1
|
Shen J, Jiao W, Yang J, Zhuang B, Du S, Wu Y, Huang G, Zhang Y, Wang Y, Xu C, Du L, Jin Y. In situ photocrosslinkable hydrogel treats radiation-induced skin injury by ROS elimination and inflammation regulation. Biomaterials 2025; 314:122891. [PMID: 39413652 DOI: 10.1016/j.biomaterials.2024.122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
The clinical management of radiation-induced skin injury (RSI) poses a significant challenge, primarily due to the acute damage caused by an overabundance of reactive oxygen species (ROS) and the ongoing inflammatory microenvironment. Here, we designed a dual-network hydrogel composed of 5 % (w/v) Pluronic F127 diacrylate and 2 % (w/v) hyaluronic acid methacryloyl, termed the FH hydrogel. To confer antioxidant and anti-inflammation properties to the hydrogel, we incorporated PVP-modified Prussian blue nanoparticles (PPBs) and resveratrol (Res) to form PHF@Res hydrogels. PHF@Res hydrogels not only exhibited multiple free radical scavenging activities (DPPH, ABTS), but also displayed multiple enzyme-like activities (POD-, catalase). Meanwhile, PHF@Res-2 hydrogels significantly suppressed intracellular ROS and promoted the migration of fibroblasts in a high-oxidative stress environment. Moreover, in the RSI mouse model, the PHF@Res-2 hydrogel regulated inflammatory factors and collagen deposition, significantly reduced epithelial hyperplasia, promoted limb regeneration and neovascularization, and accelerated wound healing, outperforming the commercial antiradiation formulation, Kangfuxin. The PHF@Res-2 hydrogel dressing shows great potential in accelerating wound healing in RSI, offering tremendous promise for clinical wound management and regeneration.
Collapse
Affiliation(s)
- Jintao Shen
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wencheng Jiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Hebei University, Baoding, 071002, China
| | - Junzhe Yang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Bo Zhuang
- Department of Chemical Defense, Institute of NBC Defense, Beijing, 102205, China
| | - Shumin Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yanping Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Guiyu Huang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yizhi Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yaxin Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Caixia Xu
- Department of Chemical Defense, Institute of NBC Defense, Beijing, 102205, China
| | - Lina Du
- Beijing Institute of Radiation Medicine, Beijing, 100850, China; Hebei University, Baoding, 071002, China.
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
2
|
Liao Y, Zhang Z, Zhao Y, Zhang S, Zha K, Ouyang L, Hu W, Zhou W, Sun Y, Liu G. Glucose oxidase: An emerging multidimensional treatment option for diabetic wound healing. Bioact Mater 2025; 44:131-151. [PMID: 39484022 PMCID: PMC11525048 DOI: 10.1016/j.bioactmat.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
The healing of diabetic skin wounds is a complex process significantly affected by the hyperglycemic environment. In this context, glucose oxidase (GOx), by catalyzing glucose to produce gluconic acid and hydrogen peroxide, not only modulates the hyperglycemic microenvironment but also possesses antibacterial and oxygen-supplying functions, thereby demonstrating immense potential in the treatment of diabetic wounds. Despite the growing interest in GOx-based therapeutic strategies in recent years, a systematic summary and review of these efforts have been lacking. To address this gap, this review article outlines the advancements in the application of GOx and GOx-like nanozymes in the treatment of diabetic wounds, including reaction mechanisms, the selection of carrier materials, and synergistic therapeutic strategies such as multi-enzyme combinations, microneedle structures, and gas therapy. Finally, the article looks forward to the application prospects of GOx in aiding the healing of diabetic wounds and the challenges faced in translating these innovations to clinical practice. We sincerely hope that this review can provide readers with a comprehensive understanding of GOx-based diabetic treatment strategies, facilitate the rigorous construction of more robust multifunctional therapeutic systems, and ultimately benefit patients with diabetic wounds.
Collapse
Affiliation(s)
| | | | | | | | - Kangkang Zha
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Lizhi Ouyang
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Weixian Hu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Wu Zhou
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Yun Sun
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Guohui Liu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| |
Collapse
|
3
|
Chen S, Chen J, Wang X, Yang Z, Lan J, Wang L, Ji B, Yuan Y. Glucose-activated self-cascade antibacterial and pro-angiogenesis nanozyme-functionalized chitosan-arginine thermosensitive hydrogel for chronic diabetic wounds healing. Carbohydr Polym 2025; 348:122894. [PMID: 39567166 DOI: 10.1016/j.carbpol.2024.122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Affected by persistent hyperglycemia, diabetic neuropathy, and vasculopathy hinder the progression of wound healing by exacerbating susceptibility to recurrent bacterial infection and impairing vascularization. In order to cater to the requirements of diabetic chronic wound healing at various stages, we designed an antibacterial and pro-angiogenic wound dressing with localized glucose-lowering capacity. In this study, we constructed a copper-based metal-organic framework (MOF) nanozyme and loaded with glucose oxidase (GOX) to prepare Cu-MOF/GOX, which was subsequently integrated with CS-Arg (chitosan modified by L-Arginine) and Pluronic (F127) to fabricate multifunctional Cu-MOF/GOX-Gel thermosensitive hydrogel. The GOX generated H2O2 (hydrogen peroxide) and gluconic acid by consuming high blood glucose at the wound site, thus initiating an efficient antibacterial self-cascade catalytic in the initial stages of wound healing. With the further catalysis of in situ generated H2O2, NO (nitric oxide) was gradually released from the hydrogel, facilitating angiogenesis and accumulation of collagen, thereby expediting subsequent phases of wound healing. Overall, the Cu-MOF/GOX-Gel exhibits a comprehensive ability to locally regulate blood glucose levels, while also synergistically promoting antibacterial activity and angiogenesis, that effectively chronic diabetic wounds healing.
Collapse
Affiliation(s)
- Shuhui Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jiali Chen
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xinlong Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Zhaofei Yang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Jinxi Lan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Liudi Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Bingjie Ji
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yue Yuan
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Hu B, Wang Y, Jia H, Shang X, Duan F, Guo C, Zhang S, Wang M, Zhang Z. Portable smartphone-assisted amperometric immunosensor based on CoCe-layered double hydroxide for rapidly immunosensing erythromycin. Food Chem 2024; 461:140830. [PMID: 39151348 DOI: 10.1016/j.foodchem.2024.140830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Herein, we have manufactured a newly designed bifunctional impedimetric and amperometric immunosensor for rapidly detecting erythromycin (ERY) in complicated environments and food stuffs. For this, bimetallic cobalt/cerium-layered double hydroxide nanosheets (CoCe-LDH NSs), which was derived from Co-based zeolite imidazole framework via the structure conversion, was simultaneously utilized as the bioplatform for anchoring the ERY-targeted antibody and for modifying the gold and screen printed electrode. Basic characterizations revealed that CoCe-LDH NSs was composed of mixed metal valences, enrich redox, and abundant oxygen vacancies, facilitating the adhesion on the electrode, the antibody adsorption, and the electron transfers. The manufactured impedimetric and amperometric immunosensor based on CoCe-LDH has showed the comparable sensing performance, having a wide linear detection range from 1.0 fg mL-1 to 1.0 ng mL-1 with the ultralow detection limit toward ERY. Also, the portable, visualized, and efficient analysis of ERY was then attained at the smartphone-assisted CoCe-LDH-based SPE.
Collapse
Affiliation(s)
- Bin Hu
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China.
| | - Yifei Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Haosen Jia
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Xiaohong Shang
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Fenghe Duan
- College of Material Engineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Chuanpan Guo
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shuai Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Minghua Wang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| | - Zhihong Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
5
|
Ou Z, Wei J, Lei J, Wu D, Tong B, Liang H, Zhu D, Wang H, Zhou X, Xu H, Du Z, Du Y, Tan L, Yang C, Feng X. Biodegradable Janus sonozyme with continuous reactive oxygen species regulation for treating infected critical-sized bone defects. Nat Commun 2024; 15:10525. [PMID: 39627239 PMCID: PMC11615367 DOI: 10.1038/s41467-024-54894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
Critical-sized bone defects are usually accompanied by bacterial infection leading to inflammation and bone nonunion. However, existing biodegradable materials lack long-term therapeutical effect because of their gradual degradation. Here, a degradable material with continuous ROS modulation is proposed, defined as a sonozyme due to its functions as a sonosensitizer and a nanoenzyme. Before degradation, the sonozyme can exert an effective sonodynamic antimicrobial effect through the dual active sites of MnN4 and Cu2O8. Furthermore, it can promote anti-inflammation by superoxide dismutase- and catalase-like activities. Following degradation, quercetin-metal chelation exhibits a sustaining antioxidant effect through ligand-metal charge transfer, while the released ions and quercetin also have great self-antimicrobial, osteogenic, and angiogenic effects. A rat model of infected cranial defects demonstrates the sonozyme can rapidly eliminate bacteria and promote bone regeneration. This work presents a promising approach to engineer biodegradable materials with long-time effects for infectious bone defects.
Collapse
Affiliation(s)
- Zixuan Ou
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Junyu Wei
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jie Lei
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Di Wu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bide Tong
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Huaizhen Liang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dingchao Zhu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hongchuan Wang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xingyu Zhou
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hanpeng Xu
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhi Du
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yifan Du
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lei Tan
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Cao Yang
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Xiaobo Feng
- Orthopaedic Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
6
|
Zhang Y, Wang E, Han Y, Wang M, Yu H, Zhang B, Ma H, Kim Y, Chen R, Liu X, Li H, Cheng Y. Glucose activated synergistic cascade therapy of diabetic wound by platinum and glucose oxidase decorated camelina lipid droplets. Colloids Surf B Biointerfaces 2024; 244:114142. [PMID: 39116603 DOI: 10.1016/j.colsurfb.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Hyperglycemia provides a favorable breeding ground for bacteria, resulting in repeated and persistent inflammation of wounds and prolonged healing processes. In this study, platinum (Pt) nanoparticles (NPs) and glucose oxidase (GOx) were decorated on the surface of camelina lipid droplets (OB) linked with hFGF2, forming PGOB through in situ reduction of Pt ions and electrostatic adsorption, respectively. PGOB exhibits cascade enzyme catalytic activity, which can be activated by glucose in diabetic wound tissues. Specifically, GOx on PGOB catalyzes glucose into hydrogen peroxide, which can further decompose into hydroxyl radicals that have higher toxicity for bacterial inactivation. Additionally, glucose decomposition creates a low pH microenvironment, facilitating the cascade catalytic activity that ensures better bacterial suppression within the wound tissues. Furthermore, hFGF2 promotes the proliferation and migration of fibroblasts. Both in vitro and in vivo experiments confirm that PGOB effectively accelerates wound healing processes through bacteria inactivation and tissue regeneration. This study has developed an alternative strategy for glucose-triggered synergistic cascade therapy for diabetic wounds.
Collapse
Affiliation(s)
- Yuan Zhang
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Enze Wang
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Yu Han
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Manru Wang
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Hang Yu
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Biao Zhang
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Hongxia Ma
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China
| | - Yumi Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, the Republic of Korea
| | - Rui Chen
- College of Science, Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, PR China.
| | - Xin Liu
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China.
| | - Haiyan Li
- College of Tropical Crops, Hainan University, Haikou 570100, PR China.
| | - Yan Cheng
- Engineering Research Centre of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
7
|
Peng J, Liu C, Mo M, Huang Y, Lu Y, Xiao M, Zhao X, Ruan Q, Ti H. Construction of multifunctional hydrogel containing pH-responsive gold nanozyme for bacteria-infected wound healing. Int J Biol Macromol 2024; 283:137746. [PMID: 39551312 DOI: 10.1016/j.ijbiomac.2024.137746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Nanozymes have become promising alternative antibacterial agents for bacteria-infected wounds. In this study, fucoidan-confined gold nanoparticles (Fuc@AuNPs) are developed by in situ reduction, and stabilized by sulfate groups of fucoidan. Fuc@AuNPs exhibit pH-responsive catalytic activity that can mimic oxidase (OXD) under acidic bacterial infection conditions and mimic superoxide dismutase (SOD) under normal physiological conditions. The OXD-like catalytic activity of Fuc@AuNPs generates active singlet oxygen (1O2), exhibiting effective antibacterial properties against both Gram-negative E. coli and Gram-positive S. aureus. Fuc@AuNPs and aldehyde grafted saponin incorporate with chitosan to form a hybrid hydrogel. This hydrogel exhibits superior mechanical, adhesive, and self-healing properties due to electrostatic complex coacervation networks and dynamic covalent Schiff base reactions. Animal experiments show that the hydrogel aids S. aureus-infected skin wound healing by reducing bacterial infection and promoting granulation tissue formation without causing excessive ROS-induced inflammation. This study presents the design of multifunctional nanozymes and bioactive hydrogels as a promising wound healing dressing for biomedical applications.
Collapse
Affiliation(s)
- Jianlan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Meilan Mo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yeqing Lu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengjie Xiao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Qijun Ruan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Hao H, Hu J, Kuai Z, Hao F, Jiang W, Ran N, He Y, Zhang Y, Huang Y, Qi Y, Luo Q. Enzyme-mediated multifunctional self-healing lysozyme hydrogel for synergistic treatment of chronic diabetic wounds. Int J Biol Macromol 2024; 282:136719. [PMID: 39437956 DOI: 10.1016/j.ijbiomac.2024.136719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Self-healing hydrogels have attracted significant attention in chronic diabetic wound healing due to their potential to minimize the risk of secondary infections caused by joint movement or dressing rupture. Herein, a multifunctional self-healing hydrogel mediated utilizing an enzyme-triggered cascade reaction based on dynamic imine bonds was designed. The hydrogel employs three enzymes: lysozyme (LYZ), glucose oxidase (GOx), and catalase (CAT), as building blocks. GOx catalyzes the conversion of glucose and 1-thio-β-d-glucose (β-GlcSH) into hydrogen peroxide (H2O2), gluconic acid (GA), and hydrogen sulfide (H2S). Subsequently, CAT eliminates H2O2, protecting the imine bonds from oxidative damage. The acidic environment created by GA decreases the pH and regulates the crosslinking density of imine bonds, enhancing the self-healing capability and porosity of the hydrogel. This feature enables the sustained release of the drug rosuvastatin calcium (RCa) to promote endothelial cell migration and vascular regeneration. Combined with the antioxidative and anti-inflammatory effects of released H2S gas and the antibacterial properties of lysozyme, this hydrogel exhibits promising therapeutic efficacy for the synergistic treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Hao Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Juntao Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Ziyu Kuai
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Fengjie Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wantong Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Nana Ran
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yuting He
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanping Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Camperdown, NSW 2050, Australia.
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Zhang W, Li Y, Wei Y, Jiang Y, Hu Z, Wei Q. Antibacterial carboxymethyl chitosan hydrogel loaded with antioxidant cascade enzymatic system for immunoregulating the diabetic wound microenvironment. Int J Biol Macromol 2024; 282:137539. [PMID: 39537053 DOI: 10.1016/j.ijbiomac.2024.137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Diabetic wound healing faces several complex challenges, such as hypoxia, oxidative stress, and bacterial infections, which severely inhibit the wound-healing process. Herein, a quaternary ammonium salt-crosslinked carboxymethyl chitosan hydrogel (TPC) with excellent antioxidant and antibacterial properties was developed to immunoregulate the diabetic wound microenvironment. The TPC hydrogel was prepared by first mixing carboxymethyl chitosan (CMCS) and protocatechualdehyde (PA), followed by the addition of a quaternary ammonium cross-linker (TSPBA) and a superoxide dismutase (SOD)-catalase (CAT) cascade system. The immobilized SOD and CAT retained their activity, continuously converting endogenous ·O2- and H2O2 to O2 and H2O. PA also provided the TPC hydrogel excellent oxygen and nitrogen radical scavenging capacity. The quaternary ammonium groups in TSPBA significantly enhanced the inherent antibacterial ability of CMCS-based hydrogels. In diabetic wound-healing experiments, this porous and adhesive TPC hydrogel effectively closed wounds and regenerated skin tissue, resulting in shorter wound edges, thicker granulation, and higher collagen deposition levels compared with other groups. The TPC hydrogel also promoted macrophage polarization toward the M2 phenotype, accelerating wound healing by upregulating IL-10 expression, downregulating IL-6 expression, and enhancing angiogenesis. These results demonstrate the great potential of TPC hydrogel as a promising therapeutic dressing for treating diabetic wounds.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuxi Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yixing Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
10
|
Wang H, He W, Liao J, Wang S, Dai X, Yu M, Xie Y, Chen Y. Catalytic Biomaterials-Activated In Situ Chemical Reactions: Strategic Modulation and Enhanced Disease Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411967. [PMID: 39498674 DOI: 10.1002/adma.202411967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Chemical reactions underpin biological processes, and imbalances in critical biochemical pathways within organisms can lead to the onset of severe diseases. Within this context, the emerging field of "Nanocatalytic Medicine" leverages nanomaterials as catalysts to modulate fundamental chemical reactions specific to the microenvironments of diseases. This approach is designed to facilitate the targeted synthesis and localized accumulation of therapeutic agents, thus enhancing treatment efficacy and precision while simultaneously reducing systemic side effects. The effectiveness of these nanocatalytic strategies critically hinges on a profound understanding of chemical kinetics and the intricate interplay of reactions within particular pathological microenvironments to ensure targeted and effective catalytic actions. This review methodically explores in situ catalytic reactions and their associated biomaterials, emphasizing regulatory strategies that control therapeutic responses. Furthermore, the discussion encapsulates the crucial elements-reactants, catalysts, and reaction conditions/environments-necessary for optimizing the thermodynamics and kinetics of these reactions, while rigorously addressing both the biochemical and biophysical dimensions of the disease microenvironments to enhance therapeutic outcomes. It seeks to clarify the mechanisms underpinning catalytic biomaterials and evaluate their potential to revolutionize treatment strategies across various pathological conditions.
Collapse
Affiliation(s)
- Huijing Wang
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wenjin He
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Jing Liao
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuangshuang Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Materdicine, Shanghai, 200051, P. R. China
| |
Collapse
|
11
|
Wei YJ, Chen H, Zhou ZW, Liu CX, Cai CX, Li J, Yu XQ, Zhang J, Liu YH, Wang N. Kill Two Birds with One Stone: Dual-Metal MOF-Nanozyme-Decorated Hydrogels with ROS-Scavenging, Oxygen-Generating, and Antibacterial Abilities for Accelerating Infected Diabetic Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403679. [PMID: 39240068 DOI: 10.1002/smll.202403679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/15/2024] [Indexed: 09/07/2024]
Abstract
Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds. Therefore, developing an integrative strategy to improve the hostility of the diabetic wound microenvironment is urgently needed. Herein, multifunctional genipin (GP)-crosslinked chitosan (CS)-based hydrogels decorated with the biomimetic metal-organic framework (MOF)-nanozymes and the natural antibacterial agent chlorogenic acid (CGA), which is named MOF/CGA@GP-CS (MCGC), are prepared. With catalase (CAT)-like activity, these dual-metal MOF-nanozymes are promising bioreactors for simultaneously alleviating ROS accumulation and hypoxia by converting elevated endogenous H2O2 into dissolved oxygen in diabetic wounds. In addition, the other component of natural polyphenolic CGA acts as a mild antibacterial agent, efficiently inhibiting wound infection and avoiding antibiotic resistance. Impressively, the MCGC hydrogels accelerate infected diabetic wound healing by eliminating oxidative stress, increasing oxygenation, and reversing bacterial infection in vivo. In this work, an effective strategy based on multifunctional hydrogel wound dressings is successfully developed and applied in diabetic wound management.
Collapse
Affiliation(s)
- Yun-Jie Wei
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Heng Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zi-Wen Zhou
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Chun-Xiu Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Chun-Xian Cai
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jing Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
12
|
Kuang Y, Zhang Z, Zhu K, Sun Y, Wang K, Yuan C, Lu J, Luo Y, Liu X, Wan J. Porphyrin-based-MOF nanocomposite hydrogels for synergistic sonodynamic and gas therapy against tumor. Int J Biol Macromol 2024; 280:136086. [PMID: 39343275 DOI: 10.1016/j.ijbiomac.2024.136086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The glioma is one of the most aggressive tumors in humans, which is difficult to eradicate clinically. Therefore, we devised a porphyrin-based metal-organic frameworks (MOFs) crosslinking hyaluronic acid (HA) hydrogel nanocomposite through double-network (Cu-MOF-S-S-HA-Gel, CSSH-Gel), which is tumor responsive for enhanced gas therapy and sonodynamic therapy (SDT). Firstly, the hydrogels show extraordinary injectability and biocompatibility, which enables intratumor administration to circumvent the danger associated with surgery. The Cu-MOF-Cys and HA-Cys are interconnected through ether and disulfide bonds to establish a dual-network gel structure. The overexpressed glutathione (GSH) in tumor microenvironment (TME) reacts with disulfide bonds to release of the nanosensitizer (Cu-MOF). Subsequently, Cu-MOF generates reactive oxygen species (ROS) upon ultrasound irradiation for SDT, and releases L-cysteine(L-Cys) catalyzed by 3-mercapto pyruvate sulfotransferase (3-MST) to generate H2S for gas therapy. The CSSH-Gel obtained excellent synergistic anti-tumor effects (82.34 % inhibition ratio in vivo), which holds tremendous promise for the advancement of minimally invasive glioma therapies.
Collapse
Affiliation(s)
- Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China; Department of emergency and critical care medicine, Shanghai Pudong New Area People's Hospital, China
| | - Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China; Department of emergency and critical care medicine, Shanghai Pudong New Area People's Hospital, China
| | - Kai Zhu
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201620, China; Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yangang Sun
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Kaiyang Wang
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Jian Wan
- Department of emergency and critical care medicine, Shanghai Pudong New Area People's Hospital, China.
| |
Collapse
|
13
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
14
|
Shen H, Fu Y, Liu F, Zhang W, Yuan Y, Yang G, Yang M, Li L. AuCePt porous hollow cascade nanozymes targeted delivery of disulfiram for alleviating hepatic insulin resistance. J Nanobiotechnology 2024; 22:660. [PMID: 39456019 PMCID: PMC11515139 DOI: 10.1186/s12951-024-02880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
As the pathophysiological basis of type 2 diabetes mellitus (T2DM), insulin resistance (IR) is closely related to oxidative stress (OS) and inflammation, while nanozymes have a good therapeutic effect on inflammation and OS by scavenging reactive oxygen species (ROS). Hence, AuCePt porous hollow cascade nanozymes (AuCePt PHNs) are designed by integrating the dominant enzymatic activities of three metallic materials, which exhibit superior superoxide dismutase/catalase-like activities, and high drug loading capacity. In vitro experiments proved that AuCePt PHNs can ultra-efficiently scavenge endogenous and exogenous ROS. Moreover, AuCePt PHNs modified with lactobionic acid (LA) and loaded with disulfiram (DSF), named as AuCePt PHNs-LA@DSF, can significantly improve glucose uptake and glycogen synthesis in IR hepatocytes by regulating the insulin signaling pathways (IRS-1/AKT) and gluconeogenesis signaling pathways (FOXO-1/PEPCK). Intravenous administration of AuCePt PHNs-LA@DSF not only showed high liver targeting efficiency, but also reduced body weight and blood glucose and improved IR and lipid accumulation in high-fat diet-induced obese mice and diabetic ob/ob mice. This research elucidates the intrinsic activity of AuCePt PHNs for cascade scavenging of ROS, and reveals the potential effect of AuCePt PHNs-LA@DSF in T2DM treatment.
Collapse
Affiliation(s)
- Huawei Shen
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Chongqing Key Laboratory of Sichuan-Chongqing Coconstruction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Yafei Fu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Liu
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wanliang Zhang
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yin Yuan
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Mengliu Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Ling Li
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
15
|
Zhang X, Yu W, Zhang Y, Zhang W, Wang J, Gu M, Cheng S, Ren G, Zhao B, Yuan WE. A hydrogen generator composed of poly (lactic-co-glycolic acid) nanofibre membrane loaded iron nanoparticles for infectious diabetic wound repair. J Colloid Interface Sci 2024; 672:266-278. [PMID: 38843679 DOI: 10.1016/j.jcis.2024.05.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/07/2024]
Abstract
Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.
Collapse
Affiliation(s)
- Xiangqi Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Wei Yu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Yihui Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Wenkai Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Jiayu Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Muge Gu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China
| | - Sulin Cheng
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Exercise Translational Medicine Centre, Shanghai Jiao Tong University, Shanghai, China
| | - Guogang Ren
- School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China.
| | - Wei-En Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Inner Mongolia Research Institute of Shanghai Jiao Tong University, Hohhot 010070, China.
| |
Collapse
|
16
|
Li S, Luo M, Li J, Huang Q, Lei B. Sprayable Nanocomposites Hydrogel for Wound Healing and Skin Regeneration. Adv Healthc Mater 2024:e2402549. [PMID: 39400478 DOI: 10.1002/adhm.202402549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Wound management remains a critical challenge worldwide and imposes a huge financial burden on every nation. Hydrogels are promising for biomedical applications because of their extracellular matrix (ECM) like structure, good biocompatibility and multifunctional bioactivity. However, the poor mechanical properties and inconvenient operation of traditional hydrogels make it difficult to meet the complex and multifaceted needs of clinical practice. In recent years, the multifunctional nanocomposites hydrogel with especially sprayable feature have shown enhanced mechanical properties and facile operation, which enable their huge clinical applications value. A unique and powerful nanocomposite hydrogels (NCH) platform is developed by combining the many advantages of nanomaterials and hydrogels, which can achieve efficient trauma repair. This work reviews important advances on the preparation, functions and applications of sprayable NCH platforms. The challenges and future trends in the field with the aim of providing researchers with clarity on the past, present, and future of the emerging field of sprayable NCH are also proposed in detail.
Collapse
Affiliation(s)
- Sihua Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Meng Luo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710126, China
| | - Juntang Li
- Research Centre of Immunity, Trauma and Environment Medicine, Collaborative Innovation Centre of Medical Equipment, PLA Key Laboratory of Biological Damage Effect and Protection, Luoyang, 471031, China
| | - Qian Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
17
|
Fu YJ, Wang RK, Ma CY, Wang LY, Long SY, Li K, Zhao X, Yang W. Injectable Oxygen-Carrying Microsphere Hydrogel for Dynamic Regulation of Redox Microenvironment of Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403781. [PMID: 38850188 DOI: 10.1002/smll.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Indexed: 06/10/2024]
Abstract
The delayed healing of infected wounds can be attributed to the increased production of reactive oxygen species (ROS) and consequent damages to vascellum and tissue, resulting in a hypoxic wound environment that further exacerbates inflammation. Current clinical treatments including hyperbaric oxygen therapy and antibiotic treatment fail to provide sustained oxygenation and drug-free resistance to infection. To propose a dynamic oxygen regulation strategy, this study develops a composite hydrogel with ROS-scavenging system and oxygen-releasing microspheres in the wound dressing. The hydrogel itself reduces cellular damage by removing ROS derived from immune cells. Simultaneously, the sustained release of oxygen from microspheres improves cell survival and migration in hypoxic environments, promoting angiogenesis and collagen regeneration. The combination of ROS scavenging and oxygenation enables the wound dressing to achieve drug-free anti-infection through activating immune modulation, inhibiting the secretion of pro-inflammatory cytokines interleukin-6, and promoting tissue regeneration in both acute and infected wounds of rat skins. Thus, the composite hydrogel dressing proposed in this work shows great potential for dynamic redox regulation of infected wounds and accelerates wound healing without drugs.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng-Ye Ma
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li-Ya Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Si-Yu Long
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
18
|
Zhao Y, Cheng J, Li Z, Wang J, Chen X. Nanozymes in Biomedical Applications: Innovations Originated From Metal-Organic Frameworks. Adv Healthc Mater 2024:e2402066. [PMID: 39319491 DOI: 10.1002/adhm.202402066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Nanozymes exhibit significant potential in medical theranostics, environmental protection, energy development, and biopharmaceuticals due to their exceptional catalytic performance. Compared with natural enzymes, nanozymes have the advantages of simple preparation and purification, convenient production and low cost. Therefore, it is very important to prepare nanozymes quickly and efficiently, which not only helps to expand their application scope, but also can further exert their great potential in various fields. Metal-organic frameworks (MOF) materials serve as versatile substrates for constructing nanozymes, offering unique advantages like adjustable structure, high specific surface area, and porous channels. MOF coordination nodes constructed from metal ions or metal clusters have unique properties that can be leveraged to tailor nanozyme characteristics for different applications. This review describes and analyzes recent methods for constructing nanozymes using MOF materials, and explores their application prospects in biomedicine. By expounding the preparation techniques and biomedical applications of nanozymes, this review aims to inspire researchers to develop innovative nanozyme materials and explore new application directions.
Collapse
Affiliation(s)
- Yuewu Zhao
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Junjie Cheng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhen Li
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Jine Wang
- College of Pharmacy, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou, 253023, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
19
|
Zhao K, Zhao Y, Wang Y, Han B, Lian M. Progress in antibacterial applications of nanozymes. Front Chem 2024; 12:1478273. [PMID: 39376729 PMCID: PMC11456495 DOI: 10.3389/fchem.2024.1478273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Bacterial infections are a growing problem, and antibiotic drugs can be widely used to fight bacterial infections. However, the overuse of antibiotics and the evolution of bacteria have led to the emergence of drug-resistant bacteria, severely reducing the effectiveness of treatment. Therefore, it is very important to develop new effective antibacterial strategies to fight multi-drug resistant bacteria. Nanozyme is a kind of enzyme-like catalytic nanomaterials with unique physical and chemical properties, high stability, structural diversity, adjustable catalytic activity, low cost, easy storage and so on. In addition, nanozymes also have excellent broad-spectrum antibacterial properties and good biocompatibility, showing broad application prospects in the field of antibacterial. In this paper, we reviewed the research progress of antibacterial application of nanozymes. At first, the antibacterial mechanism of nanozymes was summarized, and then the application of nanozymes in antibacterial was introduced. Finally, the challenges of the application of antibacterial nanozymes were discussed, and the development prospect of antibacterial nanozymes was clarified.
Collapse
Affiliation(s)
- Keyuan Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Ye Zhao
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Yuwei Wang
- Tianjin Fire Science and Technology Research Institute of MEM, Tianjin, China
| | - Bo Han
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| | - Meiling Lian
- Tianjin Engineering Research Center of Civil Aviation Energy Environment and Green Development, School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin, China
| |
Collapse
|
20
|
Zhang Y, Huang X, Luo Y, Ma X, Luo L, Liang L, Deng T, Qiao Y, Ye F, Liao H. A carbon dot nanozyme hydrogel enhances pulp regeneration activity by regulating oxidative stress in dental pulpitis. J Nanobiotechnology 2024; 22:537. [PMID: 39227963 PMCID: PMC11373145 DOI: 10.1186/s12951-024-02810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Preserving pulp viability and promoting pulp regeneration in pulpitis have attracted widespread attention. Restricted by the oxidative stress microenvironment of dental pulpitis, excessive reactive oxygen and nitrogen species (RONS) trigger uncontrolled inflammation and exacerbate pulp tissue destruction. However, modulating redox homeostasis in inflamed pulp tissue to promote pulp regeneration remains a great challenge. Herein, this work proposes an effective antioxidative system (C-NZ/GelMA) consisting of carbon dot nanozymes (C-NZ) with gelatin methacryloyl (GelMA) to modulate the pulpitis microenvironment for dental pulp regeneration by utilizing the antioxidant properties of C-NZ and the mechanical support of an injectable GelMA hydrogel. This system effectively scavenges RONS to normalize intracellular redox homeostasis, relieving oxidative stress damage. Impressively, it can dramatically enhance the polarization of regenerative M2 macrophages. This study revealed that the C-NZ/GelMA hydrogel promoted pulp regeneration and dentin repair through its outstanding antioxidant, antiapoptotic, and anti-inflammatory effects, suggesting that the C-NZ/GelMA hydrogel is highly valuable for pulpitis treatment.
Collapse
Affiliation(s)
- Yingjuan Zhang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Xianxian Huang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Yicai Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Xiangyu Ma
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Ling Luo
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry, Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China
| | - Tingting Deng
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Yang Qiao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry, Pharmaceutical Science of Guangxi Normal University, Guilin, 541004, PR China.
| | - Hongbing Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College & Hospital of Stomatology, Guangxi Medical University, No.10 Shuangyong Road Nanning, Guangxi, 530021, China.
| |
Collapse
|
21
|
Wang S, Zhan J, Zhou X, He C, Wei P, Yi T. Design and Application of an In Situ Traceable Nitric Oxide Donor for Promoting the Healing of Wound Infections. Adv Healthc Mater 2024; 13:e2400922. [PMID: 38800965 DOI: 10.1002/adhm.202400922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Therapies for wound infections require medications with antibacterial and wound-healing functions. However, it remains a challenge to produce a single drug that can perform dual functions. Nitric oxide (NO), with its antibacterial and wound-healing activities, is an ideal solution to address this challenge. However, many controlled-release strategies for NO rely on external probes for tracing the release in situ, making it difficult to precisely assess the location and magnitude. To address this issue, this study describes a novel NO donor, DHU-NO1, capable of efficiently releasing NO under mild conditions (450 nm illumination). Simultaneously, DHU-NO1 generates the fluorophore Azure B (AZB), which enables direct, non-consumptive tracing of the NO release by monitoring the fluorescence and absorption changes in AZB. Given that NO can be conveniently traced, the amount of released NO can be controlled during biological applications, thereby allowing both functions of NO to be performed. When applied to the affected area, DHU-NO1, illuminated by both a simple light-emitting diode (LED) light source and natural light, achieves significant antibacterial effects against wound infections and promotes wound healing in mice. This study offers a novel and effective approach for treating wound infections.
Collapse
Affiliation(s)
- Shasha Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiexiang Zhan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
22
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
23
|
Ghaffari-Bohlouli P, Jafari H, Nie L, Kakkar A, Shavandi A. Enzymes in Addressing Hypoxia for Biomaterials Engineering. Adv Healthc Mater 2024:e2401713. [PMID: 39183514 DOI: 10.1002/adhm.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Oxygen is essential for normal cellular functions. Hypoxia impacts various cellular processes, such as metabolism, growth, proliferation, angiogenesis, metastasis, tumorigenesis, microbial infection, and immune response, mediated by hypoxia-inducible factors (HIFs). Hypoxia contributes to the progression and development of cancer, cardiovascular diseases, metabolic disorders, kidney diseases, and infections. The potential alleviation of hypoxia has been explored through the enzymatic in situ decomposition of hydrogen peroxide, leading to the generation of oxygen. However, challenges such as limited stability restrict the effectiveness of enzymes such as catalase in biomedical and in vivo applications. To overcome these limitations, targeted delivery of the enzymes has been proposed. This review offers a critical comparison of i) current approaches to enhance the in vivo stability of catalase; and ii) the structure, mechanism of action, and kinetics of catalase and catalase-like nanozymes.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
24
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
25
|
谢 李, 杜 哲, 彭 秋, 张 坤, 方 超. [Classification and Application of Ultrasound-Responsive Nanomaterials in Anti-Inflammatory Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:793-799. [PMID: 39169999 PMCID: PMC11334277 DOI: 10.12182/20240760104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 08/23/2024]
Abstract
Ultrasound, a high-frequency mechanical wave with excellent tissue penetration, has been widely applied in medical diagnostic imaging. Furthermore, it has been reported that ultrasound has broad prospects for extensive applications in the field of disease treatment in recent years due to its non-invasiveness and high efficiency. Ultrasound-responsive nanomaterials have the unique advantages of a small size and a high reactivity. Such materials have the capability for precision control of drug release under ultrasound stimulation, which provides a new approach to enhancing the efficiency of drug therapy. Therefore, these materials have attracted the attention of a wide range of scholars. Inflammation is a defensive response produced by organisms to deal with injuries. However, excessive inflammatory response may lead to various tissue damages in organisms and even endanger patients' lives. Many studies have demonstrated that limiting the inflammatory response using ultrasound-responsive nanomaterials is a viable way of treating diseases. Currently, there are still challenges in the application of ultrasound-responsive nanomaterials in anti-inflammatory therapy. The design and synthesis process of nanomaterials is complicated, and further verification of the biocompatibility and safety of these materials is needed. Therefore, in this review, we summarized and classified common ultrasound-responsive nanomaterials in the field of anti-inflammation and systematically introduced the properties of different nanomaterials. In addition, the anti-inflammatory applications of ultrasound-responsive nanomaterials in various diseases, such as bone diseases, skin and muscle diseases, autoimmune diseases, and respiratory diseases, are also described in detail. It is expected that this review will provide insights for further research and clinical applications in the realms of precision treatment, targeted drug delivery, and clinical trial validation of ultrasound-responsive nanomaterials used in anti-inflammatory therapies.
Collapse
Affiliation(s)
- 李欣 谢
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 哲菲 杜
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 秋霞 彭
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 坤 张
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| | - 超 方
- 上海市第十人民医院 超声科 (上海 200072)Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Shanghai 200072, China
| |
Collapse
|
26
|
Zong X, Xu X, Pang DW, Huang X, Liu AA. Fine-Tuning Electron Transfer for Nanozyme Design. Adv Healthc Mater 2024:e2401836. [PMID: 39015050 DOI: 10.1002/adhm.202401836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/22/2024] [Indexed: 07/18/2024]
Abstract
Nanozymes, with their versatile composition and structural adaptability, present distinct advantages over natural enzymes including heightened stability, customizable catalytic activity, cost-effectiveness, and simplified synthesis process, making them as promising alternatives in various applications. Recent advancements in nanozyme research have shifted focus from serendipitous discovery toward a more systematic approach, leveraging machine learning, theoretical calculations, and mechanistic explorations to engineer nanomaterial structures with tailored catalytic functions. Despite its pivotal role, electron transfer, a fundamental process in catalysis, has often been overlooked in previous reviews. This review comprehensively summarizes recent strategies for modulating electron transfer processes to fine-tune the catalytic activity and specificity of nanozymes, including electron-hole separation and carrier transfer. Furthermore, the bioapplications of these engineered nanozymes, including antimicrobial treatments, cancer therapy, and biosensing are also introduced. Ultimately, this review aims to offer invaluable insights for the design and synthesis of nanozymes with enhanced performance, thereby advancing the field of nanozyme research.
Collapse
Affiliation(s)
- Xia Zong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinran Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
27
|
Xiao X, Zhao F, DuBois DB, Liu Q, Zhang YL, Yao Q, Zhang GJ, Chen S. Nanozymes for the Therapeutic Treatment of Diabetic Foot Ulcers. ACS Biomater Sci Eng 2024; 10:4195-4226. [PMID: 38752382 DOI: 10.1021/acsbiomaterials.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430065, China
| | - Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yu Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
28
|
Wang L, Ding X, Fan L, Filppula AM, Li Q, Zhang H, Zhao Y, Shang L. Self-Healing Dynamic Hydrogel Microparticles with Structural Color for Wound Management. NANO-MICRO LETTERS 2024; 16:232. [PMID: 38954118 PMCID: PMC11219637 DOI: 10.1007/s40820-024-01422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/22/2024] [Indexed: 07/04/2024]
Abstract
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances. It is vital to develop multifunctional hydrogel dressings, with well-designed morphology and structure to enhance flexibility and effectiveness in wound management. To achieve these, we propose a self-healing hydrogel dressing based on structural color microspheres for wound management. The microsphere comprised a photothermal-responsive inverse opal framework, which was constructed by hyaluronic acid methacryloyl, silk fibroin methacryloyl and black phosphorus quantum dots (BPQDs), and was further re-filled with a dynamic hydrogel. The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran (DEX-CA and DEX-BA). Notably, the composite microspheres can be applied arbitrarily, and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel. Additionally, eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism. Moreover, effective monitoring of the drug release process can be achieved through visual color variations. The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management. These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.
Collapse
Affiliation(s)
- Li Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Xiaoya Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Lu Fan
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Anne M Filppula
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
| | - Qinyu Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
| | - Hongbo Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland.
| | - Yuanjin Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| | - Luoran Shang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China.
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
29
|
Ye S, Jin N, Liu N, Cheng F, Hu L, Zhang G, Li Q, Jing J. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci 2024; 12:3273-3292. [PMID: 38727636 DOI: 10.1039/d4bm00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic non-healing wounds are a common consequence of skin ulceration in diabetic patients, with severe cases such as diabetic foot even leading to amputations. The interplay between pathological factors like hypoxia-ischemia, chronic inflammation, bacterial infection, impaired angiogenesis, and accumulation of advanced glycosylation end products (AGEs), resulting from the dysregulation of the immune microenvironment caused by hyperglycemia, establishes an unending cycle that hampers wound healing. However, there remains a dearth of sufficient and effective approaches to break this vicious cycle within the complex immune microenvironment. Consequently, numerous scholars have directed their research efforts towards addressing chronic diabetic wound repair. In recent years, gases including Oxygen (O2), Nitric oxide (NO), Hydrogen (H2), Hydrogen sulfide (H2S), Ozone (O3), Carbon monoxide (CO) and Nitrous oxide (N2O), along with gas-releasing materials associated with them have emerged as promising therapeutic solutions due to their ability to regulate angiogenesis, intracellular oxygenation levels, exhibit antibacterial and anti-inflammatory effects while effectively minimizing drug residue-induced damage and circumventing drug resistance issues. In this review, we discuss the latest advances in the mechanisms of action and treatment of these gases and related gas-releasing materials in diabetic wound repair. We hope that this review can provide different ideas for the future design and application of gas therapy for chronic diabetic wounds.
Collapse
Affiliation(s)
- Shuming Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Neng Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Nan Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Feixiang Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Liang Hu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Qi Li
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
30
|
He S, Lin M, Zheng Q, Liang B, He X, Zhang Y, Xu Q, Deng H, Fan K, Chen W. Glucose Oxidase Energized Osmium with Dual-Active Centers and Triple Enzyme Activities for Infected Diabetic Wound Management. Adv Healthc Mater 2024; 13:e2303548. [PMID: 38507709 DOI: 10.1002/adhm.202303548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Diabetic wounds are susceptible to bacterial infections, largely linked to high blood glucose levels (hyperglycemia). To treat such wounds, enzymes like glucose oxidase (GOx) can be combined with nanozymes (nanomaterials mimic enzymes) to use glucose effectively for purposes. However, there is still room for improvement in these systems, particularly in terms of process simplification, enzyme activity regulation, and treatment effects. Herein, the approach utilizes GOx to directly facilitate the biomineralized growth of osmium (Os) nanozyme (GOx-OsNCs), leading to dual-active centers and remarkable triple enzyme activities. Initially, GOx-OsNCs use vicinal dual-active centers, enabling a self-cascaded mechanism that significantly enhances glucose sensing performance compared to step-by-step reactions, surpassing the capabilities of other metal sources such as gold and platinum. In addition, GOx-OsNCs are integrated into a glucose-sensing gel, enabling instantaneous visual feedback. In the treatment of infected diabetic wounds, GOx-OsNCs exhibit multifaceted benefits by lowering blood glucose levels and exhibiting antibacterial properties through the generation of hydroxyl free radicals, thereby expediting healing by fostering a favorable microenvironment. Furthermore, the catalase-like activity of GOx-OsNCs aids in reducing oxidative stress, inflammation, and hypoxia, culminating in improved healing outcomes. Overall, this synergistic enzyme-nanozyme blend is user-friendly and holds considerable promise for diverse applications.
Collapse
Affiliation(s)
- Shaobin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Mengting Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Qionghua Zheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Bo Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xinjie He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350004, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qiuxia Xu
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Haohua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, 451163, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| |
Collapse
|
31
|
He C, Bi S, Zhang R, Chen C, Liu R, Zhao X, Gu J, Yan B. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing. J Control Release 2024; 370:543-555. [PMID: 38729434 DOI: 10.1016/j.jconrel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Hyaluronic acid (HA)-based biopolymer hydrogels are promising therapeutic dressings for various wounds but still underperform in treating diabetic wounds. These wounds are extremely difficult to heal and undergo a prolonged and severe inflammatory process due to bacterial infection, overexpression of reactive oxygen species (ROS), and insufficient synthesis of NO. In this study, a dynamic crosslinked hyaluronic acid (HA) hydrogel dressing (Gel-HAB) loaded with allomelanin (AMNP)-N, N'-dis-sec-butyl-N, N'-dinitroso-1, 4-phenylenediamine (BNN6) nanoparticles (AMNP-BNN6) was developed for healing diabetic wounds. The dynamic acylhydrazone bond formed between hydrazide-modified HA (HA-ADH) and oxidized HA (OHA) makes the hydrogel injectable, self-healing, and biocompatible. The hydrogel, loaded with AMNP-BNN6 nanoparticles, exhibits promising ROS scavenging ability and on-demand release of nitric oxide (NO) under near-infrared (NIR) laser irradiation to achieve mild photothermal antibacterial therapy (PTAT) (∼ 48 °C). Notably, the Gel-HAB hydrogel effectively reduced the oxidative stress level, controlled infections, accelerated vascular regeneration, and promoted angiogenesis, thereby achieving rapid healing of diabetic wounds. The injectable self-healing nanocomposite hydrogel could serve as a mild photothermal-enhanced antibacterial, antioxidant, and nitric oxide release platform for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Changyuan He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Chong Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
32
|
Diao Z, Li L, Zhou H, Yang L. Tannic acid and silicate-functionalized polyvinyl alcohol-hyaluronic acid hydrogel for infected diabetic wound healing. Regen Biomater 2024; 11:rbae053. [PMID: 38883183 PMCID: PMC11176089 DOI: 10.1093/rb/rbae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 06/18/2024] Open
Abstract
Healing of chronic diabetic wounds is challenging due to complications of severe inflammatory microenvironment, bacterial infection and poor vascular formation. Herein, a novel injectable polyvinyl alcohol-hyaluronic acid-based composite hydrogel was developed, with tannic acid (TA) and silicate functionalization to fabricate an 'all-in-one' hydrogel PTKH. On one hand, after being locally injected into the wound site, the hydrogel underwent a gradual sol-gel transition in situ, forming an adhesive and protective dressing for the wound. Manipulations of rheological characteristics, mechanical properties and swelling ability of PTKH could be performed via regulating TA and silicate content in hydrogel. On the other hand, PTKH was capable of eliminating reactive oxygen species overexpression, combating infection and generating a cell-favored microenvironment for wound healing acceleration in vitro. Subsequent animal studies demonstrated that PTKH could greatly stimulate angiogenesis and epithelization, accompanied with inflammation and infection risk reduction. Therefore, in consideration of its impressive in vitro and in vivo outcomes, this 'all-in-one' multifunctional hydrogel may hold promise for chronic diabetic wound treatment.
Collapse
Affiliation(s)
- Zhentian Diao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Longkang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China
| |
Collapse
|
33
|
Wang Y, He X, Huang K, Cheng N. Nanozyme as a rising star for metabolic disease management. J Nanobiotechnology 2024; 22:226. [PMID: 38711066 PMCID: PMC11071342 DOI: 10.1186/s12951-024-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Nanozyme, characterized by outstanding and inherent enzyme-mimicking properties, have emerged as highly promising alternatives to natural enzymes owning to their exceptional attributes such as regulation of oxidative stress, convenient storage, adjustable catalytic activities, remarkable stability, and effortless scalability for large-scale production. Given the potent regulatory function of nanozymes on oxidative stress and coupled with the fact that reactive oxygen species (ROS) play a vital role in the occurrence and exacerbation of metabolic diseases, nanozyme offer a unique perspective for therapy through multifunctional activities, achieving essential results in the treatment of metabolic diseases by directly scavenging excess ROS or regulating pathologically related molecules. The rational design strategies, nanozyme-enabled therapeutic mechanisms at the cellular level, and the therapies of nanozyme for several typical metabolic diseases and underlying mechanisms are discussed, mainly including obesity, diabetes, cardiovascular disease, diabetic wound healing, and others. Finally, the pharmacokinetics, safety analysis, challenges, and outlooks for the application of nanozyme are also presented. This review will provide some instructive perspectives on nanozyme and promote the development of enzyme-mimicking strategies in metabolic disease therapy.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Xiaoyun He
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), The Ministry of Agriculture and Rural Affairs of the PR China, Beijing, China.
| |
Collapse
|
34
|
Liu S, Bai Q, Jiang Y, Gao Y, Chen Z, Shang L, Zhang S, Yu L, Yang D, Sui N, Zhu Z. Multienzyme-Like Nanozyme Encapsulated Ocular Microneedles for Keratitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308403. [PMID: 38098457 DOI: 10.1002/smll.202308403] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Indexed: 05/25/2024]
Abstract
Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.
Collapse
Affiliation(s)
- Shen Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Qiang Bai
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yujie Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Yonghui Gao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Limin Shang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Siying Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Linrong Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Dongqin Yang
- Central Laboratory, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China
| |
Collapse
|
35
|
Lu M, Peng W, Kang W, Huang L, Zhang J, Tan S, Huo DL, Chen H. Self-healing hydrogel based on poly (vinyl alcohol)-poly (lysine)-gum arabic accelerates diabetic wound healing under photothermal sterilization. Int J Biol Macromol 2024; 266:131395. [PMID: 38582460 DOI: 10.1016/j.ijbiomac.2024.131395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Diabetic wounds are a significant clinical challenge. Developing effective antibacterial dressings is crucial for preventing wound ulcers caused by bacterial infections. In this study, a self-healing antibacterial hydrogel (polyvinyl alcohol (PVA)-polylysine-gum arabic, PLG hydrogels) with near-infrared photothermal response was prepared by linking PVA and a novel polysaccharide-amino acid compound (PG) through borate bonding combined with freeze-thaw cycling. Subsequently, the hydrogel was modified by incorporating inorganic nanoparticles (modified graphene oxide (GM)). The experimental results showed that the PLGM3 hydrogels (PLG@GM hydrogels, 3.0 wt%) could effectively kill bacteria and promote diabetic wound tissue healing under 808-nm near-infrared laser irradiation. Therefore, this hydrogel system provides a new idea for developing novel dressings for treating diabetic wounds.
Collapse
Affiliation(s)
- Ming Lu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, PR China; Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Weicong Peng
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Wanwen Kang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| | - Dong-Liang Huo
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China.
| | - Huifang Chen
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
36
|
Cong Y, Qiao R, Wang X, Ji Y, Yang J, Baimanov D, Yu S, Cai R, Zhao Y, Wu X, Chen C, Wang L. Protein Corona-Mediated Inhibition of Nanozyme Activity: Impact of Protein Shape. J Am Chem Soc 2024; 146:10478-10488. [PMID: 38578196 DOI: 10.1021/jacs.3c14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
During biomedical applications, nanozymes, exhibiting enzyme-like characteristics, inevitably come into contact with biological fluids in living systems, leading to the formation of a protein corona on their surface. Although it is acknowledged that molecular adsorption can influence the catalytic activity of nanozymes, there is a dearth of understanding regarding the impact of the protein corona on nanozyme activity and its determinant factors. In order to address this gap, we employed the AuNR@Pt@PDDAC [PDDAC, poly(diallyldimethylammonium chloride)] nanorod (NR) as a model nanozyme with multiple activities, including peroxidase, oxidase, and catalase-mimetic activities, to investigate the inhibitory effects of the protein corona on the catalytic activity. After the identification of major components in the plasma protein corona on the NR, we observed that spherical proteins and fibrous proteins induced distinct inhibitory effects on the catalytic activity of nanozymes. To elucidate the underlying mechanism, we uncovered that the adsorbed proteins assembled on the surface of the nanozymes, forming protein networks (PNs). Notably, the PNs derived from fibrous proteins exhibited a screen mesh-like structure with smaller pore sizes compared to those formed by spherical proteins. This structural disparity resulted in a reduced efficiency for the permeation of substrate molecules, leading to a more robust inhibition in activity. These findings underscore the significance of the protein shape as a crucial factor influencing nanozyme activity. This revelation provides valuable insights for the rational design and application of nanozymes in the biomedical fields.
Collapse
Affiliation(s)
- Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongrong Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
| | - Xiaofeng Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jiacheng Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
| | - Shengtao Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
| | - Rui Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, China
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, Guangdong, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, China
- School of Nanoscience and Nanotechnology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences and New Cornerstone Science Laboratory, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100049, China
| |
Collapse
|
37
|
Huang J, Jia X, Wang Y, Qiao Y, Jiang X. Heterojunction-Mediated Co-Adjustment of Band Structure and Valence State for Achieving Selective Regulation of Semiconductor Nanozymes. Adv Healthc Mater 2024:e2400401. [PMID: 38609000 DOI: 10.1002/adhm.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Indexed: 04/14/2024]
Abstract
Improving reaction selectivity is the next target for nanozymes to mimic natural enzymes. Currently, the majority of strategies in this field are exclusively applicable to metal-organic-based or organic-based nanozymes, while limited in regulating metal oxide-based semiconductor nanozymes. Herein, taking semiconductor Co3O4 as an example, a heterojunction strategy to precisely regulate nanozyme selectivity by simultaneously regulating three vital factors including band structure, metal valence state, and oxygen vacancy content is proposed. After introducing MnO2 to form Z-scheme heterojunctions with Co3O4 nanoparticles, the catalase (CAT)-like and peroxidase (POD)-like activities of Co3O4 can be precisely regulated since the introduction of MnO2 affects the position of the conduction bands, preserves Co in a higher oxidation state (Co3+), and increases oxygen vacancy content, enabling Co3O4-MnO2 exhibit improved CAT-like activity and reduced POD-like activity. This study proposes a strategy for improving reaction selectivity of Co3O4, which contributes to the development of metal oxide-based semiconductor nanozymes.
Collapse
Affiliation(s)
- Jiahao Huang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaodan Jia
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Wang
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yue Qiao
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Xiue Jiang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
38
|
Nam NN, Tran NKS, Nguyen TT, Trai NN, Thuy NP, Do HDK, Tran NHT, Trinh KTL. Classification and application of metal-based nanoantioxidants in medicine and healthcare. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:396-415. [PMID: 38633767 PMCID: PMC11022389 DOI: 10.3762/bjnano.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Antioxidants play an important role in the prevention of oxidative stress and have been widely used in medicine and healthcare. However, natural antioxidants have several limitations such as low stability, difficult long-term storage, and high cost of large-scale production. Along with significant advances in nanotechnology, nanomaterials have emerged as a promising solution to improve the limitations of natural antioxidants because of their high stability, easy storage, time effectiveness, and low cost. Among various types of nanomaterials exhibiting antioxidant activity, metal-based nanoantioxidants show excellent reactivity because of the presence of an unpaired electron in their atomic structure. In this review, we summarize some novel metal-based nanoantioxidants and classify them into two main categories, namely chain-breaking and preventive antioxidant nanomaterials. In addition, the applications of antioxidant nanomaterials in medicine and healthcare are also discussed. This review provides a deeper understanding of the mechanisms of metal-based nanoantioxidants and a guideline for using these nanomaterials in medicine and healthcare.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Tan Tai Nguyen
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Ngoc Trai
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Phuong Thuy
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
39
|
Li Y, Leng Y, Liu Y, Zhong J, Li J, Zhang S, Li Z, Yang K, Kong X, Lao W, Bi C, Zhai A. Advanced multifunctional hydrogels for diabetic foot ulcer healing: Active substances and biological functions. J Diabetes 2024; 16:e13537. [PMID: 38599855 PMCID: PMC11006623 DOI: 10.1111/1753-0407.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 04/12/2024] Open
Abstract
AIM Hydrogels with excellent biocompatibility and biodegradability can be used as the desirable dressings for the therapy of diabetic foot ulcer (DFU). This review aimed to summarize the biological functions of hydrogels, combining with the pathogenesis of DFU. METHODS The studies in the last 10 years were searched and summarized from the online database PubMed using a combination of keywords such as hydrogel and diabetes. The biological functions of hydrogels and their healing mechanism on DFU were elaborated. RESULTS In this review, hydrogels were classified by their active substances such as drugs, cytokines, photosensitizers, and biomimetic peptide. Based on this, the biological functions of hydrogels were summarized by associating the pathogenesis of DFU, including oxidative stress, chronic inflammation, cell phenotype change, vasculopathy, and infection. This review also pointed out some of the shortcomings of hydrogels in present researches. CONCLUSIONS Hydrogels were classified into carrier hydrogels and self-functioning hydrogels in this review. Besides, the functions and components of existing hydrogels were clarified to provide assistance for future researches and clinical applications.
Collapse
Affiliation(s)
- Yuetong Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Leng
- Department of Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jianhua Zhong
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jiaxin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shitong Zhang
- Department of General Practice, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
40
|
Peng Y, Guo Y, Ge X, Gong Y, Wang Y, Ou Z, Luo G, Zhan R, Zhang Y. Construction of programmed time-released multifunctional hydrogel with antibacterial and anti-inflammatory properties for impaired wound healing. J Nanobiotechnology 2024; 22:126. [PMID: 38519957 PMCID: PMC10960406 DOI: 10.1186/s12951-024-02390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
The successful reprogramming of impaired wound healing presents ongoing challenges due to the impaired tissue microenvironment caused by severe bacterial infection, excessive oxidative stress, as well as the inappropriate dosage timing during different stages of the healing process. Herein, a dual-layer hydrogel with sodium alginate (SA)-loaded zinc oxide (ZnO) nanoparticles and poly(N-isopropylacrylamide) (PNIPAM)-loaded Cu5.4O ultrasmall nanozymes (named programmed time-released multifunctional hydrogel, PTMH) was designed to dynamically regulate the wound inflammatory microenvironment based on different phases of wound repairing. PTMH combated bacteria at the early phase of infection by generating reactive oxygen species through ZnO under visible-light irradiation with gradual degradation of the lower layer. Subsequently, when the upper layer was in direct contact with the wound tissue, Cu5.4O ultrasmall nanozymes were released to scavenge excessive reactive oxygen species. This neutralized a range of inflammatory factors and facilitated the transition from the inflammatory phase to the proliferative phase. Furthermore, the utilization of Cu5.4O ultrasmall nanozymes enhanced angiogenesis, thereby facilitating the delivery of oxygen and nutrients to the impaired tissue. Our experimental findings indicate that PTMHs promote the healing process of diabetic wounds with bacterial infection in mice, exhibiting notable antibacterial and anti-inflammatory properties over a specific period of time.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China
| | - Yicheng Guo
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xin Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yali Gong
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuhan Wang
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zelin Ou
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, China.
| |
Collapse
|
41
|
Xu C, Wang F, Guan S, Wang L. β-Glucans obtained from fungus for wound healing: A review. Carbohydr Polym 2024; 327:121662. [PMID: 38171680 DOI: 10.1016/j.carbpol.2023.121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The cell surface of fungus contains a large number of β-glucans, which exhibit various biological activities such as immunomodulatory, anti-inflammatory, and antioxidation. Fungal β-glucans with highly branched structure show great potential as wound healing reagents, because they can stimulate the expression of many immune- and inflammatory-related factors beneficial to wound healing. Recently, the wound healing ability of many fungal β-glucans have been investigated in animals and clinical trials. Studies have proved that fungal β-glucans can promote fibroblasts proliferation, collagen deposition, angiogenesis, and macrophage infiltration during the wound healing process. However, the development of fungal β-glucans as wound healing reagents is not systematically reviewed till now. This review discusses the wound healing studies of β-glucans obtained from different fungal species. The structure characteristics, extraction methods, and biological functions of fungal β-glucans with wound healing ability are summarized. Researches about fungal β-glucan-containing biomaterials and structurally modified β-glucans for wound healing are also involved.
Collapse
Affiliation(s)
- Chunhua Xu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Fengxia Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, Shandong Province, China.
| |
Collapse
|
42
|
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. NANO-MICRO LETTERS 2024; 16:110. [PMID: 38321242 PMCID: PMC10847086 DOI: 10.1007/s40820-024-01323-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Varsha Sagar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
43
|
Zhao D, Liu H, Zhang C, Xiao X, He Z. UV-induced oxidase activity of carbon dots in visible UVA dosage, Escherichia coli quantification and bacterial typing. Anal Chim Acta 2024; 1288:342140. [PMID: 38220275 DOI: 10.1016/j.aca.2023.342140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Ultraviolet (UV) light and foodborne pathogenic bacteriais are an important risk to the environment's safety. They endanger human health, and also lead to outbreaks of infectious disease, posing great threats to global public health security, national economy, and social stability. The appearance of carbon dot (CD) nanozymes offers a new perspective to solve the problems of detection of UV light and pathogenic bacteria in environment. This paper reports the preparation of CDs with dual enzyme-like activities (superoxide dismutase activity and UV-induced oxidase activity). The product can catalyze the oxidation of the substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) under UV light (365 nm) to achieve rapid color development. Based on the excellent fluorescence properties of CDs, the colorimetric-fluorescence dual-channel real-time detection of UVA dose was realized, the mechanism underlying the catalytic oxidation of TMB by UV-induced oxidase CDs was also investigated. Furthermore, a portable CDs-TMB-PA hydrogel was prepared which could realize the real-time monitoring of UV in outdoor environment with the assistance of smartphone. Based on the pH dependency of the CD nanozymes and specific glycolytic response of the pathogenic bacteria Escherichia coli (E. coli) O157:H7, the direct, simple, quick, and sensitive typing and detection have been realized. This research offers new perspectives for studying CD nanozymes and their applications in UV and bacterial detection, demonstrating the remarkable potential of CD nanozymes in detecting environmental hazards.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Changpeng Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
44
|
Guan W, Gong C, Wu S, Cui Z, Zheng Y, Li Z, Zhu S, Liu X. Instant Protection Spray for Anti-Infection and Accelerated Healing of Empyrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306589. [PMID: 37703451 DOI: 10.1002/adma.202306589] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Distinct from common injuries, deep burns often require a chronic recovery cycle for healing and long-term antibiotic treatment to prevent infection. The rise of drug-resistant bacteria has caused antibiotics to no longer be perfect, and continuous drug use can easily lead to repeated infection and even death. Inspired by wild animals that chew plants to prevent wound infection, probiotic extracts with a structure similar to the tailspike of phage are obtained from Lactobacillus casei and combined with different flavones to design a series of nonantibiotic bactericides. These novel antibacterial agents are combined with a rapid gelation spray with a novel cross-angle layout to form an instant protection spray (IPS) and provide a physical and anti-infectious barrier for burns within 30 s. This IPS is able to sterilize 100.00% and 96.14% of multidrug-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, respectively. In addition, it is found to effectively reduce inflammation in MRSA-infected burns in rats and to promote tissue healing.
Collapse
Affiliation(s)
- Wei Guan
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Caixin Gong
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yi-He-Yuan Road 5, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Tianjin, 300401, China
| |
Collapse
|
45
|
Liu K, Zhao D, Zhao H, Yu Y, Yang M, Ma M, Zhang C, Guan F, Yao M. Mild hyperthermia-assisted chitosan hydrogel with photothermal antibacterial property and CAT-like activity for infected wound healing. Int J Biol Macromol 2024; 254:128027. [PMID: 37952801 DOI: 10.1016/j.ijbiomac.2023.128027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Infected wounds pose a serious threat to public health and pose a significant challenge and financial burden worldwide. The treatment of infected wounds is now an urgent problem to be solved. Herein, mild hyperthermia-assisted hydrogels composed of carboxymethyl chitosan (CMCs), oxidized dextran (Odex), epigallocatechin gallate (EGCG) and PtNPs@PVP (CAT-like nanoenzymes) were proposed for the repair of infected wounds. The incorporation of PtNPs@PVP nanoenzymes give the hydrogels excellent photothermal property and CAT-like activity. When the temperature is maintained at 42-45 °C under 808 nm near infrared (NIR) exposure, the CMCs/Odex/EGCG/Nanoenzymes (COEN2) hydrogel demonstrated highly enhanced antibacterial ability (95.9 % in vivo), hydrogen peroxide (H2O2) scavenging ratio (85.1 % in vitro) and oxygen supply (20.7 mg/L in vitro). Furthermore, this mild-heat stimulation also promoted angiogenesis in the damaged skin area. Overall, this multifunctional hydrogel with antibacterial, antioxidant, oxygen supply, hemostasis, and angiogenesis capabilities has shown great promise in the repair of infected wounds. This study establishes the paradigm of enhanced infected wound healing by mild hyperthermia-assisted H2O2 scavenging, oxygen supplemental, and photothermal antibacterial hydrogels.
Collapse
Affiliation(s)
- Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Donghui Zhao
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Mengwen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China.
| |
Collapse
|
46
|
Tang L, Zhang Z, Lei S, Zhou J, Liu Y, Yu X, Wang J, Wan D, Shi J, Wang S. A temperature and pH dual-responsive injectable self-healing hydrogel prepared by chitosan oligosaccharide and aldehyde hyaluronic acid for promoting diabetic foot ulcer healing. Int J Biol Macromol 2023; 253:127213. [PMID: 37793511 DOI: 10.1016/j.ijbiomac.2023.127213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Chronic wound, such as skin defect after burn, pressure ulcer, and diabetic foot ulcer is very difficult to cure. Its pathological process is often accompanied with local temperature rise, pH decrease, and other phenomena. Owing to their outstanding hydrophilic, biocompatibility, and responsive properties, hydrogels could accelerate the healing process. In this study, we chose chitosan oligosaccharide (COS) grafted with Pluronic F127 (F127-COS). Aldehyde hyaluronic acid (A-HA) oxidized by NaIO4. And added boric acid (BA) to prepare a thermosensitive and pH-responsive injectable self-healing F127-COS/A-HA/COS/BA (FCAB) hydrogel, loaded with drug deferoxamine (DFO) in order to have an accurate release and promote angiogenesis of diabetic foot ulcer. In vitro experiments had verified that the FCAB hydrogel system loaded with DFO (FCAB/D) could promote migration and angiogenesis of HUVEC. A diabetes rat back wound model further confirmed its role in promoting angiogenesis in wound repair process. The results showed that the FCAB/D hydrogel exhibited unique physicochemical properties, excellent biocompatibility, and significantly enhanced therapeutic effects for diabetic foot ulcer.
Collapse
Affiliation(s)
- Lizong Tang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Zeyu Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyi Yu
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dongdong Wan
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 3000192, China.
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China.
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
47
|
Liu X, Zhao Y, Xu Y, Liu C. Synthesis of γ-Cyclodextrin-Reduced Fe(III) Nanoparticles with Peroxidase-like Catalytic Activity for Bacteriostasis of Food. NANO LETTERS 2023; 23:9995-10003. [PMID: 37857332 DOI: 10.1021/acs.nanolett.3c03103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Foodborne pathogens are a primary cause of human foodborne illness, making it imperative to explore novel antibacterial strategies for their control. In this study, Fe-γ-CD was successfully synthesized as a food antibacterial agent for use in milk and orange juice. The Fe-γ-CD consists of 6/11 Fe(II) and 5/11 Fe(III), which catalyze a Fenton-like catalytic reaction with H2O2 to generate •OH. Consequently, Fe-γ-CD exhibits exceptional peroxidase-like activity and broad-spectrum antibacterial efficacy. Fe-γ-CD not only disrupts the wall structure of ESBL-E. coli but also induces protein leakage and genetic destruction, ultimately leading to its death. Furthermore, Fe-γ-CD inhibits biofilm formation by MRSA and eradicates mature biofilms, resulting in MRSA's demise. Importantly, Fe-γ-CD demonstrates negligible cytotoxicity toward normal mammalian cells, making it an ideal candidate for application as an antibacterial agent in foodstuffs. These findings highlight that Fe-γ-CD is an effective tool for combating the spread of foodborne pathogens and food safety.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yuhan Zhao
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yuanhong Xu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Chengzhen Liu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| |
Collapse
|