1
|
Vo Y, Raveendran R, Cao C, Tian L, Lai RY, Stenzel MH. Tadpole-like cationic single-chain nanoparticles display high cellular uptake. J Mater Chem B 2024; 12:12627-12640. [PMID: 39498571 DOI: 10.1039/d4tb01970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The successful delivery of nanoparticles (NPs) to cancer cells is dependent on various factors, including particle size, shape, surface properties such as hydrophobicity/hydrophilicity, charges, and functional moieties. Tailoring these properties has been explored extensively to enhance the efficacy of NPs for drug delivery. Single-chain polymer nanoparticles (SCNPs), notable for their small size (sub-20 nm) and tunable properties, are emerging as a promising platform for drug delivery. However, the impact of surface charge on the biological performance of SCNPs in cancer cells remains underexplored. In this study, we prepared a library of SCNPs with varying charge types (neutral, anionic, cationic, and zwitterionic), charge densities, charge positions, and crosslinking densities to evaluate their effects on cellular uptake in MCF-7 breast cancer cells. Key findings include that cationic SCNPs are more likely to translocate into cells than neutral, anionic, or zwitterionic counterparts. Furthermore, cellular uptake was enhanced with increased charge density (from 10 to 15 mol%) before reaching a critical point (20 mol%) where excessive positive charge led to NP adhesion to the cell membrane, resulting in cell death. We also found that the position of the charge on the polymer chain also impacted the delivery of NPs to cancer cells, with tadpole-shaped SCNPs achieving the highest uptake. Furthermore, crosslinking density significantly influenced cellular uptake, with SCNPs at 50% crosslinking conversion showing the highest cytosolic localization, while other densities resulted in retention primarily at the cell membrane. This study offers valuable insights into how charge type, density, position, and crosslinking density affect the biological performance of SCNPs, guiding the rational design of more effective and safer drug delivery systems.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Linqing Tian
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
2
|
Thümmler JF, Binder WH. Compartmentalised single-chain nanoparticles and their function. Chem Commun (Camb) 2024; 60:14332-14345. [PMID: 39575550 DOI: 10.1039/d4cc04387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Single-chain nanoparticles (SCNPs) are generated by intramolecular collapse and crosslinking of single polymer chains, thus conceptually resembling the structures of folded proteins. Their chemical flexibility and ability to form compartmentalised nanostructures sized ∼1 nm make them perfect candidates for numerous applications, such as in catalysis and drug delivery. In this review we discuss principles for the design, synthesis and analysis of SCNPs, with a focus on their compartmentalised structures, highlighting our own previous work. As such compartments offer the potential to generate a specific nanoenvironment e.g. for the covalent and non-covalent encapsulation of catalysts or drugs, they represent a novel, exciting, and expanding research area. Starting from the architectural and chemical design of the starting copolymers by controlling their amphiphilic profile, the embedding of blocks-, or secondary-structure-mimetic arrangements, we discuss design principles to form internal compartments inside the SCNPs. While the generation of compartments inside SCNPs is straightforward, their analysis is still challenging and often demands special techniques. We finally discuss applications of SCNPs, also linked to the compartment formation, predicting a bright future for these special nanoobjects.
Collapse
Affiliation(s)
- Justus F Thümmler
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| | - Wolfgang H Binder
- Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|
3
|
Vo Y, Raveendran R, Cao C, Lai RY, Lossa M, Foster H, Stenzel MH. Solvent Choice during Flow Assembly of Photocross-Linked Single-Chain Nanoparticles and Micelles Affects Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59833-59848. [PMID: 39450994 DOI: 10.1021/acsami.4c12186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Polymeric micelles have widely been used as drug delivery carriers, and recently, single-chain nanoparticles (SCNPs) emerged as potential, smaller-sized, alternatives. In this work, we are comparing both NPs side by side and evaluate their ability to be internalized by breast cancer cells (MCF-7) and macrophages (RAW 264.7). To be able to generate these NPs on demand, the polymers were assembled by flow, followed by the stabilization of the structures by photocross-linking using blue light. The central aim of this work is to evaluate how the type of solvent affects self-assembly and ultimately the structure of the final NP. Therefore, a library of copolymers with different sequences, including block copolymers (AB, ABA, BAB), and statistical copolymers (rAB and rAC) was synthesized using PET-RAFT with A denoting poly(ethylene glycol) methyl ether acrylate (PEGMEA), B as 2-hydroxyethyl acrylate (HEA), and C as 4-hydroxybutyl acrylate (HBA). The polymers were conjugated with a quinoline derivative to enable the formation of cross-linked structures by photocross-linking during flow assembly. Using water as the dispersant for photocross-linking led to the preassembly of these amphiphilic polymers into compact SCNPs and cross-linked micelles, resulting in a quick photoreaction. In contrast, acetonitrile led to fully dissolved polymers but a low rate of the photoreaction. These intramolecularly cross-linked polymers were then placed in water to result in more dynamic micelles and looser SCNPs. Small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and size exclusion chromatography (SEC) coupled with a viscosity detector show that cross-linking in acetonitrile results in better-defined NPs with a shell rich in PEGMEA. Cross-linking in acetonitrile led to NPs with significantly higher cellular uptake. Interestingly, passive transport was identified as the main pathway for the delivery of our NPs on MCF-7 cells, confirmed by the uptake of NPs on cells treated with inhibitors and by red blood cells. This work underscored the importance of the polymer precursor's structure and the choice of solvent during intramolecular cross-linking in determining the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miriam Lossa
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Henry Foster
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Pomposo JA, Arena D, Verde-Sesto E, Maiz J, de Molina PM, Moreno AJ. Why Single-Chain Nanoparticles from Weak Polyelectrolytes Can Be Synthesized at Large Scale in Concentrated Solution? Macromol Rapid Commun 2024; 45:e2400453. [PMID: 39012220 DOI: 10.1002/marc.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Here, the unresolved question of why single-chain nanoparticles (SCNPs) prepared from a weak polyelectrolyte (PE) precursor can be synthesized on a large scale in a concentrated solution is addressed, unlike SCNPs obtained from an equivalent neutral (nonamphiphilic) polymer precursor. The combination of the standard elastic single-chain nanoparticles (ESN) model -developed for neutral chains- with the classical scaling theory of PE solutions provides the key. Essentially, the long-range repulsion between electrostatic blobs in a weak PE precursor restricts the cross-linking process during SCNPs formation to the interior of each blob. Consequently, the maximum concentration at which PE-SCNPs can be prepared without interchain cross-linking is not determined by the full size of the PE precursor but, instead, by the smaller size of its electrostatic blobs. Therefore, PE-SCNPs can be synthesized up to a critical concentration where electrostatic blobs from different chains touch each other. This concentration can be 30 times higher than that for non-PE polymer precursors. Upon progressive dilution, the size of PE-SCNPs synthesized in concentrated solution increases until it reaches the bigger size of PE-SCNPs prepared under highly diluted conditions. PE-SCNPs do not adopt a globular conformation either in concentrated or in diluted solution. It shows that the main model predictions agree with experimental results.
Collapse
Affiliation(s)
- Jose A Pomposo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P Manuel Lardizabal 5, Donostia, E-20018, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología. University of the Basque Country (UPV/EHU), Faculty of Chemistry, P Manuel Lardizabal 3, Donostia, E-20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, E-48009, Spain
| | - Davide Arena
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P Manuel Lardizabal 5, Donostia, E-20018, Spain
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P Manuel Lardizabal 5, Donostia, E-20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, E-48009, Spain
| | - Jon Maiz
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P Manuel Lardizabal 5, Donostia, E-20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, E-48009, Spain
| | - Paula Malo de Molina
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P Manuel Lardizabal 5, Donostia, E-20018, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao, E-48009, Spain
| | - Angel J Moreno
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, P Manuel Lardizabal 5, Donostia, E-20018, Spain
- Donostia International Physics Center (DIPC), P Manuel Lardizabal 4, Donostia, E-20018, Spain
| |
Collapse
|
5
|
Deng L, Olea AR, Ortiz-Perez A, Sun B, Wang J, Pujals S, Palmans ARA, Albertazzi L. Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device. SMALL METHODS 2024; 8:e2301072. [PMID: 38348928 DOI: 10.1002/smtd.202301072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Indexed: 10/18/2024]
Abstract
The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Alis R Olea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Ana Ortiz-Perez
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Bingbing Sun
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Jianhong Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Silvia Pujals
- Institute for Advanced Chemistry of Catalonia (IQAC), Barcelona, 08034, Spain
| | - Anja R A Palmans
- Laboratory for Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Lorenzo Albertazzi
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Molecular Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
6
|
Paats JWD, Hamelmann NM, Paulusse JMJ. Dual-reactive single-chain polymer nanoparticles for orthogonal functionalization through active ester and click chemistry. J Control Release 2024; 373:117-127. [PMID: 38968970 DOI: 10.1016/j.jconrel.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 06/09/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Glucose has been extensively studied as a targeting ligand on nanoparticles for biomedical nanoparticles. A promising nanocarrier platform are single-chain polymer nanoparticles (SCNPs). SCNPs are well-defined 5-20 nm semi-flexible nano-objects, formed by intramolecularly crosslinked linear polymers. Functionality can be incorporated by introducing labile pentafluorophenyl (PFP) esters in the polymer backbone, which can be readily substituted by functional amine-ligands. However, not all ligands are compatible with PFP-chemistry, requiring different ligation strategies for increasing versatility of surface functionalization. Here, we combine active PFP-ester chemistry with copper(I)-catalyzed azide alkyne cycloaddition (CuAAC) click chemistry to yield dual-reactive SCNPs. First, the SCNPs are functionalized with increasing amounts of 1-amino-3-butyne groups through PFP-chemistry, leading to a range of butyne-SCNPs with increasing terminal alkyne-density. Subsequently, 3-azido-propylglucose is conjugated through the glucose C1- or C6-position by CuAAC click chemistry, yielding two sets of glyco-SCNPs. Cellular uptake is evaluated in HeLa cancer cells, revealing increased uptake upon higher glucose-surface density, with no apparent positional dependance. The general conjugation strategy proposed here can be readily extended to incorporate a wide variety of functional molecules to create vast libraries of multifunctional SCNPs.
Collapse
Affiliation(s)
- Jan-Willem D Paats
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE, Enschede, the Netherlands.
| |
Collapse
|
7
|
Vo Y, Nothling MD, Raveendran R, Cao C, Stenzel MH. Effects of Drug Conjugation on the Biological Activity of Single-Chain Nanoparticles. Biomacromolecules 2024; 25:675-689. [PMID: 38266160 DOI: 10.1021/acs.biomac.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The field of single-chain nanoparticles (SCNPs) continues to mature, and an increasing range of reports have emerged that explore the application of these small nanoparticles. A key application for SCNPs is in the field of drug delivery, and recent work suggests that SCNPs can be readily internalized by cells. However, limited attention has been directed to the delivery of small-molecule drugs using SCNPs. Moreover, studies on the physicochemical effects of drug loading on SCNP performance is so far missing, despite the accepted view that such small nanoparticles should be significantly affected by the drug loading content. To address this gap, we prepared a library of SCNPs bearing different amounts of a covalently conjugated therapeutic drug-sulfasalazine (SSZ). We evaluated the impact of the conjugated drug loading on both the synthesis and biological activity of SCNPs on pancreatic cancer cells (AsPC-1). Our results reveal that covalent drug conjugation to the side chains of the SCNP polymer precursor interferes with chain collapse and cross-linking, which demands optimization of reaction conditions to reach high degrees of cross-linking efficiencies. Small-angle neutron scattering and diffusion-ordered spectroscopy nuclear magnetic resonance (DOSY NMR) analyses reveal that SCNPs with a higher drug loading display larger sizes and looser structures, as well as increased hydrophobicity associated with a higher SSZ content. Increased SSZ loading led to reduced cellular uptake when assessed in vitro, whereby SCNP aggregation on the surface of AsPC-1 cells led to reduced toxicity. This work highlights the effects of drug loading on the drug delivery efficiency and biological behavior of SCNPs.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Mitchell D Nothling
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
8
|
Thümmler JF, Maragani R, Schmitt FJ, Tang G, Rahmanlou SM, Laufer J, Lucas H, Mäder K, Binder WH. Thermoresponsive swelling of photoacoustic single-chain nanoparticles. Chem Commun (Camb) 2023; 59:11373-11376. [PMID: 37665625 DOI: 10.1039/d3cc03851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
NIR-fluorescent LCST-type single-chain nanoparticles (SCNPs) change their photophysical behaviour upon heating, caused by depletion of water from the swollen SCNP interiors. This thermoresponsive effect leads to a fluctuating photoacoustic (PA) signal which can be used as a contrast mechanism for PA imaging.
Collapse
Affiliation(s)
- Justus F Thümmler
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany.
| | - Ramesh Maragani
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany.
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Guo Tang
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Samira Mahmoudi Rahmanlou
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Jan Laufer
- Institute of Physics, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, Halle D-06120, Germany
| | - Henrike Lucas
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle D-06120, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle D-06120, Germany
| | - Wolfgang H Binder
- Institute of Chemistry, Faculty of Natural Sciences II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle D-06120, Germany.
| |
Collapse
|
9
|
Maag PH, Feist F, Truong VX, Frisch H, Roesky PW, Barner-Kowollik C. Visible-Light-Induced Control over Reversible Single-Chain Nanoparticle Folding. Angew Chem Int Ed Engl 2023; 62:e202309259. [PMID: 37485591 DOI: 10.1002/anie.202309259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
We introduce a class of single-chain nanoparticles (SCNPs) that respond to visible light (λmax =415 nm) with complete unfolding from their compact structure into linear chain analogues. The initial folding is achieved by a simple esterification reaction of the polymer backbone constituted of acrylic acid and polyethylene glycol carrying monomer units, introducing bimane moieties, which allow for the photochemical unfolding, reversing the ester-bond formation. The compaction and the light driven unfolding proceed cleanly and are readily followed by size exclusion chromatography (SEC) and diffusion ordered NMR spectroscopy (DOSY), monitoring the change in the hydrodynamic radius (RH ). Importantly, the folding reaction and the light-induced unfolding are reversible, supported by the high conversion of the photo cleavage. As the unfolding reaction occurs in aqueous systems, the system holds promise for controlling the unfolding of SCNPs in biological environments.
Collapse
Affiliation(s)
- Patrick H Maag
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vinh X Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Re-search (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, 4000, Brisbane, QLD, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Delledonne A, Guazzelli E, Pescina S, Bianchera A, Galli G, Martinelli E, Sissa C. Amphiphilic Fluorinated Unimer Micelles as Nanocarriers of Fluorescent Probes for Bioimaging. ACS APPLIED NANO MATERIALS 2023; 6:15551-15562. [PMID: 37706068 PMCID: PMC10496108 DOI: 10.1021/acsanm.3c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
The unique self-assembly properties of unimer micelles are exploited for the preparation of fluorescent nanocarriers embedding hydrophobic fluorophores. Unimer micelles are constituted by a (meth)acrylate copolymer with oligoethyleneglycol and perflurohexylethyl side chains (PEGMA90-co-FA10) in which the hydrophilic and hydrophobic comonomers are statistically distributed along the polymeric backbone. Thanks to hydrophobic interactions in water, the amphiphilic copolymer forms small nanoparticles (<10 nm), with tunable properties and functionality. An easy procedure for the encapsulation of a small hydrophobic molecule (C153 fluorophore) within unimer micelles is presented. UV-vis, fluorescence, and fluorescence anisotropy spectroscopic experimental data demonstrate that the fluorophore is effectively embedded in the nanocarriers. Moreover, the nanocarrier positively contributes to preserve the good emissive properties of the fluorophore in water. The efficacy of the dye-loaded nanocarrier as a fluorescent probe is tested in two-photon imaging of thick ex vivo porcine scleral tissue.
Collapse
Affiliation(s)
- Andrea Delledonne
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| | - Elisa Guazzelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
| | - Silvia Pescina
- ADDRes
Lab, Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Annalisa Bianchera
- ADDRes
Lab, Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27A, 43124 Parma, Italy
| | - Giancarlo Galli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
| | - Elisa Martinelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, 56124 Pisa, Italy
- Centro
per la Integrazione Della Strumentazione Dell’Università
di Pisa (CISUP), Lungarno
Pacinotti 43/44, 56126 Pisa, Italy
| | - Cristina Sissa
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17A, 43124 Parma, Italy
| |
Collapse
|
11
|
Wijker S, Palmans ARA. Protein-Inspired Control over Synthetic Polymer Folding for Structured Functional Nanoparticles in Water. Chempluschem 2023; 88:e202300260. [PMID: 37417828 DOI: 10.1002/cplu.202300260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023]
Abstract
The folding of proteins into functional nanoparticles with defined 3D structures has inspired chemists to create simple synthetic systems mimicking protein properties. The folding of polymers into nanoparticles in water proceeds via different strategies, resulting in the global compaction of the polymer chain. Herein, we review the different methods available to control the conformation of synthetic polymers and collapse/fold them into structured, functional nanoparticles, such as hydrophobic collapse, supramolecular self-assembly, and covalent cross-linking. A comparison is made between the design principles of protein folding to synthetic polymer folding and the formation of structured nanocompartments in water, highlighting similarities and differences in design and function. We also focus on the importance of structure for functional stability and diverse applications in complex media and cellular environments.
Collapse
Affiliation(s)
- Stefan Wijker
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Wu Y, Zhou M, Lin R, Yu L, Zhang X, Xie J. Acid-Responsive Macroporous Silica Nanoparticles for Bcl-2-Functional-Converting Peptide Release and Synergism with Celastrol for Enhanced Therapy against Resistant Cancer. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37312263 DOI: 10.1021/acsami.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Combination of chemotherapeutics with polypeptide/protein drugs has been demonstrated to be an effective approach for treatment against cancer multidrug resistance. However, due to the low biostability and weak cell penetrating ability of biomacromolecules, intracellular delivery and release of biomacromolecules in a spatiotemporally controllable manner in target sites in vivo face great challenges, and synergistic effects will not be achieved as expected just by simple drug combination. Here, we conceived an inspired strategy to combat the drug-resistant tumors by fabricating multiarm PEG-gated large pore-sized mesoporous silica nanoparticles for the Bcl-2-functional-converting peptide (denoted as N9@M-CA∼8P) payload and controlled release and realizing synergistic effects with celastrol integration at a low dosage as a curative sensitizer. Our results demonstrated that the N9 peptide could be pH-responsively released from the macropores of the M-CA∼8P nanosystem both in simulated physiological environments and in cancer cells and at tumor sites. Biosafe and enhanced therapeutic outcomes (90% tumor inhibition) were obtained by combination of the N9@M-CA∼8P nanosystem with celastrol coordinatively inducing mitochondrion-mediated cell apoptosis in resistant cancer cell lines and in the corresponding xenografted mice models. Overall, this study provides convincing evidence for effective and safe resistant cancer treatment through a stimulus-responsive biomacromolecule nanosystem combined with a low dosage of a natural compound.
Collapse
Affiliation(s)
- Yuehuang Wu
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Min Zhou
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ruimiao Lin
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Lixue Yu
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiaokun Zhang
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, and Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
13
|
Hamelmann NM, Paulusse JMJ. Single-chain polymer nanoparticles in biomedical applications. J Control Release 2023; 356:26-42. [PMID: 36804328 DOI: 10.1016/j.jconrel.2023.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Single-chain polymer nanoparticles (SCNPs) are a well-defined and uniquely sized class of polymer nanoparticles. The advances in polymer science over the past decades have enabled the development of a variety of intramolecular crosslinking systems, leading to particles in the 5-20 nm size regime. Which is aligned with the size regime of proteins and therefore making SCNPs an interesting class of NPs for biomedical applications. The high modularity of SCNP design and the ease of their functionalization have led to growing research interest. In this review, we describe different crosslinking systems, as well as the preparation of functional SCNPs and the variety of biomedical applications that have been explored.
Collapse
Affiliation(s)
- Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
14
|
Thümmler JF, Roos AH, Krüger J, Hinderberger D, Schmitt FJ, Tang G, Golmohamadi FG, Laufer J, Binder WH. Tuning the Internal Compartmentation of Single-Chain Nanoparticles as Fluorescent Contrast Agents. Macromol Rapid Commun 2023; 44:e2200618. [PMID: 35973086 DOI: 10.1002/marc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Indexed: 01/26/2023]
Abstract
Controlling the internal structures of single-chain nanoparticles (SCNPs) is an important factor for their targeted chemical design and synthesis, especially in view of nanosized compartments presenting different local environments as a main feature to control functionality. We here design SCNPs bearing near-infrared fluorescent dyes embedded in hydrophobic compartments for use as contrast agents in pump-probe photoacoustic (PA) imaging, displaying improved properties by the location of the dye in the hydrophobic particle core. Compartment formation is controlled via single-chain collapse and subsequent crosslinking of an amphiphilic polymer using external crosslinkers in reaction media of adjustable polarity. Different SCNPs with hydrodynamic diameters of 6-12 nm bearing adjustable label densities are synthesized. It is found that the specific conditions for single-chain collapse have a major impact on the formation of the desired core-shell structure, in turn adjusting the internal nanocompartments together with the formation of excitonic dye couples, which in turn increase their fluorescence lifetime and PA signal generation. SCNPs with the dye molecules accumulate at the core also show a nonlinear PA response as a function of pulse energy-a property that can be exploited as a contrast mechanism in molecular PA tomography.
Collapse
Affiliation(s)
- Justus F Thümmler
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle, Germany
| | - Andreas H Roos
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle, Germany
| | - Jana Krüger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle, Germany
| | - Dariush Hinderberger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle, Germany
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120, Halle, Germany
| | - Guo Tang
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120, Halle, Germany
| | - Farzin Ghane Golmohamadi
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120, Halle, Germany
| | - Jan Laufer
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, D-06120, Halle, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle, Germany
| |
Collapse
|
15
|
Hamelmann N, Paats JWD, Avalos-Padilla Y, Lantero E, Spanos L, Siden-Kiamos I, Fernàndez-Busquets X, Paulusse JMJ. Single-Chain Polymer Nanoparticles Targeting the Ookinete Stage of Malaria Parasites. ACS Infect Dis 2022; 9:56-64. [PMID: 36516858 PMCID: PMC9841520 DOI: 10.1021/acsinfecdis.2c00336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease transmitted by mosquitos, whose control is hampered by drug resistance evolution in the causing agent, protist parasites of the genus Plasmodium, as well as by the resistance of the mosquito to insecticides. New approaches to fight this disease are, therefore, needed. Research into targeted drug delivery is expanding as this strategy increases treatment efficacies. Alternatively, targeting the parasite in humans, here we use single-chain polymer nanoparticles (SCNPs) to target the parasite at the ookinete stage, which is one of the stages in the mosquito. This nanocarrier system provides uniquely sized and monodispersed particles of 5-20 nm, via thiol-Michael addition. The conjugation of succinic anhydride to the SCNP surface provides negative surface charges that have been shown to increase the targeting ability of SCNPs to Plasmodium berghei ookinetes. The biodistribution of SCNPs in mosquitos was studied, showing the presence of SCNPs in mosquito midguts. The presented results demonstrate the potential of anionic SCNPs for the targeting of malaria parasites in mosquitos and may lead to progress in the fight against malaria.
Collapse
Affiliation(s)
- Naomi
M. Hamelmann
- Department
of Molecules and Materials, MESA+ Institute for Nanotechnology and
TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Jan-Willem D. Paats
- Department
of Molecules and Materials, MESA+ Institute for Nanotechnology and
TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Yunuen Avalos-Padilla
- The
Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10−12, ES-08028 Barcelona, Spain,Barcelona
Institute for Global Health (ISGlobal, Hospital Clínic-Universitat
de Barcelona), Rosselló
149-153, ES-08036 Barcelona, Spain
| | - Elena Lantero
- The
Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10−12, ES-08028 Barcelona, Spain,Barcelona
Institute for Global Health (ISGlobal, Hospital Clínic-Universitat
de Barcelona), Rosselló
149-153, ES-08036 Barcelona, Spain
| | - Lefteris Spanos
- Institute
of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece
| | - Inga Siden-Kiamos
- Institute
of Molecular Biology and Biotechnology, FORTH, N. Plastira 100, 700 13 Heraklion, Greece,
| | - Xavier Fernàndez-Busquets
- The
Barcelona Institute of Science and Technology, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10−12, ES-08028 Barcelona, Spain,Barcelona
Institute for Global Health (ISGlobal, Hospital Clínic-Universitat
de Barcelona), Rosselló
149-153, ES-08036 Barcelona, Spain,Nanoscience
and Nanotechnology Institute (IN2UB, Universitat de Barcelona), Martí i Franquès 1, ES-08028 Barcelona, Spain,
| | - Jos M. J. Paulusse
- Department
of Molecules and Materials, MESA+ Institute for Nanotechnology and
TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands,
| |
Collapse
|
16
|
Hamelmann NM, Uijttewaal S, Hujaya SD, Paulusse JMJ. Enhancing Cellular Internalization of Single-Chain Polymer Nanoparticles via Polyplex Formation. Biomacromolecules 2022; 23:5036-5042. [PMID: 36383472 DOI: 10.1021/acs.biomac.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intracellular delivery of nanoparticles is crucial in nanomedicine to reach optimal delivery of therapeutics and imaging agents. Single-chain polymer nanoparticles (SCNPs) are an interesting class of nanoparticles due to their unique site range of 5-20 nm. The intracellular delivery of SCNPs can be enhanced by using delivery agents. Here, a positive polymer is used to form polyplexes with SCNPs, similar to the strategy of protein and gene delivery. The size and surface charge of the polyplexes were evaluated. The cellular uptake showed rapid uptake of SCNPs via polyplex formation, and the cytosolic delivery of the SCNPs was presented by confocal microscopy. The ability of SCNPs to act as nanocarriers was further explored by conjugation of doxorubicin.
Collapse
Affiliation(s)
- Naomi M Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sjoerd Uijttewaal
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sry D Hujaya
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M J Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
17
|
Doan-Nguyen TP, Mantala K, Atithep T, Crespy D. Osmotic Pressure as Driving Force for Reducing the Size of Nanoparticles in Emulsions. ACS NANO 2022; 17:940-954. [PMID: 36472438 DOI: 10.1021/acsnano.2c05565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We describe here a method to decrease particle size of nanoparticles synthesized by miniemulsion polymerization. Small nanoparticles or nanocapsules were obtained by generating an osmotic pressure to induce the diffusion of monomer molecules from the dispersed phase of a miniemulsion before polymerization to an upper oil layer. The size reduction is dependent on the difference in concentration of monomer in the dispersed phase and in the upper oil layer and on the solubility of the monomer in water. By labeling the emulsion droplets with a copolymer of stearyl methacrylate and a polymerizable dye, we demonstrated that the migration of the monomer to the upper hexadecane layer relied on molecular diffusion rather than diffusion of monomer droplets to the oil layer. Moreover, surface tension measurements confirmed that the emulsions were still in the miniemulsion regime and not in the microemulsion regime. The particle size can be tuned by controlling the duration during which the miniemulsion stayed in contact with the hexadecane layer, the interfacial area between the miniemulsion and the hexadecane layer and by the concentration of surfactant. Our method was applied to reduce the size of polystyrene and poly(methyl methacrylate) nanoparticles, nanocapsules of a copolymer of styrene and methyl methacrylic acid, and silica nanocapsules. This work demonstrated that a successful reduction of nanoparticle size in the miniemulsion process can be achieved without using excess amounts of surfactant. The method relies on building osmotic pressure in oil droplets dispersed in water which acts as semipermeable membrane.
Collapse
Affiliation(s)
- Thao P Doan-Nguyen
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Kanyarat Mantala
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Thassanant Atithep
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Daniel Crespy
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
18
|
Synthesis and Characterization of Magnetic Nanoparticles-Grafted-Hyaluronic Acid/β-Cyclodextrin as a Novel pH-Sensetive Nanocarrier for Targeted Delivery of Doxorubicin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Fischer J, Han L, Saito T, Dadmun M. When does a macromolecule transition from a polymer chain to a nanoparticle? NANOSCALE ADVANCES 2022; 4:5164-5177. [PMID: 36504741 PMCID: PMC9680937 DOI: 10.1039/d2na00617k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Frequently, the defining characteristic of a nanoparticle is simply its size, where objects that are 1-100 nm are characterized as nanoparticles. However, synthetic and biological macromolecules, in particular high molecular weight chains, can satisfy this size requirement without providing the same phenomena as one would expect from a nanoparticle. At the same time, soft polymer nanoparticles are important in a broad range of fields, including understanding protein folding, drug delivery, vitrimers, catalysis and nanomedicine. Moreover, the recent flourish of all polymer nanocomposites has led to the synthesis of soft all-polymer nanoparticles, which emerge from internal crosslinking of a macromolecule. Thus, there exists a transition of an internally crosslinked macromolecule from a polymer chain to a nanoparticle as the amount of internal crosslinks increases, where the polymer chain exhibits different behavior than the nanoparticle. Yet, this transition is not well understood. In this work, we seek to address this knowledge gap and determine the transition of a macromolecule from a polymer chain to a nanoparticle as internal crosslinking increases. In this work, small angle neutron scattering (SANS) offers insight into the structure of polystyrene and poly(ethyl hexyl methacrylate) nanostructures in dilute solutions, with crosslinking densities that vary from 0.1 to 10.7%. Analyses of the SANS data provides structural characteristics to classify a nanostructure as chain-like or particle-like and identify a crosslinking dependent transition between the two morphologies. It was found that for both types of polymeric nanostructures, a crosslinking density of 0.81% (∼ a crosslink for every 1 in 125 monomers) or higher exhibit clear particle-like behavior. Lower crosslinking density nanostructures showed amounts of collapse similar to that of a star polymer (0.1% XL) or a random walk polymer chain (0.4% XL). Thus, the transition of an internally crosslinked macromolecule from a polymer chain to a nanoparticle is not an abrupt transition but occurs via the gradual contraction of the chain with incorporated crosslinks.
Collapse
Affiliation(s)
- Jacob Fischer
- Department of Chemistry, University of Tennessee Knoxville Tennessee USA
| | - Lu Han
- Chemical Sciences Division, Oak Ridge National Lab Oak Ridge Tennessee USA
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Lab Oak Ridge Tennessee USA
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee Knoxville Tennessee USA
- Chemical Sciences Division, Oak Ridge National Lab Oak Ridge Tennessee USA
| |
Collapse
|
20
|
Progress in polymer single-chain based hybrid nanoparticles. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Simagin AS, Savinova MV, Kamorin DM, Kazantsev OA, Orekhov DV, Simonova MA, Orekhov SV. Amino- and Sulfo-Containing Molecular Brushes Based on Oligo(ethylene glycol) (Meth)Acrylates: Synthesis and Properties in Solutions. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222700175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Sharifi S, Asenjo-Sanz I, Pomposo JA, Alegria A. Intra- vs Intermolecular Cross-Links in Poly(methyl methacrylate) Networks Containing Enamine Bonds. Macromolecules 2022; 55:3627-3636. [PMID: 35578611 PMCID: PMC9100347 DOI: 10.1021/acs.macromol.1c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Indexed: 11/30/2022]
Abstract
![]()
The molecular dynamics
of a copolymer composed of methyl methacrylate
(MMA) and (2-acetoacetoxy)ethyl methacrylate (AEMA) monomers and the
influence on it of intra- to intermolecular cross-links of AEMA units
with ethylenediamine (EDA) was studied by combining dielectric relaxation
experiments and thermal investigations. The dielectric spectra of
the non-cross-linked copolymer show three dynamical processes: a slow
relaxation (α) and a faster (β), both dominated by the
MMA dynamics, and an even faster secondary relaxation (γ) reflecting
the AEMA dynamics. Already for low cross-linking densities, the γ
process is very much affected and eventually disappears, increasing
the cross-linking density. The secondary β relaxation however
was nearly unaffected by cross-linking. The effect of cross-linking
on the α relaxation was very pronounced with an important increasing
of the glass transition temperature Tg. There was also an increase of the dynamic heterogeneity and the
relaxation intensity when increasing the cross-linking density (up
to the maximum explored, 9 mol % EDA). The quality of the average
time scale and Tg value have similarities
in behavior for intra- and intermolecular cross-linking, but clear
differences in the dynamic heterogeneities where observed. These differences
can be interpreted in connection with the sparse internal structure
of the collapsed single chains obtained by intramolecular cross-linking.
Collapse
Affiliation(s)
- Soheil Sharifi
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Isabel Asenjo-Sanz
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - José A. Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza de Euskadi 5, 48009 Bilbao, Spain
| | - Angel Alegria
- Centro de Física de Materiales (CSIC, UPV/EHU)-Materials Physics Center (MPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
23
|
Calosi M, Guazzelli E, Braccini S, Lessi M, Bellina F, Galli G, Martinelli E. Self-Assembled Amphiphilic Fluorinated Random Copolymers for the Encapsulation and Release of the Hydrophobic Combretastatin A-4 Drug. Polymers (Basel) 2022; 14:774. [PMID: 35215686 PMCID: PMC8880340 DOI: 10.3390/polym14040774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/03/2022] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Water-soluble amphiphilic random copolymers composed of tri(ethylene glycol) methacrylate (TEGMA) or poly(ethylene glycol) methyl ether methacrylate (PEGMA) and perfluorohexylethyl acrylate (FA) were synthesized by ARGET-ATRP, and their self-assembling and thermoresponsive behavior in water was studied by dynamic light scattering (DLS) and UV-vis spectroscopy. The copolymer ability to self-fold in single-chain nano-sized structures (unimer micelles) in aqueous solutions was exploited to encapsulate Combretastatin A-4 (CA-4), which is a very hydrophobic anticancer drug. The cloud point temperature (Tcp) was found to linearly decrease with increasing drug concentration in the drug/copolymer system. Moreover, while CA-4 was preferentially incorporated into the unimer micelles of TEGMA-ran-FA, the drug was found to induce multi-chain, submicro-sized aggregation of PEGMA-ran-FA. Anyway, the encapsulation efficiency was very high (≥81%) for both copolymers. The drug release was evaluated in PBS aqueous solutions both below and above Tcp for TEGMA-ran-FA copolymer and below Tcp, but at two different drug loadings, for PEGMA-ran-FA copolymer. In any case, the release kinetics presented similar profiles, characterized by linear trends up to ≈10-13 h and ≈7 h for TEGMA-ran-FA and PEGMA-ran-FA, respectively. Then, the release rate decreased, reaching a plateau. The release from TEGMA-ran-FA was moderately faster above Tcp than below Tcp, suggesting that copolymer thermoresponsiveness increased the release rate, which occurred anyway by diffusion below Tcp. Cytotoxicity tests were carried out on copolymer solutions in a wide concentration range (5-60 mg/mL) at 37 °C by using Balb/3T3 clone A31 cells. Interestingly, it was found that the concentration-dependent micro-sized aggregation of the amphiphilic random copolymers above Tcp caused a sort of "cellular asphyxiation" with a loss of cell viability clearly visible for TEGMA-ran-FA solutions (Tcp below 37 °C) with higher copolymer concentrations. On the other hand, cells in contact with the analogous PEGMA-ran-FA (Tcp above 37 °C) presented a very good viability (≥75%) with respect to the control at any given concentration.
Collapse
Affiliation(s)
| | | | | | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, 56124 Pisa, Italy; (M.C.); (E.G.); (S.B.); (M.L.); (F.B.); (E.M.)
| | | |
Collapse
|
24
|
Deng L, Albertazzi L, Palmans ARA. Elucidating the Stability of Single-Chain Polymeric Nanoparticles in Biological Media and Living Cells. Biomacromolecules 2022; 23:326-338. [PMID: 34904821 PMCID: PMC8753603 DOI: 10.1021/acs.biomac.1c01291] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Indexed: 11/29/2022]
Abstract
The controlled folding of synthetic polymer chains into single-chain polymeric nanoparticles (SCPNs) of defined size and shape in water is a viable way to create compartmentalized, nanometer-sized structures for a range of biological applications. Understanding the relationship between the polymer's microstructure and the stability of folded structures is crucial to achieving desired applications. Here, we introduce the solvatochromic dye Nile red into SCPNs and apply a combination of spectroscopic and microscopic techniques to relate polymer microstructure to nanoparticle stability in complex biological media and cellular environments. Our experimental data show that the polymer's microstructure has little effect on the stability of SCPNs in biological media and cytoplasm of living cells, but only SCPNs comprising supramolecular benzene-1,3,5-tricarboxamide (BTA) motifs showed good stability in lysosomes. The results indicate that the polymer's microstructure is vital to ensure nanoparticle stability in highly competitive environments: both hydrophobic collapse and a structured interior are required. Our study provides an accessible way of probing the stability of SCPNs in cellular environments and paves the way for designing highly stable SCPNs for efficient bio-orthogonal catalysis and sensing applications.
Collapse
Affiliation(s)
- Linlin Deng
- Laboratory
for Macromolecular and Organic Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Molecular
Biosensing for Medical Diagnostics, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Laboratory
for Macromolecular and Organic Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
25
|
Collagen Nanoparticles in Drug Delivery Systems and Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311369] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The versatile natural polymer, collagen, has gained vast attention in biomedicine. Due to its biocompatibility, biodegradability, weak antigenicity, biomimetics and well-known safety profile, it is widely used as a drug, protein and gene carrier, and as a scaffold matrix in tissue engineering. Nanoparticles develop favorable chemical and physical properties such as increased drug half-life, improved hydrophobic drug solubility and controlled and targeted drug release. Their reduced toxicity, controllable characteristics of scaffolds and stimuli-responsive behavior make them suitable in regenerative medicine and tissue engineering. Collagen associates and absorbs nanoparticles leading to significant impacts on their biological functioning in any biofluid. This review will discuss collagen nanoparticle preparation methods and their applications and developments in drug delivery systems and tissue engineering.
Collapse
|
26
|
Hamelmann NM, Paats JWD, Paulusse JMJ. Cytosolic Delivery of Single-Chain Polymer Nanoparticles. ACS Macro Lett 2021; 10:1443-1449. [PMID: 35549017 DOI: 10.1021/acsmacrolett.1c00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytosolic delivery of therapeutic agents is key to improving their efficacy, as the therapeutics are primarily active in specific organelles. Single-chain polymer nanoparticles (SCNPs) are a promising nanocarrier platform in biomedical applications due to their unique size range of 5-20 nm, modularity, and ease of functionalization. However, cytosolic delivery of SCNPs remains challenging. Here, we report the synthesis of active ester-functional SCNPs of approximately 10 nm via intramolecular thiol-Michael addition cross-linking and their functionalization with increasing amounts of tertiary amines 0 to 60 mol % to obtain SCNPs with increasing positive surface charges. No significant cytotoxicity was detected in bEND.3 cells for the SCNPs, except when SCNPs with high amounts of tertiary amines were incubated over prolonged periods of time at high concentrations. Cellular uptake of the SCNPs was analyzed, presenting different uptake behavior depending on the degree of functionalization. Confocal microscopy revealed successful cytosolic delivery of SCNPs with high degrees of functionalization (45%, 60%), while SCNPs with low amounts (0% to 30%) of tertiary amines showed high degrees of colocalization with lysosomes. This work presents a strategy to direct the intracellular location of SCNPs by controlled surface modification to improve intracellular targeting for biomedical applications.
Collapse
Affiliation(s)
- Naomi M. Hamelmann
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jan-Willem D. Paats
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
27
|
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1719. [PMID: 33847441 PMCID: PMC8511354 DOI: 10.1002/wnan.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has firmly established itself as a compelling avenue for treating disease. Although many clinically approved immunotherapeutics engage the adaptive immune system, therapeutically targeting the innate immune system remains much less explored. Nanomedicine offers a compelling opportunity for innate immune system engagement, as many nanomaterials inherently interact with myeloid cells (e.g., monocytes, macrophages, neutrophils, and dendritic cells) or can be functionalized to target their cell-surface receptors. Here, we provide a perspective on exploiting nanomaterials for innate immune system regulation. We focus on specific nanomaterial design parameters, including size, form, rigidity, charge, and surface decoration. Furthermore, we examine the potential of high-throughput screening and machine learning, while also providing recommendations for advancing the field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianne E. Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma D. Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Bivona
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J. M. Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
28
|
Higgs PL, Appleton JL, Turnbull WB, Fulton DA. Exploiting the Structural Metamorphosis of Polymers to 'Wrap' Micron-Sized Spherical Objects. Chemistry 2021; 27:17647-17654. [PMID: 34665484 DOI: 10.1002/chem.202103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 11/07/2022]
Abstract
There is growing interest in developing methods to 'wrap' nano- and micron-sized biological objects within films that may offer protection, enhance their stability or improve performance. We describe the successful 'wrapping' of lectin-decorated microspheres, which serve as appealing model micron-sized objects, within cross-linked polymer film. This approach utilizes polymer chains able to undergo a structural metamorphosis, from being intramolecularly cross-linked to intermolecularly cross-linked, a process that is triggered by polymer concentration upon the particle surface. Experiments demonstrate that both complementary molecular recognition and the dynamic covalent nature of the crosslinker are required for successful 'wrapping' to occur. This work is significant as it suggests that nano- and micron-sized biological objects such as virus-like particles, bacteria or mammalian cells-all of which may benefit from additional environmental protection or stabilization in emerging applications-may also be 'wrapped' by this approach.
Collapse
Affiliation(s)
- Patrick L Higgs
- Chemistry-School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jordan L Appleton
- Chemistry-School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural MolecularBiology, University of Leeds, Leeds, LS2 9JT, UK
| | - David A Fulton
- Chemistry-School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
29
|
Geiselhart CM, Mutlu H, Barner-Kowollik C. Passerini Multicomponent Reactions Enabling Self-Reporting Photosensitive Tetrazole Polymers. ACS Macro Lett 2021; 10:1159-1166. [PMID: 35549082 DOI: 10.1021/acsmacrolett.1c00280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We introduce the synthesis of photosensitive tetrazole monomers via Passerini multicomponent reactions (MCRs). We exploit the MCR's tolerance toward various functional groups under mild, catalyst-free conditions in a one-pot reaction setup to generate tetrazole-containing monomers featuring a methacrylic moiety, which enables their subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization. By employing tetrazoles with either a 4-methoxy phenyl or a pyrene substituent, further modifications of the polymers in a wavelength-orthogonal, self-reporting fashion upon irradiation with either UV or visible light become possible.
Collapse
Affiliation(s)
- Christina M Geiselhart
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
30
|
Warren JL, Dykeman-Bermingham PA, Knight AS. Controlling Amphiphilic Polymer Folding beyond the Primary Structure with Protein-Mimetic Di(Phenylalanine). J Am Chem Soc 2021; 143:13228-13234. [PMID: 34375094 PMCID: PMC9362848 DOI: 10.1021/jacs.1c05659] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While methods for polymer synthesis have proliferated, their functionality pales in comparison to natural biopolymers-strategies are limited for building the intricate network of noncovalent interactions necessary to elicit complex, protein-like functions. Using a bioinspired di(phenylalanine) acrylamide (FF) monomer, we explored the impact of various noncovalent interactions in generating ordered assembled structures. Amphiphilic copolymers were synthesized that exhibit β-sheet-like local structure upon collapsing into single-chain assemblies in aqueous environments. Systematic analysis of a series of amphiphilic copolymers illustrated that the global collapse is primarily driven by hydrophobic forces. Hydrogen-bonding and aromatic interactions stabilize local structure, as β-sheet-like interactions were identified via circular dichroism and thioflavin T fluorescence. Similar analysis of phenylalanine (F) and alanine-phenylalanine acrylamide (AF) copolymers found that distancing the aromatic residue from the polymer backbone is sufficient to induce β-sheet-like local structure akin to the FF copolymers; however, the interactions between AF subunits are less stable than those formed by FF. Further, hydrogen-bond donating hydrophilic monomers disrupt internal structure formed by FF within collapsed assemblies. Collectively, these results illuminate design principles for the facile incorporation of multiple facets of protein-mimetic, higher-order structure within folded synthetic polymers.
Collapse
Affiliation(s)
- Jacqueline L Warren
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
31
|
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021; 13:591. [PMID: 33919150 PMCID: PMC8143094 DOI: 10.3390/pharmaceutics13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PC) is the most frequent male cancer in the Western world. Progression to Castration Resistant Prostate Cancer (CRPC) is a known consequence of androgen withdrawal therapy, making CRPC an end-stage disease. Combination of cytotoxic drugs and hormonal therapy/or genotherapy is a recognized modality for the treatment of advanced PC. However, this strategy is limited by poor bio-accessibility of the chemotherapy to tumor sites, resulting in an increased rate of collateral toxicity and incidence of multidrug resistance (MDR). Nanovectorization of these strategies has evolved to an effective approach to efficacious therapeutic outcomes. It offers the possibility to consolidate their antitumor activity through enhanced specific and less toxic active or passive targeting mechanisms, as well as enabling diagnostic imaging through theranostics. While studies on nanomedicine are common in other cancer types, only a few have focused on prostate cancer. This review provides an in-depth knowledge of the principles of nanotherapeutics and nanotheranostics, and how the application of this rapidly evolving technology can clinically impact CRPC treatment. With particular reference to respective nanovectors, we draw clinical and preclinical evidence, demonstrating the potentials and prospects of homing nanovectorization into CRPC treatment strategies.
Collapse
Affiliation(s)
- Kenneth Omabe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Department of Biochemistry & Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki 84001, Nigeria
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - François Lannes
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Biophysics and Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| |
Collapse
|
32
|
Stabilin-1 is required for the endothelial clearance of small anionic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102395. [PMID: 33838334 DOI: 10.1016/j.nano.2021.102395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Clearance of nanoparticles (NPs) after intravenous injection - mainly by the liver - is a critical barrier for the clinical translation of nanomaterials. Physicochemical properties of NPs are known to influence their distribution through cell-specific interactions; however, the molecular mechanisms responsible for liver cellular NP uptake are poorly understood. Liver sinusoidal endothelial cells and Kupffer cells are critical participants in this clearance process. Here we use a zebrafish model for liver-NP interaction to identify the endothelial scavenger receptor Stabilin-1 as a non-redundant receptor for the clearance of small anionic NPs. Furthermore, we show that physiologically, Stabilin-1 is required for the removal of bacterial lipopolysaccharide (LPS/endotoxin) from circulation and that Stabilin-1 cooperates with its homolog Stabilin-2 in the clearance of larger (~100 nm) anionic NPs. Our findings allow optimization of anionic nanomedicine biodistribution and targeting therapies that use Stabilin-1 and -2 for liver endothelium-specific delivery.
Collapse
|
33
|
Hoffmann JF, Roos AH, Schmitt FJ, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single-Chain Nanoparticles: Core-Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021; 60:7820-7827. [PMID: 33373475 PMCID: PMC8048794 DOI: 10.1002/anie.202015179] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/13/2020] [Indexed: 12/20/2022]
Abstract
Single-chain nanoparticles (SCNPs) are highly versatile structures resembling proteins, able to function as catalysts or biomedical delivery systems. Based on their synthesis by single-chain collapse into nanoparticular systems, their internal structure is complex, resulting in nanosized domains preformed during the crosslinking process. In this study we present proof of such nanocompartments within SCNPs via a combination of electron paramagnetic resonance (EPR) and fluorescence spectroscopy. A novel strategy to encapsulate labels within these water dispersible SCNPs with hydrodynamic radii of ≈5 nm is presented, based on amphiphilic polymers with additional covalently bound labels, attached via the copper catalyzed azide/alkyne "click" reaction (CuAAC). A detailed profile of the interior of the SCNPs and the labels' microenvironment was obtained via electron paramagnetic resonance (EPR) experiments, followed by an assessment of their photophysical properties.
Collapse
Affiliation(s)
- Justus F Hoffmann
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Andreas H Roos
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Franz-Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Dariush Hinderberger
- Physical Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120, Halle, Germany
| |
Collapse
|
34
|
Martínez-Negro M, González-Rubio G, Aicart E, Landfester K, Guerrero-Martínez A, Junquera E. Insights into colloidal nanoparticle-protein corona interactions for nanomedicine applications. Adv Colloid Interface Sci 2021; 289:102366. [PMID: 33540289 DOI: 10.1016/j.cis.2021.102366] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Colloidal nanoparticles (NPs) have attracted significant attention due to their unique physicochemical properties suitable for diagnosing and treating different human diseases. Nevertheless, the successful implementation of NPs in medicine demands a proper understanding of their interactions with the different proteins found in biological fluids. Once introduced into the body, NPs are covered by a protein corona (PC) that determines the biological behavior of the NPs. The formation of the PC can eventually favor the rapid clearance of the NPs from the body before fulfilling the desired objective or lead to increased cytotoxicity. The PC nature varies as a function of the different repulsive and attractive forces that govern the NP-protein interaction and their colloidal stability. This review focuses on the phenomenon of PC formation on NPs from a physicochemical perspective, aiming to provide a general overview of this critical process. Main issues related to NP toxicity and clearance from the body as a result of protein adsorption are covered, including the most promising strategies to control PC formation and, thereby, ensure the successful application of NPs in nanomedicine.
Collapse
|
35
|
Hoffmann JF, Roos AH, Schmitt F, Hinderberger D, Binder WH. Fluorescent and Water Dispersible Single‐Chain Nanoparticles: Core–Shell Structured Compartmentation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus F. Hoffmann
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Andreas H. Roos
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Franz‐Josef Schmitt
- Institute of Physics, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 3 06120 Halle Germany
| | - Dariush Hinderberger
- Physical Chemistry Institute of Chemistry Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| | - Wolfgang H. Binder
- Macromolecular Chemistry Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics) Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 06120 Halle Germany
| |
Collapse
|
36
|
Reith MA, Kardas S, Mertens C, Fossépré M, Surin M, Steinkoenig J, Du Prez FE. Using nickel to fold discrete synthetic macromolecules into single-chain nanoparticles. Polym Chem 2021. [DOI: 10.1039/d1py00229e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sequence-defined macromolecules were prepared with a thiolactone-based platform whereby ligand functionalities were introduced along the backbone enabling a nickel induced formation of single-chain nanoparticles.
Collapse
Affiliation(s)
- Melissa A. Reith
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Sinan Kardas
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Chiel Mertens
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Mathieu Fossépré
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Mathieu Surin
- Laboratory of Chemistry of Novel Materials, Center of Innovation in Materials and Polymers (CIRMAP), University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Jan Steinkoenig
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, Ghent B-9000, Belgium
| |
Collapse
|
37
|
Bohlen JL, Kulendran B, Rothfuss H, Barner-Kowollik C, Roesky PW. Heterobimetallic Au( i)/Y( iii) single chain nanoparticles as recyclable homogenous catalysts. Polym Chem 2021. [DOI: 10.1039/d1py00552a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au(i)/Y(iii) single chain nanoparticles (SCNPs) are potent homogenous, recyclable catalysts for the hydroamination. The SCNPs consist of terpolymer chains with orthogonal ligand units, enabling the selective embedding of different metals.
Collapse
Affiliation(s)
- Josina L. Bohlen
- Institute for Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Bragavie Kulendran
- Institute for Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- Germany
| | - Hannah Rothfuss
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
- Centre for Materials Science
| | - Peter W. Roesky
- Institute for Inorganic Chemistry
- Karlsruhe Institute of Technology (KIT)
- Germany
| |
Collapse
|
38
|
Huang SY, Cheng CC. Spontaneous Self-Assembly of Single-Chain Amphiphilic Polymeric Nanoparticles in Water. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2006. [PMID: 33053654 PMCID: PMC7601091 DOI: 10.3390/nano10102006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022]
Abstract
Single-chain polymeric nanoparticles (SCPNs) have great potential as functional nanocarriers for drug delivery and bioimaging, but synthetic challenges in terms of final yield and purification procedures limit their use. A new concept to modify and improve the synthetic procedures used to generate water-soluble SCPNs through amphiphilic interactions has been successfully exploited. We developed a new ultrahigh molecular weight amphiphilic polymer containing a hydrophobic poly(epichlorohydrin) backbone and hydrophilic poly(ethylene glycol) side chains. The polymer spontaneously self-assembles into SCPNs in aqueous solution and does not require subsequent purification. The resulting SCPNs possess a number of distinct physical properties, including a uniform hydrodynamic nanoparticle diameter of 10-15 nm, extremely low viscosity and a desirable spherical-like morphology. Concentration-dependent studies demonstrated that stable SCPNs were formed at high concentrations up to 10 mg/mL in aqueous solution, with no significant increase in solution viscosity. Importantly, the SCPNs exhibited high structural stability in media containing serum or phosphate-buffered saline and showed almost no change in hydrodynamic diameter. The combination of these characteristics within a water-soluble SCPN is highly desirable and could potentially be applied in a wide range of biomedical fields. Thus, these findings provide a path towards a new, innovative route for the development of water-soluble SCPNs.
Collapse
Affiliation(s)
- Shan-You Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
39
|
Platinum Atoms Dispersed in Single-chain Polymer Nanoparticles. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2499-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Khelghati N, Rasmi Y, Farahmandan N, Sadeghpour A, Mir SM, Karimian A, Yousefi B. Hyperbranched polyglycerol β-cyclodextrin as magnetic platform for optimization of doxorubicin cytotoxic effects on Saos-2 bone cancerous cell line. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Frisch H, Tuten BT, Barner‐Kowollik C. Macromolecular Superstructures: A Future Beyond Single Chain Nanoparticles. Isr J Chem 2020. [DOI: 10.1002/ijch.201900145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hendrik Frisch
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Bryan T. Tuten
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
| | - Christopher Barner‐Kowollik
- Centre for Materials Science, School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane, QLD 4000 Australia
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie KarlsruheInstitute of Technology (KIT) Engesserstr.18 76131 Karlsruhe Germany
| |
Collapse
|
42
|
Ma W, Lopez G, Ameduri B, Takahara A. Fluoropolymer Nanoparticles Prepared Using Trifluoropropene Telomer Based Fluorosurfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1754-1760. [PMID: 32019307 DOI: 10.1021/acs.langmuir.9b03914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A fluorosurfactant based on 3,3,3-trifluoropropene (TFP) telomer was synthesized as an environmentally friendly alternative to perfluorooctanoic acid (PFOA) using TFP and 2-iodoperfluoropropane ((CF3)2CF-I) as starting materials. TFP telomerization was initiated by addition of di-tert-butylperoxide in the presence of (CF3)2CF-I as a chain transfer agent. The surfactant was obtained by modification of the iodine end-group on the TFP telomer to form an allylic functionality followed by the addition of thioglycolic acid via a thiol-ene reaction. The resulting fluorosurfactant exhibited a lower critical micellar concentration (CMC = 0.87 g·L-1) than that of PFOA (CMC = 3.0 g·L-1). This surfactant was used to prepare fluoropolymer nanoparticles by solvent evaporation from a solution composed of the surfacant and poly[2-(perfluorobutyl)ethyl methacrylate]. The oil-in-water emulsion was initially formed due to the adsorption of the surfactant molecules at the oil/water interface and subsequently converted into a nanoparticle suspension after solvent evaporation. Because of the strong hydrophobic interactions between the fluorinated surfactant tail and fluoropolymer, the obtained nanoparticle suspension was quite stable against water dialysis.
Collapse
Affiliation(s)
- Wei Ma
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395 , Japan
| | - Gérald Lopez
- Ingénierie et Architectures Macromoléculaires Team , Institut Charles Gerhardt, UMR 5253 CNRS, UM, ENSCM , Place Eugéne Bataillon , Montpellier 34095 , France
| | - Bruno Ameduri
- Ingénierie et Architectures Macromoléculaires Team , Institut Charles Gerhardt, UMR 5253 CNRS, UM, ENSCM , Place Eugéne Bataillon , Montpellier 34095 , France
| | - Atsushi Takahara
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395 , Japan
- Institute for Materials Chemistry and Engineering , Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
43
|
Li Y, Lin D, Xu J, Zhou X, Zuo B, Tsui OKC, Zhang W, Wang X. Glass transition temperature of single-chain polystyrene particles end-grafted to oxide-coated silicon. J Chem Phys 2020; 152:064904. [PMID: 32061204 DOI: 10.1063/1.5140627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A method based on the PeakForce QNM atomic force microscopic (AFM) adhesion measurement is employed to investigate the glassy dynamics of polystyrene (PS) single-chain particles end-grafted to SiO2-Si substrates with different diameters, D0, of 3.4 nm-8.8 nm and molar masses, Mn, of 8-123 kg/mol. As temperature was increased, the adhesion force, Fad, experienced by the AFM tip on pulling off the single chains after loading demonstrated a stepwise increase at an elevated temperature, which we identified to be Tg based on previous works. Our result shows that Tg of our grafted single chains increases with Mn in a manner consistent with the Fox-Flory equation, but the coefficient quantifying the Mn dependence of Tg is only (36 ± 6)% the value of bulk PS. In addition, the value of Tg in the Mn → ∞ limit is about 25 °C below the bulk Tg but more than 15 °C above that of (untethered) PS nanoparticles with D0 ≈ 100 nm suspended in a solution. Our findings are consistent with Tg of our single chains being dominated by simultaneous effects of the interfaces, which depress Tg, and end-grafting, which enhances Tg. The latter is believed to exert its influence on the glass transition dynamics by a mechanism reliant on chain connectivity and does not vary with chain length.
Collapse
Affiliation(s)
- Yawei Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Decai Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianquan Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianjing Zhou
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ophelia K C Tsui
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wei Zhang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
44
|
Kröger APP, Paats JWD, Boonen RJEA, Hamelmann NM, Paulusse JMJ. Pentafluorophenyl-based single-chain polymer nanoparticles as a versatile platform towards protein mimicry. Polym Chem 2020. [DOI: 10.1039/d0py00922a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pentafluorophenyl-single chain polymer nanoparticles are readily conjugated with functional amines enabling facile SCNP modification, adjustment of physicochemical properties, and even protein mimicry.
Collapse
Affiliation(s)
- A. Pia P. Kröger
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Jan-Willem D. Paats
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Roy J. E. A. Boonen
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Naomi M. Hamelmann
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| | - Jos M. J. Paulusse
- Department of Biomolecular Nanotechnology
- MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies
- Faculty of Science and Technology
- University of Twente
- 7500 AE Enschede
| |
Collapse
|
45
|
Nitsche T, Blanksby SJ, Blinco JP, Barner-Kowollik C. Pushing the limits of single chain compaction analysis by observing specific size reductions via high resolution mass spectrometry. Polym Chem 2020. [DOI: 10.1039/c9py01910c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we push the limits of single chain nanoparticle analysis to directly observe the specific compaction of defined single chains dependent on the number of compaction steps.
Collapse
Affiliation(s)
- Tobias Nitsche
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Stephen J. Blanksby
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Central Analytical Research Facility
| | - James P. Blinco
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|
46
|
Liu CH, Dugas LD, Bowman JI, Chidanguro T, Storey RF, Simon YC. Forcing single-chain nanoparticle collapse through hydrophobic solvent interactions in comb copolymers. Polym Chem 2020. [DOI: 10.1039/c9py01235d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that we can tune the chain collapse of comb copolymers into single-chain nanoparticles upon UV irradiation through solvency control.
Collapse
Affiliation(s)
- Cheyenne H. Liu
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Logan D. Dugas
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Jared I. Bowman
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Tamuka Chidanguro
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Robson F. Storey
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering
- The University of Southern Mississippi
- Hattiesburg
- USA
| |
Collapse
|
47
|
Nitsche T, Steinkoenig J, De Bruycker K, Bloesser FR, Blanksby SJ, Blinco JP, Barner-Kowollik C. Mapping the Compaction of Discrete Polymer Chains by Size Exclusion Chromatography Coupled to High-Resolution Mass Spectrometry. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Jan Steinkoenig
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Center of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Ghent, Belgium
| | | | | | | | | | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
48
|
Kröger AP, Komil MI, Hamelmann NM, Juan A, Stenzel MH, Paulusse JMJ. Glucose Single-Chain Polymer Nanoparticles for Cellular Targeting. ACS Macro Lett 2019; 8:95-101. [PMID: 30775156 PMCID: PMC6369679 DOI: 10.1021/acsmacrolett.8b00812] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Naturally occurring glycoconjugates possess carbohydrate moieties that fulfill essential roles in many biological functions. Through conjugation of carbohydrates to therapeutics or imaging agents, naturally occurring glycoconjugates are mimicked and efficient targeting or increased cellular uptake of glycoconjugated macromolecules is achieved. In this work, linear and cyclic glucose moieties were functionalized with methacrylates via enzymatic synthesis and used as building blocks for intramolecular cross-linked single-chain glycopolymer nanoparticles (glyco-SCNPs). A set of water-soluble sub-10 nm-sized glyco-SCNPs was prepared by thiol-Michael addition cross-linking in water. Bioactivity of various glucose-conjugated glycopolymers and glyco-SCNPs was evaluated in binding studies with the glucose-specific lectin Concanavalin A and by comparing their cellular uptake efficiency in HeLa cells. Cytotoxicity studies did not reveal discernible cytotoxic effects, making these SCNPs promising candidates for ligand-based targeted imaging and drug delivery.
Collapse
Affiliation(s)
- A. Pia
P. Kröger
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Muhabbat I. Komil
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Naomi M. Hamelmann
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Alberto Juan
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Department
of Molecular NanoFabrication, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, University
of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jos M. J. Paulusse
- Department
of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology
and TechMed Institute for Health and Biomedical Technologies, Faculty
of Science and Technology, University of
Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
49
|
Tavares LJ, de Avila ED, Klein MI, Panariello BHD, Spolidório DMP, Pavarina AC. Antimicrobial photodynamic therapy alone or in combination with antibiotic local administration against biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:135-145. [PMID: 30267963 DOI: 10.1016/j.jphotobiol.2018.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) kills several planktonic pathogens. However, the susceptibility of biofilm-derived anaerobic bacteria to aPDT is poorly characterized. Here, we evaluated the effect of Photodithazine (PDZ)-mediated aPDT on Fusobacterium nucleatum and Porphyromonas gingivalis biofilms. In addition, aPDT was tested with metronidazole (MTZ) to explore the potential antimicrobial effect of the treatment. The minimum inhibitory concentration (MIC) of MTZ was defined for each bacterial species. Single-species biofilms of each species were grown on polystyrene plates under anaerobic conditions for five days. aPDT was performed by applying PDZ at concentrations of 50, 75 and 100 mg/L, followed by exposure to 50 J/cm2 LED light (660 nm) with or without MTZ. aPDT exhibited a significant reduction in bacterial viability at a PDZ concentration of 100 mg/L, with 1.12 log10 and 2.66 log10 reductions for F. nucleatum and P. gingivalis in biofilms, respectively. However, the antimicrobial effect against F. nucleatum was achieved only when aPDT was combined with MTZ at 100× MIC. Regarding P. gingivalis, the combination of PDZ-mediated aPDT at 100 mg/L with MTZ 100× MIC resulted in a 5 log10 reduction in the bacterial population. The potential antimicrobial effects of aPDT in combination with MTZ for both single pathogenic biofilms were confirmed by live/dead staining. These results suggest that localized antibiotic administration may be an adjuvant to aPDT to control F. nucleatum and P. gingivalis biofilms.
Collapse
Affiliation(s)
- Lívia J Tavares
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil
| | - Marlise I Klein
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil
| | - Beatriz H D Panariello
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, 1121 W Michigan St, DS406, Indianapolis, IN 46202, USA
| | - Denise M P Spolidório
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Rua Humaitá, 1680, 14801-903 Araraquara, SP, Brazil.
| |
Collapse
|