1
|
Garrec C, Arrindell J, Andrieu J, Desnues B, Mege JL, Omar Osman I, Devaux C. Preferential apical infection of Caco-2 intestinal cell monolayers by SARS-CoV-2 is associated with damage to cellular barrier integrity: Implications for the pathophysiology of COVID-19. PLoS One 2025; 20:e0313068. [PMID: 39928619 PMCID: PMC11809792 DOI: 10.1371/journal.pone.0313068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/17/2024] [Indexed: 02/12/2025] Open
Abstract
SARS-CoV-2 can infect different organs, including the intestine. In an in vitro model of Caco-2 intestinal cell line, we previously found that SARS-CoV-2 modulates the ACE2 receptor expression and affects the expression of molecules involved in intercellular junctions. To further explore the possibility that the intestinal epithelium can serve as an alternative infection route for SARS-CoV-2, we used a model of polarized monolayers of Caco-2 cells (or co-cultures of two intestinal cell lines: Caco-2 and HT29) grown on the polycarbonate membrane of Transwell inserts, inoculated with the virus either in the upper or lower chamber of culture to determine the tropism of the virus for the apical or basolateral pole of these cells. In both polarized Caco-2 cell monolayers and co-culture Caco-2/HT29 cell monolayer, apical SARS-CoV-2 inoculation was found to be much more effective in establishing infection than basolateral inoculation. In addition, apical SARS-CoV-2 infection triggers monolayer degeneration, as shown by histological examination, measurement of trans-epithelial electrical resistance, and cell adhesion molecule expression. During apical infection, the infectious viruses reach the lower chamber, suggesting either a transcytosis mechanism from the apical side to the basolateral side of cells, a paracellular trafficking of the virus after damage to intercellular junctions in the epithelial barrier, or both. Taken together, these data indicate a preferential tropism of SARS-CoV-2 for the apical pole of the human intestinal tract and suggest that infection via the intestinal lumen leads to a systemic infection.
Collapse
Affiliation(s)
- Clémence Garrec
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jeffrey Arrindell
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jonatane Andrieu
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Benoit Desnues
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
- Laboratory of Immunology, Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France
| | - Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, Marseille, France
- Centre National de la Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
2
|
Hu PP, Zheng LL, Zhan L, Huang CZ. Imaging of Viral Genomic RNA Replication with Nanoprobes. Methods Mol Biol 2025; 2875:145-153. [PMID: 39535646 DOI: 10.1007/978-1-0716-4248-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Viruses are a great threat to human life and health. Different viruses have its unique mechanism to efficiently infect cells, and the entry process and the nucleic acid replication using cell machine are two critical processes related to the fate of virus progeny. Real-time and long-term imaging techniques can be used to thoroughly investigate the viral infection events. This chapter will present the labeling of viral genomic RNA (gRNA) replication by developing new nanoprobes, one-donor-two-acceptors one, for example, in which the synergistic coupling of multiple energy transfer strategy, so as that the journey of viruses in live cells could be monitored and imaged in real time. Methods of labeling as well as that used for fluorescent and dark field scattering imaging are outlined.
Collapse
Affiliation(s)
- Ping Ping Hu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Ling Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Lei Zhan
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Shang J, Li H, Liu X, Sun S, Huan S, Xiong B. Single-particle rotational sensing for analyzing the neutralization activity of antiviral antibodies. Talanta 2024; 279:126606. [PMID: 39089080 DOI: 10.1016/j.talanta.2024.126606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Due to the pathogen-specific targeting, neutralization capabilities, and enduring efficacy, neutralizing antibodies (NAs) have received widespread attentions as a critical immunotherapeutic strategy against infectious viruses. However, because of the high variability and complexity of pathogens, rapid determination of neutralization activity of antiviral antibodies remains a challenge. Here, we report a new method, named as out-of-plane polarization imaging based single-particle rotational sensing, for rapid analysis of neutralization activity of antiviral antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the spike protein functionalized gold nanorods (AuNRs) and angiotensin-converting enzyme 2 (ACE2) coated gold nanoparticles (AuNPs) as the rotational sensors and chaperone probes, we demonstrated the single-particle rotational sensing strategy for the measurement of rotational diffusion coefficient of the chaperone-bound rotational sensors caused by the specific spike protein-ACE2 interactions. This enables us to measure the neutralizing activity of neutralizing antibody from the analysis of dose-dependent changes in rotational diffusion coefficient (Dr) of the rotational sensors upon the treatment of SARS-CoV-2 antibody. With this technique, we achieved the quantitative determination of neutralization activity of a commercially available SARS-CoV-2 antibody (IC50, 294.1 ng/mL) with satisfying accuracy and anti-interference ability. This simple and robust method holds the potential for rapid and accurate evaluation of neutralization activity against different pathogenic viruses.
Collapse
Affiliation(s)
- Jinhui Shang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huiwen Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xixuan Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shijie Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyan Huan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Bin Xiong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
4
|
Yousefi H, Sagar LK, Geraili A, Chang D, García de Arquer FP, Flynn CD, Lee S, Sargent EH, Kelley SO. Highly Stable Biotemplated InP/ZnSe/ZnS Quantum Dots for In Situ Bacterial Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39373651 DOI: 10.1021/acsami.4c09968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite their unique optical and electrical characteristics, traditional semiconductor quantum dots (QDs) made of heavy metals or carbon are not ideally suited for biomedical applications. Cytotoxicity and environmental concerns are key limiting factors affecting the adoption of QDs from laboratory research to real-world medical applications. Recently, advanced InP/ZnSe/ZnS QDs have emerged as alternatives to traditional QDs due to their low toxicity and optical properties; however, bioconjugation has remained a challenge due to surface chemistry limitations that can lead to instability in aqueous environments. Here, we report water-soluble, biotemplated InP/ZnSe/ZnS-aptamer quantum dots (QDAPTs) with long-term stability and high selectivity for targeting bacterial membrane proteins. QDAPTs show fast binding reaction kinetics (less than 5 min), high brightness, and high levels of stability (3 months) after biotemplating in aqueous solvents. We use these materials to demonstrate the detection of bacterial membrane proteins on common surfaces using a hand-held imaging device, which attests to the potential of this system for biomedical applications.
Collapse
Affiliation(s)
- Hanie Yousefi
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Laxmi Kishore Sagar
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Armin Geraili
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Dingran Chang
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - F Pelayo García de Arquer
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Connor D Flynn
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Seungjin Lee
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois 60607, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
5
|
Datta G, Rezagholizadeh N, Hasler WA, Khan N, Chen X. SLC38A9 regulates SARS-CoV-2 viral entry. iScience 2024; 27:110387. [PMID: 39071889 PMCID: PMC11277692 DOI: 10.1016/j.isci.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
SARS-CoV-2 viral entry into host cells depends on the cleavage of spike (S) protein into S1 and S2 proteins. Such proteolytic cleavage by furin results in the exposure of a multibasic motif on S1, which is critical for SARS-CoV-2 viral infection and transmission; however, how such a multibasic motif contributes to the infection of SARS-CoV-2 remains elusive. Here, we demonstrate that the multibasic motif on S1 is critical for its interaction with SLC38A9, an endolysosome-resident arginine sensor. SLC38A9 knockdown prevents S1-induced endolysosome de-acidification and blocks the S protein-mediated entry of pseudo-SARS-CoV-2 in Calu-3, U87MG, Caco-2, and A549 cells. Our findings provide a novel mechanism in regulating SARS-CoV-2 viral entry; S1 present in endolysosome lumen could interact with SLC38A9, which mediates S1-induced endolysosome de-acidification and dysfunction, facilitating the escape of SARS-CoV-2 from endolysosomes and enhancing viral entry.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Wendie A. Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
6
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
8
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
9
|
Tripp RA, Martin DE. Screening Drugs for Broad-Spectrum, Host-Directed Antiviral Activity: Lessons from the Development of Probenecid for COVID-19. Viruses 2023; 15:2254. [PMID: 38005930 PMCID: PMC10675723 DOI: 10.3390/v15112254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
In the early stages of drug discovery, researchers develop assays that are compatible with high throughput screening (HTS) and structure activity relationship (SAR) measurements. These assays are designed to evaluate the effectiveness of new and known molecular entities, typically targeting specific features within the virus. Drugs that inhibit virus replication by inhibiting a host gene or pathway are often missed because the goal is to identify active antiviral agents against known viral targets. Screening efforts should be sufficiently robust to identify all potential targets regardless of the antiviral mechanism to avoid misleading conclusions.
Collapse
Affiliation(s)
- Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
10
|
Xia Q, Guo Z, Zong H, Seitz S, Yurdakul C, Ünlü MS, Wang L, Connor JH, Cheng JX. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat Commun 2023; 14:6655. [PMID: 37863905 PMCID: PMC10589364 DOI: 10.1038/s41467-023-42439-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Clinical identification and fundamental study of viruses rely on the detection of viral proteins or viral nucleic acids. Yet, amplification-based and antigen-based methods are not able to provide precise compositional information of individual virions due to small particle size and low-abundance chemical contents (e.g., ~ 5000 proteins in a vesicular stomatitis virus). Here, we report a widefield interferometric defocus-enhanced mid-infrared photothermal (WIDE-MIP) microscope for high-throughput fingerprinting of single viruses. With the identification of feature absorption peaks, WIDE-MIP reveals the contents of viral proteins and nucleic acids in single DNA vaccinia viruses and RNA vesicular stomatitis viruses. Different nucleic acid signatures of thymine and uracil residue vibrations are obtained to differentiate DNA and RNA viruses. WIDE-MIP imaging further reveals an enriched β sheet components in DNA varicella-zoster virus proteins. Together, these advances open a new avenue for compositional analysis of viral vectors and elucidating protein function in an assembled virion.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Haonan Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Scott Seitz
- Department of Microbiology and National Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Celalettin Yurdakul
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - M Selim Ünlü
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - John H Connor
- Department of Microbiology and National Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Chiang W, Stout A, Yanchik-Slade F, Li H, Terrando N, Nilsson BL, Gelbard HA, Krauss TD. Quantum Dot Biomimetic for SARS-CoV-2 to Interrogate Blood-Brain Barrier Damage Relevant to NeuroCOVID Brain Inflammation. ACS APPLIED NANO MATERIALS 2023; 6:15094-15107. [PMID: 37649833 PMCID: PMC10463222 DOI: 10.1021/acsanm.3c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023]
Abstract
Despite limited evidence for infection of SARS-CoV-2 in the central nervous system, cognitive impairment is a common complication reported in "recovered" COVID-19 patients. Identification of the origins of these neurological impairments is essential to inform therapeutic designs against them. However, such studies are limited, in part, by the current status of high-fidelity probes to visually investigate the effects of SARS-CoV-2 on the system of blood vessels and nerve cells in the brain, called the neurovascular unit. Here, we report that nanocrystal quantum dot micelles decorated with spike protein (COVID-QDs) are able to interrogate neurological damage due to SARS-CoV-2. In a transwell co-culture model of the neurovascular unit, exposure of brain endothelial cells to COVID-QDs elicited an inflammatory response in neurons and astrocytes without direct interaction with the COVID-QDs. These results provide compelling evidence of an inflammatory response without direct exposure to SARS-CoV-2-like nanoparticles. Additionally, we found that pretreatment with a neuro-protective molecule prevented endothelial cell damage resulting in substantial neurological protection. These results will accelerate studies into the mechanisms by which SARS-CoV-2 mediates neurologic dysfunction.
Collapse
Affiliation(s)
- Wesley Chiang
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Angela Stout
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Francine Yanchik-Slade
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Herman Li
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Niccolò Terrando
- Department
of Anesthesiology, Duke University Medical
Center, Durham, North Carolina 27710, United States
| | - Bradley L. Nilsson
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Harris A. Gelbard
- Department
of Biochemistry and Biophysics, Center for Neurotherapeutics Discovery
and Department of Neurology, and Departments of Pediatrics, Neuroscience, and
Microbiology and Immunology, University
of Rochester Medical Center, Rochester, New York 14642, United States
| | - Todd D. Krauss
- Department of Chemistry and The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
12
|
Mousavi SM, Kalashgrani MY, Gholami A, Omidifar N, Binazadeh M, Chiang WH. Recent Advances in Quantum Dot-Based Lateral Flow Immunoassays for the Rapid, Point-of-Care Diagnosis of COVID-19. BIOSENSORS 2023; 13:786. [PMID: 37622872 PMCID: PMC10452855 DOI: 10.3390/bios13080786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The COVID-19 pandemic has spurred demand for efficient and rapid diagnostic tools that can be deployed at point of care to quickly identify infected individuals. Existing detection methods are time consuming and they lack sensitivity. Point-of-care testing (POCT) has emerged as a promising alternative due to its user-friendliness, rapidity, and high specificity and sensitivity. Such tests can be conveniently conducted at the patient's bedside. Immunodiagnostic methods that offer the rapid identification of positive cases are urgently required. Quantum dots (QDs), known for their multimodal properties, have shown potential in terms of combating or inhibiting the COVID-19 virus. When coupled with specific antibodies, QDs enable the highly sensitive detection of viral antigens in patient samples. Conventional lateral flow immunoassays (LFAs) have been widely used for diagnostic testing due to their simplicity, low cost, and portability. However, they often lack the sensitivity required to accurately detect low viral loads. Quantum dot (QD)-based lateral flow immunoassays have emerged as a promising alternative, offering significant advancements in sensitivity and specificity. Moreover, the lateral flow immunoassay (LFIA) method, which fulfils POCT standards, has gained popularity in diagnosing COVID-19. This review focuses on recent advancements in QD-based LFIA for rapid POCT COVID-19 diagnosis. Strategies to enhance sensitivity using QDs are explored, and the underlying principles of LFIA are elucidated. The benefits of using the QD-based LFIA as a POCT method are highlighted, and its published performance in COVID-19 diagnostics is examined. Overall, the integration of quantum dots with LFIA holds immense promise in terms of revolutionizing COVID-19 detection, treatment, and prevention, offering a convenient and effective approach to combat the pandemic.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Masoomeh Yari Kalashgrani
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran; (M.Y.K.); (A.G.)
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Mojtaba Binazadeh
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71557-13876, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
13
|
Wimmenauer C, Heinzel T. Identification of nanoparticles as vesicular cargo via Airy scanning fluorescence microscopy and spatial statistics. NANOSCALE ADVANCES 2023; 5:3512-3520. [PMID: 37383069 PMCID: PMC10295176 DOI: 10.1039/d3na00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
Many biomedical applications of nanoparticles on the cellular level require a characterisation of their subcellular distribution. Depending on the nanoparticle and its preferred intracellular compartment, this may be a nontrivial task, and consequently, the available methodologies are constantly increasing. Here, we show that super-resolution microscopy in combination with spatial statistics (SMSS), comprising the pair correlation and the nearest neighbour function, is a powerful tool to identify spatial correlations between nanoparticles and moving vesicles. Furthermore, various types of motion like for example diffusive, active or Lévy flight transport can be distinguished within this concept via suitable statistical functions, which also contain information about the factors limiting the motion, as well as regarding characteristic length scales. The SMSS concept fills a methodological gap related to mobile intracellular nanoparticle hosts and its extension to further scenarios is straightforward. It is exemplified on MCF-7 cells after exposure to carbon nanodots, demonstrating that these particles are stored predominantly in the lysosomes.
Collapse
Affiliation(s)
- Christian Wimmenauer
- Institute of Experimental Condensed Matter Physics, Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Germany
| | - Thomas Heinzel
- Institute of Experimental Condensed Matter Physics, Heinrich-Heine-University Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
14
|
Papi M, De Spirito M, Palmieri V. Nanotechnology in the COVID-19 era: Carbon-based nanomaterials as a promising solution. CARBON 2023; 210:118058. [PMID: 37151958 PMCID: PMC10148660 DOI: 10.1016/j.carbon.2023.118058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/09/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has led to collaboration between nanotechnology scientists, industry stakeholders, and clinicians to develop solutions for diagnostics, prevention, and treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections. Nanomaterials, including carbon-based materials (CBM) such as graphene and carbon nanotubes, have been studied for their potential in viral research. CBM unique effects on microorganisms, immune interaction, and sensitivity in diagnostics have made them a promising subject of SARS-CoV-2 research. This review discusses the interaction of CBM with SARS-CoV-2 and their applicability, including CBM physical and chemical properties, the known interactions between CBM and viral components, and the proposed prevention, treatment, and diagnostics uses.
Collapse
Affiliation(s)
- Massimiliano Papi
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Largo Francesco Vito 1, 00168, Italy
| | - Valentina Palmieri
- Fondazione Policlinico Universitario "A. Gemelli" IRCSS, Largo A. Gemelli, 8 00168, Rome, Italy
- Istituto dei Sistemi Complessi, CNR, Via dei Taurini 19, 00185, Rome, Italy
| |
Collapse
|
15
|
Tao S, Zhao X, Bao D, Liu X, Zhang W, Zhao L, Tang Y, Wu H, Ye H, Yang Y, Deng D. SARS-Cov-2 Spike-S1 Antigen Test Strip with High Sensitivity Endowed by High-Affinity Antibodies and Brightly Fluorescent QDs/Silica Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2023; 15:27612-27623. [PMID: 37265327 DOI: 10.1021/acsami.3c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The extensive research into developing novel strategies for detecting respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in clinical specimens, especially the sensitive point-of-care testing method, is still urgently needed to reach rapid screening of viral infections. Herein, a new lateral flow immunoassay (LFIA) platform was reported for the detection of SARS-CoV-2 spike-S1 protein antigens, in which four sensitive and specific SARS-CoV-2 mouse monoclonal antibodies (MmAbs) were tailored by using quantum dot (QD)-loaded dendritic mesoporous silica nanoparticles modified further for achieving the -COOH group surface coating (named Q/S-COOH nanospheres). Importantly, compact QD adsorption was achieved in mesoporous channels of silica nanoparticles on account of highly accessible central-radial pores and electrostatic interactions, leading to significant signal amplification. As such, a limit of detection for SARS-CoV-2 spike-S1 testing was found to be 0.03 ng/mL, which is lower compared with those of AuNPs-LFIA (traditional colloidal gold nanoparticles, Au NPs) and enzyme-linked immunosorbent assay methods. These results show that optimizing the affinity of antibody and the intensity of fluorescent nanospheres simultaneously is of great significance to improve the sensitivity of LFIA.
Collapse
Affiliation(s)
- Shiyi Tao
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou 225300, China
| | - Xiaomin Zhao
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dongping Bao
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou 225300, China
| | - Xuecheng Liu
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liying Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yujiao Tang
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Wu
- Jiangsu Huatai Vaccine Engineering Technology Research Co., Ltd., Taizhou 225300, China
| | - Huayue Ye
- Jiangsu Huatai Vaccine Engineering Technology Research Co., Ltd., Taizhou 225300, China
| | - Yili Yang
- China Regional Research Centre, International Centre for Genetic Engineering and Biotechnology, Taizhou 225300, China
| | - Dawei Deng
- Department of Biomedical Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
16
|
Luo Y, Jiang X, Zhang R, Shen C, Li M, Zhao Z, Lv M, Sun S, Sun X, Ying B. MXene-Based Aptameric Fluorosensor for Sensitive and Rapid Detection of COVID-19. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301146. [PMID: 36879476 DOI: 10.1002/smll.202301146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic has rapidly escalated into the largest global health emergency, which pushes to develop detection kits for the detection of COVID-19 with high sensitivity, specificity, and fast analysis. Here, aptamer-functionalized MXene nanosheet is demonstrated as a novel bionanosensor that detects COVID-19. Upon binding to the spike receptor binding domain of SARS-CoV-2, the aptamer probe is released from MXene surface restoring the quenched fluorescence. The performances of the fluorosensor are evaluated using antigen protein, cultured virus, and swab specimens from COVID-19 patients. It is evidenced that this sensor can detect SARS-CoV-2 spike protein at final concentration of 38.9 fg mL-1 and SARS-CoV-2 pseudovirus (limit of detection: 7.2 copies) within 30 min. Its application for clinical samples analysis is also demonstrated successfully. This work offers an effective sensing platform for sensitive and rapid detection of COVID-19 with high specificity.
Collapse
Affiliation(s)
- Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Rong Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, P. R. China
| | - Chen Shen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Lv
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
17
|
Küppers M, Albrecht D, Kashkanova AD, Lühr J, Sandoghdar V. Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells. Nat Commun 2023; 14:1962. [PMID: 37029107 PMCID: PMC10081331 DOI: 10.1038/s41467-023-37497-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
Bright-field light microscopy and related phase-sensitive techniques play an important role in life sciences because they provide facile and label-free insights into biological specimens. However, lack of three-dimensional imaging and low sensitivity to nanoscopic features hamper their application in many high-end quantitative studies. Here, we demonstrate that interferometric scattering (iSCAT) microscopy operated in the confocal mode provides unique label-free solutions for live-cell studies. We reveal the nanometric topography of the nuclear envelope, quantify the dynamics of the endoplasmic reticulum, detect single microtubules, and map nanoscopic diffusion of clathrin-coated pits undergoing endocytosis. Furthermore, we introduce the combination of confocal and wide-field iSCAT modalities for simultaneous imaging of cellular structures and high-speed tracking of nanoscopic entities such as single SARS-CoV-2 virions. We benchmark our findings against simultaneously acquired fluorescence images. Confocal iSCAT can be readily implemented as an additional contrast mechanism in existing laser scanning microscopes. The method is ideally suited for live studies on primary cells that face labeling challenges and for very long measurements beyond photobleaching times.
Collapse
Affiliation(s)
- Michelle Küppers
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - David Albrecht
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Anna D Kashkanova
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Jennifer Lühr
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany.
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
| |
Collapse
|
18
|
Ouyang Y, Chen Y, Shang J, Sun S, Wang X, Huan S, Xiong B, Zhang XB. Virus-like Plasmonic Nanoprobes for Quick Analysis of Antiviral Efficacy and Mutation-Induced Drug Resistance. Anal Chem 2023; 95:5009-5017. [PMID: 36893130 DOI: 10.1021/acs.analchem.2c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
As the pathogenic viruses and the variants of concern greatly threaten human health and global public safety, the development of convenient and robust strategies enabling rapid analysis of antiviral drug efficacy and mutation-induced resistance is quite important to prevent the spread of human epidemics. Herein, we introduce a simple single-particle detection strategy for quick analysis of anti-infective drugs against SARS-CoV-2 and mutation-induced drug resistance, by using the wild-type and mutant spike protein-functionalized AuNPs as virus-like plasmonic nanoprobes. Both the wild-type and mutant virus-like plasmonic nanoprobes can form core-satellite nanoassemblies with the ACE2@AuNPs, providing the opportunity to detect the drug efficacy and mutation-induced resistance by detecting the changes of nanoassemblies upon drug treatment with dark-field microscopy. As a demonstration, we applied the single-particle detection strategy for quantitative determination of antiviral efficacy and mutation-induced resistance of ceftazidime and rhein. The mutations in the receptor-binding domain of Omicron variant could lead to an increase of EC50 values of ceftazidime and rhein, formerly from 49 and 57 μM against wild-type SARS-CoV-2, to 121 and 340 μM, respectively. The mutation-induced remarkable decline in the inhibitory efficacy of drugs was validated with molecule docking analysis and virus-like plasmonic nanoprobe-based cell-incubation assay. Due to the generality and feasibility of the strategy for the preparation of virus-like plasmonic nanoprobes and single-particle detection, we anticipated that this simple and robust method is promising for the discovery and efficacy evaluation of anti-infective drugs against different pathogenic viruses.
Collapse
Affiliation(s)
- Yuzhi Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yancao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhui Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shijie Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangbin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Hildebrandt N, Lim M, Kim N, Choi DY, Nam JM. Plasmonic quenching and enhancement: metal-quantum dot nanohybrids for fluorescence biosensing. Chem Commun (Camb) 2023; 59:2352-2380. [PMID: 36727288 DOI: 10.1039/d2cc06178c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Plasmonic metal nanoparticles and semiconductor quantum dots (QDs) are two of the most widely applied nanomaterials for optical biosensing and bioimaging. While their combination for fluorescence quenching via nanosurface energy transfer (NSET) or Förster resonance energy transfer (FRET) offers powerful ways of tuning and amplifying optical signals and is relatively common, metal-QD nanohybrids for plasmon-enhanced fluorescence (PEF) have been much less prevalent. A major reason is the competition between fluorescence quenching and enhancement, which poses important challenges for optimizing distances, orientations, and spectral overlap toward maximum PEF. In this feature article, we discuss the interplay of the different quenching and enhancement mechanisms (a mixed distance dependence of quenching and enhancement - "quenchancement") to better understand the obstacles that must be overcome for the development of metal-QD nanohybrid-based PEF biosensors. The different nanomaterials, their combination within various surface and solution based design concepts, and their structural and photophysical characterization are reviewed and applications toward advanced optical biosensing and bioimaging are presented along with guidelines and future perspectives for sensitive, selective, and versatile bioanalytical research and biomolecular diagnostics with metal-QD nanohybrids.
Collapse
Affiliation(s)
- Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Mihye Lim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Namjun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Da Yeon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
20
|
Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023; 186:112-130.e20. [PMID: 36580912 PMCID: PMC9715480 DOI: 10.1016/j.cell.2022.11.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei He
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Miguel G Knight
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Rachel E Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Carlos Milla
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Pseudotyped Viruses for Coronaviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:133-151. [PMID: 36920695 DOI: 10.1007/978-981-99-0113-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Seven coronaviruses have been identified that can infect humans, four of which usually cause mild symptoms, including HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1, three of which are lethal coronaviruses, named severe acute respiratory syndrome coronavirus, Middle East respiratory syndrome coronavirus, and severe acute respiratory syndrome coronavirus 2. Pseudotyped virus is an important tool in the field of human coronavirus research because it is safe, easy to prepare, easy to detect, and highly modifiable. In addition to the application of pseudotyped viruses in the study of virus infection mechanism, vaccine, and candidate antiviral drug or antibody evaluation and screening, pseudotyped viruses can also be used as an important platform for further application in the prediction of immunogenicity and antigenicity after virus mutation, cross-species transmission prediction, screening, and preparation of vaccine strains with better broad spectrum and antigenicity. Meanwhile, as clinical trials of various types of vaccines and post-clinical studies are also being carried out one after another, the establishment of a high-throughput and fully automated detection platform based on SARS-CoV-2 pseudotyped virus to further reduce the cost of detection and manual intervention and improve the efficiency of large-scale detection is also a demand for the development of SARS-CoV-2 pseudotyped virus.
Collapse
|
22
|
The Future of Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
23
|
Żeliszewska P, Wasilewska M, Batys P, Pogoda K, Deptuła P, Bucki R, Adamczyk Z. SARS-CoV-2 Spike Protein (RBD) Subunit Adsorption at Abiotic Surfaces and Corona Formation at Polymer Particles. Int J Mol Sci 2022; 23:ijms232012374. [PMID: 36293231 PMCID: PMC9604293 DOI: 10.3390/ijms232012374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 12/29/2022] Open
Abstract
The adsorption kinetics of the SARS-CoV-2 spike protein subunit with the receptor binding domain at abiotic surfaces was investigated. A combination of sensitive methods was used such as atomic force microscopy yielding a molecular resolution, a quartz microbalance, and optical waveguide lightmode spectroscopy. The two latter methods yielded in situ information about the protein adsorption kinetics under flow conditions. It was established that at pH 3.5-4 the protein adsorbed on mica and silica surfaces in the form of compact quasi-spherical aggregates with an average size of 14 nm. The maximum coverage of the layers was equal to 3 and 1 mg m-2 at pH 4 and 7.4, respectively. The experimental data were successfully interpreted in terms of theoretical results derived from modeling. The experiments performed for flat substrates were complemented by investigations of the protein corona formation at polymer particles carried out using in situ laser Doppler velocimetry technique. In this way, the zeta potential of the protein layers was acquired as a function of the coverage. Applying the electrokinetic model, these primary data were converted to the dependence of the subunit zeta potential on pH. It was shown that a complete acid-base characteristic of the layer can be acquired only using nanomolar quantities of the protein.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| | - Monika Wasilewska
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Piotr Batys
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
| | - Katarzyna Pogoda
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Kraków, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland
| | - Zbigniew Adamczyk
- J. Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Cracow, Poland
- Correspondence: (P.Ż.); (Z.A.)
| |
Collapse
|
24
|
Xu M, Li Y, Lin C, Peng Y, Zhao S, Yang X, Yang Y. Recent Advances of Representative Optical Biosensors for Rapid and Sensitive Diagnostics of SARS-CoV-2. BIOSENSORS 2022; 12:862. [PMID: 36291001 PMCID: PMC9599922 DOI: 10.3390/bios12100862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 05/04/2023]
Abstract
The outbreak of Corona Virus Disease 2019 (COVID-19) has again emphasized the significance of developing rapid and highly sensitive testing tools for quickly identifying infected patients. Although the current reverse transcription polymerase chain reaction (RT-PCR) diagnostic techniques can satisfy the required sensitivity and specificity, the inherent disadvantages with time-consuming, sophisticated equipment and professional operators limit its application scopes. Compared with traditional detection techniques, optical biosensors based on nanomaterials/nanostructures have received much interest in the detection of SARS-CoV-2 due to the high sensitivity, high accuracy, and fast response. In this review, the research progress on optical biosensors in SARS-CoV-2 diagnosis, including fluorescence biosensors, colorimetric biosensors, Surface Enhancement Raman Scattering (SERS) biosensors, and Surface Plasmon Resonance (SPR) biosensors, was comprehensively summarized. Further, promising strategies to improve optical biosensors are also explained. Optical biosensors can not only realize the rapid detection of SARS-CoV-2 but also be applied to judge the infectiousness of the virus and guide the choice of SARS-CoV-2 vaccines, showing enormous potential to become point-of-care detection tools for the timely control of the pandemic.
Collapse
Affiliation(s)
- Meimei Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Lin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yusi Peng
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Graduate School of the Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
SARS-CoV-2 infection: Pathogenesis, Immune Responses, Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has emerged as the most alarming infection of the present time instigated by the virus SARS-CoV-2. In spite of advanced research technologies, the exact pathophysiology and treatment of the condition still need to be explored. However, SARS-CoV-2 has several structural and functional similarities that resemble SARS-CoV and MERS-CoV which may be beneficial in exploring the possible treatment and diagnostic strategies for SARS-CoV-2. This review discusses the pathogen phenotype, genotype, replication, pathophysiology, elicited immune response and emerging variants of SARS-CoV-2 and their similarities with other similar viruses. SARS-CoV-2 infection is detected by a number of diagnostics techniques, their advantages and limitations are also discussed in detail. The review also focuses on nanotechnology-based easy and fast detection of SARS-CoV-2 infection. Various pathways which might play a vital role during SARS-CoV-2 infection have been elaborately discussed since immune response plays a major role during viral infections.
Collapse
|
26
|
Galisova A, Zahradnik J, Allouche-Arnon H, Morandi MI, Abou Karam P, Fisler M, Avinoam O, Regev-Rudzki N, Schreiber G, Bar-Shir A. Genetically Engineered MRI-Trackable Extracellular Vesicles as SARS-CoV-2 Mimetics for Mapping ACE2 Binding In Vivo. ACS NANO 2022; 16:12276-12289. [PMID: 35921522 PMCID: PMC9364977 DOI: 10.1021/acsnano.2c03119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The elucidation of viral-receptor interactions and an understanding of virus-spreading mechanisms are of great importance, particularly in the era of a pandemic. Indeed, advances in computational chemistry, synthetic biology, and protein engineering have allowed precise prediction and characterization of such interactions. Nevertheless, the hazards of the infectiousness of viruses, their rapid mutagenesis, and the need to study viral-receptor interactions in a complex in vivo setup call for further developments. Here, we show the development of biocompatible genetically engineered extracellular vesicles (EVs) that display the receptor binding domain (RBD) of SARS-CoV-2 on their surface as coronavirus mimetics (EVsRBD). Loading EVsRBD with iron oxide nanoparticles makes them MRI-visible and, thus, allows mapping of the binding of RBD to ACE2 receptors noninvasively in live subjects. Moreover, we show that EVsRBD can be modified to display mutants of the RBD of SARS-CoV-2, allowing rapid screening of currently raised or predicted variants of the virus. The proposed platform thus shows relevance and cruciality in the examination of quickly evolving pathogenic viruses in an adjustable, fast, and safe manner. Relying on MRI for visualization, the presented approach could be considered in the future to map ligand-receptor binding events in deep tissues, which are not accessible to luminescence-based imaging.
Collapse
Affiliation(s)
- Andrea Galisova
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Jiri Zahradnik
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Hyla Allouche-Arnon
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Mattia I. Morandi
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Paula Abou Karam
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Michal Fisler
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Ori Avinoam
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Neta Regev-Rudzki
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Gideon Schreiber
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science and Department of
Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| |
Collapse
|
27
|
Alafeef M, Pan D. Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS NANO 2022; 16:11545-11576. [PMID: 35921264 PMCID: PMC9364978 DOI: 10.1021/acsnano.2c01697] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/12/2022] [Indexed: 05/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a transmitted respiratory disease caused by the infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although humankind has experienced several outbreaks of infectious diseases, the COVID-19 pandemic has the highest rate of infection and has had high levels of social and economic repercussions. The current COVID-19 pandemic has highlighted the limitations of existing virological tests, which have failed to be adopted at a rate to properly slow the rapid spread of SARS-CoV-2. Pandemic preparedness has developed as a focus of many governments around the world in the event of a future outbreak. Despite the largely widespread availability of vaccines, the importance of testing has not diminished to monitor the evolution of the virus and the resulting stages of the pandemic. Therefore, developing diagnostic technology that serves as a line of defense has become imperative. In particular, that test should satisfy three criteria to be widely adopted: simplicity, economic feasibility, and accessibility. At the heart of it all, it must enable early diagnosis in the course of infection to reduce spread. However, diagnostic manufacturers need guidance on the optimal characteristics of a virological test to ensure pandemic preparedness and to aid in the effective treatment of viral infections. Nanomaterials are a decisive element in developing COVID-19 diagnostic kits as well as a key contributor to enhance the performance of existing tests. Our objective is to develop a profile of the criteria that should be available in a platform as the target product. In this work, virus detection tests were evaluated from the perspective of the COVID-19 pandemic, and then we generalized the requirements to develop a target product profile for a platform for virus detection.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
- Biomedical Engineering Department, Jordan
University of Science and Technology, Irbid 22110,
Jordan
| | - Dipanjan Pan
- Department of Chemical, Biochemical and Environmental
Engineering, University of Maryland Baltimore County, Interdisciplinary
Health Sciences Facility, 1000 Hilltop Circle, Baltimore, Maryland 21250,
United States
- Departments of Diagnostic Radiology and Nuclear
Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis,
University of Maryland Baltimore School of Medicine, Health Sciences
Research Facility III, 670 W Baltimore Street, Baltimore, Maryland 21201,
United States
- Department of Bioengineering, the
University of Illinois at Urbana−Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
28
|
Kang B, Lee Y, Lim J, Yong D, Ki Choi Y, Woo Yoon S, Seo S, Jang S, Uk Son S, Kang T, Jung J, Lee KS, Kim MH, Lim EK. FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 442:136143. [PMID: 35382003 PMCID: PMC8969299 DOI: 10.1016/j.cej.2022.136143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 05/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to a pandemic of acute respiratory disease, namely coronavirus disease (COVID-19). This disease threatens human health and public safety. Early diagnosis, isolation, and prevention are important to suppress the outbreak of COVID 19 given the lack of specific antiviral drugs to treat this disease and the emergence of various variants of the virus that cause breakthrough infections even after vaccine administration. Simple and prompt testing is paramount to preventing further spread of the virus. However, current testing methods, namely RT-PCR, is time-consuming. Binding of the SARS-CoV-2 spike (S) glycoprotein to human angiotensin-converting enzyme 2 (hACE2) receptor plays a pivotal role in host cell entry. In the present study, we developed a hACE2 mimic peptide beacon (COVID19-PEB) for simple detection of SARS-CoV-2 using a fluorescence resonance energy transfer system. COVID19-PEB exhibits minimal fluorescence in its ''closed'' hairpin structure; however, in the presence of SARS-CoV-2, the specific recognition of the S protein receptor-binding domain by COVID19-PEB causes the beacon to assume an ''open'' structure that emits strong fluorescence. COVID19-PEB can detect SARS-CoV-2 within 3 h or even 50 min and exhibits strong fluorescence even at low viral concentrations, with a detection limit of 4 × 103 plaque-forming unit/test. Furthermore, in SARS-CoV-2-infected patient samples confirmed using polymerase chain reaction, COVID19-PEB accurately detected the virus. COVID19-PEB could be developed as a rapid and accurate diagnostic tool for COVID-19.
Collapse
Affiliation(s)
- Byunghoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Youngjin Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, 776 1sunhwan-ro, Seowon-gu, Cheongju 28644, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Sun Woo Yoon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seungbeom Seo
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Gumjeong-gu, Busan 46241, Republic of Korea
| | - Soojin Jang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Seong Uk Son
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Taejoon Kang
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Juyeon Jung
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kyu-Sun Lee
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Myung Hee Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
29
|
Fu Y, da Fonseca Rezende e Mello J, Fleming BD, Renn A, Chen CZ, Hu X, Xu M, Gorshkov K, Hanson Q, Zheng W, Lee EM, Perera L, Petrovich R, Pradhan M, Eastman RT, Itkin Z, Stanley TB, Hsu A, Dandey V, Sharma K, Gillette W, Taylor T, Ramakrishnan N, Perkins S, Esposito D, Oh E, Susumu K, Wolak M, Ferrer M, Hall MD, Borgnia MJ, Simeonov A. A humanized nanobody phage display library yields potent binders of SARS CoV-2 spike. PLoS One 2022; 17:e0272364. [PMID: 35947606 PMCID: PMC9365158 DOI: 10.1371/journal.pone.0272364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/18/2022] [Indexed: 01/11/2023] Open
Abstract
Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ying Fu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Juliana da Fonseca Rezende e Mello
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Bryan D. Fleming
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Alex Renn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Quinlin Hanson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Emily M. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Robert Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Richard T. Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas B. Stanley
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Allen Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Venkata Dandey
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Kedar Sharma
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - William Gillette
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Troy Taylor
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Nitya Ramakrishnan
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Shelley Perkins
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Eunkeu Oh
- Optical Sciences Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Kimihiro Susumu
- Optical Sciences Division, Naval Research Laboratory, Washington, D.C., United States of America
- Jacobs Corporation, Hanover, Maryland, United States of America
| | - Mason Wolak
- Optical Sciences Division, Naval Research Laboratory, Washington, D.C., United States of America
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
30
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:794264. [PMID: 35937687 PMCID: PMC9355083 DOI: 10.3389/fcimb.2022.794264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Life Sciences Imaging Facility, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
31
|
Atik N, Wirawan F, Amalia R, Khairani AF, Pradini GW. Differences in endosomal Rab gene expression between positive and negative COVID-19 patients. BMC Res Notes 2022; 15:252. [PMID: 35840993 PMCID: PMC9284097 DOI: 10.1186/s13104-022-06144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE SARS CoV-2, the etiologic agent of coronavirus disease-2019 (COVID-19) is well-known to use ACE2 to begin internalization. Some viruses enter the host cell through the endocytosis process and involve some endocytosis proteins, such as the Rab family. However, the relationship between SARS CoV-2 infection with endocytic mRNA RAB5, RAB7, and RAB11B is unknown. This study aims to compare the expression of RAB5, RAB7, and RAB11B between positive and negative COVID-19 patient groups. RESULTS Both viral and human epithelial RNA Isolation and RT-PCR were performed from 249 samples. The genes expression was analysed using appropriate statistical tests. We found the Median (inter-quartile range/IQR) of RAB5, RAB7, and RAB11B expression among the COVID-19 patient group was 2.99 (1.88), 0.17 (0.47), 0.47 (1.49), and 1.60 (2.88), 1.05 (2.49), 1.10 (3.96) among control group respectively. We proceeded with Mann Whitney U Test and found that RAB5 expression was significantly increased (P < 0.001), and RAB7 and RAB11B expression was significantly decreased (P < 0.001 and P = 0.036) in the COVID-19 patient group compared to the control group. This first report showed significant differences in RAB5, RAB7, and RAB11B exist between COVID-19 positive and negative patients.
Collapse
Affiliation(s)
- Nur Atik
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia.
| | - Farruqi Wirawan
- Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Astrid Feinisa Khairani
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| | - Gita Widya Pradini
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
32
|
Rabiee N, Ahmadi S, Soufi GJ, Hekmatnia A, Khatami M, Fatahi Y, Iravani S, Varma RS. Quantum dots against SARS-CoV-2: diagnostic and therapeutic potentials. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2022; 97:1640-1654. [PMID: 35463806 PMCID: PMC9015521 DOI: 10.1002/jctb.7036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 05/02/2023]
Abstract
The application of quantum dots (QDs) for detecting and treating various types of coronaviruses is very promising, as their low toxicity and high surface performance make them superior among other nanomaterials; in conjugation with fluorescent probes they are promising semiconductor nanomaterials for the detection of various cellular processes and viral infections. In view of the successful results for inhibiting SARS-CoV-2, functional QDs could serve eminent role in the growth of safe nanotherapy for the cure of viral infections in the near future; their large surface areas help bind numerous molecules post-synthetically. Functionalized QDs with high functionality, targeted selectivity, stability and less cytotoxicity can be employed for highly sensitive co-delivery and imaging/diagnosis. Besides, due to the importance of safety and toxicity issues, QDs prepared from plant sources (e.g. curcumin) are much more attractive, as they provide good biocompatibility and low toxicity. In this review, the recent developments pertaining to the diagnostic and inhibitory potentials of QDs against SARS-CoV-2 are deliberated including important challenges and future outlooks. © 2022 Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Navid Rabiee
- Department of PhysicsSharif University of TechnologyTehranIran
- School of EngineeringMacquarie UniversitySydneyAustralia
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | | | - Ali Hekmatnia
- School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Mehrdad Khatami
- Non‐communicable Diseases Research CenterBam University of Medical SciencesBamIran
- Department of Medical Biotechnology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of PharmacyTehran University of Medical SciencesTehranIran
- Nanotechnology Research Center, Faculty of PharmacyTehran University of Medical SciencesTehranIran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacký University in OlomoucOlomoucCzech Republic
| |
Collapse
|
33
|
The AI-Assisted Identification and Clinical Efficacy of Baricitinib in the Treatment of COVID-19. Vaccines (Basel) 2022; 10:vaccines10060951. [PMID: 35746559 PMCID: PMC9231077 DOI: 10.3390/vaccines10060951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
During the current pandemic, the vast majority of COVID-19 patients experienced mild symptoms, but some had a potentially fatal aberrant hyperinflammatory immune reaction characterized by high levels of IL-6 and other cytokines. Modulation of this immune reaction has proven to be the only method of reducing mortality in severe and critical COVID-19. The anti-inflammatory drug baricitinib (Olumiant) has recently been strongly recommended by the WHO for use in COVID-19 patients because it reduces the risk of progressive disease and death. It is a Janus Kinase (JAK) 1/2 inhibitor approved for rheumatoid arthritis which was suggested in early 2020 as a treatment for COVID-19. In this review the AI-assisted identification of baricitinib, its antiviral and anti-inflammatory properties, and efficacy in clinical trials are discussed and compared with those of other immune modulators including glucocorticoids, IL-6 and IL-1 receptor blockers and other JAK inhibitors. Baricitinib inhibits both virus infection and cytokine signalling and is not only important for COVID-19 management but is “non-immunological”, and so should remain effective if new SARS-CoV-2 variants escape immune control. The repurposing of baricitinib is an example of how advanced artificial intelligence (AI) can quickly identify new drug candidates that have clinical benefit in previously unsuspected therapeutic areas.
Collapse
|
34
|
Khedri M, Maleki R, Dahri M, Sadeghi MM, Rezvantalab S, Santos HA, Shahbazi MA. Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Deliv Transl Res 2022; 12:1408-1422. [PMID: 34476766 PMCID: PMC8413075 DOI: 10.1007/s13346-021-01054-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
In late 2019, coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Spike protein is one of the surface proteins of SARS-CoV-2 that is essential for its infectious function. Therefore, it received lots of attention for the preparation of antiviral drugs, vaccines, and diagnostic tools. In the current study, we use computational methods of chemistry and biology to study the interaction between spike protein and its receptor in the body, angiotensin-I-converting enzyme-2 (ACE2). Additionally, the possible interaction of two-dimensional (2D) nanomaterials, including graphene, bismuthene, phosphorene, p-doped graphene, and functionalized p-doped graphene, with spike protein is investigated. The functionalized p-doped graphene nanomaterials were found to interfere with spike protein better than the other tested nanomaterials. In addition, the interaction of the proposed nanomaterials with the main protease (Mpro) of SARS-CoV-2 was studied. Functionalized p-doped graphene nanomaterials showed more capacity to prevent the activity of Mpro. These 2D nanomaterials efficiently reduce the transmissibility and infectivity of SARS-CoV-2 by both the deformation of the spike protein and inhibiting the Mpro. The results suggest the potential use of 2D nanomaterials in a variety of prophylactic approaches, such as masks or surface coatings, and would deserve further studies in the coming years.
Collapse
Affiliation(s)
- Mohammad Khedri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Moein Sadeghi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran.
| |
Collapse
|
35
|
Faraji SN, Raee MJ, Hashemi SMA, Daryabor G, Tabrizi R, Dashti FS, Behboudi E, Heidarnejad K, Nowrouzi-Sohrabi P, Hatam G. Human interaction targets of SARS-COV-2 spike protein: A systematic review. EUR J INFLAMM 2022. [PMCID: PMC9160582 DOI: 10.1177/1721727x221095382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives: The development of effective targeted therapy and drug-design approaches against the SARS-CoV-2 is a universal health priority. Therefore, it is important to assess possible therapeutic strategies against SARS-CoV-2 via its most interaction targets. The present study aimed to perform a systematic review on clinical and experimental investigations regarding SARS-COV-2 interaction targets for human cell entry. Methods: A systematic search using relevant MeSH terms and keywords was performed in PubMed, Scopus, Embase, and Web of Science (ISI) databases up to July 2021. Two reviewers independently assessed the eligibility of the studies, extracted the data, and evaluated the methodological quality of the included studies. Additionally, a narrative synthesis was done as a qualitative method for data gathering and synthesis of each outcome measure. Results: A total of 5610 studies were identified, and 128 articles were included in the systematic review. Based on the results, spike antigen was the only interaction protein from SARS-CoV-2. However, the interaction proteins from humans varied including different spike receptors and several cleavage enzymes. The most common interactions of the spike protein of SARS-CoV-2 for cell entry were ACE2 (entry receptor) and TMPRSS2 (for spike priming). A lot of published studies have mainly focused on the ACE2 receptor followed by the TMPRSS family and furin. Based on the results, ACE2 polymorphisms as well as spike RBD mutations affected the SARS-CoV-2 binding affinity. Conclusion: The included studies shed more light on SARS-CoV-2 cellular entry mechanisms and detailed interactions, which could enhance the understanding of SARS-CoV-2 pathogenesis and the development of new and comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- Seyed Nooreddin Faraji
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohamad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Fateme Sadat Dashti
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Kamran Heidarnejad
- Recombinant Antibody Laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Nowrouzi-Sohrabi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Kianpour M, Akbarian M, Uversky VN. Nanoparticles for Coronavirus Control. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1602. [PMID: 35564311 PMCID: PMC9104235 DOI: 10.3390/nano12091602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/18/2023]
Abstract
More than 2 years have passed since the SARS-CoV-2 outbreak began, and many challenges that existed at the beginning of this pandemic have been solved. Some countries have been able to overcome this global challenge by relying on vaccines against the virus, and vaccination has begun in many countries. Many of the proposed vaccines have nanoparticles as carriers, and there are different nano-based diagnostic approaches for rapid detection of the virus. In this review article, we briefly examine the biology of SARS-CoV-2, including the structure of the virus and what makes it pathogenic, as well as describe biotechnological methods of vaccine production, and types of the available and published nano-based ideas for overcoming the virus pandemic. Among these issues, various physical and chemical properties of nanoparticles are discussed to evaluate the optimal conditions for the production of the nano-mediated vaccines. At the end, challenges facing the international community and biotechnological answers for future viral attacks are reviewed.
Collapse
Affiliation(s)
- Maryam Kianpour
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center ‘‘Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences’’, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
37
|
Jawalagatti V, Kirthika P, Hewawaduge C, Yang MS, Park JY, Oh B, Lee JH. Bacteria-enabled oral delivery of a replicon-based mRNA vaccine candidate protects against ancestral and delta variant SARS-CoV-2. Mol Ther 2022; 30:1926-1940. [PMID: 35123065 PMCID: PMC8810265 DOI: 10.1016/j.ymthe.2022.01.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022] Open
Abstract
The ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) evolution has resulted in many variants, contributing to the striking drop in vaccine efficacy and necessitating the development of next-generation vaccines to tackle antigenic diversity. Herein we developed a multivalent Semliki Forest virus replicon-based mRNA vaccine targeting the receptor binding domain (RBD), heptad repeat domain (HR), membrane protein (M), and epitopes of non-structural protein 13 (nsp13) of SARS-CoV-2. The bacteria-mediated gene delivery offers the rapid production of large quantities of vaccine at a highly economical scale and notably allows needle-free mass vaccination. Favorable T-helper (Th) 1-dominated potent antibody and cellular immune responses were detected in the immunized mice. Further, immunization induced strong cross-protective neutralizing antibodies (NAbs) against the B.1.617.2 delta variant (clade G). We recorded a difference in induction of immunoglobulin (Ig) A response by the immunization route, with the oral route eliciting a strong mucosal secretory IgA (sIgA) response, which possibly has contributed to the enhanced protection conferred by oral immunization. Hamsters immunized orally were completely protected against viral replication in the lungs and the nasal cavity. Importantly, the vaccine protected the hamsters against SARS-CoV-2-induced pneumonia. The study provides proof-of-principle findings for the development of a feasible and efficacious oral mRNA vaccine against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Vijayakumar Jawalagatti
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Perumalraja Kirthika
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Chamith Hewawaduge
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Myeon-Sik Yang
- Department of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Ji-Young Park
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - Byungkwan Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea
| | - John Hwa Lee
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, South Korea.
| |
Collapse
|
38
|
Gaikwad H, Li Y, Wang G, Li R, Dai S, Rester C, Kedl R, Saba L, Banda NK, Scheinman RI, Patrick C, Mallela KM, Moein Moghimi S, Simberg D. Antibody-Dependent Complement Responses toward SARS-CoV-2 Receptor-Binding Domain Immobilized on "Pseudovirus-like" Nanoparticles. ACS NANO 2022; 16:acsnano.2c02794. [PMID: 35507641 PMCID: PMC9092195 DOI: 10.1021/acsnano.2c02794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/28/2022] [Indexed: 05/09/2023]
Abstract
Many aspects of innate immune responses to SARS viruses remain unclear. Of particular interest is the role of emerging neutralizing antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 in complement activation and opsonization. To overcome challenges with purified virions, here we introduce "pseudovirus-like" nanoparticles with ∼70 copies of functional recombinant RBD to map complement responses. Nanoparticles fix complement in an RBD-dependent manner in sera of all vaccinated, convalescent, and naı̈ve donors, but vaccinated and convalescent donors with the highest levels of anti-RBD antibodies show significantly higher IgG binding and higher deposition of the third complement protein (C3). The opsonization via anti-RBD antibodies is not an efficient process: on average, each bound antibody promotes binding of less than one C3 molecule. C3 deposition is exclusively through the alternative pathway. C3 molecules bind to protein deposits, but not IgG, on the nanoparticle surface. Lastly, "pseudovirus-like" nanoparticles promote complement-dependent uptake by granulocytes and monocytes in the blood of vaccinated donors with high anti-RBD titers. Using nanoparticles displaying SARS-CoV-2 proteins, we demonstrate subject-dependent differences in complement opsonization and immune recognition.
Collapse
Affiliation(s)
- Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yue Li
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ronghui Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Cody Rester
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ross Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Nirmal K. Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, 80045, USA
| | - Robert I. Scheinman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Casey Patrick
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - S. Moein Moghimi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
39
|
Intranasal delivery of SARS-CoV-2 spike protein is sufficient to cause olfactory damage, inflammation and olfactory dysfunction in zebrafish. Brain Behav Immun 2022; 102:341-359. [PMID: 35307504 PMCID: PMC8929544 DOI: 10.1016/j.bbi.2022.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Anosmia, loss of smell, is a prevalent symptom of SARS-CoV-2 infection. Anosmia may be explained by several mechanisms driven by infection of non-neuronal cells and damage in the nasal epithelium rather than direct infection of olfactory sensory neurons (OSNs). Previously, we showed that viral proteins are sufficient to cause neuroimmune responses in the teleost olfactory organ (OO). We hypothesize that SARS-CoV-2 spike (S) protein is sufficient to cause olfactory damage and olfactory dysfunction. Using an adult zebrafish model, we report that intranasally delivered SARS-CoV-2 S RBD mostly binds to the non-sensory epithelium of the olfactory organ and causes severe olfactory histopathology characterized by loss of cilia, hemorrhages and edema. Electrophysiological recordings reveal impaired olfactory function to both food and bile odorants in animals treated intranasally with SARS-CoV-2 S RBD. However, no loss of behavioral preference for food was detected in SARS-CoV-2 S RBD treated fish. Single cell RNA-Seq of the adult zebrafish olfactory organ indicated widespread loss of olfactory receptor expression and inflammatory responses in sustentacular, endothelial, and myeloid cell clusters along with reduced numbers of Tregs. Combined, our results demonstrate that intranasal SARS-CoV-2 S RBD is sufficient to cause structural and functional damage to the zebrafish olfactory system. These findings may have implications for intranasally delivered vaccines against SARS-CoV-2.
Collapse
|
40
|
Gutiérrez Rodelo C, Salinas RA, Armenta JaimeArmenta E, Armenta S, Galdámez-Martínez A, Castillo-Blum SE, Astudillo-de la Vega H, Nirmala Grace A, Aguilar-Salinas CA, Gutiérrez Rodelo J, Christie G, Alsanie WF, Santana G, Thakur VK, Dutt A. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Coord Chem Rev 2022; 457:214402. [PMID: 35095109 PMCID: PMC8788306 DOI: 10.1016/j.ccr.2021.214402] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022]
Abstract
Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges.
Collapse
Affiliation(s)
- Citlaly Gutiérrez Rodelo
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Rafael A Salinas
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional (CIBA-IPN), Tlaxcala 72197, Mexico
| | - Erika Armenta JaimeArmenta
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Silvia Armenta
- Department of Biology, McGill University, 3649 Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Andrés Galdámez-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Silvia E Castillo-Blum
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, DF 04510, México
| | - Horacio Astudillo-de la Vega
- Healthcare Business and Computer Technology, Mexico
- Nanopharmacia Diagnostica, Tlaxcala No. 146/705, Col. Roma Sur, Cuauhtémoc, Cuidad de México, C.P. 06760, Mexico
| | - Andrews Nirmala Grace
- Centre for Nanotechnology Research, VIT University, Vellore, Tamil Nadu 632 014, India
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas y Dirección de Nutrición. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Juliana Gutiérrez Rodelo
- Instituto Méxicano del Seguro Social, Hospital General de SubZona No. 4, C.P. 80370, Navolato, Sinaloa, México
| | - Graham Christie
- Institute of Biotechnology, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Guillermo Santana
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Coyoacan, México City, C.P. 04510, Mexico
| |
Collapse
|
41
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|
42
|
Sun H, Wang A, Wang L, Wang B, Tian G, Yang J, Liao M. Systematic Tracing of Susceptible Animals to SARS-CoV-2 by a Bioinformatics Framework. Front Microbiol 2022; 13:781770. [PMID: 35308363 PMCID: PMC8931700 DOI: 10.3389/fmicb.2022.781770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/18/2022] [Indexed: 01/02/2023] Open
Abstract
Since the outbreak of SARS-CoV-2 in 2019, the Chinese horseshoe bats were considered as a potential original host of SARS-CoV-2. In addition, cats, tigers, lions, mints, and ferrets were naturally or experimentally infected with SARS-CoV-2. For the surveillance and control of this highly infectious disease, it is critical to trace susceptible animals and predict the consequence of potential mutations at the binding region of viral spike protein and host ACE2 protein. This study proposed a novel bioinformatics framework to systematically trace susceptible animals to SARS-CoV-2 and predict the binding affinity between susceptible animals’ mutated/un-mutated ACE2 receptors. As a result, we identified a few animals posing a potential risk of infection with SARS-CoV-2 using the docking analysis of ACE2 protein and viral spike protein. The binding affinity of some of these species is weaker than that of humans but more potent than that of Chinese horseshoe bats. We also found that a few point mutations in human ACE2 protein or viral spike protein could significantly enhance their binding affinity, posing an enormous potential threat to public health. The ancestors of the Omicron may evolve rapidly through the accumulation of mutations in infecting the host and jumped into human beings. These findings indicate that if the epidemic expands, there may be a human-animal-human transmission route, which will increase the difficulty of disease prevention and control.
Collapse
Affiliation(s)
- Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | | | - Bing Wang
- School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
| | | | - Jialiang Yang
- Geneis Co., Ltd., Beijing, China
- Academician Workstation, Changsha Medical University, Changsha, China
- *Correspondence: Jialiang Yang,
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Ming Liao,
| |
Collapse
|
43
|
Comparative study of SARS-CoV-2 infection in different cell types: Biophysical-computational approach to the role of potential receptors. Comput Biol Med 2022; 142:105245. [PMID: 35077937 PMCID: PMC8770263 DOI: 10.1016/j.compbiomed.2022.105245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Cellular susceptibility to SARS-CoV-2 infection in the respiratory tract has been associated with the ability of the virus to interact with potential receptors on the host membrane. We have modeled viral dynamics by simulating various cellular systems and artificial conditions, including macromolecular crowding, based on experimental and transcriptomic data to infer parameters associated with viral growth and predict cell susceptibility. We have accomplished this based on the type, number and level of expression of the angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 (TMPRSS2), basigin2 (CD147), FURIN protease, neuropilin 1 (NRP1) or other less studied candidate receptors such as heat shock protein A5 (HSPA5) and angiotensin II receptor type 2 (AGTR2). In parallel, we studied the effect of simulated artificial environments on the accessibility to said proposed receptors. In addition, viral kinetic behavior dependent on the degree of cellular susceptibility was predicted. The latter was observed to be more influenced by the type of proteins and expression level, than by the number of potential proteins associated with the SARS CoV-2 infection. We predict a greater theoretical propensity to susceptibility in cell lines such as NTERA-2, SCLC-21H, HepG2 and Vero6, and a lower theoretical propensity in lines such as CaLu3, RT4, HEK293, A549 and U-251MG. An important relationship was observed between expression levels, protein diffusivity, and thermodynamically favorable interactions between host proteins and the viral spike, suggesting potential sites of early infection other than the lungs. This research is expected to stimulate future quantitative experiments and promote systematic investigation of the effect of crowding presented here.
Collapse
|
44
|
Pramanik A, Gao Y, Patibandla S, Gates K, Ray PC. Bioconjugated Nanomaterial for Targeted Diagnosis of SARS-CoV-2. ACCOUNTS OF MATERIALS RESEARCH 2022; 3:134-148. [PMID: 37556282 PMCID: PMC8791035 DOI: 10.1021/accountsmr.1c00177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/03/2022] [Indexed: 05/26/2023]
Abstract
Infectious diseases by pathogenic microorganisms are one of the leading causes of mortality worldwide. Healthcare and socio-economic development have been seriously affected for different civilizations because of bacterial and viral infections. According to the Centers for Disease Control and Prevention (CDC), pandemic in 1918 by the Influenza A virus of the H1N1 subtype was responsible for 50 to 100 million deaths worldwide. Similarly, the Asian flu pandemic in 1957, Hong Kong flu in 1968, and H1N1pdm09 flu pandemic in 2009 were responsible for more than 1 million deaths across the globe each time. As per the World Health Organization (WHO), the current pandemic by coronavirus disease 2019 (COVID-19) due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is responsible for more than 4.8 M death worldwide until now. Since the gold standard polymerase chain reaction (PCR) test is more time-consuming, the health care system cannot test all symptomatic and asymptomatic Covid patients every day, which is extremely important to tackle the outbreak. One of the significant challenges during the current pandemic is developing mass testing tools, which is critical to control the virus spread in the community. Therefore, it is highly desirable to develop advanced material-based approaches that can provide a rapid and accurate diagnosis of COVID-19, which will have the capability to save millions of human lives. Aiming for the targeted diagnosis of deadly virus, researchers have developed nanomaterials with various sizes, shapes, and dimensions. These nanomaterials have been used to identify biomolecules via unique optical, electrical, magnetic, structural, and functional properties, which are lacking in other materials. Despite significant progress, nanomaterial-based diagnosis of biomolecules is still facing several obstacles due to low targeting efficiency and nonspecific interactions. To overcome these problems, the bioconjugated nanoparticle has been designed via surface coating with polyethylene glycol (PEG) and then conjugated with antibodies, DNA, RNA, or peptide aptamers. Therefore, the current Account summarizes an overview of the recent advances in the design of bioconjugated nanomaterial-based approached as effective diagnosis of the SARS-CoV-2 virus and the SARS-CoV-2 viral RNA, antigen, or antibody, with a particular focus on our work and other's work related to this subject. First, we present how to tailor the surface functionalities of nanomaterials to achieve bioconjugated material for targeted diagnosis of the virus. Then we review the very recent advances in the design of antibody/aptamer/peptide conjugated nanostructure, which represent a powerful platform for naked-eye colorimetric detection via plasmonic nanoparticles. We then discuss nanomaterial-based surface-enhanced Raman scattering (SERS) spectroscopy, which has the capability for very low-level fingerprint identification of virus, antigen, and antibody via graphene, plasmonic nanoparticle, and heterostructure material. After that, we summarized about fluorescence and nanoparticle surface energy transfer (NSET)-based on specific identification of SARS-CoV-2 infections via CNT, quantum dots (QDs), and plasmonic nanoparticles. Finally, we highlight the merit and significant challenges of nanostructure-based tools in infectious diseases diagnosis. For the researchers who want to engage in the new development of bioconjugated material for our survival from the current and future pandemics, we hope that this Account will be helpful for generating ideas that are scientifically stimulating and practically challenging.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Ye Gao
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Shamily Patibandla
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Kalein Gates
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| | - Paresh Chandra Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
45
|
Li N, Wang X, Tibbs J, Che C, Peinetti AS, Zhao B, Liu L, Barya P, Cooper L, Rong L, Wang X, Lu Y, Cunningham BT. Label-Free Digital Detection of Intact Virions by Enhanced Scattering Microscopy. J Am Chem Soc 2022; 144:1498-1502. [PMID: 34928591 PMCID: PMC9762554 DOI: 10.1021/jacs.1c09579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several applications in health diagnostics, food, safety, and environmental monitoring require rapid, simple, selective, and quantitatively accurate viral load monitoring. Here, we introduce the first label-free biosensing method that rapidly detects and quantifies intact virus in human saliva with single-virion resolution. Using pseudotype SARS-CoV-2 as a representative target, we immobilize aptamers with the ability to differentiate active from inactive virions on a photonic crystal, where the virions are captured through affinity with the spike protein displayed on the outer surface. Once captured, the intrinsic scattering of the virions is amplified and detected through interferometric imaging. Our approach analyzes the motion trajectory of each captured virion, enabling highly selective recognition against nontarget virions, while providing a limit of detection of 1 × 103 copies/mL at room temperature. The approach offers an alternative to enzymatic amplification assays for point-of-collection diagnostics.
Collapse
Affiliation(s)
- Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiaojing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joseph Tibbs
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Congnyu Che
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ana Sol Peinetti
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Bin Zhao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Leyang Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
46
|
Achadu OJ, Nwaji N, Lee D, Lee J, Akinoglu EM, Giersig M, Park EY. 3D hierarchically porous magnetic molybdenum trioxide@gold nanospheres as a nanogap-enhanced Raman scattering biosensor for SARS-CoV-2. NANOSCALE ADVANCES 2022; 4:871-883. [PMID: 36131829 PMCID: PMC9419194 DOI: 10.1039/d1na00746g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/04/2022] [Indexed: 05/03/2023]
Abstract
The global pandemic of COVID-19 is an example of how quickly a disease-causing virus can take root and threaten our civilization. Nowadays, ultrasensitive and rapid detection of contagious pathogens is in high demand. Here, we present a novel hierarchically porous 3-dimensional magnetic molybdenum trioxide-polydopamine-gold functionalized nanosphere (3D mag-MoO3-PDA@Au NS) composed of plasmonic, semiconductor, and magnetic nanoparticles as a multifunctional nanosculptured hybrid. Based on the synthesized 3D mag-MoO3-PDA@Au NS, a universal "plug and play" biosensor for pathogens is proposed. Specifically, a magnetically-induced nanogap-enhanced Raman scattering (MINERS) detection platform was developed using the 3D nanostructure. Through a magnetic actuation process, the MINERS system overcomes Raman signal stability and reproducibility challenges for the ultrasensitive detection of SARS-CoV-2 spike protein over a wide dynamic range up to a detection limit of 10-15 g mL-1. The proposed MINERS platform will facilitate the broader use of Raman spectroscopy as a powerful analytical detection tool in diverse fields.
Collapse
Affiliation(s)
- Ojodomo J Achadu
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- International Institute for Nanocomposites Manufacturing, WMG, University of Warwick CV4 7AL Coventry UK
| | - Njemuwa Nwaji
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Dongkyu Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Jaebeom Lee
- Dept. of Chemistry, College of Natural Science, Chungnam National University 99 Daehak-ro, Yuseong-gu Daejeon 34134 Korea
| | - Eser M Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
| | - Michael Giersig
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Liyuan Street 526238 Guangdong China
- Institute of Fundamental Technological Research, Polish Academy of Sciences 02-106 Warsaw Poland
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan +81-54-238-4887 +81-54-238-3306
- Laboratory of Biotechnology, Department of Bioscience, Graduate School of Science and Technology, Shizuoka University 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| |
Collapse
|
47
|
Gorshkov K, Morales Vasquez D, Chiem K, Ye C, Nguyen Tran B, Carlos de la Torre J, Moran T, Chen CZ, Martinez-Sobrido L, Zheng W. SARS-CoV-2 Nucleocapsid Protein TR-FRET Assay Amenable to High Throughput Screening. ACS Pharmacol Transl Sci 2022; 5:8-19. [PMID: 35036857 PMCID: PMC8751018 DOI: 10.1021/acsptsci.1c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/24/2022]
Abstract
![]()
Drug
development for specific antiviral agents against coronavirus
disease 2019 (COVID-19) is still an unmet medical need as the pandemic
continues to spread globally. Although huge efforts for drug repurposing
and compound screens have been put forth, only a few compounds are
in late-stage clinical trials. New approaches and assays are needed
to accelerate COVID-19 drug discovery and development. Here, we report
a time-resolved fluorescence resonance energy transfer-based assay
that detects the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
nucleocapsid protein (NP) produced in infected cells. It uses two
specific anti-NP monoclonal antibodies conjugated to donor and acceptor
fluorophores that produce a robust ratiometric signal for high throughput
screening of large compound collections. Using this assay, we measured
a half maximal inhibitory concentration (IC50) for remdesivir
of 9.3 μM against infection with SARS-CoV-2 USA/WA1/2020 (WA-1).
The assay also detected SARS-CoV-2 South African (Beta, β),
Brazilian/Japanese P.1 (Gamma, γ), and Californian (Epsilon,
ε) variants of concern (VoC). Therefore, this homogeneous SARS-CoV-2
NP detection assay can be used for accelerating lead compound discovery
for drug development and for evaluating drug efficacy against emerging
SARS-CoV-2 VoC.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Desarey Morales Vasquez
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Kevin Chiem
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Chengjin Ye
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Bruce Nguyen Tran
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, IMM6, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Thomas Moran
- Icahn School of Medicine, Mt. Sinai, 1 Gustave L. Levy Place, New York, New York 10029, United States
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, 8715 West Military Drive, San Antonio, Texas 78227, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
48
|
Ramoji A, Pahlow S, Pistiki A, Rueger J, Shaik TA, Shen H, Wichmann C, Krafft C, Popp J. Understanding Viruses and Viral Infections by Biophotonic Methods. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
| | - Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Jan Rueger
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Haodong Shen
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christina Wichmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| |
Collapse
|
49
|
Ren L, Wang L, Rehberg M, Stoeger T, Zhang J, Chen S. Applications and Immunological Effects of Quantum Dots on Respiratory System. Front Immunol 2022; 12:795232. [PMID: 35069577 PMCID: PMC8770806 DOI: 10.3389/fimmu.2021.795232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Quantum dots (QDs), are one kind of nanoscale semiconductor crystals with specific electronic and optical properties, offering near-infrared mission and chemically active surfaces. Increasing interest for QDs exists in developing theranostics platforms for bioapplications such as imaging, drug delivery and therapy. Here we summarized QDs' biomedical applications, toxicity, and immunological effects on the respiratory system. Bioapplications of QDs in lung include biomedical imaging, drug delivery, bio-sensing or diagnosis and therapy. Generically, toxic effects of nanoparticles are related to the generation of oxidative stresses with subsequent DNA damage and decreased lung cells viability in vitro and in vivo because of release of toxic metal ions or the features of QDs like its surface charge. Lastly, pulmonary immunological effects of QDs mainly include proinflammatory cytokines release and recruiting innate leukocytes or adaptive T cells.
Collapse
Affiliation(s)
- Laibin Ren
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Lingwei Wang
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Markus Rehberg
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Munich, Germany
| | - Jianglin Zhang
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
- Department of Dermatology, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Shanze Chen
- Institute of Respiratory Diseases, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
50
|
The Future of Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_24-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|