1
|
Kong F, Wang H, Tong Y, Zhang L, Zhang Y, Han X, Liu K, Dai J, Huang H, Sun C, Pan L, Li D. Precise Crystal Orientation Identification and Twist-Induced Giant Modulation of Optical Anisotropy in 1T'-ReS 2. ACS NANO 2024; 18:13899-13909. [PMID: 38757652 DOI: 10.1021/acsnano.4c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The ability to precisely identify crystal orientation as well as to nondestructively modulate optical anisotropy in atomically thin rhenium dichalcogenides is critical for the future development of polarization programmable optoelectronic devices, which remains challenging. Here, we report a modified polarized optical imaging (POI) method capable of simultaneously identifying in-plane (Re chain) and out-of-plane (c-axis) crystal orientations of the monolayer to few-layer ReS2, meanwhile, propose a nondestructive approach to modulate the optical anisotropy in ReS2 via twist stacking. The results show that parallel and near-cross POI are effective to independently identify the in-plane and out-of-plane crystal orientations, respectively, while regulating the twist angle allows for giant modulation of in-plane optical anisotropy from highly intrinsic anisotropy to complete optical isotropy in the stacked ReS2 bilayer (with either the same or opposite c-axes), as well modeled by linear electromagnetic theory. Overall, this study not only develops a simple optical method for precise crystal orientation identification but also offers an efficient light polarization control strategy, which is a big step toward the practical application of anisotropic van der Waals materials in the design of nanophotonic and optoelectronic devices.
Collapse
Affiliation(s)
- Fanyi Kong
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Hu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yunhao Tong
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yifeng Zhang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xue Han
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Kun Liu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Jianxun Dai
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Huolin Huang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Changsen Sun
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Lujun Pan
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Dawei Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Song S, Rahaman M, Jariwala D. Can 2D Semiconductors Be Game-Changers for Nanoelectronics and Photonics? ACS NANO 2024; 18:10955-10978. [PMID: 38625032 DOI: 10.1021/acsnano.3c12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
2D semiconductors have interesting physical and chemical attributes that have led them to become one of the most intensely investigated semiconductor families in recent history. They may play a crucial role in the next technological revolution in electronics as well as optoelectronics or photonics. In this Perspective, we explore the fundamental principles and significant advancements in electronic and photonic devices comprising 2D semiconductors. We focus on strategies aimed at enhancing the performance of conventional devices and exploiting important properties of 2D semiconductors that allow fundamentally interesting device functionalities for future applications. Approaches for the realization of emerging logic transistors and memory devices as well as photovoltaics, photodetectors, electro-optical modulators, and nonlinear optics based on 2D semiconductors are discussed. We also provide a forward-looking perspective on critical remaining challenges and opportunities for basic science and technology level applications of 2D semiconductors.
Collapse
Affiliation(s)
- Seunguk Song
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mahfujur Rahaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Mooshammer F, Xu X, Trovatello C, Peng ZH, Yang B, Amontree J, Zhang S, Hone J, Dean CR, Schuck PJ, Basov DN. Enabling Waveguide Optics in Rhombohedral-Stacked Transition Metal Dichalcogenides with Laser-Patterned Grating Couplers. ACS NANO 2024; 18:4118-4130. [PMID: 38261768 DOI: 10.1021/acsnano.3c08522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm. Using thin flakes of 3R-MoS2 that act as waveguides for near-infrared light, we demonstrate the functionality of the grating couplers with two complementary experiments: first, nano-optical imaging is used to visualize transverse electric and magnetic modes, whose directional outcoupling is captured by finite element simulations. Second, waveguide second-harmonic generation is demonstrated by grating-coupling femtosecond pulses into the slabs in which the radiation partially undergoes frequency doubling throughout the propagation. Our work provides a straightforward strategy for laser patterning of van der Waals crystals, demonstrates the feasibility of compact frequency converters, and examines the tuning knobs that enable optimized coupling into layered waveguides.
Collapse
Affiliation(s)
- Fabian Mooshammer
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Xinyi Xu
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Chiara Trovatello
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Zhi Hao Peng
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Birui Yang
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Jacob Amontree
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
4
|
Kim Y, Kim MJ, Cha S, Choi S, Kim CJ, Kim BJ, Jo MH, Kim J, Lee J. Dephasing Dynamics Accessed by High Harmonic Generation: Determination of Electron-Hole Decoherence of Dirac Fermions. NANO LETTERS 2024; 24:1277-1283. [PMID: 38232182 DOI: 10.1021/acs.nanolett.3c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We reveal the critical effect of ultrashort dephasing on the polarization of high harmonic generation in Dirac fermions. As the elliptically polarized laser pulse falls in or slightly beyond the multiphoton regime, the elliptically polarized high harmonic generation is produced and exhibits a characteristic polarimetry of the polarization ellipse, which is found to depend on the decoherence time T2. T2 could then be determined to be a few femtoseconds directly from the experimentally observed polarimetry of high harmonics. This shows a sharp contrast with the semimetal regime of higher pump intensity, where the polarimetry is irrelevant to T2. An access to the dephasing dynamics would extend the prospect of high harmonic generation into the metrology of a femtosecond dynamic process in the coherent quantum control.
Collapse
Affiliation(s)
- Youngjae Kim
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
- School of Physics, KIAS, Seoul 02455, Republic of Korea
| | - Min Jeong Kim
- Department of Materials Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Soonyoung Cha
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Shinyoung Choi
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - Cheol-Joo Kim
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Chemical Engineering, POSTECH, Pohang 37673, Republic of Korea
| | - B J Kim
- Department of Physics, POSTECH, Pohang 37673, Republic of Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Jonghwan Kim
- Department of Materials Science and Engineering, POSTECH, Pohang 37673, Republic of Korea
- Center for Epitaxial van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - JaeDong Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
5
|
Kim W, Jeong G, Oh J, Kim J, Watanabe K, Taniguchi T, Ryu S. Exciton-Sensitized Second-Harmonic Generation in 2D Heterostructures. ACS NANO 2023; 17:20580-20588. [PMID: 37801328 DOI: 10.1021/acsnano.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The efficient optical second-harmonic generation (SHG) of two-dimensional (2D) crystals, coupled with their atomic thickness, which circumvents the phase-match problem, has garnered considerable attention. While various 2D heterostructures have shown promising applications in photodetectors, switching electronics, and photovoltaics, the modulation of nonlinear optical properties in such heterosystems remains unexplored. In this study, we investigate exciton-sensitized SHG in heterobilayers of transition metal dichalcogenides (TMDs), where photoexcitation of one donor layer enhances the SHG response of the other as an acceptor. We utilize polarization-resolved interferometry to detect the SHG intensity and phase of each individual layer, revealing the energetic match between the excitonic resonances of donors and the SHG enhancement of acceptors for four TMD combinations. Our results also uncover the dynamic nature of interlayer coupling, as made evident by the dependence of sensitization on interlayer gap spacing and the average power of the fundamental beam. This work provides insights into how the interlayer coupling of two different layers can modify nonlinear optical phenomena in 2D heterostructures.
Collapse
Affiliation(s)
- Wontaek Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Gyouil Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Juseung Oh
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Jihun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Yuan Y, Liu P, Wu H, Chen H, Zheng W, Peng G, Zhu Z, Zhu M, Dai J, Qin S, Novoselov KS. Probing the Twist-Controlled Interlayer Coupling in Artificially Stacked Transition Metal Dichalcogenide Bilayers by Second-Harmonic Generation. ACS NANO 2023; 17:17897-17907. [PMID: 37698446 DOI: 10.1021/acsnano.3c03795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Interlayer coupling plays a critical role in the electronic band structures and optoelectronic properties of van der Waals (vdW) materials and heterostructures. Here, we utilize optical second-harmonic generation (SHG) measurements to probe the twist-controlled interlayer coupling in artificially stacked WSe2/WSe2 homobilayers and WSe2/WS2 and WSe2/MoS2 heterobilayers with a postannealing procedure. In the large angle twisted WSe2/WSe2 and WSe2/WS2, the angular dependence of the SHG intensity follows the interference relations up to angles above 10°. For lower angles, the SHG is significantly suppressed. Furthermore, for the twisted WSe2/MoS2 the SHG intensity largely deviates from the coherent superposition model and shows consistent quenching for all the stacking angles. The suppressed SHG in twisted transition metal dichalcogenide (TMDC) bilayers is predominantly attributed to the interlayer coupling between the two adjacent monolayers. The evolution of the interlayer Raman mode in WSe2 demonstrates that the interlayer coupling in the twisted WSe2/WSe2 and WSe2/WS2 is highly angle-dependent. Alternatively, the interlayer coupling generally exists in the twisted WSe2/MoS2, regardless of the different angles. The interlayer coupling is further confirmed by the quenching and red-shift of the photoluminescence of WSe2 in the twisted TMDC bilayers. Combined with density functional theory calculations, we reveal that the stacking-angle-modulated interlayer coupling originates from the variation of the interlayer spacing and the binding energy in the twisted TMDC bilayers.
Collapse
Affiliation(s)
- Yuanjian Yuan
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Peng Liu
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Hongjian Wu
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Haitao Chen
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Weihao Zheng
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Gang Peng
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Zhihong Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Mengjian Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Jiayu Dai
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shiqiao Qin
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Kostya S Novoselov
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575
| |
Collapse
|
7
|
Liu K, Lei Y, Li D. Simultaneous 3D Construction and Imaging of Plant Cells Using Plasmonic Nanoprobe-Assisted Multimodal Nonlinear Optical Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2626. [PMID: 37836267 PMCID: PMC10574158 DOI: 10.3390/nano13192626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Nonlinear optical (NLO) imaging has emerged as a promising plant cell imaging technique due to its large optical penetration, inherent 3D spatial resolution, and reduced photodamage; exogenous nanoprobes are usually needed for nonsignal target cell analysis. Here, we report in vivo, simultaneous 3D labeling and imaging of potato cell structures using plasmonic nanoprobe-assisted multimodal NLO microscopy. Experimental results show that the complete cell structure can be imaged via the combination of second-harmonic generation (SHG) and two-photon luminescence (TPL) when noble metal silver or gold ions are added. In contrast, without the noble metal ion solution, no NLO signals from the cell wall were acquired. The mechanism can be attributed to noble metal nanoprobes with strong nonlinear optical responses formed along the cell walls via a femtosecond laser scan. During the SHG-TPL imaging process, noble metal ions that crossed the cell wall were rapidly reduced to plasmonic nanoparticles with the fs laser and selectively anchored onto both sides of the cell wall, thereby leading to simultaneous 3D labeling and imaging of the potato cells. Compared with the traditional labeling technique that needs in vitro nanoprobe fabrication and cell labeling, our approach allows for one-step, in vivo labeling of plant cells, thus providing a rapid, cost-effective method for cellular structure construction and imaging.
Collapse
Affiliation(s)
- Kun Liu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yutian Lei
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Dawei Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Mallick B, Saha D, Datta A, Ganguly S. Noninvasive and Contactless Characterization of Electronic Properties at the Semiconductor/Dielectric Interface Using Optical Second-Harmonic Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38888-38900. [PMID: 37539844 DOI: 10.1021/acsami.3c04985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Optical second-harmonic generation (SHG) is a reliable technique for probing material surface and interface characteristics. Here, we have demonstrated a non-destructive, contactless SHG-based semiconductor/dielectric interface characterization method to measure the conduction band offset and quantitatively evaluate charge densities at the interface in oxide and at the oxide surface. This technique extracts the interface-trapped charge type (donor/acceptor) and qualitatively analyzes the process-induced variation in interface states (Dit), oxide, and oxide surface state density. These qualitative and quantitative analyses provide us with a glimpse into the band bending. The metrology method is validated through a detailed characterization of the Si/HfO2 interface. An optical setup has been developed to monitor the time-dependent second-harmonic generation (TDSHG) from the semiconductor/oxide interface. The temporal characteristics of TDSHG are explained with its relationship to the filling of Dit and spatio-temporal trapping of photoexcited charge in oxide and at the oxide surface. A numerical solver, based on plausible carrier dynamics, is used to model the experimental data and to extract the electronic properties at the Si/HfO2 interface.
Collapse
Affiliation(s)
- Binit Mallick
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dipankar Saha
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Anindya Datta
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swaroop Ganguly
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Su P, Ye H, Sun N, Liu S, Zhang H. Second Harmonic Generation in Janus Transition Metal Chalcogenide Oxide Monolayers: A First-Principles Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2150. [PMID: 37513161 PMCID: PMC10386494 DOI: 10.3390/nano13142150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Due to the unique optical responses induced by vertical atomic asymmetry inside a monolayer, two-dimensional Janus structures have been conceived as promising building blocks for nanoscale optical devices. In this paper, second harmonic generation (SHG) in Janus transition metal chalcogenide oxide monolayers is systematically investigated by the first-principles calculations. Second-order nonlinear susceptibilities are theoretically determined for Janus MXO (M = Mo/W, X = S/Se/Te) monolayers. The calculated values are comparable in magnitude with Janus MoSSe monolayer. X-M-O symmetry breaking leads to non-zero components in vertical direction, compared with the non-Janus structure. Focusing on the SHG induced by incident light at 1064 nm, polarization-dependent responses of six Janus MXO monolayers are demonstrated. The symmetry of p-polarization changes from six-fold to three-fold with acute incidence angle. Moreover, the effects of biaxial strain on band structures and SHG are further investigated, taking MoSO as an exemplary case. We expect these results to bring in recipes for designing nonlinear optical devices based on Janus transition metal chalcogenide oxide monolayers.
Collapse
Affiliation(s)
- Peng Su
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Naizhang Sun
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Shining Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Hu Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
10
|
Luo W, Whetten BG, Kravtsov V, Singh A, Yang Y, Huang D, Cheng X, Jiang T, Belyanin A, Raschke MB. Ultrafast Nanoimaging of Electronic Coherence of Monolayer WSe 2. NANO LETTERS 2023; 23:1767-1773. [PMID: 36827496 DOI: 10.1021/acs.nanolett.2c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal dichalcogenides (TMDs) have demonstrated a wide range of novel photonic, optoelectronic, and correlated electron phenomena for more than a decade. However, the coherent dynamics of their excitons, including possibly long dephasing times and their sensitivity to spatial heterogeneities, are still poorly understood. Here we implement adiabatic plasmonic nanofocused four-wave mixing (FWM) to image the coherent electron dynamics in monolayer WSe2. We observe nanoscale heterogeneities at room temperature with dephasing ranging from T2 ≲ 5 to T2 ≳ 60 fs on length scales of 50-100 nm. We further observe a counterintuitive anticorrelation between FWM intensity and T2, with the weakest FWM emission at locations of longest coherence. We interpret this behavior as a nonlocal nano-optical interplay between spatial coherence of the nonlinear polarization and disorder-induced scattering. The results highlight the challenges associated with heterogeneities in TMDs limiting their photophysical properties, yet also the potential of their novel nonlinear optical phenomena.
Collapse
Affiliation(s)
- Wenjin Luo
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Benjamin G Whetten
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Ashutosh Singh
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Yibo Yang
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, United States
| | - Di Huang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Xinbin Cheng
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Tao Jiang
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Institute of Precision Optical Engineering, and School of Physics Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Alexey Belyanin
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Markus B Raschke
- Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
11
|
Li D, Huang X, Wu Q, Zhang L, Lu Y, Hong X. Ferroelectric Domain Control of Nonlinear Light Polarization in MoS 2 via PbZr 0.2 Ti 0.8 O 3 Thin Films and Free-Standing Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208825. [PMID: 36462168 DOI: 10.1002/adma.202208825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS2 exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS2 with epitaxial PbZr0.2 Ti0.8 O3 (PZT) thin films and free-standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in-operando programming of nonlinear light polarization. The interfacial coupling of the MoS2 polar axis with either the out-of-plane polar domains of PZT or the in-plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory. This study provides a new material platform that enables reconfigurable design of light polarization at the nanoscale, paving the path for developing novel optical information processing, smart light modulators, and integrated photonic circuits.
Collapse
Affiliation(s)
- Dawei Li
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0299, USA
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Xi Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0511, USA
| | - Qiuchen Wu
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0299, USA
| | - Le Zhang
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0299, USA
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0511, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0298, USA
| | - Xia Hong
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0299, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588-0298, USA
| |
Collapse
|
12
|
Electronic Structures and NLO Properties of a Series of TMDs Lateral‐Core–Shell Heterostructures Quantum Dots. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Mushtaq A, Clink L, Noor MY, Kuz C, DeAngelis E, Siebenaller R, Fisher A, Verma D, Myers RC, Conner BS, Susner MA, Chowdhury E. Ultrafast Nonlinear Absorption and Second Harmonic Generation in Cu 0.33In 1.30P 2S 6 van der Waals Layered Crystals. J Phys Chem Lett 2022; 13:10513-10521. [PMID: 36342235 DOI: 10.1021/acs.jpclett.2c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of ultrafast photonics and optoelectronic devices necessitates the exploration of new materials with optical and chemical stability to implement practical applications. Layered quaternary metal-thio/selenophosphate has attracted much interest over the past few years. Ferroelectric CuInP2S6 (CIPS) is an emerging material that belongs to this family. When synthesized with Cu deficiencies, CIPS forms self-assembled in-plane heterostructures, which in turn exhibit properties that are both compositionally and thermally dependent. These characteristics can be explored for applications in nonlinear optoelectronic and photonic devices. Herein, we study the second and third order nonlinear optical behavior of Cu0.33In1.30P2S6 bulk heterostructure. We observed large two photon induced nonlinear absorptions and self-defocusing at 1032 nm pulsed laser excitation using the Z-scan technique. Furthermore, we identified a polarization-dependent second harmonic signal and determined the laser-induced optical damage threshold. Our observations allow for the designing of optoelectronic and ultrafast photonic devices based on these materials.
Collapse
Affiliation(s)
- Aamir Mushtaq
- Department of Materials Science and Engineering, Ohio State University, 140 W 19th Ave, Columbus, Ohio43210, United States
| | - Liam Clink
- Department of Physics, Ohio State University, 191 W Woodruff Ave, Columbus, Ohio43210, United States
| | - Mohamed Yaseen Noor
- Department of Materials Science and Engineering, Ohio State University, 140 W 19th Ave, Columbus, Ohio43210, United States
| | - Conrad Kuz
- Department of Physics, Ohio State University, 191 W Woodruff Ave, Columbus, Ohio43210, United States
| | - Emma DeAngelis
- Department of Materials Science and Engineering, Ohio State University, 140 W 19th Ave, Columbus, Ohio43210, United States
| | - Ryan Siebenaller
- Department of Materials Science and Engineering, Ohio State University, 140 W 19th Ave, Columbus, Ohio43210, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th Street, Wright-Patterson Air Force Base, Ohio45433, United States
| | - Adam Fisher
- Department of Physics, Ohio State University, 191 W Woodruff Ave, Columbus, Ohio43210, United States
| | - Darpan Verma
- Department of Materials Science and Engineering, Ohio State University, 140 W 19th Ave, Columbus, Ohio43210, United States
| | - Roberto C Myers
- Department of Materials Science and Engineering, Ohio State University, 140 W 19th Ave, Columbus, Ohio43210, United States
- Department of Physics, Ohio State University, 191 W Woodruff Ave, Columbus, Ohio43210, United States
- Department of Electrical and Computer Engineering, Ohio State University, 2015 Neil Ave, Columbus, Ohio43210, United States
| | - Benjamin S Conner
- Sensors Directorate, Air Force Research Laboratory, 2241 Avionics Circle, Wright-Patterson Air Force Base, Ohio45433, United States
- National Research Council, Washington, D.C.20001, United States
| | - Michael A Susner
- Materials and Manufacturing Directorate, Air Force Research Laboratory, 2179 12th Street, Wright-Patterson Air Force Base, Ohio45433, United States
| | - Enam Chowdhury
- Department of Materials Science and Engineering, Ohio State University, 140 W 19th Ave, Columbus, Ohio43210, United States
- Department of Physics, Ohio State University, 191 W Woodruff Ave, Columbus, Ohio43210, United States
- Department of Electrical and Computer Engineering, Ohio State University, 2015 Neil Ave, Columbus, Ohio43210, United States
| |
Collapse
|
14
|
Zhao K, He D, Fu S, Bai Z, Miao Q, Huang M, Wang Y, Zhang X. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3418. [PMID: 36234543 PMCID: PMC9565824 DOI: 10.3390/nano12193418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In recent years, van der Waals heterostructures (vdWHs) of two-dimensional (2D) materials have attracted extensive research interest. By stacking various 2D materials together to form vdWHs, it is interesting to see that new and fascinating properties are formed beyond single 2D materials; thus, 2D heterostructures-based nanodevices, especially for potential optoelectronic applications, were successfully constructed in the past few decades. With the dramatically increased demand for well-controlled heterostructures for nanodevices with desired performance in recent years, various interfacial modulation methods have been carried out to regulate the interfacial coupling of such heterostructures. Here, the research progress in the study of interfacial coupling of vdWHs (investigated by Photoluminescence, Raman, and Pump-probe spectroscopies as well as other techniques), the modulation of interfacial coupling by applying various external fields (including electrical, optical, mechanical fields), as well as the related applications for future electrics and optoelectronics, have been briefly reviewed. By summarizing the recent progress, discussing the recent advances, and looking forward to future trends and existing challenges, this review is aimed at providing an overall picture of the importance of interfacial modulation in vdWHs for possible strategies to optimize the device's performance.
Collapse
|
15
|
Ahn C, Lim H. Synthesis of monolayer
2D MoS
2
quantum dots and nanomesh films by inorganic molecular chemical vapor deposition for quantum confinement effect control. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chaehyeon Ahn
- Department of Chemistry Gwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| | - Hyunseob Lim
- Department of Chemistry Gwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| |
Collapse
|
16
|
Kumar S, Pratap S, Kumar V, Mishra RK, Gwag JS, Chakraborty B. Electronic, transport, magnetic and optical properties of graphene nanoribbons review. LUMINESCENCE 2022. [PMID: 35850156 DOI: 10.1002/bio.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Low dimensional materials have attracted great research interest from both theoretical and experimental point of view. These materials exhibit novel physical and chemical properties due to the confinement effect in low dimensions. The experimental observations of graphene open a new platform to study the physical properties of materials restricted to two dimensions. This featured article provides a review on the novel properties of quasi one-dimensional (1D) material known as graphene nanoribbon. Graphene nanoribbons can be obtained by unzipping carbon nanotubes (CNTs) or cutting the graphene sheet. Alternatively, it is also called the finite termination of graphene edges. It gives rise different edge geometries namely zigzag and armchair among others. There are various physical and chemical techniques to realize these materials. Depending on the edge type termination, these are called the zigzag and armchair graphene nanoribbons (ZGNR and AGNR). These edges play an important role in controlling the properties of graphene nanoribbons. The present review article provides an overview of the electronic, transport, optical and magnetic properties of graphene nanoribbons. However, there are different ways to tune these properties for device applications. Here, some of them are highlighted such as external perturbations and chemical modifications. Few applications of graphene nanoribbon have and chemical modifications. Few applications of graphene nanoribbon have also been briefly discussed.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Surender Pratap
- Department of Physics and astronomical Science, Central University of Himachal Pradesh, Kangra, H.P, India
| | - Vipin Kumar
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | | - Jin Seog Gwag
- Department of Physics, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
17
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
18
|
Wang J, Han N, Luo ZD, Zhang M, Chen X, Liu Y, Hao Y, Zhao J, Gan X. Electrically Tunable Second Harmonic Generation in Atomically Thin ReS 2. ACS NANO 2022; 16:6404-6413. [PMID: 35426299 DOI: 10.1021/acsnano.2c00514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrical tuning of second-order nonlinearity in optical materials is attractive to strengthen and expand the functionalities of nonlinear optical technologies, though its implementation remains elusive. Here, we report the electrically tunable second-order nonlinearity in atomically thin ReS2 flakes benefiting from their distorted 1T crystal structure and interlayer charge transfer. Enabled by the efficient electrostatic control of the few-atomic-layer ReS2, we show that second harmonic generation (SHG) can be induced in odd-number-layered ReS2 flakes which are centrosymmetric and thus without intrinsic SHG. Moreover, the SHG can be precisely modulated by the electric field, reversibly switching from almost zero to an amplitude more than 1 order of magnitude stronger than that of the monolayer MoS2. For the even-number-layered ReS2 flakes with the intrinsic SHG, the external electric field could be leveraged to enhance the SHG. We further perform the first-principles calculations which suggest that the modification of in-plane second-order hyperpolarizability by the redistributed interlayer-transferring charges in the distorted 1T crystal structure underlies the electrically tunable SHG in ReS2. With its active SHG tunability while using the facile electrostatic control, our work may further expand the nonlinear optoelectronic functions of two-dimensional materials for developing electrically controllable nonlinear optoelectronic devices.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129 China
| | - Nannan Han
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zheng-Dong Luo
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Mingwen Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129 China
| | - Xiaoqing Chen
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129 China
| | - Yan Liu
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yue Hao
- Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Jianlin Zhao
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129 China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129 China
| |
Collapse
|
19
|
He C, Wu R, Zhu L, Huang Y, Du W, Qi M, Zhou Y, Zhao Q, Xu X. Anisotropic Second-Harmonic Generation Induced by Reduction of In-Plane Symmetry in 2D Materials with Strain Engineering. J Phys Chem Lett 2022; 13:352-361. [PMID: 34985291 DOI: 10.1021/acs.jpclett.1c03571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strain engineering is an attractive method to induce and control anisotropy for polarized optoelectronic applications with two-dimensional (2D) materials. Herein, we have investigated the nonlinear optical coefficient dispersion relationship and the second-harmonic generation (SHG) pattern evolution under the uniaxial strains for graphene, WS2, GaSe, and In2Se3 monolayers. The uniaxial strain can break the in-plane symmetry of 2D materials, leading to both trade-off breaking of the nonlinear coefficient and new emergent nonlinear coefficients. In such a case, a classical sixfold ϕ-dependent SHG pattern is transformed into a distorted sixfold SHG pattern under the strain. Due to the lattice symmetry breaking and the uneven charge density distribution in strained 2D materials, the SHG patterns also depend on the excitation photon energy. The results could give a guide for the SHG pattern analysis in experiments, suggesting strain engineering on 2D materials for the tunable anisotropy in polarized and flexible nonlinear optical devices.
Collapse
Affiliation(s)
- Chuan He
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Ruowei Wu
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Lipeng Zhu
- School of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Wanyi Du
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Mei Qi
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yixuan Zhou
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Qiyi Zhao
- School of Science, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
20
|
Shah S, Baldelli S. Vibrational Ground-State depletion for enhanced resolution sum frequency generation microscopy. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Huo X, Zhong J, Yang Z, Feng J, Li J, Kang F. In Situ Preparation of MXenes in Ambient-Temperature Organic Ionic Liquid Aluminum Batteries with Ultrastable Cycle Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55112-55122. [PMID: 34761913 DOI: 10.1021/acsami.1c16706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A fluorine-free and water-free electrochemical preparation of MXenes is achieved in Lewis acidic molten salts at ambient temperature. In addition, the anode reaction of the MAX phase V2AlC is studied in the organic ionic liquid aluminum battery and the extraction voltages of the metal atoms Al and V in the MAX phase V2AlC are determined. This points out the direction for the constant-voltage electrochemical preparation of MXenes. Furthermore, the electrochemical performance of the etched V2AlC (E-V2AlC) in an aluminum battery is studied. The one-stop preparation-application process prevents the MXenes from contacting water and air, and the MXenes etched in the aluminum battery are more conducive to the intercalation/deintercalation of Al3+. Therefore, E-V2AlC exhibits excellent electrochemical performance in an aluminum battery. Under the conditions of a voltage window of 0.01-2.3 V (V vs Al/Al3+) and a current density of 500 mA g-1, the specific discharge capacity is about 100 mAh g-1 after 6500 cycles. In addition, the energy storage mechanism and Faraday energy storage method of E-V2AlC in an aluminum battery are studied. The diffusion coefficient D of Al3+ is determined by a galvanostatic intermittent titration technique. The reasons for its excellent electrochemical performance are clarified from the perspective of kinetics.
Collapse
Affiliation(s)
- Xiaogeng Huo
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianjian Zhong
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhe Yang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiameng Feng
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianling Li
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feiyu Kang
- Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Kim HU, Koyappayil A, Seok H, Aydin K, Kim C, Park KY, Jeon N, Kang WS, Lee MH, Kim T. Concurrent and Selective Determination of Dopamine and Serotonin with Flexible WS 2 /Graphene/Polyimide Electrode Using Cold Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102757. [PMID: 34558185 DOI: 10.1002/smll.202102757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Makers of point-of-care devices and wearable diagnostics prefer flexible electrodes over conventional electrodes. In this study, a flexible electrode platform is introduced with a WS2 /graphene heterostructure on polyimide (WGP) for the concurrent and selective determination of dopamine and serotonin. The WGP is fabricated directly via plasma-enhanced chemical vapor deposition (PECVD) at 150 °C on a flexible polyimide substrate. Owing to the limitations of existing fabrication methods from physical transfer or hydrothermal methods, many studies are not conducted despite excellent graphene-based heterostructures. The PECVD synthesis method can provide an innovative WS2 /graphene heterostructure of uniform quality and sufficient size (4 in.). This unique heterostructure affords excellent electrical conductivity in graphene and numerous electrochemically active sites in WS2 . A large number of uniform qualities of WGP electrodes show reproducible and highly sensitive electrochemical results. The synergistic effect enabled well-separated voltammetric signals for dopamine and serotonin with a potential gap of 188 mV. Moreover, the practical application of the flexible sensor is successfully evaluated by using artificial cerebrospinal fluid.
Collapse
Affiliation(s)
- Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Korea
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Seoul, 06973, Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
| | - Kubra Aydin
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
| | - Changmin Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
| | - Kyu-Young Park
- Graduate Institute of Ferrous and Energy Materials Technology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Nari Jeon
- Department Materials Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Woo Seok Kang
- Department of Plasma Engineering, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06973, Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Korea
| |
Collapse
|
23
|
Dai Y, Wang Y, Das S, Li S, Xue H, Mohsen A, Sun Z. Broadband Plasmon-Enhanced Four-Wave Mixing in Monolayer MoS 2. NANO LETTERS 2021; 21:6321-6327. [PMID: 34279968 PMCID: PMC8323120 DOI: 10.1021/acs.nanolett.1c02381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional transition-metal dichalcogenide monolayers have remarkably large optical nonlinearity. However, the nonlinear optical conversion efficiency in monolayer transition-metal dichalcogenides is typically low due to small light-matter interaction length at the atomic thickness, which significantly obstructs their applications. Here, for the first time, we report broadband (up to ∼150 nm) enhancement of optical nonlinearity in monolayer MoS2 with plasmonic structures. Substantial enhancement of four-wave mixing is demonstrated with the enhancement factor up to three orders of magnitude for broadband frequency conversion, covering the major visible spectral region. The equivalent third-order nonlinearity of the hybrid MoS2-plasmonic structure is in the order of 10-17 m2/V2, far superior (∼10-100-times larger) to the widely used conventional bulk materials (e.g., LiNbO3, BBO) and nanomaterials (e.g., gold nanofilms). Such a considerable and broadband enhancement arises from the strongly confined electric field in the plasmonic structure, promising for numerous nonlinear photonic applications of two-dimensional materials.
Collapse
Affiliation(s)
- Yunyun Dai
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo 02150, Finland
| | - Yadong Wang
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo 02150, Finland
| | - Susobhan Das
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo 02150, Finland
| | - Shisheng Li
- International
Center for Young Scientists (ICYS), National
Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Hui Xue
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo 02150, Finland
| | - Ahmadi Mohsen
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo 02150, Finland
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo 02150, Finland
- QTF
Centre of Excellence, Department of Applied Physics, Aalto University, Espoo 02150, Finland
| |
Collapse
|
24
|
He C, Wu R, Qi M, Huang Y, Zhou Y, Zhang S, Zhao Q, Xu X. Dispersion Property and Evolution of Second Harmonic Generation Pattern in Type-I and Type-II van der Waals Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27334-27342. [PMID: 34096715 DOI: 10.1021/acsami.1c07441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dispersion property and second harmonic generation (SHG) pattern of novel two-dimensional (2D) van der Waals heterostructures (vdWHs) is of great significance not only for the characterization of material symmetry but also for understanding nonlinear photophysical phenomena. Herein, we demonstrate the SHG response of 2D type-I (MoTe2/WSe2) and type-II (MoSe2/WSe2) band alignment of vdWHs. In the dispersion relation of the second-order nonlinear coefficient, the pronounced peaks of the d16 element for both vdWHs are mainly contributed by resonance in the interband transition processes, whereas other elements are derived from the intraband transition processes because of the highly efficient charge transfer from WSe2 to MoTe2 in type-I vdWHs and the ultrafast charge separation between WSe2 and MoSe2 in type-II vdWHs, respectively. Besides, more nonzero nonlinear coefficient elements can participate in a nonlinear response at the oblique incidence, to which special attention needs paid. The polarization angle α-dependent SHG patterns display a rotational fourfold symmetry, whereas the azimuthal angle ϕ-dependent SHG patterns show sixfold symmetry for both type-I and type-II vdWHs at any wavelength under normal incidence. Under oblique incidence, the α-dependent (ϕ-dependent) SHG patterns will reduce to twofold (threefold) symmetry for both vdWHs. The results highlight the potential to deterministically engineer novel nonlinear optical properties for tunable anisotropic applications of nonlinear optoelectronic devices based on vdWHs.
Collapse
Affiliation(s)
- Chuan He
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Ruowei Wu
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Mei Qi
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yixuan Zhou
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Sujuan Zhang
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| | - Qiyi Zhao
- School of Science, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
25
|
Nguyen C, Hoang NV, Phuc HV, Sin AY, Nguyen CV. Two-Dimensional Boron Phosphide/MoGe 2N 4 van der Waals Heterostructure: A Promising Tunable Optoelectronic Material. J Phys Chem Lett 2021; 12:5076-5084. [PMID: 34028284 DOI: 10.1021/acs.jpclett.1c01284] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A van der Waals (VDW) heterostructure offers an effective strategy to create designer physical properties in vertically stacked two-dimensional (2D) materials, and offers a new paradigm in designing novel 2D heterostructure devices. In this work, we investigate the structural and electronic features of the BP/MoGe2N4 heterostructure. We show that the BP/MoGe2N4 heterostructure exists in a multiple structurally stable stacking configuration, thus revealing the experimental feasibility of fabricating such heterostructures. Electronically, the BP/MoGe2N4 heterostructure is a direct band gap semiconductor exhibiting type-II band alignment, which is highly beneficial for the spatial separation of electrons and holes. Upon forming the BP/MoGe2N4 heterostructure, the band gap of the constituent BP and MoGe2N4 monolayers are substantially reduced, thus allowing the easier creation of an electron-hole pair at a lower excitation energy. Interestingly, both the band gap and band alignment of the BP/MoGe2N4 heterostructure can be modulated by an external electric field and a vertical strain. The optical absorption of the BP/MoGe2N4 heterostructure is enhanced in both the visible-light and ultraviolet regions, thus suggesting a strong potential for solar cell application. Our findings reveal the promising potential of the BP/MoGe2N4 vdW heterostructure in high-performance optoelectronic device applications.
Collapse
Affiliation(s)
- Cuong Nguyen
- Department of Physics, University of Education, Hue University, Hue, Vietnam
| | - Nguyen V Hoang
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam
| | - Huynh V Phuc
- Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam
| | - Ang Yee Sin
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam
| |
Collapse
|
26
|
Hernandez-Rueda J, Noordam ML, Komen I, Kuipers L. Nonlinear Optical Response of a WS 2 Monolayer at Room Temperature upon Multicolor Laser Excitation. ACS PHOTONICS 2021; 8:550-556. [PMID: 33634208 PMCID: PMC7898265 DOI: 10.1021/acsphotonics.0c01567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Currently, the nonlinear optical properties of 2D materials are attracting the attention of an ever-increasing number of research groups due to their large potential for applications in a broad range of scientific disciplines. Here, we investigate the interplay between nonlinear photoluminescence (PL) and several degenerate and nondegenerate nonlinear optical processes of a WS2 monolayer at room temperature. We illuminate the sample using two femtosecond laser pulses at frequencies ω1 and ω2 with photon energies below the optical bandgap. As a result, the sample emits light that shows characteristic spectral peaks of the second-harmonic generation, sum-frequency generation, and four-wave mixing. In addition, we find that both resonant and off-resonant nonlinear excitation via frequency mixing contributes to the (nonlinear) PL emission at the A-exciton frequency. The PL exhibits a clear correlation with the observed nonlinear effects, which we attribute to the generation of excitons via degenerate and nondegenerate multiphoton absorption. Our work illustrates a further step toward understanding the fundamental relation between parametric and nonparametric nondegenerate optical mechanisms in transition-metal dichalcogenides. In turn, such understanding has great potential to expand the range of applicability of nonlinear optical processes of 2D materials in different fields of science and technology, where nonlinear mechanisms are typically limited to degenerate processes.
Collapse
Affiliation(s)
- Javier Hernandez-Rueda
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience Delft, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Marc L. Noordam
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience Delft, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Irina Komen
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience Delft, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - L. Kuipers
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience Delft, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
27
|
Vianna PG, Almeida ADS, Gerosa RM, Bahamon DA, de Matos CJS. Second-harmonic generation enhancement in monolayer transition-metal dichalcogenides by using an epsilon-near-zero substrate. NANOSCALE ADVANCES 2021; 3:272-278. [PMID: 36131879 PMCID: PMC9416855 DOI: 10.1039/d0na00779j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/13/2020] [Indexed: 06/14/2023]
Abstract
Monolayer transition-metal dichalcogenides (TMDCs) present high second-order optical nonlinearity, which is extremely desirable for, e.g., frequency conversion in nonlinear photonic devices. On the other hand, the atomic thickness of 2D materials naturally leads to low frequency converted intensities, highlighting the importance of designing structures that enhance the nonlinear response for practical applications. A number of methods to increase the pump electric field at 2D materials have been reported, relying on complex plasmonic and/or metasurface structures. Here, we take advantage of the fact that unstructured substrates with a low refractive index naturally maximize the pump field at a dielectric interface, offering a simple means to promote enhanced nonlinear optical effects. In particular, we measured second harmonic generation (SHG) in MoS2 and WS2 on fluorine tin oxide (FTO), which presents an epsilon-near zero point near our 1550 nm pump wavelength. Polarized SHG measurements reveal an SHG intensity that is one order of magnitude higher on FTO than on a glass substrate.
Collapse
Affiliation(s)
- Pilar G Vianna
- MackGraphe - Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian University São Paulo - 01302-907 Brazil
| | - Aline Dos S Almeida
- MackGraphe - Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian University São Paulo - 01302-907 Brazil
| | - Rodrigo M Gerosa
- MackGraphe - Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian University São Paulo - 01302-907 Brazil
| | - Dario A Bahamon
- MackGraphe - Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian University São Paulo - 01302-907 Brazil
| | - Christiano J S de Matos
- MackGraphe - Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian University São Paulo - 01302-907 Brazil
| |
Collapse
|
28
|
Zhou L, Fu H, Lv T, Wang C, Gao H, Li D, Deng L, Xiong W. Nonlinear Optical Characterization of 2D Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2263. [PMID: 33207552 PMCID: PMC7696749 DOI: 10.3390/nano10112263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Characterizing the physical and chemical properties of two-dimensional (2D) materials is of great significance for performance analysis and functional device applications. As a powerful characterization method, nonlinear optics (NLO) spectroscopy has been widely used in the characterization of 2D materials. Here, we summarize the research progress of NLO in 2D materials characterization. First, we introduce the principles of NLO and common detection methods. Second, we introduce the recent research progress on the NLO characterization of several important properties of 2D materials, including the number of layers, crystal orientation, crystal phase, defects, chemical specificity, strain, chemical dynamics, and ultrafast dynamics of excitons and phonons, aiming to provide a comprehensive review on laser-based characterization for exploring 2D material properties. Finally, the future development trends, challenges of advanced equipment construction, and issues of signal modulation are discussed. In particular, we also discuss the machine learning and stimulated Raman scattering (SRS) technologies which are expected to provide promising opportunities for 2D material characterization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; (L.Z.); (H.F.); (T.L.); (C.W.); (H.G.); (D.L.); (L.D.)
| |
Collapse
|
29
|
Blake MJ, Colon BA, Calhoun TR. Leaving the Limits of Linearity for Light Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:24555-24565. [PMID: 34306294 PMCID: PMC8301257 DOI: 10.1021/acs.jpcc.0c07501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonlinear microscopy has enabled additional modalities for chemical contrast, deep penetration into biological tissues, and the ability to collect dynamics on ultrafast timescales across heterogenous samples. The additional light fields introduced to a sample offer seemingly endless possibilities for variation to optimize and customize experimentation and the extraction of physical insight. This perspective highlights three areas of growth in this diverse field: the collection of information across multiple timescales, the selective imaging of interfacial chemistry, and the exploitation of quantum behavior for future imaging directions. Future innovations will leverage the work of the studies reviewed here as well as address the current challenges presented.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Brandon A Colon
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
30
|
Guo Q, Ou Z, Tang J, Zhang J, Lu F, Wu K, Zhang D, Zhang S, Xu H. Efficient Frequency Mixing of Guided Surface Waves by Atomically Thin Nonlinear Crystals. NANO LETTERS 2020; 20:7956-7963. [PMID: 33172279 DOI: 10.1021/acs.nanolett.0c02736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monolayer transition metal dichalcogenides possess considerable second-order nonlinear coefficients but a limited efficiency of frequency conversion due to the short interaction length with light under the typical direct illumination. Here, we demonstrate an efficient frequency mixing of the guided surface waves on a monolayer tungsten disulfide (WS2) by simultaneously lifting the temporal and spatial overlap of the guided wave and the nonlinear crystal. Three orders-of-magnitude enhancement of the conversion efficiency was achieved in the counter-propagating excitation configuration. Also, the frequency-mixing signals are highly collimated, with the emission direction and polarization controlled, respectively, by the pump frequencies and the rotation angle of WS2 relative to the propagation direction of the guided waves. These results indicate that the rules of nonlinear frequency conversion are applicable even when the crystal is scaled down to the ultimate single-layer limit. This study provides a versatile platform to enhance the nonlinear optical response of 2D materials and favor the scalable generation of a coherent light source and entangled photon pairs.
Collapse
Affiliation(s)
| | | | | | | | - Fengya Lu
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | - Douguo Zhang
- Institute of Photonics, Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | |
Collapse
|
31
|
Sun Y, Li H, Hou R, Diao M, Liang Y, Huang Z, Humphrey MG, Zhang C. Realizing Saturable Absorption and Reverse Saturable Absorption in a PEDOT:PSS Film via Electrical Modulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48982-48990. [PMID: 33074650 DOI: 10.1021/acsami.0c14447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrical tuning of the nonlinear absorption of materials has promising application potential, while studies remain rare. In this work, we show that the third-order nonlinear absorption of poly(3,4-ethylenedioxythiophene) chemically doped with poly(styrene sulfonic acid) [PEDOT:PSS] can be effectively modulated by external voltage. The nonlinear absorption of the film can be varied between reverse saturable absorption (RSA) and saturable absorption (SA) via voltage control with laser excitation at 800 nm, and the corresponding nonlinear absorption coefficient can be tuned in the range -1606 ± 73 to 521 ± 9 cm GW-1. The doping level and energy structure of PEDOT are modulated with different voltages. The undoped film affords two-photon absorption and accordingly the RSA response. A moderately doped sample has two polaron levels, and Pauli blocking associated with these two polaron levels results in SA. The bipolaron level in heavily doped PEDOT leads to excited-state absorption and therefore RSA behavior. The approach reported here can be applied to other semiconductors and is a convenient, effective, and promising method for the electrical tuning of the optical nonlinearity.
Collapse
Affiliation(s)
- Yanhui Sun
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Hui Li
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruipeng Hou
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mengjuan Diao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ying Liang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhipeng Huang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chi Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
32
|
Wang Y, Ghotbi M, Das S, Dai Y, Li S, Hu X, Gan X, Zhao J, Sun Z. Difference frequency generation in monolayer MoS 2. NANOSCALE 2020; 12:19638-19643. [PMID: 32524108 DOI: 10.1039/d0nr01994a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Difference frequency generation has long been employed for numerous applications, such as coherent light generation, sensing and imaging. Here, we demonstrate difference frequency generation down to atomic thickness in monolayer molybdenum disulfide. By mixing femtosecond optical pulses at wavelength of 406 nm with tunable pulses in the spectral range of 1300-1520 nm, we generate tunable pulses across the spectral range of 550-590 nm with frequency conversion efficiency up to ∼2 × 10-4. The second-order nonlinear optical susceptibility of monolayer molybdenum disulfide, χ, is calculated as ∼1.8 × 10-8 m V-1, comparable to the previous results demonstrated with second harmonic generation. Such a highly efficient down-conversion nonlinear optical process in two-dimensional layered materials may open new ways to their nonlinear optical applications, such as coherent light generation and amplification.
Collapse
Affiliation(s)
- Yadong Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang M, Li D, Liu K, Guo Q, Wang S, Li X. Nonlinear Optical Imaging, Precise Layer Thinning, and Phase Engineering in MoTe 2 with Femtosecond Laser. ACS NANO 2020; 14:11169-11177. [PMID: 32816458 DOI: 10.1021/acsnano.0c02649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The control of layer thickness and phase structure in two-dimensional transition metal dichalcogenides (2D TMDCs) like MoTe2 has recently gained much attention due to their broad applications in nanoelectronics and nanophotonics. Continuous-wave laser-based thermal treatment has been demonstrated to realize layer thinning and phase engineering in MoTe2, but requires long heating time and is largely influenced by the thermal dissipation of the substrate. The ultrafast laser produces a different response but is yet to be explored. In this work, we report the nonlinear optical interactions between MoTe2 crystals and femtosecond (fs) laser, where we have realized the nonlinear optical characterization, precise layer thinning, and phase transition in MoTe2 using a single fs laser platform. By using the fs laser with a low fluence as an excitation light source, we observe the strong nonlinear optical signals of second-harmonic generation and four-wave mixing in MoTe2, which can be used to identify the odd-even layers and layer numbers, respectively. With increasing the laser fluence to the ablation threshold (Fth), we achieve layer-by-layer removal of MoTe2, while 2H-to-1T' phase transition occurs with a higher laser fluence (2Fth to 3Fth). Moreover, we obtain highly ordered subwavelength nanoripples on both the thick and few-layer MoTe2 with a controlled fluence, which can be attributed to the fs laser-induced reorganization of the molten plasma. Our study provides a simple and efficient ultrafast laser-based approach capable of characterizing the structures and modifying the physical properties of 2D TMDCs.
Collapse
Affiliation(s)
- Mengmeng Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dawei Li
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States
| | - Kun Liu
- School of Optoelectronic Engineering and Instrument Science, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qitong Guo
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sumei Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xin Li
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
34
|
Zimmermann JE, Li B, Hone JC, Höfer U, Mette G. Second-harmonic imaging microscopy for time-resolved investigations of transition metal dichalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:485901. [PMID: 32716316 DOI: 10.1088/1361-648x/aba946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMD) have shown promise for various applications in optoelectronics and so-called valleytronics. Their operation and performance strongly depend on the stacking of individual layers. Here, optical second-harmonic generation in imaging mode is shown to be a versatile tool for systematic time-resolved investigations of TMD monolayers and heterostructures in consideration of the material's structure. Large sample areas can be probed without the need of any mapping or scanning. By means of polarization dependent measurements, the crystalline orientation of monolayers or the stacking angles of heterostructures can be evaluated for the whole field of view. Pump-probe experiments then allow to correlate observed transient changes of the second-harmonic response with the underlying structure. The corresponding time-resolution is virtually limited by the pulse duration of the used laser. As an example, polarization dependent and time-resolved measurements on mono- and multilayer MoS2flakes grown on a SiO2/ Si(001) substrate are presented.
Collapse
Affiliation(s)
- J E Zimmermann
- Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, 35032 Marburg, Germany
| | - B Li
- Department of Mechanical Engineering, Columbia University, New York 10027, United States of America
| | - J C Hone
- Department of Mechanical Engineering, Columbia University, New York 10027, United States of America
| | - U Höfer
- Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, 35032 Marburg, Germany
| | - G Mette
- Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität, 35032 Marburg, Germany
| |
Collapse
|
35
|
Dai Y, Wang Y, Das S, Xue H, Bai X, Hulkko E, Zhang G, Yang X, Dai Q, Sun Z. Electrical Control of Interband Resonant Nonlinear Optics in Monolayer MoS 2. ACS NANO 2020; 14:8442-8448. [PMID: 32598130 PMCID: PMC7735744 DOI: 10.1021/acsnano.0c02642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Monolayer transition-metal dichalcogenides show strong optical nonlinearity with great potential for various emerging applications. Here we demonstrate the gate-tunable interband resonant four-wave mixing and sum-frequency generation in monolayer MoS2. Up to 80% modulation depth in four-wave mixing is achieved when the generated signal is resonant with the A exciton at room temperature, corresponding to an effective third-order optical nonlinearity |χ(3)eff| tuning from (∼12.0 to 5.45) × 10-18 m2/V2. The tunability of the effective second-order optical nonlinearity |χ(2)eff| at 440 nm C-exciton resonance wavelength is also demonstrated from (∼11.6 to 7.40) × 10-9 m/V with sum-frequency generation. Such a large tunability in optical nonlinearities arises from the strong excitonic charging effect in monolayer transition-metal dichalcogenides, which allows for the electrical control of the interband excitonic transitions and thus nonlinear optical responses for future on-chip nonlinear optoelectronics.
Collapse
Affiliation(s)
- Yunyun Dai
- Department of Electronics
and Nanoengineering, Aalto University, Fi-00076 Aalto, Finland
- (Y.D.)
| | - Yadong Wang
- Department of Electronics
and Nanoengineering, Aalto University, Fi-00076 Aalto, Finland
| | - Susobhan Das
- Department of Electronics
and Nanoengineering, Aalto University, Fi-00076 Aalto, Finland
| | - Hui Xue
- Department of Electronics
and Nanoengineering, Aalto University, Fi-00076 Aalto, Finland
| | - Xueyin Bai
- Department of Electronics
and Nanoengineering, Aalto University, Fi-00076 Aalto, Finland
| | - Eero Hulkko
- Department of Electronics
and Nanoengineering, Aalto University, Fi-00076 Aalto, Finland
| | - Guangyu Zhang
- Institute of Physics and Beijing National
Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoxia Yang
- Division of Nanophotonics, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology, Beijing 100190, China
| | - Qing Dai
- Division of Nanophotonics, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience
and Technology, Beijing 100190, China
| | - Zhipei Sun
- Department of Electronics
and Nanoengineering, Aalto University, Fi-00076 Aalto, Finland
- QTF Centre
of Excellence, Department of Applied Physics, Aalto University, Fi-00076 Aalto, Finland
- (Z.S.)
| |
Collapse
|
36
|
Stepanov EA, Semin SV, Woods CR, Vandelli M, Kimel AV, Novoselov KS, Katsnelson MI. Direct Observation of Incommensurate-Commensurate Transition in Graphene-hBN Heterostructures via Optical Second Harmonic Generation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27758-27764. [PMID: 32442370 DOI: 10.1021/acsami.0c05965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Commensurability effects play a crucial role in the formation of electronic properties of novel layered heterostructures. The interest in these moiré superstructures has increased tremendously since the recent observation of a superconducting state (Nature 2018, 556, 43-50) and metal-insulator transition (Nature 2018, 556, 80-84) in twisted bilayer graphene. In this regard, a straightforward and efficient experimental technique for detection of the alignment of layered materials is desired. In this work, we use optical second harmonic generation, which is sensitive to the inversion symmetry breaking, to investigate the alignment of graphene/hexagonal boron nitride heterostructures. To achieve that, we activate a commensurate-incommensurate phase transition by a thermal annealing of the sample. We find that this structural change in the system can be directly observed via a strong modification of a nonlinear optical signal. Unambiguous interpretation of obtained results reveals the potential of a second harmonic generation technique for probing of structural changes in layered systems.
Collapse
Affiliation(s)
- E A Stepanov
- Institute of Theoretical Physics, Department of Physics, University of Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - S V Semin
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - C R Woods
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - M Vandelli
- Institute of Theoretical Physics, Department of Physics, University of Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
- Center for Free Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
| | - A V Kimel
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - K S Novoselov
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing 400714, China
| | - M I Katsnelson
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
37
|
Kim Y, Kim H, Jang H, Ahn JH, Lee JD. Dual Resonant Sum Frequency Generations from Two-Dimensional Materials. NANO LETTERS 2020; 20:4530-4536. [PMID: 32422047 DOI: 10.1021/acs.nanolett.0c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We propose dual resonant optical sum frequency generation (SFG), where the two most singular resonances could be selected, and report for the monolayer (1L-) WSe2 when one (ω1) of two excitation pulses is resonant to A exciton and their sum frequency (ω1 + ω2) to D exciton. The dual resonant SFG confirms that, under an irradiation of ω1 and ω2 pulses with the same fluence of ∼1.4 × 1010 W/m2, its signal intensity could be enhanced about 20 times higher than the resonant SHG (i.e., 2ω1 to the D excitonic absorption). Further, the dual resonant SFG intensity of 1L-WSe2 is found to be 1 order of magnitude higher than the single resonant SFG intensity of 1L-WS2 under the same condition of two-pulse irradiation. Finally, observations of the dual resonant SFG are thoroughly examined using real-time time-dependent density functional theory (rt-TDDFT), and the relevant nonlinear optical characteristics are scrutinized using the Greenwood-Kubo formalism.
Collapse
Affiliation(s)
- Youngjae Kim
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Hyunmin Kim
- Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea
| | - Houk Jang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J D Lee
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
38
|
Tan T, Jiang X, Wang C, Yao B, Zhang H. 2D Material Optoelectronics for Information Functional Device Applications: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000058. [PMID: 32537415 PMCID: PMC7284198 DOI: 10.1002/advs.202000058] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/19/2023]
Abstract
Graphene and the following derivative 2D materials have been demonstrated to exhibit rich distinct optoelectronic properties, such as broadband optical response, strong and tunable light-mater interactions, and fast relaxations in the flexible nanoscale. Combining with optical platforms like fibers, waveguides, grating, and resonators, these materials has spurred a variety of active and passive applications recently. Herein, the optical and electrical properties of graphene, transition metal dichalcogenides, black phosphorus, MXene, and their derivative van der Waals heterostructures are comprehensively reviewed, followed by the design and fabrication of these 2D material-based optical structures in implementation. Next, distinct devices, ranging from lasers to light emitters, frequency convertors, modulators, detectors, plasmonic generators, and sensors, are introduced. Finally, the state-of-art investigation progress of 2D material-based optoelectronics offers a promising way to realize new conceptual and high-performance applications for information science and nanotechnology. The outlook on the development trends and important research directions are also put forward.
Collapse
Affiliation(s)
- Teng Tan
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China)School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Xiantao Jiang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Cong Wang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Baicheng Yao
- Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China)School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Han Zhang
- Shenzhen Key Laboratory of Micro‐Nano Photonic Information TechnologyGuangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)International Collaboration Laboratory of 2D Materials for Optoelectronic Science and TechnologyCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
39
|
Bolhuis M, Hernandez-Rueda J, van Heijst SE, Tinoco Rivas M, Kuipers L, Conesa-Boj S. Vertically-oriented MoS 2 nanosheets for nonlinear optical devices. NANOSCALE 2020; 12:10491-10497. [PMID: 32377653 DOI: 10.1039/d0nr00755b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Transition metal dichalcogenides such as MoS2 represent promising candidates for building blocks of ultra-thin nanophotonic devices. For such applications, vertically-oriented MoS2 (v-MoS2) nanosheets could be advantageous as compared to conventional horizontal MoS2 (h-MoS2) given that their inherent broken symmetry would favor an enhanced nonlinear response. However, the current lack of a controllable and reproducible fabrication strategy for v-MoS2 limits the exploration of this potential. Here we present a systematic study of the growth of v-MoS2 nanosheets based on the sulfurization of a pre-deposited Mo-metal seed layer. We demonstrate that the sulfurization process at high temperatures is driven by the diffusion of sulfur from the vapor-solid interface to the Mo seed layer. Furthermore, we verify an enhanced nonlinear response in the resulting v-MoS2 nanostructures as compared to their horizontal counterparts. Our results represent a stepping stone towards the fabrication of low-dimensional TMD-based nanostructures for versatile nonlinear nanophotonic devices.
Collapse
Affiliation(s)
- M Bolhuis
- Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Li D, Huang X, Xiao Z, Chen H, Zhang L, Hao Y, Song J, Shao DF, Tsymbal EY, Lu Y, Hong X. Polar coupling enabled nonlinear optical filtering at MoS 2/ferroelectric heterointerfaces. Nat Commun 2020; 11:1422. [PMID: 32184400 PMCID: PMC7078226 DOI: 10.1038/s41467-020-15191-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/14/2020] [Indexed: 11/09/2022] Open
Abstract
Complex oxide heterointerfaces and van der Waals heterostructures present two versatile but intrinsically different platforms for exploring emergent quantum phenomena and designing new functionalities. The rich opportunity offered by the synergy between these two classes of materials, however, is yet to be charted. Here, we report an unconventional nonlinear optical filtering effect resulting from the interfacial polar alignment between monolayer MoS2 and a neighboring ferroelectric oxide thin film. The second harmonic generation response at the heterointerface is either substantially enhanced or almost entirely quenched by an underlying ferroelectric domain wall depending on its chirality, and can be further tailored by the polar domains. Unlike the extensively studied coupling mechanisms driven by charge, spin, and lattice, the interfacial tailoring effect is solely mediated by the polar symmetry, as well explained via our density functional theory calculations, pointing to a new material strategy for the functional design of nanoscale reconfigurable optical applications.
Collapse
Affiliation(s)
- Dawei Li
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA
| | - Xi Huang
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, USA
| | - Zhiyong Xiao
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA
| | - Hanying Chen
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA
| | - Le Zhang
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA
| | - Yifei Hao
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA
| | - Jingfeng Song
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA
| | - Ding-Fu Shao
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA.,Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0298, USA
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0511, USA. .,Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0298, USA.
| | - Xia Hong
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, 68588-0299, USA. .,Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588-0298, USA.
| |
Collapse
|
41
|
Taghinejad M, Xu Z, Wang H, Taghinejad H, Lee KT, Rodrigues SP, Adibi A, Qian X, Lian T, Cai W. Photocarrier-Induced Active Control of Second-Order Optical Nonlinearity in Monolayer MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906347. [PMID: 31943782 DOI: 10.1002/smll.201906347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) in their excited states can serve as exceptionally small building blocks for active optical platforms. In this scheme, optical excitation provides a practical approach to control light-TMD interactions via the photocarrier generation, in an ultrafast manner. Here, it is demonstrated that via a controlled generation of photocarriers the second-harmonic generation (SHG) from a monolayer MoS2 crystal can be substantially modulated up to ≈55% within a timeframe of ≈250 fs, a set of performance characteristics that showcases the promise of low-dimensional materials for all-optical nonlinear data processing. The combined experimental and theoretical study suggests that the large SHG modulation stems from the correlation between the second-order dielectric susceptibility χ(2) and the density of photoexcited carriers in MoS2 . Indeed, the depopulation of the conduction band electrons, at the vicinity of the high-symmetry K/K' points of MoS2 , suppresses the contribution of interband electronic transitions in the effective χ(2) of the monolayer crystal, enabling the all-optical modulation of the SHG signal. The strong dependence of the second-order optical response on the density of photocarriers reveals the promise of time-resolved nonlinear characterization as an alternative route to monitoring carrier dynamics in excited states of TMDs.
Collapse
Affiliation(s)
- Mohammad Taghinejad
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA
| | - Zihao Xu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Hua Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Hossein Taghinejad
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA
| | - Kyu-Tae Lee
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA
| | - Sean P Rodrigues
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA
- Toyota Research Institute of North America, Ann Arbor, MI, 48105, USA
| | - Ali Adibi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA
| | - Xiaofeng Qian
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Wenshan Cai
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0250, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
42
|
Yao K, Yanev E, Chuang HJ, Rosenberger MR, Xu X, Darlington T, McCreary KM, Hanbicki AT, Watanabe K, Taniguchi T, Jonker BT, Zhu X, Basov DN, Hone JC, Schuck PJ. Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors. ACS NANO 2020; 14:708-714. [PMID: 31891477 DOI: 10.1021/acsnano.9b07555] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report continuous-wave second harmonic and sum frequency generation from two-dimensional transition metal dichalcogenide monolayers and their heterostructures with pump irradiances several orders of magnitude lower than those of conventional pulsed experiments. The high nonlinear efficiency originates from above-gap excitons in the band nesting regions, as revealed by wavelength-dependent second order optical susceptibilities quantified in four common monolayer transition metal dichalcogenides. Using sum frequency excitation spectroscopy and imaging, we identify and distinguish one- and two-photon resonances in both monolayers and heterobilayers. Data for heterostructures reveal responses from constituent layers accompanied by nonlinear signal correlated with interlayer transitions. We demonstrate spatial mapping of heterogeneous interlayer coupling by sum frequency and second harmonic confocal microscopy on heterobilayer MoSe2/WSe2.
Collapse
Affiliation(s)
- Kaiyuan Yao
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Mechanical Engineering , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Emanuil Yanev
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Hsun-Jen Chuang
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Matthew R Rosenberger
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Xinyi Xu
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Thomas Darlington
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
- Department of Physics , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Kathleen M McCreary
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Aubrey T Hanbicki
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
- Laboratory for Physical Sciences , College Park , Maryland 20740 , United States
| | - Kenji Watanabe
- National Institute for Materials Science , Tsukuba 305-0047 , Japan
| | | | - Berend T Jonker
- Materials Science & Technology Division , Naval Research Laboratory , Washington , D.C. 20375 , United States
| | - Xiaoyang Zhu
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - D N Basov
- Department of Physics , Columbia University , New York , New York 10027 , United States
| | - James C Hone
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - P James Schuck
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| |
Collapse
|
43
|
Gan F, Dong N, Liu Z, Jia H, Wang J, Chen Y. Organic Small Molecule Covalently Functionalized Molybdenum Disulfide Hybrid Material for Optical Limiting. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fan Gan
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ningning Dong
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, P. R. China
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Zhiwei Liu
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Huimei Jia
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jun Wang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, P. R. China
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Yu Chen
- Key Laboratory for Advanced Materials, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
44
|
Wei Y, Xu X, Wang S, Li W, Jiang Y. Second harmonic generation in Janus MoSSe a monolayer and stacked bulk with vertical asymmetry. Phys Chem Chem Phys 2019; 21:21022-21029. [PMID: 31528892 DOI: 10.1039/c9cp03395e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recently synchronized Janus TMD material with broken out-of-plane symmetry offers a vertical dipole to enhance nonlinear optical behavior. Here, by comparing the second harmonic generation properties of MoS2 and MoSSe monolayers, we investigated the nonzero out-of-plane SHG susceptibilities of a Janus MoSSe 2D material. A three-fold enhancement of out-of-plane SHG susceptibilities exists in three stacked bulks of Janus MoSSe compared to that in the monolayer. A sensitivity to their stack pattern is also found. The broken out-of-plane symmetry, vertical dipole, and intrinsic tunable electronic properties of Janus two-dimensional materials make MoSSe a promising nanomaterial for nonlinear optical devices.
Collapse
Affiliation(s)
- Yadong Wei
- Department of Physics, Harbin Institute of Technology, Harbin, China.
| | - Xiaodong Xu
- Department of Physics, Harbin Institute of Technology, Harbin, China.
| | - Songsong Wang
- Department of Physics, Harbin Institute of Technology, Harbin, China.
| | - Weiqi Li
- Department of Physics, Harbin Institute of Technology, Harbin, China.
| | - Yongyuan Jiang
- Department of Physics, Harbin Institute of Technology, Harbin, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China and Key Lab of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin, China and Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Harbin, China
| |
Collapse
|
45
|
Liang Y, Li H, Hou R, Wang J, Wang K, Ge M, Luo J, Huang Z, Zhang C. Vertical Stacking of Copper Sulfide Nanoparticles and Molybdenum Sulfide Nanosheets for Enhanced Nonlinear Absorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35835-35844. [PMID: 31486331 DOI: 10.1021/acsami.9b06662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The construction of p-n junctions is necessitated by applications which require effective charge separation. Here, a novel heterostructure (HS) of molybdenum sulfide (MoS2) and copper sulfide (Cu2-xS) was synthesized by chemical vapor deposition, with Cu2-xS nanoparticles vertically stacked on a MoS2 nanosheet. A well-defined epitaxial relationship between MoS2 and Cu2-xS is established, although the corresponding lattice mismatch is as large as 20%. The band-edge alignment is experimentally determined, indicating that the MoS2-Cu2-xS HS is a type II heterojunction. Photoluminescence quenching indicates effective charge separation in HS. The resultant HS shows enhanced nonlinear absorption in comparison with single-component MoS2 nanosheets and Cu2-xS nanoparticles.
Collapse
Affiliation(s)
- Ying Liang
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
- School of Pharmacy , Shanghai University of Medicine and Health Sciences , Shanghai 201318 , P. R. China
| | - Hui Li
- Key Laboratory of Materials for High-Power Laser , Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science , Shanghai 201800 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ruipeng Hou
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Jun Wang
- Key Laboratory of Materials for High-Power Laser , Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science , Shanghai 201800 , P. R. China
| | - Kai Wang
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Mengke Ge
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Zhipeng Huang
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| | - Chi Zhang
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , P. R. China
| |
Collapse
|
46
|
Dai M, Chen H, Wang F, Hu Y, Wei S, Zhang J, Wang Z, Zhai T, Hu P. Robust Piezo-Phototronic Effect in Multilayer γ-InSe for High-Performance Self-Powered Flexible Photodetectors. ACS NANO 2019; 13:7291-7299. [PMID: 31188571 DOI: 10.1021/acsnano.9b03278] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The piezo-phototronic effect has been promising as an effective means to improve the performance of two-dimensional (2D) semiconductor based optoelectronic devices. However, the current reported monolayer 2D semiconductors are not regarded as suitable for actual flexible piezotronic photodetectors due to their insufficient optical absorption and mechanical durability, although they possess strong piezoelectricity. In this work, we demonstrate that, unlike 2H-phase transition-metal dichalcogenides, γ-phase InSe with a hexagonal unit cell possesses broken inversion symmetry in all the layer numbers and has a strong second-harmonic generation effect. Moreover, driven by the piezo-phototronic effect, a flexible self-powered photodetector based on multilayer γ-InSe, which can work without any energy supply, is proposed. The device exhibited ultrahigh photon responsivity of 824 mA/W under light illuminations of 400 nm (0.368 mW/cm2). Moreover, the responsivity and response speed of this photodetector were enhanced further by as much as 696% and 1010%, respectively, when a 0.62% uniaxial tensile strain was applied. Our devices exhibit high reliability and stability during a 6 month test time. These significant findings offer a promising pathway to construct high-performance flexible piezo-phototronic photodetectors based on multilayer 2D semiconductors.
Collapse
Affiliation(s)
| | | | - Fakun Wang
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P.R. China
| | | | | | | | - Zhiguo Wang
- School of Electronics Science and Engineering , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P.R. China
| | | |
Collapse
|
47
|
Li D, Wei C, Song J, Huang X, Wang F, Liu K, Xiong W, Hong X, Cui B, Feng A, Jiang L, Lu Y. Anisotropic Enhancement of Second-Harmonic Generation in Monolayer and Bilayer MoS 2 by Integrating with TiO 2 Nanowires. NANO LETTERS 2019; 19:4195-4204. [PMID: 31136188 DOI: 10.1021/acs.nanolett.9b01933] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to design and enhance the nonlinear optical responses in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is both of fundamental interest and highly desirable for developing TMDC-based nonlinear optical applications, such as nonlinear convertors and optical modulators. Here, we report for the first time a strong anisotropic enhancement of optical second-harmonic generation (SHG) in monolayer molybdenum disulfide (MoS2) by integrating with one-dimensional (1D) titanium dioxide nanowires (NWs). The SHG signal from the MoS2/NW hybrid structures is over 2 orders of magnitude stronger than that in the bare monolayer MoS2. Polarized SHG measurements revealed a giant anisotropy in SHG response of the MoS2/NW hybrid. The pattern of the anisotropic SHG depends highly on the stacking angle between the nanowire direction and the MoS2 crystal orientation, which is attributed to the 1D NW-induced directional strain fields in the layered MoS2. A similar effect has also been observed in bilayer MoS2/NW hybrid structure, further proving the proposed scenario. This work provides an effective approach to selectively and directionally designing the nonlinear optical response of layered TMDCs, paving the way for developing high-performance, anisotropic nonlinear photonic nanodevices.
Collapse
Affiliation(s)
- Dawei Li
- Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0299 , United States
- College of Mechanical & Electrical Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Chengyiran Wei
- Department of Electrical and Computer Engineering , University of Nebraska--Lincoln , Lincoln , Nebraska 68588-0511 , United States
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Jingfeng Song
- Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0299 , United States
| | - Xi Huang
- Department of Electrical and Computer Engineering , University of Nebraska--Lincoln , Lincoln , Nebraska 68588-0511 , United States
| | - Fei Wang
- Department of Mechanical & Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Kun Liu
- School of Optoelectronic Engineering and Instrumentation Science , Dalian University of Technology , Dalian , Liaoning 116023 , China
| | - Wei Xiong
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Xia Hong
- Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience , University of Nebraska-Lincoln , Lincoln , Nebraska 68588-0299 , United States
| | - Bai Cui
- Department of Mechanical & Materials Engineering , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Aixin Feng
- College of Mechanical & Electrical Engineering , Wenzhou University , Wenzhou 325035 , China
| | - Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Yongfeng Lu
- Department of Electrical and Computer Engineering , University of Nebraska--Lincoln , Lincoln , Nebraska 68588-0511 , United States
| |
Collapse
|
48
|
He C, Zhao Q, Huang Y, Zhu L, Zhang S, Bai J, Xu X. Nonlinear Optical Response in Graphene/WX 2 (X = S, Se, and Te) van der Waals Heterostructures. J Phys Chem Lett 2019; 10:2090-2100. [PMID: 30973733 DOI: 10.1021/acs.jpclett.9b00217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-frequency conversion based on two-dimensional (2D) materials is of great importance for modern nano- and integrated photonics. Herein, we report both the intrinsic (from the pure WX2 (X = S, Se, and Te)) and extrinsic (from the interface of graphene/WX2) second-order nonlinear coefficient tensor from graphene/WX2 van der Waals (vdW) heterostructures by first-principles calculations. The prominent peaks in the dispersion relation of the intrinsic second-order nonlinear coefficient in monolayer WX2 are due to the Van Hove singularity in the high-symmetry point or along the high-symmetry line with high joint density of states. The enhanced nonlinear optical response in the infrared band can be achieved in graphene/WS2 vdW heterostructures, resulting from the interlayer charge transfer between graphene and WS2. The value of the intrinsic second-order nonlinear coefficients of graphene/WSe2 vdW heterostructures is 1.5 times larger than that of pure monolayer WSe2 at the band gap energy of monolayer WSe2 because of the enhanced carrier generation after the heterostructure formation. Different from pure monolayer WX2, azimuthal angle-dependent second harmonic generation from graphene/WX2 vdW heterostructures exhibits extraordinary rotational symmetry at different photon energies, which can be used to deduce the extrinsic second-order nonlinear coefficient. These results pave the way for the nonlinear optical coefficient design based on 2D heterostructures for nonlinear nanophotonics and integrated devices.
Collapse
Affiliation(s)
- Chuan He
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Qiyi Zhao
- School of Science , Xi'an University of Posts & Telecommunications , Xi'an 710121 , China
| | - Yuanyuan Huang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Lipeng Zhu
- School of Electronic Engineering , Xi'an University of Posts & Telecommunications , Xi'an 710121 , China
| | - Sujuan Zhang
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Jintao Bai
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology , Northwest University , Xi'an 710069 , China
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments , Guilin University of Electronic Technology , Guilin 541004 , China
| |
Collapse
|
49
|
Hao Q, Yi H, Su H, Wei B, Wang Z, Lao Z, Chai Y, Wang Z, Jin C, Dai J, Zhang W. Phase Identification and Strong Second Harmonic Generation in Pure ε-InSe and Its Alloys. NANO LETTERS 2019; 19:2634-2640. [PMID: 30841699 DOI: 10.1021/acs.nanolett.9b00487] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two-dimensional material indium selenide (InSe) has offered a new platform for fundamental research in virtue of its emerging fascinating properties. Unlike 2H-phase transition-metal dichalcogenides (TMDs), ε phase InSe with a hexagonal unit cell possesses broken inversion symmetry in all the layer numbers, and predicted to have a strong second harmonic generation (SHG) effect. In this work, we find that the as-prepared pure InSe, alloyed InSe1- xTe x and InSe1- xS x ( x = 0.1 and 0.2) are ε phase structures and exhibit excellent SHG performance from few-layer to bulk-like dimension. This high SHG efficiency is attributed to the noncentrosymmetric crystal structure of the ε-InSe system, which has been clearly verified by aberration-corrected scanning transmission electron microscopy (STEM) images. The experimental results show that the SHG intensities from multilayer pure ε-InSe and alloyed InSe0.9Te0.1 and InSe1- xS x ( x = 0.1 and 0.2) are around 1-2 orders of magnitude higher than that of the monolayer TMD systems and even superior to that of GaSe with the same thickness. The estimated nonlinear susceptibility χ(2) of ε-InSe is larger than that of ε-GaSe and monolayer TMDs. Our study provides first-hand information about the phase identification of ε-InSe and indicates an excellent candidate for nonlinear optical (NLO) applications as well as the possibility of engineering SHG response by alloying.
Collapse
Affiliation(s)
- Qiaoyan Hao
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Huan Yi
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Huimin Su
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Bin Wei
- International Iberian Nanotechnology Laboratory , Av. Mestre Jose Veiga , P-4715330 Braga , Portugal
| | - Zhuo Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| | - Zhezhu Lao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yang Chai
- Department of Applied Physics , Hong Kong Polytechnic University , Hong Kong 999077 , P. R. China
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory , Av. Mestre Jose Veiga , P-4715330 Braga , Portugal
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Junfeng Dai
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , P. R. China
| | - Wenjing Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Shenzhen University , Shenzhen 518060 , P. R. China
| |
Collapse
|
50
|
Xi Y, Zhuang J, Hao W, Du Y. Recent Progress on Two‐Dimensional Heterostructures for Catalytic, Optoelectronic, and Energy Applications. ChemElectroChem 2019. [DOI: 10.1002/celc.201900224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yilian Xi
- BUAA-UOW Joint Research Centre and School of Physics Beihang University Beijing 100191 P. R. China
| | - Jincheng Zhuang
- BUAA-UOW Joint Research Centre and School of Physics Beihang University Beijing 100191 P. R. China
- Institute for Superconducting and Electronic Materials (ISEM) Australian Institute for Innovative Materials (AIIM) University of Wollongong Wollongong, NSW 2500 Australia
| | - Weichang Hao
- BUAA-UOW Joint Research Centre and School of Physics Beihang University Beijing 100191 P. R. China
- Institute for Superconducting and Electronic Materials (ISEM) Australian Institute for Innovative Materials (AIIM) University of Wollongong Wollongong, NSW 2500 Australia
| | - Yi Du
- BUAA-UOW Joint Research Centre and School of Physics Beihang University Beijing 100191 P. R. China
- Institute for Superconducting and Electronic Materials (ISEM) Australian Institute for Innovative Materials (AIIM) University of Wollongong Wollongong, NSW 2500 Australia
| |
Collapse
|