institutions, PO Box 395, Pretoria, 0001, South Africa
| | - Arun K Prasad
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Chu Manh Hung
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No 1-Dai Co Viet Str. Hanoi, Vietnam
| | - Nguyen Van Duy
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No 1-Dai Co Viet Str. Hanoi, Vietnam
| | - Nguyen Duc Hoa
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No 1-Dai Co Viet Str. Hanoi, Vietnam
| | - Kaidi Wu
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Rahul Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Youngjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - S A Vanalakar
- Department of Physics, Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti 416-009, India
| | - Jingting Luo
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Hao Kan
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Min Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul 08826, Republic of Korea
| | - Marcelo Ornaghi Orlandi
- Department of of Engineering, Physics and Mathematics, São Paulo State University (UNESP), Araraquara - SP 14800-060, Brazil
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, 71557-13876, Iran
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - A S M Iftekhar Uddin
- Department of Electrical and Electronic Engineering, Metropolitan University, Bateshwar, Sylhet-3103, Bangladesh
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yi Xia
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan, People's Republic of China
| | | | - Nupur Saxena
- Department of Physics and Astronomical Sciences, Central University of Jammu, Rahya-Suchani, Samba, Jammu, J&K-181143, India
| | - Pragati Kumar
- Department of Nanosciences and Materials, Central University of Jammu, Rahya-Suchani, Samba, Jammu, J & K -181143, India
| | - Jing-Shan Do
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
| | - Jong-Ho Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seongbin Hong
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yujeong Jeong
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gyuweon Jung
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Wonjun Shin
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jinwoo Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mara Bruzzi
- Department of Physics and Astronomy, Unviersity of Florence, Via G. Sansone 1, Sesto Fiorentino, Florence, Italy
| | - Chen Zhu
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO65409, United States of America
| | - Rex E Gerald
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO65409, United States of America
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO65409, United States of America
| |
Collapse
|
34
|
Qin C, Wang B, Wu N, Han C, Wang Y. General Strategy to Fabricate Porous Co-Based Bimetallic Metal Oxide Nanosheets for High-Performance CO Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26318-26329. [PMID: 34032420 DOI: 10.1021/acsami.1c03508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Two-dimensional (2D) porous bimetallic oxide nanosheets are attractive for high-performance gas sensing because of their porous structures, high surface areas, and cooperative effects. Nevertheless, it is still a huge challenge to synthesize these nanomaterials. Herein, we report a general strategy to fabricate porous cobalt-based bimetallic oxide nanosheets (Co-M-O NSs, M = Cu, Mn, Ni, and Zn) with an adjustable Co/M ratio and the homogeneous composition using metal-organic framework (MOF) nanosheets as precursors. The obtained Co-M-O NS possesses the porous nanosheet structure and ultrahigh specific surface areas (146.4-220.7 m2 g-1), which enhance the adsorption of CO molecules, support the transport of electrons, and expose abundant active sites for CO-sensing reaction. As a result, the Co-M-O NS exhibited excellent sensing performances including high response, low working temperature, fast response-recovery, good selectivity and stability, and ppb-level detection limitation toward CO. In particular, the Co-Mn-O NS showed the highest response of 264% to 100 ppm CO at low temperature (175 °C). We propose that the excellent sensing performance is ascribed to the specific porous nanosheet structure, the relatively highly active Co3+ ratio resulting from cation substitution, and large amounts of chemisorbed oxygen species on the surface. Such a general strategy can also be introduced to design noble-metal-free bimetallic metal oxide nanosheets for gas sensing, catalysis, and other energy-related fields.
Collapse
Affiliation(s)
- Cong Qin
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Bing Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Nan Wu
- Department of Material Science and Engineering, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Cheng Han
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| | - Yingde Wang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, PR China
| |
Collapse
|
35
|
Yu Q, Zhang Y, Xu Y. Hierarchical hollow BiFeO 3 microcubes with enhanced acetone gas sensing performance. Dalton Trans 2021; 50:6702-6709. [PMID: 33908544 DOI: 10.1039/d1dt00532d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal oxide-based gas sensors have drawn tremendous research interests owing to their various compositions and selective and improved performance. However, the development of a targeted metal oxide with controlled microstructures via a facile preparation procedure is still a challenge. In this work, hierarchical BiFeO3 nano-microstructures are successfully developed through the post-modification of Bi3+ encapsulation with Fe-based Prussian blue microcubes followed by a sequential annealing strategy. The microstructures of the hierarchical BiFeO3 architectures can be effectively modulated by tuning various thermolysis temperatures. Among them, the hierarchical hollow BiFeO3 microcubes assembled from ultrathin nanosheets exhibit optimum acetone selective sensing performances with a gas response value (Ra/Rg) of 5.2 at 240 °C, rapid response/recovery times (10 s/9 s), and excellent long-term stability (for at least 30 days). The high and reproducible acetone-sensing properties are mainly attributed to the unique interior loose and porous structures with good permeability. The corresponding acetone sensing mechanism relying on the microstructure of BiFeO3 was also discussed. This work highlights the key role of morphological evolution in the fabrication of multi-functional multimetal oxides, and thus offers new opportunities for the rational design of novel gas sensing materials.
Collapse
Affiliation(s)
- Qiuci Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China.
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China. and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
36
|
Drmosh QA, Olanrewaju Alade I, Qamar M, Akbar S. Zinc Oxide-Based Acetone Gas Sensors for Breath Analysis: A Review. Chem Asian J 2021; 16:1519-1538. [PMID: 33970556 DOI: 10.1002/asia.202100303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Indexed: 12/15/2022]
Abstract
Acetone is one of the toxic, explosive, and harmful gases. It may cause several health hazard issues such as narcosis and headache. Acetone is also regarded as a key biomarker to diagnose several diseases as well as monitor the disorders in human health. Based on clinical findings, acetone concentration in human breath is correlated with many diseases such as asthma, halitosis, lung cancer, and diabetes. Thus, its investigation can become a new approach for health monitoring. Better management at the early stages of such diseases has the potential not only to reduce deaths associated with the disease but also to reduce medical costs. ZnO-based sensors show great potential for acetone gas due to their high chemical stability, simple synthesis process, and low cost. The findings suggested that the acetone sensing performance of such sensors can be significantly improved by manipulating the microstructure (surface area, porosity, etc.), composition, and morphology of ZnO nanomaterials. This article provides a comprehensive review of the state-of-the-art research activities, published during the last five years (2016 to 2020), related to acetone gas sensing using nanostructured ZnO (nanowires, nanoparticles, nanorods, thin films, etc). It focuses on different types of nanostructured ZnO-based acetone gas sensors. Furthermore, several factors such as relative humidity, acetone concentrations, and operating temperature that affects the acetone gas sensing properties- sensitivity, long-term stability, selectivity as well as response and recovery time are discussed in this review. We hope that this work will inspire the development of high-performance acetone gas sensors using nanostructured materials.
Collapse
Affiliation(s)
- Qasem A Drmosh
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Ibrahim Olanrewaju Alade
- Department of Physics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Qamar
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Sheikh Akbar
- Materials Science and Engineering Department, The Ohio State University, Columbus, OH, 43212, United States
| |
Collapse
|
37
|
Li P, Zhang Z, Zhuang Z, Guo J, Fang Z, Fereja SL, Chen W. Pd-Doping-Induced Oxygen Vacancies in One-Dimensional Tungsten Oxide Nanowires for Enhanced Acetone Gas Sensing. Anal Chem 2021; 93:7465-7472. [PMID: 33973779 DOI: 10.1021/acs.analchem.1c00568] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Metal oxide semiconductors (MOS) with different nanostructures have been widely used as gas sensing materials due to the tunable interface structures and properties. However, further improvement of the sensing sensitivity and selectivity is still challenging in this area. Constructing appropriate heterogeneous interface structures and oxygen vacancies is one of the important strategies to tune the sensing properties of MOS. In the present study, interfacial heterostructures in PdxW18O49 nanowires (PdxW18O49 NWs) were fabricated and manipulated by doping different Pd contents through a simple hydrothermal process. Relevant characterization proved that the structure and composition of the one-dimensional (1D) nanomaterial can be effectively changed by Pd doping. It was found that the oxygen vacancy concentration increases first with the increase of Pd content, and when the Pd content increases to 7.18% (Pd7.18%W18O49 NWs), the oxygen vacancy content reaches the maximum (52.5%). If the Pd content continues to increase, the oxygen vacancy ratio decreases. The gas sensing investigations illustrated that the PdxW18O49 NWs exhibited enhanced sensing properties than pure W18O49 NWs toward acetone. Among the as-prepared catalysts, the Pd7.18%W18O49 NWs showed the best sensing response and the fastest response-recovery speeds (5 and 10 s, respectively) at a working temperature of 175 °C. In addition, this 1D nanostructure with fabricated heterostructures also delivers a good sensing selectivity and a wide detection range from 100 ppb to 300 ppm, with maintaining excellent performance in the presence of high concentrations of ethanol and carbon dioxide. The excellent gas sensing behavior could be attributed to the generated oxygen vacancies and the heterostructures upon Pd doping. This study offers a novel strategy for the design of high-performance gas sensors for ppb-level acetone sensing.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ziwei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhihua Zhuang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinhan Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongying Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shemsu Ligani Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Wei S, Chen T, Wang Q, Shi Z, Li W, Chen S. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. J Colloid Interface Sci 2021; 593:370-379. [PMID: 33744545 DOI: 10.1016/j.jcis.2021.02.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/16/2023]
Abstract
Controlling the composition and microstructure of nanomaterials is still a significant challenge in developing high-performance microwave absorption (MA) materials. Herein, metal-organic framework (MOF)-derived hollow CoFe@C nanoboxes are designed and prepared through the facile regulating the mass ratios of ZIF-67/PFC and a thermal annealing treatment. The CoFe@C composite can achieve an excellent MA performance, which have two high reflection loss (RL) values at different thickness. A RL value of -31.0 dB is obtained at 11.84 GHz with a matching thickness of 2.4 mm, and a RL value can reach -44.1 dB (4.08 GHz) at a matching thickness of 5.8 mm, and a correspondingly wide absorbing bandwidth (5.20 GHz, from 9.7 to 14.9 GHz) is simultaneously obtained at a matching thickness of 2.3 mm. The magnetic loss, interfacial polarization and hollow structure are the main reasons for their excellent MA capability. This work provides a research idea for the development of the efficient MOF-based MA materials in practical application.
Collapse
Affiliation(s)
- Shuang Wei
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tao Chen
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Qi Wang
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhicheng Shi
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wen Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shougang Chen
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
39
|
Ultrafast Li+ diffusion kinetics enhanced by cross-stacked nanosheets loaded with Co3O4@NiO nanoparticles: Constructing superstructure to enhance Li-ion half/full batteries. J Colloid Interface Sci 2021; 585:51-60. [DOI: 10.1016/j.jcis.2020.11.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022]
|
40
|
Lai F, Sun Z, Saji SE, He Y, Yu X, Zhao H, Guo H, Yin Z. Machine Learning-Aided Crystal Facet Rational Design with Ionic Liquid Controllable Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100024. [PMID: 33656246 DOI: 10.1002/smll.202100024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Crystallographic facets in a crystal carry interior properties and proffer rich functionalities in a wide range of application areas. However, rational prediction, on-demand customization, and accurate synthesis of facets and facet junctions of a crystal are enormously desirable but still challenging. Herein, a framework of machine learning (ML)-aided crystal facet design with ionic liquid controllable synthesis is developed and then demonstrated with the star-material anatase TiO2 . Aided by employing ML to acquire surface energies from facet junction datasource, the relationships between surface energy and growth conditions based on the Langmuir adsorption isotherm are unveiled, enabling to develop controllable facet synthetic strategies. These strategies are successfully verified after applied for synthesizing TiO2 crystals with custom crystal facets and facet junctions under tuning ionic liquid [bmim][BF4 ] experimental conditions. Therefore, this innovative framework integrates data-intensive rational design and experimental controllable synthesis to develop and customize crystallographic facets and facet junctions. This proves the feasibility of an intelligent chemistry future to accelerate the discovery of facet-governed functional material candidates.
Collapse
Affiliation(s)
- Fuming Lai
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
- Jinhua Advanced Research Institute, Jinhua, 321019, China
| | - Zhehao Sun
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Sandra Elizabeth Saji
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Yichuan He
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuefeng Yu
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Haibo Guo
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
41
|
Ullah M, Bai X, Chen J, Lv H, Liu Z, Zhang Y, Wang J, Sun B, Li L, Shi K. Metal-organic framework material derived Co3O4 coupled with graphitic carbon nitride as highly sensitive NO2 gas sensor at room temperature. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Ju P, Yang H, Jiang L, Li M, Yu Y, Zhang E. A novel high sensitive Cd-MOF fluorescent probe for acetone vapor in air and picric acid in water: Synthesis, structure and sensing properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118962. [PMID: 33007642 DOI: 10.1016/j.saa.2020.118962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
A novel three-dimensional luminescence Cd-MOF sensor with the molecular formula {[(CH3)2NH2]2 Cd3(ptptc)2} (complex 1) has been synthesized by using terphenyl-3,3',5,5'-tetracarboxylic acid (H4ptptc) and Cd(NO3)2·4H2O under solvothermal conditions. Single crystal X-ray diffraction analysis shows that complex 1 crystallizes in the monoclinic system C2/c space group and consists of one-dimensional channels. Complex 1 exhibits characteristic fluorescence emission (λem = 380 nm) both in solid state and solvents upon excitation at 300 nm. Real-time fluorescence quenching of complex 1 was observed in the fluorescence sensing of acetone vapor and picric acid. Intriguingly, ppm scale detection limit for acetone vapor in air and nano-mole scale detection limit for picric acid in water were observed. Moreover, good reusability and liner/nonlinear relationships were observed in the fluorescent titration.
Collapse
Affiliation(s)
- Ping Ju
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Hua Yang
- Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Mengting Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Yang Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China
| | - Ensheng Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, PR China; Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, PR China.
| |
Collapse
|
43
|
Wang H, Fu W, Chen Y, Xue F, Shan G. ZIF-67-derived Co 3O 4 hollow nanocage with efficient peroxidase mimicking characteristic for sensitive colorimetric biosensing of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119006. [PMID: 33035883 DOI: 10.1016/j.saa.2020.119006] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Co3O4 hollow nanocages (Co3O4 HNCs) were prepared by simple calcination with ZIF-67 as the precursor. Compared with ordinary nano-sized Co3O4, skeletal Co3O4 HNCs have a larger specific surface area and porosity, lead to better dispersion, which can expose more catalytic active sites, and obtain higher catalytic activity. Experiments indicate that Co3O4 HNCs are used as a catalyst to make H2O2 generate O2. At the same time, Co3O4 HNCs act as bridge to accelerate the electrons transfer from the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to the dissolved oxygen and efficiently obtain blue oxidized TMB (oxTMB) at low concentration of H2O2. Steady-state kinetic analysis shows a lower Km and a higher Vmax value than other materials, indicating its excellent affinity and high catalytic efficiency. Based on the inhibitory effect of dopamine (DA) on TMB oxidation in the system, a sensitive, visual colorimetric biosensing method is developed. The calibration curve of DA has a good linear response at both high and low concentrations. Compared with other system, it has the unique advantage of very low detection limit, while retaining a wide detection range, and realizes the accurate detection of actual samples with different concentrations.
Collapse
Affiliation(s)
- Hongying Wang
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Wanying Fu
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yanwei Chen
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Fengying Xue
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guiye Shan
- Centre for Advanced Optoelectronic Functional Materials Research, Key Laboratory for UV Light-Emitting Materials and Technology of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
44
|
He Y, Wang Z, Wang H, Wang Z, Zeng G, Xu P, Huang D, Chen M, Song B, Qin H, Zhao Y. Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213618] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
|
46
|
Lattice expansion and oxygen vacancy of α-Fe 2O 3 during gas sensing. Talanta 2021; 221:121616. [PMID: 33076146 DOI: 10.1016/j.talanta.2020.121616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022]
Abstract
Identifying the nature of gas-sensing material under the real-time operating condition is very critical for the research and development of gas sensors. In this work, we implement in situ Raman and XRD to investigate the gas-sensing nature of α-Fe2O3 sensing material, which derived from Fe-based metal-organic gel (MOG). The active mode of α-Fe2O3 as gas-sensing material originate from the thermally induced lattice expansion and the changes of surface oxygen vacancy of α-Fe2O3 could be reflected from the further monitored Raman scattering signals during acetone gas sensing. Meanwhile, the prepared α-Fe2O3 gas sensor exhibits excellent gas-sensing performance with high response value (Ra/Rg = 27), rapid response/recovery time (1 s/80 s) for 100 ppm acetone gas, and broad response range (5 - 900 ppm) at 183 °C. Strategies described herein could provide a promising approach to obtain gas-sensing materials with excellent performance and unveil the gas-sensing nature for other metal-oxide-based chemiresistors.
Collapse
|
47
|
Mohd Zain NK, Karuppiah C, Misnon II, Das S, Ikechukwu Ozoemena K, Yang C, Jose R. High Capacity and Rate Capability Binder‐less Ternary Transition Metal‐organic Framework as Anode Material for Lithium‐ion Battery. ELECTROANAL 2020. [DOI: 10.1002/elan.202060381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nurul Khairiyyah Mohd Zain
- Nanostructured Renewable Energy Materials Laboratory Faculty of Industrial Sciences & Technology University Malaysia Pahang Kuantan 23600 Pahang Malaysia
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy Ming Chi University of Technology New Taipei City 243 Taiwan ROC
| | - Izan Izwan Misnon
- Nanostructured Renewable Energy Materials Laboratory Faculty of Industrial Sciences & Technology University Malaysia Pahang Kuantan 23600 Pahang Malaysia
| | - Santanu Das
- Department of Ceramic Engineering Indian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh 221005 India
| | - Kenneth Ikechukwu Ozoemena
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand Private Bag 3, PO Wits Johannesburg 2050 South Africa
| | - Chun‐Chen Yang
- Battery Research Center of Green Energy Ming Chi University of Technology New Taipei City 243 Taiwan ROC
| | - Rajan Jose
- Nanostructured Renewable Energy Materials Laboratory Faculty of Industrial Sciences & Technology University Malaysia Pahang Kuantan 23600 Pahang Malaysia
| |
Collapse
|
48
|
Zhou T, Chen S, Wang X, Xie C, Zeng D. Catalytic Activation of Cobalt Doping Sites in ZIF-71-Coated ZnO Nanorod Arrays for Enhancing Gas-Sensing Performance to Acetone. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48948-48956. [PMID: 32989984 DOI: 10.1021/acsami.0c13089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing acetone gas sensors with high sensitivity is crucially important for many applications including nonevasive diagnosis of diabetes. In the present work, cobalt doping is used to catalyze acetone gas-sensing reactions and hence to promote the sensitivity of acetone gas sensors. In order to achieve this, ZIF-71 metal-organic framework (MOF) is synthesized onto ZnO nanorod arrays with various concentrations of Co doping to form composite ZnO@ZIF-71(Co) sensors, which are then evaluated as sensing materials for acetone detection. Such sensors are shown to be sensitive to a trace amount of acetone (50 ppb) and have a massively enhanced response of about 100 times that for the undoped sensor at an optimal Co/Zn ratio and operating temperature. Fourier-transform infrared spectroscopy and temperature-programmed desorption with density functional theory calculations are also made to assist in elucidating the catalytic gas-sensing mechanism for the Co-doped composite sensors ZnO@ZIF-71(Co). It demonstrated that the introduced Co site in ZIF-71(Co) can activate oxygen catalytically and increase active oxygen released to the ZnO surface. Meanwhile, the Co sites also promote the decomposition of acetone. These two steps together affect the catalytic oxidation of gases and finally enhance the sensitivity. This work introduces the catalytic effect of the MOF into the gas-sensing mechanism and provides an idea for broadening the application of MOF catalysis.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyu Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxia Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Changsheng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
49
|
Development of Co(OH)xF2−x Nanosheets for Acetone Gas Sensor Applications: Material Characterization and Sensor Performance Evaluation. CRYSTALS 2020. [DOI: 10.3390/cryst10110968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study reports the employment of Co(OH)xF2−x nanosheets, a new material in the sensor field, for gas sensor applications. We synthesize Co(OH)xF2−x nanosheets via a hydrothermal route using SiO2 sphere templates. Our material characterization confirms that the material is a densely clustered Co(OH)xF2−x nanosheet with an amorphous microstructure with some short-range ordering. Sensors based on the nanosheets demonstrate a high response of 269% toward 4.5 ppm of acetone gas at an operation temperature of 200 °C and a very low minimum detection limit of 40 ppb. It functions effectively up to a temperature below 300 °C, above which F is found to start to evaporate. Our discussion suggests that an excellent sensor performance arises from the high catalytic function of F incorporated in a high concentration in the material as well as the high specific surface area due to the morphology of densely clustered nanosheets.
Collapse
|
50
|
Linxin D, Song L, Xuehua S. The properties of MOF-Zn 2(EBNB) 2(BPY) 2·2H 2O and its basic study of loading methadone. BMC Chem 2020; 14:57. [PMID: 32968738 PMCID: PMC7501603 DOI: 10.1186/s13065-020-00709-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/09/2020] [Indexed: 11/10/2022] Open
Abstract
The ligands of (E)-bis(p-3-nitrobenzoic acid) vinyl (C16H10N2O8) were synthesized in three steps, and then the MOF-Zn2(EBNB)2(BPY)2·2H2O was synthesized by solvothermal method. This structure was characterized by X-ray single crystal diffraction, SEM and TG. The drug loading and in vitro release of Zn2(EBNB)2(BPY)2·2H2O were also studied with Methadone as model drug. The results show that the highest loading amount of Zn2(EBNB)2(BPY)2·2H2O to Methadone was 0.256 g/g, and the drug delivery system was a two-phase mode. The results of in vitro cytotoxicity test show that Zn2(EBNB)2(BPY)2·2H2O has good biocompatibility.
Collapse
Affiliation(s)
- Deng Linxin
- Department of Drug Control, Key Laboratory of Narcotics Assay and Control Technology Ministry of Public Security, Yunnan Police College, Kunming, 650223 China
| | - Li Song
- College of Science, Yunnan Agricultural University, Kunming, 650201 China
| | - Sun Xuehua
- Department of Drug Control, Key Laboratory of Narcotics Assay and Control Technology Ministry of Public Security, Yunnan Police College, Kunming, 650223 China
| |
Collapse
|