1
|
Lerena L, Zuzak R, Godlewski S, Echavarren AM. The Journey for the Synthesis of Large Acenes. Chemistry 2024; 30:e202402122. [PMID: 39077888 DOI: 10.1002/chem.202402122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
Acenes, the group of polycyclic aromatic hydrocarbons (PAHs) with linearly fused benzene rings, possess distinctive electronic properties with potential applicability in material science. Hexacene was the largest acene obtained and characterized in the last century, followed by heptacene in 2006. Since then, a race for obtaining the largest acene resulted in the development of several members of this family as well as diverse innovative synthetic strategies, from solid-state chemistry to the promising on-surface chemistry. This last technique allows the obtention of large acenes, up to tridecacene, the largest acene so far. This review presents the different methodologies employed for the synthesis of acenes, highlighting the newest studies, to provide a much more thorough understanding of the essence of the electronic structure of this captivating group of organic compounds.
Collapse
Affiliation(s)
- Laura Lerena
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| | - Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, PL 30-348, Krakow, Poland
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), CERCA, Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/ Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
2
|
Sarkar S, Álvarez B, Ho Au-Yeung K, Cobas A, Robles R, Lorente N, Peña D, Pérez D, Moresco F. On-Surface Stepwise Double Dehydrogenation for the Formation of a para-Quinodimethane-Containing Undecacene Isomer. Chemistry 2024; 30:e202402297. [PMID: 39032069 DOI: 10.1002/chem.202402297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/22/2024]
Abstract
The on-surface synthesis of an isomer of undecacene, bearing two four-membered rings and two para-quinodimethane moieties, starting from a tetramethyl-substituted diepoxy precursor, is presented. The transformation implies a thermal double deoxygenation followed by a stepwise double dehydrogenation reaction on the Au(111) surface, locally induced by inelastic tunneling electrons. This results in the transformation of para-dimethylbenzene moieties into non-aromatic para-quinodimethanes. The structures and electronic properties of the intermediate and final products are investigated at the single molecule level with high spatial resolution, using both scanning tunneling microscopy/spectroscopy and non-contact atomic force microscopy. The experimental results are supported by density functional theory calculations.
Collapse
Affiliation(s)
- Suchetana Sarkar
- Center for Advancing Electronics Dresden, TU Dresden, 01062, Dresden, Germany
| | - Berta Álvarez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Kwan Ho Au-Yeung
- Center for Advancing Electronics Dresden, TU Dresden, 01062, Dresden, Germany
- Current address: Physikalisches Institut, Karlsruher Institut für Technologie, 76131, Karlsruhe, Germany
| | - Agustín Cobas
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018, Donostia-San Sebastián, Spain
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia International Physics Center, 20018, Donostia-San Sebastián, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Francesca Moresco
- Center for Advancing Electronics Dresden, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
3
|
Wang Y, Gong WW, Zhao Y, Xing GY, Kang LX, Sha F, Huang ZY, Liu JW, Han YJ, Li P, Li DY, Liu PN. Two-Dimensional Nonbenzenoid Heteroacene Crystals Synthesized via In-Situ Embedding of Ladder Bipyrazinylenes on Au(111). Angew Chem Int Ed Engl 2024; 63:e202318142. [PMID: 38265124 DOI: 10.1002/anie.202318142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Precisely introducing topological defects is an important strategy in nanographene crystal engineering because defects can tune π-electronic structures and control molecular assemblies. The synergistic control of the synthesis and assembly of nanographenes by embedding the topological defects to afford two-dimensional (2D) crystals on surfaces is still a great challenge. By in-situ embedding ladder bipyrazinylene (LBPy) into acene, the narrowest nanographene with zigzag edges, we have achieved the precise preparation of 2D nonbenzenoid heteroacene crystals on Au(111). Through intramolecular electrocyclization of o-diisocyanides and Au adatom-directed [2+2] cycloaddition, the nonbenzenoid heteroacene products are produced with high chemoselectivity, and lead to the molecular 2D assembly via LBPy-derived interlocking hydrogen bonds. Using bond-resolved scanning tunneling microscopy, we determined the atomic structures of the nonbenzenoid heteroacene product and diverse organometallic intermediates. The tunneling spectroscopy measurements revealed the electronic structure of the nonbenzenoid heteroacene, which is supported by density functional theory (DFT) calculations. The observed distinct organometallic intermediates during progression annealing combined with DFT calculations demonstrated that LBPy formation proceeds via electrocyclization of o-diisocyanides, trapping of heteroarynes by Au adatoms, and stepwise elimination of Au adatoms.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Wen-Wen Gong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Yan Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Guang-Yan Xing
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Li-Xia Kang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Zheng-Yang Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Jian-Wei Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Yan-Jie Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Peng Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
4
|
Okba A, Simón Marqués P, Matsuo K, Aratani N, Yamada H, Rapenne G, Kammerer C. Synthesis of π-conjugated polycyclic compounds by late-stage extrusion of chalcogen fragments. Beilstein J Org Chem 2024; 20:287-305. [PMID: 38379731 PMCID: PMC10877077 DOI: 10.3762/bjoc.20.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The "precursor approach" has proved particularly valuable for the preparation of insoluble and unstable π-conjugated polycyclic compounds (π-CPCs), which cannot be synthesized via in-solution organic chemistry, for their improved processing, as well as for their electronic investigation both at the material and single-molecule scales. This method relies on the synthesis and processing of soluble and stable direct precursors of the target π-CPCs, followed by their final conversion in situ, triggered by thermal activation, photoirradiation or redox control. Beside well-established reactions involving the elimination of carbon-based small molecules, i.e., retro-Diels-Alder and decarbonylation processes, the late-stage extrusion of chalcogen fragments has emerged as a highly promising synthetic tool to access a wider variety of π-conjugated polycyclic structures and thus to expand the potentialities of the "precursor approach" for further improvements of molecular materials' performances. This review gives an overview of synthetic strategies towards π-CPCs involving the ultimate elimination of chalcogen fragments upon thermal activation, photoirradiation and electron exchange.
Collapse
Affiliation(s)
- Aissam Okba
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Pablo Simón Marqués
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
| | - Kyohei Matsuo
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29 rue Marvig, F-31055 Toulouse Cedex 4, France
| |
Collapse
|
5
|
Ji P, Dettmann D, Liu YH, Berti G, Preetha Genesh N, Cui D, MacLean O, Perepichka DF, Chi L, Rosei F. Tandem Desulfurization/C-C Coupling Reaction of Tetrathienylbenzenes on Cu(111): Synthesis of Pentacene and an Exotic Ladder Polymer. ACS NANO 2022; 16:6506-6514. [PMID: 35363486 DOI: 10.1021/acsnano.2c00831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-confined reactions represent a powerful approach for the precise synthesis of low-dimensional organic materials. A complete understanding of the pathways of surface reactions would enable the rational synthesis of a wide range of molecules and polymers. Here, we report different reaction pathways of tetrathienylbenzene (T1TB) and its extended congener tetrakis(dithienyl)benzene (T2TB) on Cu(111), investigated using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. Both T1TB and T2TB undergo desulfurization when deposited on Cu(111) at room temperature. Deposition of T1TB at 453 K yields pentacene through desulfurization, hydrogen transfer, and a cascade of intramolecular cyclization. In contrast, for T2TB the intramolecular cyclization stops at anthracene and the following intermolecular C-C coupling produces a conjugated ladder polymer. We show that tandem desulfurization/C-C coupling provides a versatile approach for growing carbon-based nanostructures on metal surfaces.
Collapse
Affiliation(s)
- Penghui Ji
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, China
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via Fosso del Cavaliere 100, Roma 00133, Italy
| | - Ying-Hsuan Liu
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Giulia Berti
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Navathej Preetha Genesh
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Daling Cui
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Oliver MacLean
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, P.R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, China
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
6
|
Iwata T, Kawano R, Fukami T, Shindo M. Retro‐Friedel‐Crafts‐Type Acidic Ring‐Opening of Triptycenes: A New Synthetic Approach to Acenes. Chemistry 2022; 28:e202104160. [DOI: 10.1002/chem.202104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Takayuki Iwata
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| | - Ryusei Kawano
- Interdisciplinary Graduate School of Engineering Sciences Kyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| | - Takuto Fukami
- Interdisciplinary Graduate School of Engineering Sciences Kyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| | - Mitsuru Shindo
- Institute for Materials Chemistry and Engineering Kyushu University 6-1 Kasuga-koen Kasuga 816-8580 Japan
| |
Collapse
|
7
|
Han D, Zhu J. Surface-assisted fabrication of low-dimensional carbon-based nanoarchitectures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:343001. [PMID: 34111858 DOI: 10.1088/1361-648x/ac0a1b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
On-surface synthesis, as an alternative to traditional in-solution synthesis, has become an emerging research field and attracted extensive attention over the past decade due to its ability to fabricate nanoarchitectures with exotic properties. Compared to wet chemistry, the on-surface synthesis conducted on atomically flat solid surfaces under ultrahigh vacuum exhibits unprecedented characteristics and advantages, opening novel reaction pathways for chemical synthesis. Various low-dimensional nanostructures have been fabricated on solid surfaces (mostly metal surfaces) based on this newly developed approach. This paper reviews the classic and latest works regarding carbon-based low-dimensional nanostructures since the arrival of on-surface synthesis era. These nanostructures are categorized into zero-, one- and two-dimensional classes and each class is composed of numerous sub-nanostructures. For certain specific nanostructures, comprehensive reports are given, including precursor design, substrate choice, synthetic strategies and so forth. We hope that our review will shed light on the fabrication of some significant nanostructures in this young and promising scientific area.
Collapse
Affiliation(s)
- Dong Han
- National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, People's Republic of China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, People's Republic of China
| |
Collapse
|
8
|
Li L, Mahapatra S, Liu D, Lu Z, Jiang N. On-Surface Synthesis and Molecular Engineering of Carbon-Based Nanoarchitectures. ACS NANO 2021; 15:3578-3585. [PMID: 33606498 DOI: 10.1021/acsnano.0c08148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
On-surface synthesis via covalent coupling of adsorbed precursor molecules on metal surfaces has emerged as a promising strategy for the design and fabrication of novel organic nanoarchitectures with unique properties and potential applications in nanoelectronics, optoelectronics, spintronics, catalysis, etc. Surface-chemistry-driven molecular engineering (i.e., bond cleavage, linkage, and rearrangement) by means of thermal activation, light irradiation, and tip manipulation plays critical roles in various on-surface synthetic processes, as exemplified by the work from the Ernst group in a prior issue of ACS Nano. In this Perspective, we highlight recent advances in and discuss the outlook for on-surface syntheses and molecular engineering of carbon-based nanoarchitectures.
Collapse
Affiliation(s)
- Linfei Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Sayantan Mahapatra
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Dairong Liu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Zhongyi Lu
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
10
|
Tönshoff C, Bettinger HF. Pushing the Limits of Acene Chemistry: The Recent Surge of Large Acenes. Chemistry 2021; 27:3193-3212. [PMID: 33368683 PMCID: PMC7898397 DOI: 10.1002/chem.202003112] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Indexed: 11/11/2022]
Abstract
Acenes, consisting of linearly fused benzene rings, are an important fundamental class of organic compounds with various applications. Hexacene is the largest acene that was synthesized and isolated in the 20th century. The next largest member of the acene family, heptacene, was observed in 2007 and since then significant progress in preparing acenes has been reported. Significantly larger acenes, up to undecacene, could be studied by means of low-temperature matrix isolation spectroscopy with in situ photolytic generation, and up to dodecacene by means of on-surface synthesis employing innovative precursors and highly defined crystalline metal surfaces under ultrahigh vacuum conditions. The review summarizes recent experimental and theoretical advances in the area of acenes that give a significantly deeper insight into the fundamental properties and nature of the electronic structure of this fascinating class of organic compounds.
Collapse
Affiliation(s)
- Christina Tönshoff
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Holger F. Bettinger
- Institut für Organische ChemieUniversität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
11
|
Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J. On-surface synthesis of graphene nanostructures with π-magnetism. Chem Soc Rev 2021; 50:3238-3262. [PMID: 33481981 DOI: 10.1039/d0cs01060j] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Graphene nanostructures (GNs) including graphene nanoribbons and nanoflakes have attracted tremendous interest in the field of chemistry and materials science due to their fascinating electronic, optical and magnetic properties. Among them, zigzag-edged GNs (ZGNs) with precisely-tunable π-magnetism hold great potential for applications in spintronics and quantum devices. To improve the stability and processability of ZGNs, substitutional groups are often introduced to protect the reactive edges in organic synthesis, which renders the study of their intrinsic properties difficult. In contrast to the conventional wet-chemistry method, on-surface bottom-up synthesis presents a promising approach for the fabrication of both unsubstituted ZGNs and functionalized ZGNs with atomic precision via surface-catalyzed transformation of rationally-designed precursors. The structural and spin-polarized electronic properties of these ZGNs can then be characterized with sub-molecular resolution by means of scanning probe microscopy techniques. This review aims to highlight recent advances in the on-surface synthesis and characterization of a diversity of ZGNs with π-magnetism. We also discuss the important role of precursor design and reaction stimuli in the on-surface synthesis of ZGNs and their π-magnetism origin. Finally, we will highlight the existing challenges and future perspective surrounding the synthesis of novel open-shell ZGNs towards next-generation quantum technology.
Collapse
Affiliation(s)
- Shaotang Song
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shiotari A, Hamada I, Nakae T, Mori S, Okujima T, Uno H, Sakaguchi H, Hamamoto Y, Morikawa Y, Sugimoto Y. Manipulable Metal Catalyst for Nanographene Synthesis. NANO LETTERS 2020; 20:8339-8345. [PMID: 33090808 DOI: 10.1021/acs.nanolett.0c03510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Performing bottom-up synthesis by using molecules adsorbed on a surface is an effective method to yield functional polycyclic aromatic hydrocarbons (PAHs) and nanocarbon materials. The intramolecular cyclodehydrogenation of hydrocarbons is a critical process in this synthesis; however, thus far, its elementary steps have not been elucidated thoroughly. In this study, we utilize the metal tip of a low-temperature noncontact atomic force microscope as a manipulable metal surface to locally activate dehydrogenation for PAH-forming cyclodehydrogenation. This method leads to the dissociation of a H atom of an intermediate to yield the cyclodehydrogenated product in a target-selective and reproducible manner. We demonstrate the metal-tip-catalyzed dehydrogenation for both benzenoid and nonbenzonoid PAHs, suggesting its universal applicability as a catalyst for nanographene synthesis.
Collapse
Affiliation(s)
- Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561 Kashiwa, Japan
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Takahiro Nakae
- Institute of Advanced Energy, Kyoto University, 611-0011 Uji, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, 790-8577 Matsuyama, Japan
| | - Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan
| | - Hidemitsu Uno
- Graduate School of Science and Engineering, Ehime University, 790-8577 Matsuyama, Japan
| | | | - Yuji Hamamoto
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Yoshitada Morikawa
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
- Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 565-0871 Suita, Japan
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561 Kashiwa, Japan
| |
Collapse
|
13
|
Abstract
In the past decade, on-surface chemistry has provided fascinating concepts for the construction of covalently bonded molecular nanostructures and the exploration of new synthetic pathways that may be different from chemical synthesis in solution. Although the intermolecular reaction of precursor molecules may lead to the formation of the desired low-dimensional molecular architectures, it remains challenging to realize defect-free syntheses over large areas. Recently, intramolecular on-surface reactions have attracted increasing attention because they offer promising ways to synthesize functional organic molecules, especially those with extended conjugated π-systems. In this Perspective, we summarize the recent achievements in the field of on-surface intramolecular reactions and discuss future prospects.
Collapse
Affiliation(s)
- Biao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Bin Dong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
14
|
Chen W, Yu F, Xu Q, Zhou G, Zhang Q. Recent Progress in High Linearly Fused Polycyclic Conjugated Hydrocarbons (PCHs, n > 6) with Well-Defined Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903766. [PMID: 32596114 PMCID: PMC7312318 DOI: 10.1002/advs.201903766] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Although polycyclic conjugated hydrocarbons (PCHs) and their analogues have gained great progress in the fields of organic photoelectronic materials, the in-depth study on present PCHs is still limited to hexacene or below because longer PCHs are insoluble, unstable, and tediously synthesized. Very recently, various strategies including on-surface synthesis are developed to address these issues and many higher novel PCHs are constructed. Therefore, it is necessary to review these advances. Here, the recent synthetic approach, basic physicochemical properties, single-crystal packing behaviors, and potential applications of the linearly fused PCHs (higher than hexacene), including acenes or π-extended acenes with fused six-membered benzenoid rings and other four-membered, five-membered or even seven-membered and eight-membered fused compounds, are summarized.
Collapse
Affiliation(s)
- Wangqiao Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper DisplaysNational Center for International Research on Green OptoelectronicsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Fei Yu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper DisplaysNational Center for International Research on Green OptoelectronicsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
15
|
Levet G, Hung NK, Šámal M, Rybáček J, Cisařová I, Jancarik A, Gourdon A. Preparation of a Key Tetraene Precursor for the Synthesis of Long Acenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gaspard Levet
- CEMES-CNRS; 29, rue Jeanne Marvig 31055 Toulouse Cedex 04 France
| | | | - Michal Šámal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - Jiří Rybáček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - Ivana Cisařová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - Andrej Jancarik
- CEMES-CNRS; 29, rue Jeanne Marvig 31055 Toulouse Cedex 04 France
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; 166 10 Prague 6 Czech Republic
| | - André Gourdon
- CEMES-CNRS; 29, rue Jeanne Marvig 31055 Toulouse Cedex 04 France
| |
Collapse
|
16
|
Kawai S, Krejčí O, Nishiuchi T, Sahara K, Kodama T, Pawlak R, Meyer E, Kubo T, Foster AS. Three-dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. SCIENCE ADVANCES 2020; 6:eaay8913. [PMID: 32158948 PMCID: PMC7048429 DOI: 10.1126/sciadv.aay8913] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/06/2019] [Indexed: 05/06/2023]
Abstract
Recent advances in state-of-the-art probe microscopy allow us to conduct single molecular chemistry via tip-induced reactions and direct imaging of the inner structure of the products. Here, we synthesize three-dimensional graphene nanoribbons by on-surface chemical reaction and take advantage of tip-induced assembly to demonstrate their capability as a playground for local probe chemistry. We show that the radical caused by tip-induced debromination can be reversibly terminated by either a bromine atom or a fullerene molecule. The experimental results combined with theoretical calculations pave the way for sequential reactions, particularly addition reactions, by a local probe at the single-molecule level decoupled from the surface.
Collapse
Affiliation(s)
- Shigeki Kawai
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ondřej Krejčí
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Keisuke Sahara
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Takuya Kodama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Rémy Pawlak
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Ernst Meyer
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Adam S. Foster
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| |
Collapse
|
17
|
Eisenhut F, Kühne T, García F, Fernández S, Guitián E, Pérez D, Trinquier G, Cuniberti G, Joachim C, Peña D, Moresco F. Dodecacene Generated on Surface: Reopening of the Energy Gap. ACS NANO 2020; 14:1011-1017. [PMID: 31829618 DOI: 10.1021/acsnano.9b08456] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The acene series represents a model system to investigate the intriguing electronic properties of extended π-electron structures in the one-dimensional limit, which are important for applications in electronics and spintronics and for the fundamental understanding of electronic transport. Here, we present the on-surface generation of the longest acene obtained so far: dodecacene. Scanning tunneling spectroscopy gives access to the energy position and spatial distribution of its electronic states on the Au(111) surface. We observe that, after a progressive closing of the gap and a stabilization to about 1 eV at the length of decacene and undecacene, the energy gap of dodecacene unexpectedly increases to 1.4 eV. Considering the acene series as an exemplary general case, we discuss the evolution with length of the single tunneling resonances in comparison with ionization energy, electronic affinity, and optical gap.
Collapse
Affiliation(s)
- Frank Eisenhut
- Center for Advancing Electronics Dresden , TU Dresden , 01069 Dresden , Germany
- Institute for Materials Science , TU Dresden , 01069 Dresden , Germany
| | - Tim Kühne
- Center for Advancing Electronics Dresden , TU Dresden , 01069 Dresden , Germany
- Institute for Materials Science , TU Dresden , 01069 Dresden , Germany
| | - Fátima García
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Saleta Fernández
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Enrique Guitián
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Georges Trinquier
- Laboratoire de Chimie et Physique Quantiques , IRSAMC-CNRS-UMR5626, Université Paul-Sabatier (Toulouse III) , 31062 Toulouse Cedex 4, France
| | - Gianaurelio Cuniberti
- Institute for Materials Science , TU Dresden , 01069 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , TU Dresden , 01069 Dresden , Germany
| | - Christian Joachim
- GNS & MANA Satellite, CEMES, CNRS , 29 rue J. Marvig , 31055 Toulouse Cedex, France
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Francesca Moresco
- Center for Advancing Electronics Dresden , TU Dresden , 01069 Dresden , Germany
| |
Collapse
|
18
|
Schulz F, García F, Kaiser K, Pérez D, Guitián E, Gross L, Peña D. Exploring a Route to Cyclic Acenes by On-Surface Synthesis. Angew Chem Int Ed Engl 2019; 58:9038-9042. [PMID: 31026104 PMCID: PMC6618096 DOI: 10.1002/anie.201902784] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/12/2019] [Indexed: 11/08/2022]
Abstract
A route to generate cyclacenes by on-surface synthesis is explored. We started by synthesizing two tetraepoxycyclacenes by sequences of Diels-Alder cycloadditions. Subsequently, these molecules were deposited onto Cu(111) and scanning-tunneling-microscopy(STM)-based atom manipulation was employed to dissociate the oxygen atoms. Atomic force microscopy (AFM) with CO-functionalized tips enabled the detailed characterization of the reaction products and revealed that, at most, two oxygens per molecule could be removed. Importantly, our experimental results suggest that the generation of cyclacenes by the described route might be possible for larger epoxycyclacenes.
Collapse
Affiliation(s)
| | - Fátima García
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782-Santiago de CompostelaSpain
| | | | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782-Santiago de CompostelaSpain
| | - Enrique Guitián
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782-Santiago de CompostelaSpain
| | - Leo Gross
- IBM Research—Zurich8803RüschlikonSwitzerland
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782-Santiago de CompostelaSpain
| |
Collapse
|
19
|
Schulz F, García F, Kaiser K, Pérez D, Guitián E, Gross L, Peña D. Exploring a Route to Cyclic Acenes by On‐Surface Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902784] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Fátima García
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782- Santiago de Compostela Spain
| | | | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782- Santiago de Compostela Spain
| | - Enrique Guitián
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782- Santiago de Compostela Spain
| | - Leo Gross
- IBM Research—Zurich 8803 Rüschlikon Switzerland
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782- Santiago de Compostela Spain
| |
Collapse
|
20
|
Sánchez‐Grande A, de la Torre B, Santos J, Cirera B, Lauwaet K, Chutora T, Edalatmanesh S, Mutombo P, Rosen J, Zbořil R, Miranda R, Björk J, Jelínek P, Martín N, Écija D. On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers. Angew Chem Int Ed Engl 2019; 58:6559-6563. [PMID: 30761719 PMCID: PMC6563096 DOI: 10.1002/anie.201814154] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 11/20/2022]
Abstract
Engineering low-band-gap π-conjugated polymers is a growing area in basic and applied research. The main synthetic challenge lies in the solubility of the starting materials, which precludes advancements in the field. Here, we report an on-surface synthesis protocol to overcome such difficulties and produce poly(p-anthracene ethynylene) molecular wires on Au(111). To this aim, a quinoid anthracene precursor with =CBr2 moieties is deposited and annealed to 400 K, resulting in anthracene-based polymers. High-resolution nc-AFM measurements confirm the nature of the ethynylene-bridge bond between the anthracene moieties. Theoretical simulations illustrate the mechanism of the chemical reaction, highlighting three major steps: dehalogenation, diffusion of surface-stabilized carbenes, and homocoupling, which enables the formation of an ethynylene bridge. Our results introduce a novel chemical protocol to design π-conjugated polymers based on oligoacene precursors and pave new avenues for advancing the emerging field of on-surface synthesis.
Collapse
Affiliation(s)
- Ana Sánchez‐Grande
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucŠlechtitelů 2778371OlomoucCzech Republic
- Institute of PhysicsThe Czech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - José Santos
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
| | - Borja Cirera
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
| | - Koen Lauwaet
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
| | - Taras Chutora
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucŠlechtitelů 2778371OlomoucCzech Republic
| | - Shayan Edalatmanesh
- Institute of PhysicsThe Czech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Pingo Mutombo
- Institute of PhysicsThe Czech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFMLinköping University58183LinköpingSweden
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucŠlechtitelů 2778371OlomoucCzech Republic
| | - Rodolfo Miranda
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
- Departamento de Física de la Materia CondensadaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFMLinköping University58183LinköpingSweden
| | - Pavel Jelínek
- Regional Centre of Advanced Technologies and MaterialsPalacký University OlomoucŠlechtitelů 2778371OlomoucCzech Republic
- Institute of PhysicsThe Czech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Nazario Martín
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense28040MadridSpain
| | - David Écija
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco28049MadridSpain
| |
Collapse
|
21
|
Sánchez‐Grande A, de la Torre B, Santos J, Cirera B, Lauwaet K, Chutora T, Edalatmanesh S, Mutombo P, Rosen J, Zbořil R, Miranda R, Björk J, Jelínek P, Martín N, Écija D. On‐Surface Synthesis of Ethynylene‐Bridged Anthracene Polymers. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ana Sánchez‐Grande
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Šlechtitelů 27 78371 Olomouc Czech Republic
- Institute of PhysicsThe Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
| | - José Santos
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Borja Cirera
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Koen Lauwaet
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| | - Taras Chutora
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Shayan Edalatmanesh
- Institute of PhysicsThe Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
| | - Pingo Mutombo
- Institute of PhysicsThe Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
| | - Johanna Rosen
- Department of Physics, Chemistry and Biology, IFMLinköping University 58183 Linköping Sweden
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Rodolfo Miranda
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
- Departamento de Física de la Materia CondensadaFacultad de CienciasUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Jonas Björk
- Department of Physics, Chemistry and Biology, IFMLinköping University 58183 Linköping Sweden
| | - Pavel Jelínek
- Regional Centre of Advanced Technologies and MaterialsPalacký University Olomouc Šlechtitelů 27 78371 Olomouc Czech Republic
- Institute of PhysicsThe Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
| | - Nazario Martín
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense 28040 Madrid Spain
| | - David Écija
- IMDEA Nanociencia, C/ Faraday 9Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
| |
Collapse
|
22
|
Uchida K, Yoshida S, Hosoya T. Synthetic Aryne Chemistry toward Multicomponent Coupling. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Suguru Yoshida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Takamitsu Hosoya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
23
|
Ebeling D, Zhong Q, Schlöder T, Tschakert J, Henkel P, Ahles S, Chi L, Mollenhauer D, Wegner HA, Schirmeisen A. Adsorption Structure of Mono- and Diradicals on a Cu(111) Surface: Chemoselective Dehalogenation of 4-Bromo-3″-iodo- p-terphenyl. ACS NANO 2019; 13:324-336. [PMID: 30550265 DOI: 10.1021/acsnano.8b06283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selectivity is a key parameter for building customized organic nanostructures via bottom-up approaches. Therefore, strategies are needed that allow connecting molecular entities at a specific stage of the assembly process in a chemoselective manner. Studying the mechanisms of such reactions is the key to apply these transformations for the buildup of organic nanostructures on surfaces. Especially, the knowledge about the precise adsorption geometry of intermediates at different stages during the reaction process and their interactions with surface atoms or adatoms is of fundamental importance, since often catalytic processes are involved. We show the selective dehalogenation of 4-bromo-3″-iodo- p-terphenyl on the Cu(111) surface using bond imaging atomic force microscopy with CO-functionalized tips. The deiodination and debromination reactions are triggered either by heating or by locally applying voltage pulses with the tip. We observed a strong hierarchical behavior of the dehalogenation with respect to temperature and voltage. In connection with first-principles simulations we can determine the orientation and position of the pristine molecules as well as adsorbed mono/diradicals and the halogens. We find that the isolated radicals are chemisorbed to Cu(111) top sites, which are lifted by 16 pm ( meta-position) and 32 pm ( para-position) from the Cu surface plane. This leads to a strongly twisted and bent 3D adsorption structure. After heating, different types of dimers are observed whose molecules are either bound to surface atoms or connected via Cu adatoms. Such knowledge about the intermediate geometry and its interaction with the surface will open the way to rationally design syntheses on surfaces.
Collapse
Affiliation(s)
- Daniel Ebeling
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Qigang Zhong
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , 215123 Suzhou , People's Republic of China
| | - Tobias Schlöder
- Institute of Physical Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Jalmar Tschakert
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| | - Pascal Henkel
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Physical Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Sebastian Ahles
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , 215123 Suzhou , People's Republic of China
| | - Doreen Mollenhauer
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Physical Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - Hermann A Wegner
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Institute of Organic Chemistry , Justus Liebig University Giessen , Heinrich-Buff-Ring 17 , 35392 Giessen , Germany
| | - André Schirmeisen
- Institute of Applied Physics , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
- Center for Materials Research (LaMa) , Justus Liebig University Giessen , Heinrich-Buff-Ring 16 , 35392 Giessen , Germany
| |
Collapse
|
24
|
Han J, Liu X, Li Y, Lou Z, Yi M, Kong H, Luo J. New synthetic approaches for hexacene and its application in thin-film transistors. Org Chem Front 2019. [DOI: 10.1039/c9qo00708c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hexacene was synthesized at the single molecule level and macroscopic scale, respectively. The film mobility of hexacene was observed at 0.123 cm2 V−1 s−1.
Collapse
Affiliation(s)
- Jian Han
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yu Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Zihao Lou
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Mingdong Yi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jun Luo
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|
25
|
Colazzo L, Mohammed MSG, Dorel R, Nita P, García Fernández C, Abufager P, Lorente N, Echavarren AM, de Oteyza DG. On-surface synthesis of heptacene on Ag(001) from brominated and non-brominated tetrahydroheptacene precursors. Chem Commun (Camb) 2018; 54:10260-10263. [PMID: 30152499 PMCID: PMC6136266 DOI: 10.1039/c8cc04402c] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Achieving the Ag(001)-supported synthesis of heptacene from two related reactants reveals the effect of the presence of Br atoms on the reaction process.
Achieving the Ag(001)-supported synthesis of heptacene from two related reactants reveals the effect of the presence of Br atoms on the reaction process. The properties of reactants, intermediates and end-products are further characterized by scanning tunneling microscopy and spectroscopy.
Collapse
Affiliation(s)
- Luciano Colazzo
- Donostia International Physics Center (DIPC), 20018 San Sebastián, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Krüger J, Eisenhut F, Skidin D, Lehmann T, Ryndyk DA, Cuniberti G, García F, Alonso JM, Guitián E, Pérez D, Peña D, Trinquier G, Malrieu JP, Moresco F, Joachim C. Electronic Resonances and Gap Stabilization of Higher Acenes on a Gold Surface. ACS NANO 2018; 12:8506-8511. [PMID: 30059612 DOI: 10.1021/acsnano.8b04046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On-surface synthesis provides a powerful method for the generation of long acene molecules, making possible the detailed investigation of the electronic properties of single higher acenes on a surface. By means of scanning tunneling microscopy and spectroscopy combined with theoretical considerations, we discuss the polyradical character of the ground state of higher acenes as a function of the number of linearly fused benzene rings. We present energy and spatial mapping of the tunneling resonances of hexacene, heptacene, and decacene, and discuss the role of molecular orbitals in the observed tunneling conductance maps. We show that the energy gap between the first electronic tunneling resonances below and above the Fermi energy stabilizes to a finite value, determined by a first diradical electronic perturbative contribution to the polyacene electronic ground state. Up to decacene, the main contributor to the ground state of acenes remains the lowest-energy closed-shell electronic configuration.
Collapse
Affiliation(s)
- Justus Krüger
- Institute for Materials Science and Max Bergmann Center of Biomaterials , TU Dresden , 01062 Dresden , Germany
- Center for Advancing Electronics Dresden , TU Dresden , 01062 Dresden , Germany
| | - Frank Eisenhut
- Institute for Materials Science and Max Bergmann Center of Biomaterials , TU Dresden , 01062 Dresden , Germany
- Center for Advancing Electronics Dresden , TU Dresden , 01062 Dresden , Germany
| | - Dmitry Skidin
- Institute for Materials Science and Max Bergmann Center of Biomaterials , TU Dresden , 01062 Dresden , Germany
- Center for Advancing Electronics Dresden , TU Dresden , 01062 Dresden , Germany
| | - Thomas Lehmann
- Institute for Materials Science and Max Bergmann Center of Biomaterials , TU Dresden , 01062 Dresden , Germany
| | - Dmitry A Ryndyk
- Institute for Materials Science and Max Bergmann Center of Biomaterials , TU Dresden , 01062 Dresden , Germany
- Bremen Center for Computational Materials Science (BCCMS) , Universität Bremen , 28359 Bremen , Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials , TU Dresden , 01062 Dresden , Germany
- Center for Advancing Electronics Dresden , TU Dresden , 01062 Dresden , Germany
- Dresden Center for Computational Materials Science (DCMS) , TU Dresden , 01062 Dresden , Germany
| | - Fátima García
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 - Santiago de Compostela , Spain
| | - José M Alonso
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 - Santiago de Compostela , Spain
| | - Enrique Guitián
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 - Santiago de Compostela , Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 - Santiago de Compostela , Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 - Santiago de Compostela , Spain
| | - Georges Trinquier
- Laboratoire de Chimie et Physique Quantiques, IRSAMC-CNRS-UMR5626 , Université Paul-Sabatier (Toulouse III) , 31062 Toulouse Cedex 4, France
| | - Jean-Paul Malrieu
- Laboratoire de Chimie et Physique Quantiques, IRSAMC-CNRS-UMR5626 , Université Paul-Sabatier (Toulouse III) , 31062 Toulouse Cedex 4, France
| | - Francesca Moresco
- Institute for Materials Science and Max Bergmann Center of Biomaterials , TU Dresden , 01062 Dresden , Germany
- Center for Advancing Electronics Dresden , TU Dresden , 01062 Dresden , Germany
| | - Christian Joachim
- Centre d'élaboration de matériaux et d'études structurale (CEMES), UPR 8011 CNRS , Nanosciences Group & MANA Satellite , 29 Rue J. Marvig , P.O. Box 94347, 31055 Toulouse , France
| |
Collapse
|
27
|
Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Higher Acenes by On‐Surface Dehydrogenation: From Heptacene to Undecacene. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Ruth Dorel
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Marek Kolmer
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Marek Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAMFaculty of Physics, Astronomy, and Applied Computer ScienceJagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgil C/Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
28
|
Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Higher Acenes by On-Surface Dehydrogenation: From Heptacene to Undecacene. Angew Chem Int Ed Engl 2018; 57:10500-10505. [PMID: 29791082 PMCID: PMC6099251 DOI: 10.1002/anie.201802040] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 11/24/2022]
Abstract
A unified approach to the synthesis of the series of higher acenes up to previously unreported undecacene has been developed through the on-surface dehydrogenation of partially saturated precursors. These molecules could be converted into the parent acenes by both atomic manipulation with the tip of a scanning tunneling and atomic force microscope (STM/AFM) as well as by on-surface annealing. The structure of the generated acenes has been visualized by high-resolution non-contact AFM imaging and the evolution of the transport gap with the increase of the number of fused benzene rings has been determined on the basis of scanning tunneling spectroscopy (STS) measurements.
Collapse
Affiliation(s)
- Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Ruth Dorel
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Marek Kolmer
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Marek Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgil, C/Marcel⋅lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
29
|
Eisenhut F, Krüger J, Skidin D, Nikipar S, Alonso JM, Guitián E, Pérez D, Ryndyk DA, Peña D, Moresco F, Cuniberti G. Hexacene generated on passivated silicon. NANOSCALE 2018; 10:12582-12587. [PMID: 29938293 DOI: 10.1039/c8nr03422b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On-surface synthesis represents a successful strategy to obtain designed molecular structures on an ultra-clean metal substrate. While metal surfaces are known to favor adsorption, diffusion, and chemical bonding between molecular groups, on-surface synthesis on non-metallic substrates would allow the electrical decoupling of the resulting molecule from the surface, favoring application to electronics and spintronics. Here, we demonstrate the on-surface generation of hexacene by surface-assisted reduction on a H-passivated Si(001) surface. The reaction, observed by scanning tunneling microscopy and spectroscopy, is probably driven by the formation of Si-O complexes at dangling bond defects. Supported by density functional theory calculations, we investigate the interaction of hexacene with the passivated silicon surface, and with single silicon dangling bonds.
Collapse
Affiliation(s)
- Frank Eisenhut
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01069 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Richter A, Floris A, Bechstein R, Kantorovich L, Kühnle A. On-surface synthesis on a bulk insulator surface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:133001. [PMID: 29460853 DOI: 10.1088/1361-648x/aab0b9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On-surface synthesis has rapidly emerged as a most promising approach to prepare functional molecular structures directly on a support surface. Compared to solution synthesis, performing chemical reactions on a surface offers several exciting new options: due to the absence of a solvent, reactions can be envisioned that are otherwise not feasible due to the insolubility of the reaction product. Perhaps even more important, the confinement to a two-dimensional surface might enable reaction pathways that are not accessible otherwise. Consequently, on-surface synthesis has attracted great attention in the last decade, with an impressive number of classical reactions transferred to a surface as well as new reactions demonstrated that have no classical analogue. So far, the majority of the work has been carried out on conducting surfaces. However, when aiming for electronic decoupling of the resulting structures, e.g. for the use in future molecular electronic devices, non-conducting surfaces are highly desired. Here, we review the current status of on-surface reactions demonstrated on the (10.4) surface of the bulk insulator calcite. Besides thermally induced C-C coupling of halogen-substituted aryls, photochemically induced [2 + 2] cycloaddition has been proven possible on this surface. Moreover, experimental evidence exists for coupling of terminal alkynes as well as diacetylene polymerization. While imaging of the resulting structures with dynamic atomic force microscopy provides a direct means of reaction verification, the detailed reaction pathway often remains unclear. Especially in cases where the presence of metal atoms is known to catalyze the corresponding solution chemistry reaction (e.g. in the case of the Ullmann reaction), disclosing the precise reaction pathway is of importance to understand and generalize on-surface reactivity on a bulk insulator surface. To this end, density-functional theory calculations have proven to provide atomic-scale insights that have greatly contributed to unravelling the details of on-surface synthesis on a bulk insulator surface.
Collapse
Affiliation(s)
- Antje Richter
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
31
|
Sun Q, Zhang R, Qiu J, Liu R, Xu W. On-Surface Synthesis of Carbon Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018. [PMID: 29513368 DOI: 10.1002/adma.201705630] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Novel carbon nanomaterials have aroused significant interest owing to their prospects in various technological applications. The recently developed on-surface synthesis strategy provides a route toward atomically precise fabrication of nanostructures, which paves the way to functional molecular nanostructures in a controlled fashion. A plethora of low-dimensional nanostructures, challenging to traditional solution chemistry, have been recently fabricated. Within the last few decades, an increasing interest and flourishing studies on the fabrication of novel low-dimensional carbon nanostructures using on-surface synthesis strategies have been witnessed. In particular, carbon materials, including fullerene, carbon nanotubes, and graphene nanoribbons, are synthesized with atomic precision by such bottom-up methods. Herein, starting from the basic concepts and progress made in the field of on-surface synthesis, the recent developments of atomically precise fabrication of low-dimensional carbon nanostructures are reviewed.
Collapse
Affiliation(s)
- Qiang Sun
- Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Renyuan Zhang
- Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Jun Qiu
- Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Rui Liu
- Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Wei Xu
- Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
32
|
Zuzak R, Dorel R, Krawiec M, Such B, Kolmer M, Szymonski M, Echavarren AM, Godlewski S. Nonacene Generated by On-Surface Dehydrogenation. ACS NANO 2017; 11:9321-9329. [PMID: 28817255 DOI: 10.1021/acsnano.7b04728] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The on-surface synthesis of nonacene has been accomplished by dehydrogenation of an air-stable partially saturated precursor, which could be aromatized by using a combined scanning tunneling and atomic force microscope as well as by on-surface annealing. This transformation allowed the in-detail analysis of the electronic properties of nonacene molecules physisorbed on Au(111) by scanning tunneling spectroscopy measurements. The spatial mapping of molecular orbitals was corroborated by density functional theory calculations. Furthermore, the thermally induced dehydrogenation uncovered the isomerization of intermediate dihydrononacene species, which allowed for their in-depth structural and electronic characterization.
Collapse
Affiliation(s)
- Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Łojasiewicza 11, PL 30-348 Krakow, Poland
| | - Ruth Dorel
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Mariusz Krawiec
- Institute of Physics, Maria Curie-Sklodowska University , Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
| | - Bartosz Such
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Łojasiewicza 11, PL 30-348 Krakow, Poland
| | - Marek Kolmer
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Łojasiewicza 11, PL 30-348 Krakow, Poland
| | - Marek Szymonski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Łojasiewicza 11, PL 30-348 Krakow, Poland
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology , Avenida Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Łojasiewicza 11, PL 30-348 Krakow, Poland
| |
Collapse
|
33
|
Naranjo T, Cerrón F, Nieto-Ortega B, Latorre A, Somoza Á, Ibarra B, Pérez EM. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions. Chem Sci 2017; 8:6037-6041. [PMID: 28989633 PMCID: PMC5625567 DOI: 10.1039/c7sc03044d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/29/2017] [Indexed: 11/26/2022] Open
Abstract
Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.
Collapse
Affiliation(s)
- Teresa Naranjo
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Fernando Cerrón
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Belén Nieto-Ortega
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Alfonso Latorre
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| | - Álvaro Somoza
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
- Nanobiotecnología (IMDEA-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 , Madrid , Spain
| | - Borja Ibarra
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
- Nanobiotecnología (IMDEA-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 , Madrid , Spain
| | - Emilio M Pérez
- IMDEA Nanociencia , C/Faraday 9, Ciudad Universitaria de Cantoblanco , 28049 , Madrid , Spain . ;
| |
Collapse
|
34
|
Zugermeier M, Gruber M, Schmid M, Klein BP, Ruppenthal L, Müller P, Einholz R, Hieringer W, Berndt R, Bettinger HF, Gottfried JM. On-surface synthesis of heptacene and its interaction with a metal surface. NANOSCALE 2017; 9:12461-12469. [PMID: 28813050 DOI: 10.1039/c7nr04157h] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Heptacene was generated by surface-assisted didecarbonylation of an α-diketone precursor on a Ag(111) surface. Monitoring of the surface reaction and characterization of the adsorbed heptacene was performed with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT) calculations. The surface-assisted formation of heptacene occurs around 460 K. Both the heptacene and the precursor molecules are oriented along the high-symmetry directions of the (111) surface and their molecular π systems face towards the substrate. The interaction with the Ag(111) substrate is not laterally uniform, but appears to be strongest on the central part of the molecule, in line with the expectations from Clar's rule. In the STM images, heptacene shows a dumbbell shape, which may correspond to the substantial out-of-plane deformations of heptacene on Ag(111). As revealed by DFT, the center of the molecule is closer to the surface than the outer parts. In addition, the inner rings are most affected by charge redistribution between surface and molecule. Heptacene acts as an acceptor and receives a negative charge of -0.6e from the Ag(111) surface. Since vacuum-sublimable α-diketone precursors for even larger acenes are available, the approach is promising for the on-surface synthesis of higher acene homologues such as octacene and nonacene.
Collapse
Affiliation(s)
- Malte Zugermeier
- Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein-Str. 4, 35032 Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Krüger J, García F, Eisenhut F, Skidin D, Alonso JM, Guitián E, Pérez D, Cuniberti G, Moresco F, Peña D. Decacene: On-Surface Generation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706156] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Justus Krüger
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden; TU Dresden; 01069 Dresden Germany
| | - Fátima García
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Frank Eisenhut
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden; TU Dresden; 01069 Dresden Germany
| | - Dmitry Skidin
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden; TU Dresden; 01069 Dresden Germany
| | - José M. Alonso
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Enrique Guitián
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden; TU Dresden; 01069 Dresden Germany
| | - Francesca Moresco
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden; TU Dresden; 01069 Dresden Germany
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica; Universidade de Santiago de Compostela; 15782- Santiago de Compostela Spain
| |
Collapse
|
36
|
Krüger J, García F, Eisenhut F, Skidin D, Alonso JM, Guitián E, Pérez D, Cuniberti G, Moresco F, Peña D. Decacene: On-Surface Generation. Angew Chem Int Ed Engl 2017; 56:11945-11948. [PMID: 28771920 DOI: 10.1002/anie.201706156] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 11/11/2022]
Abstract
Acenes are intriguing molecules with unique electronic properties. The difficulties in their preparation owing to low stability under ambient conditions are apparent because successful syntheses of long unsubstituted acenes are still scarce, in spite of the great attention they have attracted. Only unsubstituted acenes up to heptacene have been isolated in bulk, with nonacene being the largest acene detected to date. Herein we use on-surface assisted reduction of tetraepoxy decacene precursors on Au(111) as the key step to generate unprecedented decacene which is visualized and its electronic resonances studied by scanning tunneling microscopy (STM) and spectroscopy (STS).
Collapse
Affiliation(s)
- Justus Krüger
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden, TU Dresden, 01069, Dresden, Germany
| | - Fátima García
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| | - Frank Eisenhut
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden, TU Dresden, 01069, Dresden, Germany
| | - Dmitry Skidin
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden, TU Dresden, 01069, Dresden, Germany
| | - José M Alonso
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| | - Enrique Guitián
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden, TU Dresden, 01069, Dresden, Germany
| | - Francesca Moresco
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden, TU Dresden, 01069, Dresden, Germany
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-, Santiago de Compostela, Spain
| |
Collapse
|
37
|
Urgel JI, Hayashi H, Di Giovannantonio M, Pignedoli CA, Mishra S, Deniz O, Yamashita M, Dienel T, Ruffieux P, Yamada H, Fasel R. On-Surface Synthesis of Heptacene Organometallic Complexes. J Am Chem Soc 2017; 139:11658-11661. [DOI: 10.1021/jacs.7b05192] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- José I. Urgel
- Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Hironobu Hayashi
- Graduate
School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Marco Di Giovannantonio
- Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Carlo A. Pignedoli
- NCCR MARVEL, Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Shantanu Mishra
- Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Okan Deniz
- Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Masataka Yamashita
- Graduate
School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Thomas Dienel
- Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Pascal Ruffieux
- Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
| | - Hiroko Yamada
- Graduate
School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Roman Fasel
- Empa, Swiss Federal Laboratories for Material Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Chemistry and Biochemistry, University of Bern, Freiestrasse
3, 3012 Bern, Switzerland
| |
Collapse
|
38
|
Strain-induced skeletal rearrangement of a polycyclic aromatic hydrocarbon on a copper surface. Nat Commun 2017; 8:16089. [PMID: 28726802 PMCID: PMC5524995 DOI: 10.1038/ncomms16089] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Controlling the structural deformation of organic molecules can drive unique reactions that cannot be induced only by thermal, optical or electrochemical procedures. However, in conventional organic synthesis, including mechanochemical procedures, it is difficult to control skeletal rearrangement in polycyclic aromatic hydrocarbons (PAHs). Here, we demonstrate a reaction scheme for the skeletal rearrangement of PAHs on a metal surface using high-resolution noncontact atomic force microscopy. By a combination of organic synthesis and on-surface cyclodehydrogenation, we produce a well-designed PAH—diazuleno[1,2,3-cd:1′,2′,3′-fg]pyrene—adsorbed flatly onto Cu(001), in which two azuleno moieties are highly strained by their mutual proximity. This local strain drives the rearrangement of one of the azuleno moieties into a fulvaleno moiety, which has never been reported so far. Our proposed thermally driven, strain-induced synthesis on surfaces will pave the way for the production of a new class of nanocarbon materials that conventional synthetic techniques cannot attain. Mechanical strains can induce chemical transformations otherwise inaccessible by conventional stimuli. Here, the authors show the unusual strain-induced transformation of a polycyclic aromatic hydrocarbon on a metal surface by means of atomic force microscopy.
Collapse
|
39
|
Zint S, Ebeling D, Schlöder T, Ahles S, Mollenhauer D, Wegner HA, Schirmeisen A. Imaging Successive Intermediate States of the On-Surface Ullmann Reaction on Cu(111): Role of the Metal Coordination. ACS NANO 2017; 11:4183-4190. [PMID: 28346826 DOI: 10.1021/acsnano.7b01109] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The in-depth knowledge about on-surface reaction mechanisms is crucial for the tailor-made design of covalently bonded organic frameworks, for applications such as nanoelectronic or -optical devices. Latest developments in atomic force microscopy, which rely on functionalizing the tip with single CO molecules at low temperatures, allow to image molecular systems with submolecular resolution. Here, we are using this technique to study the complete reaction pathway of the on-surface Ullmann-type coupling between bromotriphenylene molecules on a Cu(111) surface. All steps of the Ullmann reaction, i.e., bromotriphenylenes, triphenylene radicals, organometallic intermediates, and bistriphenylenes, were imaged with submolecular resolution. Together with density functional theory calculations with dispersion correction, our study allows to address the long-standing question of how the organometallic intermediates are coordinated via Cu surface or adatoms.
Collapse
Affiliation(s)
- Sören Zint
- Institute of Applied Physics (IAP), Justus Liebig University Giessen , Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Daniel Ebeling
- Institute of Applied Physics (IAP), Justus Liebig University Giessen , Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | | | | | | | | | - André Schirmeisen
- Institute of Applied Physics (IAP), Justus Liebig University Giessen , Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| |
Collapse
|
40
|
Kong H, Yang S, Gao H, Timmer A, Hill JP, Díaz Arado O, Mönig H, Huang X, Tang Q, Ji Q, Liu W, Fuchs H. Substrate-Mediated C–C and C–H Coupling after Dehalogenation. J Am Chem Soc 2017; 139:3669-3675. [DOI: 10.1021/jacs.6b10936] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Hongying Gao
- Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse
10, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Alexander Timmer
- Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse
10, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Jonathan P. Hill
- Center
for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Oscar Díaz Arado
- Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse
10, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Harry Mönig
- Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse
10, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149 Münster, Germany
| | | | | | | | | | - Harald Fuchs
- Physikalisches
Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse
10, 48149 Münster, Germany
- Center
for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149 Münster, Germany
| |
Collapse
|
41
|
Krüger J, Eisenhut F, Alonso JM, Lehmann T, Guitián E, Pérez D, Skidin D, Gamaleja F, Ryndyk DA, Joachim C, Peña D, Moresco F, Cuniberti G. Imaging the electronic structure of on-surface generated hexacene. Chem Commun (Camb) 2016; 53:1583-1586. [PMID: 27990553 DOI: 10.1039/c6cc09327b] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-assisted reduction of specially designed air-stable precursors allows us to study single hexacene molecules on Au(111) by scanning tunneling microscopy and spectroscopy, mapping with intramolecular resolution their extended electronic eigenstates.
Collapse
Affiliation(s)
- Justus Krüger
- Institute for Materials Science, Max Bergmann Center of Biomaterials, and Center for Advancing Electronics Dresden, TU Dresden, 01069 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|