1
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
2
|
Khursheed A, Xu LC, Siedlecki CA. The effects of submicron-textured surface topography on antibiotic efficacy against biofilms. J Biomed Mater Res B Appl Biomater 2024; 112:e35436. [PMID: 38961592 PMCID: PMC11239140 DOI: 10.1002/jbm.b.35436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 07/05/2024]
Abstract
Submicron-textured surfaces have been a promising approach to mitigate biofilm development and control microbial infection. However, the use of the single surface texturing approach is still far from ideal for achieving complete control of microbial infections on implanted biomedical devices. The use of a surface topographic modification that might improve the utility of standard antibiotic therapy could alleviate the complications of biofilms on devices. In this study, we characterized the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa on smooth and submicron-textured polyurethane surfaces after 1, 2, 3, and 7 days, and measured the efficacy of common antibiotics against these biofilms. Results show that the submicron-textured surfaces significantly reduced biofilm formation and growth, and that the efficacy of antibiotics against biofilms grown on textured surfaces was improved compared with smooth surfaces. The antibiotic efficacy appears to be related to the degree of biofilm development. At early time points in biofilm formation, antibiotic treatment reveals reasonably good antibiotic efficacy against biofilms on both smooth and textured surfaces, but as biofilms mature, the efficacy of antibiotics drops dramatically on smooth surfaces, with lesser decreases seen for the textured surfaces. The results demonstrate that surface texturing with submicron patterns is able to improve the use of standard antibiotic therapy to treat device-centered biofilms by slowing the development of the biofilm, thereby offering less resistance to antibiotic delivery to the bacteria within the biofilm community.
Collapse
Affiliation(s)
- Asma Khursheed
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| |
Collapse
|
3
|
Petukhov DI, Johnson DJ. Membrane modification with carbon nanomaterials for fouling mitigation: A review. Adv Colloid Interface Sci 2024; 327:103140. [PMID: 38579462 DOI: 10.1016/j.cis.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
This paper provides a comprehensive overview of recent advancements in membrane modification for fouling mitigation in various water treatment processes, employing carbon nanomaterials such as fullerenes, nanodiamonds, carbon quantum dots, carbon nanotubes, and graphene oxide. Currently, using different carbon nanomaterials for polymeric membrane fouling mitigation is at various stages: CNT-modified membranes have been studied for more than ten years and have already been tested in pilot-scale setups; tremendous attention has been paid to utilizing graphene oxide as a modifying agent, while the research on carbon quantum dots' influence on the membrane antifouling properties is in the early stages. Given the intricate nature of fouling as a colloidal phenomenon, the review initially delves into the factors influencing the fouling process and explores strategies to address it. The diverse chemistry and antibacterial properties of carbon nanomaterials make them valuable for mitigating scaling, colloidal, and biofouling. This review covers surface modification of existing membranes using different carbon materials, which can be implemented as a post-treatment procedure during membrane fabrication. Creating mixed-matrix membranes by incorporating carbon nanomaterials into the polymer matrix requires the development of new synthetic procedures. Additionally, it discusses promising strategies to actively suppress fouling through external influences on modified membranes. In the concluding section, the review compares the effectiveness of carbon materials of varying dimensions and identifies key characteristics influencing the antifouling properties of membranes modified with carbon nanomaterials.
Collapse
Affiliation(s)
- Dmitrii I Petukhov
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Daniel J Johnson
- Division of Engineering, Water Research Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
5
|
Le PH, Linklater DP, Medina AA, MacLaughlin S, Crawford RJ, Ivanova EP. Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomater 2024; 177:20-36. [PMID: 38342192 DOI: 10.1016/j.actbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
While there has been significant research conducted on bacterial colonization on implant materials, with a focus on developing surface modifications to prevent the formation of bacterial biofilms, the study of Candida albicans biofilms on implantable materials is still in its infancy, despite its growing relevance in implant-associated infections. C. albicans fungal infections represent a significant clinical concern due to their severity and associated high fatality rate. Pathogenic yeasts account for an increasing proportion of implant-associated infections, since Candida spp. readily form biofilms on medical and dental device surfaces. In addition, these biofilms are highly antifungal-resistant, making it crucial to explore alternative solutions for the prevention of Candida implant-associated infections. One promising approach is to modify the surface properties of the implant, such as the wettability and topography of these substrata, to prevent the initial Candida attachment to the surface. This review summarizes recent research on the effects of surface wettability, roughness, and architecture on Candida spp. attachment to implantable materials. The nanofabrication of material surfaces are highlighted as a potential method for the prevention of Candida spp. attachment and biofilm formation on medical implant materials. Understanding the mechanisms by which Candida spp. attach to surfaces will allow such surfaces to be designed such that the incidence and severity of Candida infections in patients can be significantly reduced. Most importantly, this approach could also substantially reduce the need to use antifungals for the prevention and treatment of these infections, thereby playing a crucial role in minimizing the possibility contributing to instances of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: In this review we provide a systematic analysis of the role that surface characteristics, such as wettability, roughness, topography and architecture, play on the extent of C. albicans cells attachment that will occur on biomaterial surfaces. We show that exploiting bioinspired surfaces could significantly contribute to the prevention of antimicrobial resistance to antifungal and chemical-based preventive measures. By reducing the attachment and growth of C. albicans cells using surface structure approaches, we can decrease the need for antifungals, which are conventionally used to treat such infections.
Collapse
Affiliation(s)
- Phuc H Le
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; Department of Biomedical Engineering, The Graeme Clark Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Arturo Aburto Medina
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shane MacLaughlin
- ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia; BlueScope Steel Research, Port Kembla, NSW 2505, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia; ARC Research Hub for Australian Steel Manufacturing, Melbourne, VIC 3001, Australia.
| |
Collapse
|
6
|
Song N, Yu Y, Zhang Y, Wang Z, Guo Z, Zhang J, Zhang C, Liang M. Bioinspired Hierarchical Self-Assembled Nanozyme for Efficient Antibacterial Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210455. [PMID: 36854170 DOI: 10.1002/adma.202210455] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Along with the rapid development and ever-deepening understanding of nanoscience and nanotechnology, nanomaterials hold promise to mimic the highly evolved biological exquisite nanostructures and sophisticated functions. Here, inspired by the ubiquitous antibacterial nanostructures on the wing surfaces of some insects, a NiCo2 O4 nanozyme with self-adaptive hierarchical nanostructure is developed that can capture bacteria of various morphotypes via the physico-mechanical interaction between the nanostructure and bacteria. Moreover, the developed biomimetic nanostructure further exhibits superior peroxidase-like catalytic activity, which can catalytically generate highly toxic reactive oxygen species that disrupt bacterial membranes and induce bacterial apoptosis. Therefore, the mechano-catalytic coupling property of this NiCo2 O4 nanozyme allows for an extensive and efficient antibacterial application, with no concerns of antimicrobial resistance. This work suggests a promising strategy for the rational design of advanced antibacterial materials by mimicking biological antibiosis.
Collapse
Affiliation(s)
- Ningning Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yu
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yinuo Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengdi Wang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhanjun Guo
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianlin Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Changbin Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Minmin Liang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
7
|
Pirouz A, Papakonstantinou I, Michalska M. Antimicrobial mechanisms of nanopatterned surfaces-a developing story. Front Chem 2024; 12:1354755. [PMID: 38348407 PMCID: PMC10859517 DOI: 10.3389/fchem.2024.1354755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Whilst it is now well recognized that some natural surfaces such as seemingly fragile insect wings possess extraordinary antimicrobial properties, a quest to engineer similar nanopatterned surfaces (NPSs) is ongoing. The stake is high as biofouling impacts critical infrastructure leading to massive social and economic burden with an antimicrobial resistance (AMR) issue at the forefront. AMR is one of the most imminent health challenges the world is facing today. Here, in the effort to find more sustainable solutions, the NPSs are proposed as highly promising technology as their antimicrobial activity arises from the topographical features, which could be realized on multiple material surfaces. To fully exploit these potentials however, it is crucial to mechanistically understand the underlying killing pathways. Thus far, several mechanisms have been proposed, yet they all have one thing in common. The antimicrobial process is initiated with bacteria contacting nanopatterns, which then imposes mechanical stress onto bacterial cell wall. Hence, the activity is called "mechano-bactericidal". From this point on, however, the suggested mechanisms start to diverge partly due to our limited understanding of force interactions at the interface. The aim of this mini review is to analyze the state-of-the-art in proposed killing mechanisms by categorizing them based on the characteristics of their driving force. We also highlight the current gaps and possible future directions in investigating the mechanisms, particularly by shifting towards quantification of forces at play and more elaborated biochemical assays, which can aid validating the current hypotheses.
Collapse
Affiliation(s)
- Arash Pirouz
- Manufacturing Futures Lab, Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Ioannis Papakonstantinou
- Photonic Innovations Lab, Department of Electronic and Electrical Engineering, University College London, London, United Kingdom
| | - Martyna Michalska
- Manufacturing Futures Lab, Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
8
|
Mah SL, Linklater DP, Tzanov V, Le PH, Dekiwadia C, Mayes E, Simons R, Eyckens DJ, Moad G, Saita S, Joudkazis S, Jans DA, Baulin VA, Borg NA, Ivanova EP. Piercing of the Human Parainfluenza Virus by Nanostructured Surfaces. ACS NANO 2024; 18:1404-1419. [PMID: 38127731 PMCID: PMC10902884 DOI: 10.1021/acsnano.3c07099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
This paper presents a comprehensive experimental and theoretical investigation into the antiviral properties of nanostructured surfaces and explains the underlying virucidal mechanism. We used reactive ion etching to fabricate silicon (Si) surfaces featuring an array of sharp nanospikes with an approximate tip diameter of 2 nm and a height of 290 nm. The nanospike surfaces exhibited a 1.5 log reduction in infectivity of human parainfluenza virus type 3 (hPIV-3) after 6 h, a substantially enhanced efficiency, compared to that of smooth Si. Theoretical modeling of the virus-nanospike interactions determined the virucidal action of the nanostructured substrata to be associated with the ability of the sharp nanofeatures to effectively penetrate the viral envelope, resulting in the loss of viral infectivity. Our research highlights the significance of the potential application of nanostructured surfaces in combating the spread of viruses and bacteria. Notably, our study provides valuable insights into the design and optimization of antiviral surfaces with a particular emphasis on the crucial role played by sharp nanofeatures in maximizing their effectiveness.
Collapse
Affiliation(s)
- Samson
W. L. Mah
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | - Denver P. Linklater
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- Department
of Biomedical Engineering, Graeme Clarke Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vassil Tzanov
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Phuc H. Le
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Chaitali Dekiwadia
- RMIT
Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia
| | - Edwin Mayes
- RMIT
Microscopy and Microanalysis Facility, STEM College,RMIT University, Melbourne, Victoria 3000, Australia
| | - Ranya Simons
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Graeme Moad
- CSIRO
Manufacturing, Clayton, Victoria 3168, Australia
| | - Soichiro Saita
- The KAITEKI
Institute Inc., Chiyoda-ku, Tokyo 100-8251, Japan
| | - Saulius Joudkazis
- Optical
Science Centre, Swinburne University of
Technology, Hawthorn, Melbourne, Victoria 3122, Australia
| | - David A. Jans
- Nuclear
Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Monash, Victoria 3800, Australia
| | - Vladimir A. Baulin
- Departament
de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Natalie A. Borg
- School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Victoria 3083, Australia
| | - Elena P. Ivanova
- School
of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
9
|
Huang LZY, Shaw ZL, Penman R, Cheeseman S, Truong VK, Higgins MJ, Caruso RA, Elbourne A. Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:344-361. [PMID: 38100088 DOI: 10.1021/acsabm.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rowan Penman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Samuel Cheeseman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vi Khanh Truong
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael J Higgins
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
10
|
Zhang X, Zhang J, Han X, Wang S, Hao L, Zhang C, Fan Y, Zhao J, Jiang R, Ren L. A photothermal therapy enhanced mechano-bactericidal hybrid nanostructured surface. J Colloid Interface Sci 2023; 645:380-390. [PMID: 37156146 DOI: 10.1016/j.jcis.2023.04.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
Polymeric materials that have been extensively applied in medical devices, wearable electronics, and food packaging are readily contaminated by bothersome pathogenic bacteria. Bioinspired mechano-bactericidal surfaces can deliver lethal rupture for contacted bacterial cells through mechanical stress. However, the mechano-bactericidal activity based only on polymeric nanostructures is not satisfactory, especially for the Gram-positive strain which is generally more resistant to mechanical lysis. Here, we show that the mechanical bactericidal performance of polymeric nanopillars can be significantly enhanced by the combination of photothermal therapy. We fabricated the nanopillars through the combination of low-cost anodized aluminum oxide (AAO) template-assisted method with an environment-friendly Layer-by-Layer (LbL) assembly technique of tannic acid (TA) and iron ion (Fe3+). The fabricated hybrid nanopillar exhibited remarkable bactericidal performances (more than 99%) toward both Gram-negative Pseudomonas aeruginosa (P. aeruginosa) and stubborn Gram-positive Staphylococcus aureus (S. aureus) bacteria. Notably, this hybrid nanostructured surface displayed excellent biocompatibility for murine L929 fibroblast cells, indicating a selective biocidal activity between bacterial cells and mammalian cells. Thus, the concept and antibacterial system described here present a low-cost, scalable, and highly repeatable strategy for the construction of physical bactericidal nanopillars on polymeric films with high performance and biosafety, but without any risks of causing antibacterial resistance.
Collapse
Affiliation(s)
- Xin Zhang
- College of Chemistry, Jilin University, Changchun 130022, China; Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Jiteng Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Xiaoli Han
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China; Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Shengnan Wang
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lingwan Hao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China; Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Chengchun Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130022, China.
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China; Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China.
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
11
|
Asaftei M, Lucidi M, Cirtoaje C, Holban AM, Charitidis CA, Yang F, Wu A, Stanciu GA, Sağlam Ö, Lazar V, Visca P, Stanciu SG. Fighting bacterial pathogens with carbon nanotubes: focused review of recent progress. RSC Adv 2023; 13:19682-19694. [PMID: 37396836 PMCID: PMC10308885 DOI: 10.1039/d3ra01745a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
The fast and global spread of bacterial resistance to currently available antibiotics results in a great and urgent need for alternative antibacterial agents and therapeutic strategies. Recent studies on the application of nanomaterials as antimicrobial agents have demonstrated their potential for the management of infectious diseases. Among the diverse palette of nanomaterials currently used in biomedical applications, carbon nanotubes (CNTs) have gained massive interest given their many valuable properties, such as high thermal and electrical conductivity, tensile strength, flexibility convenient aspect ratio, and low fabrication costs. All these features are augmented by facile conjugation with functional groups. CNTs are currently available in many configurations, with two main categories being single-walled and multi-walled CNTs, depending on the number of rolled-up single-layer carbon atoms sheets making up the nanostructure. Both classes have been identified over the past years as promising antibacterial agents but the current level of understanding of their efficiency still harbors many pending questions. This mini-review surveys recent progress on the topic of antibacterial effects of CNTs and examines the proposed mechanisms of action(s) of different CNT typologies, placing the main focus on past studies addressing the antibacterial activity on Staphylococcus aureus and Escherichia coli, two prototypical Gram-positive and Gram-negative pathogens, respectively.
Collapse
Affiliation(s)
- Mihaela Asaftei
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest Romania
- Department of Microbiology, University of Bucharest Romania
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University Rome 00146 Italy
- NBFC, National Biodiversity Future Center Palermo 90133 Italy
| | | | | | - Costas A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens Greece
| | - Fang Yang
- CIXI Institute for Biomedical Engineering, Ningbo Institute for Materials Technology and Engineering, Chinese Academy of Sciences China
| | - Aiguo Wu
- CIXI Institute for Biomedical Engineering, Ningbo Institute for Materials Technology and Engineering, Chinese Academy of Sciences China
| | - George A Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest Romania
| | - Özge Sağlam
- Department of Mechanical Engineering, İzmir University of Economics Turkey
| | - Veronica Lazar
- Department of Microbiology, University of Bucharest Romania
| | - Paolo Visca
- Department of Science, Roma Tre University Rome 00146 Italy
- Santa Lucia Foundation IRCCS Rome 00179 Italy
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest Romania
| |
Collapse
|
12
|
Catley T, Corrigan RM, Parnell AJ. Designing Effective Antimicrobial Nanostructured Surfaces: Highlighting the Lack of Consensus in the Literature. ACS OMEGA 2023; 8:14873-14883. [PMID: 37151499 PMCID: PMC10157858 DOI: 10.1021/acsomega.2c08068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023]
Abstract
Research into nanostructured materials, inspired by the topography of certain insect wings, has provided a potential pathway toward drug-free antibacterial surfaces, which may be vital in the ongoing battle against antimicrobial resistance. However, to produce viable antibacterial nanostructured surfaces, we must first understand the bactericidal mechanism of action and how to optimize them to kill the widest range of microorganisms. This review discusses the parameters of nanostructured surfaces that have been shown to influence their bactericidal efficiency and highlights the highly variable nature of many of the findings. A large-scale analysis of the literature is also presented, which further shows a lack of clarity in what is understood about the factors influencing bactericidal efficiency. The potential reasons for the ambiguity, including how the killing effect may be a result of multiple factors and issues with nonstandardized testing of the antibacterial properties of nanostructured surfaces, are then discussed. Finally, a standard method for testing of antimicrobial killing is proposed that will allow comparison between studies and enable a deeper understanding about nanostructured surfaces and how to optimize their bactericidal efficiency.
Collapse
Affiliation(s)
- Thomas
E. Catley
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - Rebecca M. Corrigan
- Molecular
Microbiology, School of Biosciences, University
of Sheffield, Firth Court, Sheffield S10 2TN, United Kingdom
| | - Andrew J. Parnell
- Department
of Physics and Astronomy, University of
Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| |
Collapse
|
13
|
Cheng W, Wang X, Zou S, Ni M, Lu Z, Dai L, Su J, Yang K, Su X. Fabrication of Black Silicon Microneedle Arrays for High Drug Loading. J Funct Biomater 2023; 14:jfb14050245. [PMID: 37233355 DOI: 10.3390/jfb14050245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Silicon microneedle (Si-MN) systems are a promising strategy for transdermal drug delivery due to their minimal invasiveness and ease of processing and application. Traditional Si-MN arrays are usually fabricated by using micro-electro-mechanical system (MEMS) processes, which are expensive and not suitable for large-scale manufacturing and applications. In addition, Si-MNs have a smooth surface, making it difficult for them to achieve high-dose drug delivery. Herein, we demonstrate a solid strategy to prepare a novel black silicon microneedle (BSi-MN) patch with ultra-hydrophilic surfaces for high drug loading. The proposed strategy consists of a simple fabrication of plain Si-MNs and a subsequent fabrication of black silicon nanowires. First, plain Si-MNs were prepared via a simple method consisting of laser patterning and alkaline etching. The nanowire structures were then prepared on the surfaces of the plain Si-MNs to form the BSi-MNs through Ag-catalyzed chemical etching. The effects of preparation parameters, including Ag+ and HF concentrations during Ag nanoparticle deposition and [HF/(HF + H2O2)] ratio during Ag-catalyzed chemical etching, on the morphology and properties of the BSi-MNs were investigated in detail. The results show that the final prepared BSi-MN patches exhibit an excellent drug loading capability, more than twice that of plain Si-MN patches with the same area, while maintaining comparable mechanical properties for practical skin piercing applications. Moreover, the BSi-MNs exhibit a certain antimicrobial activity that is expected to prevent bacterial growth and disinfect the affected area when applied to the skin.
Collapse
Affiliation(s)
- Wei Cheng
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215000, China
| | - Shuai Zou
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Suzhou Xiangbang Biotechnology Co., Ltd., Suzhou 215006, China
| | - Mengfei Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zheng Lu
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Longfei Dai
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Jiandong Su
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215000, China
| | - Kai Yang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xiaodong Su
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
14
|
Butler J, Handy RD, Upton M, Besinis A. Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics. ACS NANO 2023; 17:7064-7092. [PMID: 37027838 PMCID: PMC10134505 DOI: 10.1021/acsnano.2c12488] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review discusses topics relevant to the development of antimicrobial nanocoatings and nanoscale surface modifications for medical and dental applications. Nanomaterials have unique properties compared to their micro- and macro-scale counterparts and can be used to reduce or inhibit bacterial growth, surface colonization and biofilm development. Generally, nanocoatings exert their antimicrobial effects through biochemical reactions, production of reactive oxygen species or ionic release, while modified nanotopographies create a physically hostile surface for bacteria, killing cells via biomechanical damage. Nanocoatings may consist of metal nanoparticles including silver, copper, gold, zinc, titanium, and aluminum, while nonmetallic compounds used in nanocoatings may be carbon-based in the form of graphene or carbon nanotubes, or composed of silica or chitosan. Surface nanotopography can be modified by the inclusion of nanoprotrusions or black silicon. Two or more nanomaterials can be combined to form nanocomposites with distinct chemical or physical characteristics, allowing combination of different properties such as antimicrobial activity, biocompatibility, strength, and durability. Despite their wide range of applications in medical engineering, questions have been raised regarding potential toxicity and hazards. Current legal frameworks do not effectively regulate antimicrobial nanocoatings in matters of safety, with open questions remaining about risk analysis and occupational exposure limits not considering coating-based approaches. Bacterial resistance to nanomaterials is also a concern, especially where it may affect wider antimicrobial resistance. Nanocoatings have excellent potential for future use, but safe development of antimicrobials requires careful consideration of the "One Health" agenda, appropriate legislation, and risk assessment.
Collapse
Affiliation(s)
- James Butler
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D. Handy
- School
of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Mathew Upton
- School
of Biomedical Sciences, Faculty of Health, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United
Kingdom
| | - Alexandros Besinis
- School
of Engineering, Computing and Mathematics, Faculty of Science and
Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
- Peninsula
Dental School, Faculty of Health, University
of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
15
|
Cheng Y, Ma X, Franklin T, Yang R, Moraru CI. Mechano-Bactericidal Surfaces: Mechanisms, Nanofabrication, and Prospects for Food Applications. Annu Rev Food Sci Technol 2023; 14:449-472. [PMID: 36972158 DOI: 10.1146/annurev-food-060721-022330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Mechano-bactericidal (MB) nanopatterns have the ability to inactivate bacterial cells by rupturing cellular envelopes. Such biocide-free, physicomechanical mechanisms may confer lasting biofilm mitigation capability to various materials encountered in food processing, packaging, and food preparation environments. In this review, we first discuss recent progress on elucidating MB mechanisms, unraveling property-activity relationships, and developing cost-effective and scalable nanofabrication technologies. Next, we evaluate the potential challenges that MB surfaces may face in food-related applications and provide our perspective on the critical research needs and opportunities to facilitate their adoption in the food industry.
Collapse
Affiliation(s)
- Yifan Cheng
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA;
| | - Xiaojing Ma
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Trevor Franklin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Rong Yang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
16
|
Martins de Sousa K, Linklater DP, Murdoch BJ, Al Kobaisi M, Crawford RJ, Judge R, Dashper S, Sloan AJ, Losic D, Ivanova EP. Modulation of MG-63 Osteogenic Response on Mechano-Bactericidal Micronanostructured Titanium Surfaces. ACS APPLIED BIO MATERIALS 2023; 6:1054-1070. [PMID: 36880728 DOI: 10.1021/acsabm.2c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Despite recent advances in the development of orthopedic devices, implant-related failures that occur as a result of poor osseointegration and nosocomial infection are frequent. In this study, we developed a multiscale titanium (Ti) surface topography that promotes both osteogenic and mechano-bactericidal activity using a simple two-step fabrication approach. The response of MG-63 osteoblast-like cells and antibacterial activity toward Pseudomonas aeruginosa and Staphylococcus aureus bacteria was compared for two distinct micronanoarchitectures of differing surface roughness created by acid etching, using either hydrochloric acid (HCl) or sulfuric acid (H2SO4), followed by hydrothermal treatment, henceforth referred to as either MN-HCl or MN-H2SO4. The MN-HCl surfaces were characterized by an average surface microroughness (Sa) of 0.8 ± 0.1 μm covered by blade-like nanosheets of 10 ± 2.1 nm thickness, whereas the MN-H2SO4 surfaces exhibited a greater Sa value of 5.8 ± 0.6 μm, with a network of nanosheets of 20 ± 2.6 nm thickness. Both micronanostructured surfaces promoted enhanced MG-63 attachment and differentiation; however, cell proliferation was only significantly increased on MN-HCl surfaces. In addition, the MN-HCl surface exhibited increased levels of bactericidal activity, with only 0.6% of the P. aeruginosa cells and approximately 5% S. aureus cells remaining viable after 24 h when compared to control surfaces. Thus, we propose the modulation of surface roughness and architecture on the micro- and nanoscale to achieve efficient manipulation of osteogenic cell response combined with mechanical antibacterial activity. The outcomes of this study provide significant insight into the further development of advanced multifunctional orthopedic implant surfaces.
Collapse
Affiliation(s)
| | - Denver P Linklater
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Mohammad Al Kobaisi
- School of Engineering, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Russell J Crawford
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Roy Judge
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart Dashper
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair J Sloan
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
17
|
Schifano E, Cavoto G, Pandolfi F, Pettinari G, Apponi A, Ruocco A, Uccelletti D, Rago I. Plasma-Etched Vertically Aligned CNTs with Enhanced Antibacterial Power. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1081. [PMID: 36985974 PMCID: PMC10054568 DOI: 10.3390/nano13061081] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The emergence of multidrug-resistant bacteria represents a growing threat to public health, and it calls for the development of alternative antibacterial approaches not based on antibiotics. Here, we propose vertically aligned carbon nanotubes (VA-CNTs), with a properly designed nanomorphology, as effective platforms to kill bacteria. We show, via a combination of microscopic and spectroscopic techniques, the ability to tailor the topography of VA-CNTs, in a controlled and time-efficient manner, by means of plasma etching processes. Three different varieties of VA-CNTs were investigated, in terms of antibacterial and antibiofilm activity, against Pseudomonas aeruginosa and Staphylococcus aureus: one as-grown variety and two varieties receiving different etching treatments. The highest reduction in cell viability (100% and 97% for P. aeruginosa and S. aureus, respectively) was observed for the VA-CNTs modified using Ar and O2 as an etching gas, thus identifying the best configuration for a VA-CNT-based surface to inactivate both planktonic and biofilm infections. Additionally, we demonstrate that the powerful antibacterial activity of VA-CNTs is determined by a synergistic effect of both mechanical injuries and ROS production. The possibility of achieving a bacterial inactivation close to 100%, by modulating the physico-chemical features of VA-CNTs, opens up new opportunities for the design of self-cleaning surfaces, preventing the formation of microbial colonies.
Collapse
Affiliation(s)
- Emily Schifano
- Dipartimento di Biologia e Biotecnologia “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, 00100 Rome, Italy
| | - Gianluca Cavoto
- Dipartimento di Fisica, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
- INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | | | - Giorgio Pettinari
- Istituto di Fotonica e Nanotecnologie, CNR-IFN, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Alice Apponi
- Dipartimento di Scienze, Università Degli Studi Roma Tre and INFN Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Alessandro Ruocco
- Dipartimento di Scienze, Università Degli Studi Roma Tre and INFN Sezione di Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Daniela Uccelletti
- Dipartimento di Biologia e Biotecnologia “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, 00100 Rome, Italy
| | - Ilaria Rago
- Dipartimento di Fisica, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
- INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
18
|
Finite Element Modelling of a Gram-Negative Bacterial Cell and Nanospike Array for Cell Rupture Mechanism Study. Molecules 2023; 28:molecules28052184. [PMID: 36903429 PMCID: PMC10004153 DOI: 10.3390/molecules28052184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Inspired by nature, it is envisaged that a nanorough surface exhibits bactericidal properties by rupturing bacterial cells. In order to study the interaction mechanism between the cell membrane of a bacteria and a nanospike at the contact point, a finite element model was developed using the ABAQUS software package. The model, which saw a quarter of a gram-negative bacteria (Escherichia coli) cell membrane adhered to a 3 × 6 array of nanospikes, was validated by the published results, which show a reasonably good agreement with the model. The stress and strain development in the cell membrane was modeled and were observed to be spatially linear and temporally nonlinear. From the study, it was observed that the bacterial cell wall was deformed around the location of the nanospike tips as full contact was generated. Around the contact point, the principal stress reached above the critical stress leading to a creep deformation that is expected to cause cell rupture by penetrating the nanospike, and the mechanism is envisaged to be somewhat similar to that of a paper punching machine. The obtained results in this project can provide an insight on how bacterial cells of a specific species are deformed when they adhere to nanospikes, and how it is ruptured using this mechanism.
Collapse
|
19
|
Patil D, Golia V, Overland M, Stoller M, Chatterjee K. Mechanobactericidal Nanotopography on Nitrile Surfaces toward Antimicrobial Protective Gear. ACS Macro Lett 2023; 12:227-233. [PMID: 36706309 DOI: 10.1021/acsmacrolett.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have much to learn from other living organisms when it comes to engineering strategies to combat bacterial infections. This study describes the fabrication of cicada wing-inspired nanotopography on commercially pure (CP) nitrile sheets and nitrile gloves for medical use using the reactive ion etching (RIE) technique. Antibacterial activity against P. aeruginosa was tested using two different surface morphologies. It was observed that the etched nitrile surfaces effectively minimized bacterial colonization by inducing membrane damage. Our findings demonstrate a single-step dry etching method for creating mechanobactericidal topographies on nitrile-based surfaces. These findings have utility in designing next-generation personal protective gear in the clinical setting and for many other important applications in the age of antimicrobial resistance.
Collapse
Affiliation(s)
- Deepak Patil
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bengaluru 560012, India
| | - Vibhanshu Golia
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bengaluru 560012, India
| | - Maya Overland
- Division of Pediatric Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, United States
| | - Marshall Stoller
- Department of Urology, University of California, San Francisco, California 94143, United States
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bengaluru 560012, India
| |
Collapse
|
20
|
Ni M, Li W, Yuan B, Zou S, Cheng W, Yang K, Su J, Sun B, Su X. Micro-structured P-N junction surfaces: large-scale preparation, antifouling properties, and a synergistic antibacterial mechanism. J Mater Chem B 2023; 11:1312-1319. [PMID: 36651868 DOI: 10.1039/d2tb02258c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Constructing an antifouling surface cost-effectively is vitally important for many applications. Herein, a series of silicon substrates with micro-pyramid structures and p-n junctions were fabricated following a simple industrial processing flow, among which the p+n-Si substrate, fabricated through boron doping of a micro-pyramid structured n-type silicon wafer, exhibited the most pronounced antibacterial performance. Broad-spectrum bactericidal and bacteriostatic activity of p+n-Si under ambient light illumination was observed, with an inhibition ability of 73-100% compared to that of a bare glass against both airborne and contact-transmitted bacteria in the intensive care unit. The synergetic effect of mechanical rupture and electric injury was supposed to be responsible for the potent antibacterial activity. This work proposes a state-of-the-art concept that p-n junctions enhance the anti-infection ability of micro-structured surfaces and provide a promising strategy for fabricating practical antifouling surfaces with a large-size, a facile manufacturing procedure, and gentle working conditions, as well as broad-spectrum and physical antibacterial mechanisms.
Collapse
Affiliation(s)
- Mengfei Ni
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Wenwen Li
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China. .,Songshan Lake Materials Laboratory, Dongguan 523808, China.
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, China.
| | - Shuai Zou
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Wei Cheng
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Kai Yang
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| | - Jiandong Su
- Suzhou Municipal Hospital, Suzhou 215008, China.
| | - Bingwei Sun
- Suzhou Municipal Hospital, Suzhou 215008, China.
| | - Xiaodong Su
- School of Physical Science and Technology, and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
| |
Collapse
|
21
|
Hamdan N, Khodir WKWA, Hamid SA, Nasir MHM, Hamzah AS, Cruz-Maya I, Guarino V. PCL/Gelatin/Graphene Oxide Electrospun Nanofibers: Effect of Surface Functionalization on In Vitro and Antibacterial Response. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:488. [PMID: 36770449 PMCID: PMC9921190 DOI: 10.3390/nano13030488] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The emergence of resistance to pathogenic bacteria has resulted from the misuse of antibiotics used in wound treatment. Therefore, nanomaterial-based agents can be used to overcome these limitations. In this study, polycaprolactone (PCL)/gelatin/graphene oxide electrospun nanofibers (PGO) are functionalized via plasma treatment with the monomeric groups diallylamine (PGO-M1), acrylic acid (PGO-M2), and tert-butyl acrylate (PGO-M3) to enhance the action against bacteria cells. The surface functionalization influences the morphology, surface wettability, mechanical properties, and thermal stability of PGO nanofibers. PGO-M1 and PGO-M2 exhibit good antibacterial activity against Staphylococcus aureus and Escherichia coli, whereas PGO-M3 tends to reduce their antibacterial properties compared to PGO nanofibers. The highest proportion of dead bacteria cells is found on the surface of hydrophilic PGO-M1, whereas live cells are colonized on the surface of hydrophobic PGO-M3. Likewise, PGO-M1 shows a good interaction with L929, which is confirmed by the high levels of adhesion and proliferation with respect to the control. All the results confirm that surface functionalization can be strategically used as a tool to engineer PGO nanofibers with controlled antibacterial properties for the fabrication of highly versatile devices suitable for different applications (e.g., health, environmental pollution).
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Mohd Hamzah Mohd Nasir
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Pahang, Malaysia
| | - Ahmad Sazali Hamzah
- Institute of Science, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
22
|
Lee MS, Hussein HR, Chang SW, Chang CY, Lin YY, Chien Y, Yang YP, Kiew LV, Chen CY, Chiou SH, Chang CC. Nature-Inspired Surface Structures Design for Antimicrobial Applications. Int J Mol Sci 2023; 24:1348. [PMID: 36674860 PMCID: PMC9865960 DOI: 10.3390/ijms24021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Surface contamination by microorganisms such as viruses and bacteria may simultaneously aggravate the biofouling of surfaces and infection of wounds and promote cross-species transmission and the rapid evolution of microbes in emerging diseases. In addition, natural surface structures with unique anti-biofouling properties may be used as guide templates for the development of functional antimicrobial surfaces. Further, these structure-related antimicrobial surfaces can be categorized into microbicidal and anti-biofouling surfaces. This review introduces the recent advances in the development of microbicidal and anti-biofouling surfaces inspired by natural structures and discusses the related antimicrobial mechanisms, surface topography design, material application, manufacturing techniques, and antimicrobial efficiencies.
Collapse
Grants
- 110VACS-003 Establishment of Regenerative Medicine and Cell Therapy Platform of Veterans General Hospital system
- 110VACS-007 Establishment of epidemic prevention and research platform in the veterans medical system for the control of emerging infectious diseases
- MOHW108-TDU-B-211-133001 Ministry of Health and Welfare
- MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1 VGH, TSGH, NDMC, AS Joint Research Program
- VTA108-V1-5-3 VGH, TSGH, NDMC, AS Joint Research Program
- VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- NSTC 111-2321-B-A49-007 National Science and Technology Council, Taiwan
- NSTC 111-2112-M-A49-025 National Science and Technology Council, Taiwan
- MOST 108-2320-B-010-019-MY3 National Science and Technology Council, Taiwan
- MOST 109-2327-B-010-007 National Science and Technology Council, Taiwan
- MOST 109-2327-B-016-002 National Science and Technology Council, Taiwan
- NSTC 111-2927-I-A49-004 National Science and Technology Council, Taiwan
- IIRG003B-19FNW Universiti Malaya and the Ministry of Higher Education, Malaysia
Collapse
Affiliation(s)
- Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hussein Reda Hussein
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt
| | - Sheng-Wen Chang
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
- Department of French Language and Literature, National Central University, Taoyuan City 320317, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lik-Voon Kiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
23
|
Xu LC, Siedlecki CA. Surface Texturing and Combinatorial Approaches to Improve Biocompatibility of Implanted Biomaterials. FRONTIERS IN PHYSICS 2022; 10:994438. [PMID: 38250242 PMCID: PMC10798815 DOI: 10.3389/fphy.2022.994438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Biomaterial associated microbial infection and blood thrombosis are two of the barriers that inhibit the successful use of implantable medical devices in modern healthcare. Modification of surface topography is a promising approach to combat microbial infection and thrombosis without altering bulk material properties necessary for device function and without contributing to bacterial antibiotic resistance. Similarly, the use of other antimicrobial techniques such as grafting poly(ethylene glycol) (PEG) and nitric oxide (NO) release also improve the biocompatibility of biomaterials. In this review, we discuss the development of surface texturing techniques utilizing ordered submicron-size pillars for controlling bacterial adhesion and biofilm formation, and we present combinatorial approaches utilizing surface texturing in combination with poly(ethylene glycol) (PEG) grafting and NO release to improve the biocompatibility of biomaterials. The manuscript also discusses efforts towards understanding the molecular mechanisms of bacterial adhesion responses to the surface texturing and NO releasing biomaterials, focusing on experimental aspects of the approach.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
- Department of Biomedical Engineering, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| |
Collapse
|
24
|
Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022; 16:249-270. [PMID: 35415290 PMCID: PMC8965851 DOI: 10.1016/j.bioactmat.2022.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
Microbial resistance to current antibiotics therapies is a major cause of implant failure and adverse clinical outcomes in orthopaedic surgery. Recent developments in advanced antimicrobial nanotechnologies provide numerous opportunities to effective remove resistant bacteria and prevent resistance from occurring through unique mechanisms. With tunable physicochemical properties, nanomaterials can be designed to be bactericidal, antifouling, immunomodulating, and capable of delivering antibacterial compounds to the infection region with spatiotemporal accuracy. Despite its substantial advancement, an important, but under-explored area, is potential microbial resistance to nanomaterials and how this can impact the clinical use of antimicrobial nanotechnologies. This review aims to provide a better understanding of nanomaterial-associated microbial resistance to accelerate bench-to-bedside translations of emerging nanotechnologies for effective control of implant associated infections.
Collapse
Affiliation(s)
- Zhuoran Wu
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Brian Chan
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Jessalyn Low
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117545, Singapore
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117547, Singapore
- Institute of Molecular and Cell Biology, 35 Agency for Science, Technology and Research, 138673, Singapore
| | - Hwee Weng Dennis Hey
- National University Health System, National University of Singapore, 119228, Singapore
| | - Andy Tay
- Institute of Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Tissue Engineering Programme, National University of Singapore, 117510, Singapore
| |
Collapse
|
25
|
Bright R, Hayles A, Wood J, Palms D, Brown T, Barker D, Vasilev K. Surfaces Containing Sharp Nanostructures Enhance Antibiotic Efficacy. NANO LETTERS 2022; 22:6724-6731. [PMID: 35900125 DOI: 10.1021/acs.nanolett.2c02182] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ever-increasing rate of medical device implantations is met by a proportionately high burden of implant-associated infections. To mitigate this threat, much research has been directed toward the development of antibacterial surface modifications by various means. One recent approach involves surfaces containing sharp nanostructures capable of killing bacteria upon contact. Herein, we report that the mechanical interaction between Staphylococcus aureus and such surface nanostructures leads to a sensitization of the pathogen to the glycopeptide antibiotic vancomycin. We demonstrate that this is due to cell wall damage and impeded bacterial defenses against reactive oxygen species. The results of this study promise to be impactful in the clinic, as a combination of nanostructured antibacterial surfaces and antibiotics commonly used in hospitals may improve antimicrobial therapy strategies, helping clinicians to prevent and treat implant-associated infections using reduced antibiotic concentrations instead of relying on invasive revision surgeries with often poor outcomes.
Collapse
Affiliation(s)
- Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
| | - Toby Brown
- Corin Australia, Pymble 2073, New South Wales, Australia
| | - Dan Barker
- Corin Australia, Pymble 2073, New South Wales, Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide 5095, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
26
|
Recent Progress on Bioinspired Antibacterial Surfaces for Biomedical Application. Biomimetics (Basel) 2022; 7:biomimetics7030088. [PMID: 35892358 PMCID: PMC9326651 DOI: 10.3390/biomimetics7030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Surface bacterial fouling has become an urgent global challenge that calls for resilient solutions. Despite the effectiveness in combating bacterial invasion, antibiotics are susceptible to causing microbial antibiotic resistance that threatens human health and compromises the medication efficacy. In nature, many organisms have evolved a myriad of surfaces with specific physicochemical properties to combat bacteria in diverse environments, providing important inspirations for implementing bioinspired approaches. This review highlights representative natural antibacterial surfaces and discusses their corresponding mechanisms, including repelling adherent bacteria through tailoring surface wettability and mechanically killing bacteria via engineering surface textures. Following this, we present the recent progress in bioinspired active and passive antibacterial strategies. Finally, the biomedical applications and the prospects of these antibacterial surfaces are discussed.
Collapse
|
27
|
Nakhoul A, Rudenko A, Maurice C, Reynaud S, Garrelie F, Pigeon F, Colombier J. Boosted Spontaneous Formation of High-Aspect Ratio Nanopeaks on Ultrafast Laser-Irradiated Ni Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200761. [PMID: 35618474 PMCID: PMC9313481 DOI: 10.1002/advs.202200761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Indexed: 05/27/2023]
Abstract
The capacity to synthesize and design highly intricated nanoscale objects of different sizes, surfaces, and shapes dramatically conditions the development of multifunctional nanomaterials. Ultrafast laser technology holds great promise as a contactless process able to rationally and rapidly manufacture complex nanostructures bringing innovative surface functions. The most critical challenge in controlling the growth of laser-induced structures below the light diffraction limit is the absence of external order associated to the inherent local interaction due to the self-organizing nature of the phenomenon. Here high aspect-ratio nanopatterns driven by near-field surface coupling and architectured by timely-controlled polarization pulse shaping are reported. Electromagnetic coupled with hydrodynamic simulations reveal why this unique optical manipulation allows peaks generation by inhomogeneous local absorption sustained by nanoscale convection. The obtained high aspect-ratio surface nanotopography is expected to prevent bacterial proliferation, and have great potential for catalysis, vacuum to deep UV photonics and sensing.
Collapse
Affiliation(s)
- Anthony Nakhoul
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
- Univ LyonMines Saint‐Etienne, CNRS, Centre SMS, Laboratoire Georges Friedel, UMR5307St‐Etienne42023France
| | - Anton Rudenko
- Arizona Center for Mathematical Sciences and College of Optical SciencesUniversity of ArizonaTucsonAZ85721USA
| | - Claire Maurice
- Univ LyonMines Saint‐Etienne, CNRS, Centre SMS, Laboratoire Georges Friedel, UMR5307St‐Etienne42023France
| | - Stéphanie Reynaud
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| | - Florence Garrelie
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| | - Florent Pigeon
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| | - Jean‐Philippe Colombier
- Univ LyonUJM‐Saint‐Etienne, CNRS, IOGS, Laboratoire Hubert Curien, UMR5516St‐Etienne42023France
| |
Collapse
|
28
|
Valiei A, Lin N, McKay G, Nguyen D, Moraes C, Hill RJ, Tufenkji N. Surface Wettability Is a Key Feature in the Mechano-Bactericidal Activity of Nanopillars. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27564-27574. [PMID: 35670568 DOI: 10.1021/acsami.2c03258] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanopillar-textured surfaces are of growing interest because of their ability to kill bacteria through physical damage without relying on antimicrobial chemicals. Although research on antibacterial nanopillars has progressed significantly in recent years, the effect of nanopillar hydrophobicity on bactericidal activity remains elusive. In this study, we investigated the mechano-bactericidal efficacy of etched silicon nanopillars against Pseudomonas aeruginosa at nanopillar hydrophobicities from superhydrophilic to superhydrophobic. Assessing cell viability and bacterial morphology in immersed wet conditions, we observed negligible bactericidal activity; however, air/liquid interface displacement during water evaporation established a bactericidal effect that strongly depends on substrate hydrophobicity. Specifically, bactericidal activity was highest on superhydrophilic surfaces but abated with increasing hydrophobicity, diminishing at substrate contact angles larger than 90°. Calculation of the surface tension and Laplace pressure forces during water evaporation for each substrate subsequently highlighted that the total capillary force, as an external driving force responsible for bacterial deformation, is significantly weaker on hydrophobic substrates. These findings suggest that superhydrophilic nanopillared surfaces are a superior choice for mechano-bactericidal activity, whereas superhydrophobic surfaces, although not bactericidal, may have antibiofouling properties through their self-cleaning effect. These findings provide new insights into the design and application of nanopillared surfaces as functional antibacterial materials.
Collapse
Affiliation(s)
- Amin Valiei
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Nicholas Lin
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Geoffrey McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Québec H3A 0G4, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Québec H3A 0G4, Canada
- Department of Medicine, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Québec H3A 2B4, Canada
| | - Reghan J Hill
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Québec H3A 0C5, Canada
| |
Collapse
|
29
|
Xu LC, Siedlecki CA. Submicron topography design for controlling staphylococcal bacterial adhesion and biofilm formation. J Biomed Mater Res A 2022; 110:1238-1250. [PMID: 35128791 PMCID: PMC9885517 DOI: 10.1002/jbm.a.37369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Surface topography modification with nano- or micro-textured structures has been an efficient approach to inhibit microbial adhesion and biofilm formation and thereby to prevent biomaterial-associated infection without modification of surface chemistry/bulk properties of materials and without causing antibiotic resistance. This manuscript focuses on submicron-textured patterns with ordered arrays of pillars on polyurethane (PU) biomaterial surfaces in an effort to understand the effects of surface pillar features and surface properties on adhesion and colonization responses of two staphylococcal strains. Five submicron patterns with a variety of pillar dimensions were designed and fabricated on PU film surfaces and bacterial adhesion and biofilm formation of Staphylococcal strains (Staphylococcus epidermidis RP62A and Staphylococcus aureus Newman D2C) were characterized. Results show that all submicron textured surface significantly reduced bacterial adhesion and inhibited biofilm formation, and bacterial adhesion linearly decreased with the reduction in top surface area fraction. Surface wettability did not show a linear correlation with bacterial adhesion, suggesting that surface contact area dominates bacterial adhesion. From this, it appears that the design of textured patterns should minimize surface area fraction to reduce the bacterial interaction with surfaces but in a way that ensures the mechanical strength of pillars in order to avoid collapse. These findings may provide a rationale for design of polymer surfaces for antifouling medical devices.
Collapse
Affiliation(s)
- Li-Chong Xu
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Surgery, The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Department of Biomedical Engineering,The Pennsylvania State University, College of Medicine, Hershey, PA 17033,Correspondence: Dr. Christopher A. Siedlecki, The Pennsylvania State University, Milton S. Hershey Medical Center, College of Medicine, H151, 500 University Dr., Hershey, PA 17033. Phone: (717) 531-5716. Fax: (717) 531-4464.
| |
Collapse
|
30
|
Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li Y. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105252. [PMID: 35088586 PMCID: PMC8981469 DOI: 10.1002/advs.202105252] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Indexed: 05/02/2023]
Abstract
The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Bingqing Jia
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yong‐Qiang Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
- Suzhou Research InstituteShandong UniversitySuzhou215123China
| |
Collapse
|
31
|
Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022; 141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Bio-inspired nanostructures have demonstrated highly efficient mechano-bactericidal performances with no risk of bacterial resistance; however, they are prone to become contaminated with the killed bacterial debris. Herein, a biocompatible mechano-bactericidal nanopatterned surface with salt-responsive bacterial releasing behavior is developed by grafting salt-responsive polyzwitterionic (polyDVBAPS) brushes on a bio-inspired nanopattern surface. Benefiting from the salt-triggered configuration change of the grafted polymer brushes, this dual-functional surface shows high mechano-bactericidal efficiency in water (low ionic strength condition), while the dead bacterial residuals can be easily lifted by the extended polymer chains and removed from the surface in 1 M NaCl solution (high ionic strength conditions). Notably, this functionalized nanopatterned surface shows selective biocidal activity between bacterial cells sand eukaryotic cells. The biocompatibility with red blood cells (RBCs) and mammalian cells was tested in vitro. The histocompatibility and prevention of perioperative contamination activity were verified by in vivo evaluation in a rat subcutaneous implant model. This nanopatterned surface with bacterial killing and releasing activities may open new avenues for designing bio-inspired mechano-bactericidal platforms with long-term efficacy, thus presenting a facile alternative in combating perioperative-related bacterial infection. STATEMENT OF SIGNIFICANCE: Bioinspired nanostructured surfaces with noticeable mechano-bactericidal activity showed great potential in moderating drug-resistance. However, the nanopatterned surfaces are prone to be contaminated by the killed bacterial debris and compromised the bactericidal performance. In this study, we provide a dual-functional antibacterial conception with both mechano-bactericidal and bacterial releasing performances not requiring external chemical bactericidal agents. Additionally, this functionalized antibacterial surface also shows selective biocidal activity between bacteria and eukaryotic cells, and the excellent biocompatibility was tested in vitro and in vivo. The new concept for the functionalized mechano-bactericidal surface here illustrated presents a facile antibiotic-free alternative in combating perioperative related bacterial infection in practical application.
Collapse
|
32
|
Lohmann SC, Tripathy A, Milionis A, Keller A, Poulikakos D. Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces. ACS APPLIED BIO MATERIALS 2022; 5:1564-1575. [PMID: 35176858 DOI: 10.1021/acsabm.1c01318] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membrane deformation. The stability of and the absence of chemicals in such surfaces support their facile and sustainable employment in avoiding surface-born pathogen transmission. Recently, the deflection of controllably nanofabricated pillar arrays has been shown to strongly affect bactericidal activity, with the limits of mechanical effectiveness of such structures remaining largely unexplored. Here, we examine the limits of softer, commonly used polymeric materials and investigate the interplay between pillar nanostructure sizing and flexibility for effective antibacterial functionality. A facile, scalable, UV nanoimprint lithography method was used to fabricate nanopillar array topographies of variable sizes and flexibilities. It was found that bacterial death on nanopillars in the range of diameters ≤100 nm and Young's moduli ≥1.3 GPa is increased by 3.5- to 5.6-fold, while thicker or softer pillars did not reduce bacterial viability. To further support our findings, we performed a finite element analysis of pillar deformation. It revealed that differences in the amount of stress exerted on bacterial membranes, generated from the stored elastic energy in flexible pillars, contribute to the observed bactericidal performance.
Collapse
Affiliation(s)
- Sophie C Lohmann
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Abinash Tripathy
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Anja Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
33
|
Kohls A, Maurer Ditty M, Dehghandehnavi F, Zheng SY. Vertically Aligned Carbon Nanotubes as a Unique Material for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6287-6306. [PMID: 35090107 PMCID: PMC9254017 DOI: 10.1021/acsami.1c20423] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vertically aligned carbon nanotubes (VACNTs), a unique classification of CNT, highly oriented and normal to the respective substrate, have been heavily researched over the last two decades. Unlike randomly oriented CNT, VACNTs have demonstrated numerous advantages making it an extremely desirable nanomaterial for many biomedical applications. These advantages include better spatial uniformity, increased surface area, greater susceptibility to functionalization, improved electrocatalytic activity, faster electron transfer, higher resolution in sensing, and more. This Review discusses VACNT and its utilization in biomedical applications particularly for sensing, biomolecule filtration systems, cell stimulation, regenerative medicine, drug delivery, and bacteria inhibition. Furthermore, comparisons are made between VACNT and its traditionally nonaligned, randomly oriented counterpart. Thus, we aim to provide a better understanding of VACNT and its potential applications within the community and encourage its utilization in the future.
Collapse
|
34
|
Zhao S, Li Z, Linklater DP, Han L, Jin P, Wen L, Chen C, Xing D, Ren N, Sun K, Juodkazis S, Ivanova EP, Jiang L. Programmed Death of Injured Pseudomonas aeruginosa on Mechano-Bactericidal Surfaces. NANO LETTERS 2022; 22:1129-1137. [PMID: 35040647 DOI: 10.1021/acs.nanolett.1c04243] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechano-bactericidal surfaces deliver lethal effects to contacting bacteria. Until now, cell death has been attributed to the mechanical stress imparted to the bacterial cell envelope by the surface nanostructures; however, the process of bacterial death encountering nanostructured surfaces has not been fully illuminated. Here, we perform an in-depth investigation of the mechano-bactericidal action of black silicon (bSi) surfaces toward Gram-negative bacteria Pseudomonas aeruginosa. We discover that the mechanical injury is not sufficient to kill the bacteria immediately due to the survival of the inner plasma membrane. Instead, such sublethal mechanical injury leads to apoptosis-like death (ALD) in affected bacteria. In addition, when the mechanical stress is removed, the self-accumulated reactive oxygen species (ROS) incur poststress ALD in damaged cells in a nonstressed environment, revealing that the mechano-bactericidal actions have sustained physiological effects on the bacterium. This work creates a new facet and can introduce many new regulation tools to this field.
Collapse
Affiliation(s)
- Shuo Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | | | - Lin Han
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150080, China
| | - Peng Jin
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150080, China
| | - Liping Wen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Saulius Juodkazis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Mimura S, Shimizu T, Shingubara S, Iwaki H, Ito T. Bactericidal effect of nanostructures via lytic transglycosylases of Escherichia coli. RSC Adv 2022; 12:1645-1652. [PMID: 35425160 PMCID: PMC8978875 DOI: 10.1039/d1ra07623j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Nanostructures exhibit a bactericidal effect owing to physical interaction with the bacterial cell envelope. Here, we aimed to identify the mechanism underlying the bactericidal effect of nanostructures based on bacterial autolysis, in contrast to previous reports focusing on structural characteristics. The time profiles of active cell ratios of the Escherichia coli strains (WT, ΔmltA, ΔmltB, Δslt70), incubation time of the wild-type (WT) strains, and autolysis inhibition of WT strains were evaluated with respect to the bactericidal effect of the applied nanostructures. Addition of Mg2+, an autolysis inhibitor, was not found to cause significant cell damage. The incubation phase was significantly associated with envelope damage. The lytic transglycosylase-lacking strain of Slt70 (Δslt70) also showed only minimal envelope damage. Our results indicate that nanostructures may act by triggering bacterial autolysis.
Collapse
Affiliation(s)
- Soma Mimura
- Graduate School of Science and Engineering, Kansai University Yamatecho 3-3-35 Suita Osaka 564-8680 Japan
| | - Tomohiro Shimizu
- Graduate School of Science and Engineering, Kansai University Yamatecho 3-3-35 Suita Osaka 564-8680 Japan
| | - Shoso Shingubara
- Graduate School of Science and Engineering, Kansai University Yamatecho 3-3-35 Suita Osaka 564-8680 Japan
| | - Hiroaki Iwaki
- Graduate School of Science and Engineering, Kansai University Yamatecho 3-3-35 Suita Osaka 564-8680 Japan
| | - Takeshi Ito
- Graduate School of Science and Engineering, Kansai University Yamatecho 3-3-35 Suita Osaka 564-8680 Japan
| |
Collapse
|
36
|
Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater Sci 2022; 10:4392-4423. [DOI: 10.1039/d2bm00472k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Overcoming the global concern of antibiotic resistance is one of the biggest challenge faced by scientists today and the key to tackle this issue of emerging infectious diseases is the...
Collapse
|
37
|
Bright R, Fernandes D, Wood J, Palms D, Burzava A, Ninan N, Brown T, Barker D, Vasilev K. Long-term antibacterial properties of a nanostructured titanium alloy surface: An in vitro study. Mater Today Bio 2021; 13:100176. [PMID: 34938990 DOI: 10.1016/j.mtbio.2021.100176] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The demand for joint replacement and other orthopedic surgeries involving titanium implants is continuously increasing; however, 1%-2% of surgeries result in costly and devastating implant associated infections (IAIs). Pseudomonas aeruginosa and Staphylococcus aureus are two common pathogens known to colonise implants, leading to serious complications. Bioinspired surfaces with spike-like nanotopography have previously been shown to kill bacteria upon contact; however, the longer-term potential of such surfaces to prevent or delay biofilm formation is unclear. Hence, we monitored biofilm formation on control and nanostructured titanium disc surfaces over 21 days following inoculation with Pseudomonas aeruginosa and Staphylococcus aureus. We found a consistent 2-log or higher reduction in live bacteria throughout the time course for both bacteria. The biovolume on nanostructured discs was also significantly lower than control discs at all time points for both bacteria. Analysis of the biovolume revealed that for the nanostructured surface, bacteria was killed not just on the surface, but at locations above the surface. Interestingly, pockets of bacterial regrowth on top of the biomass occurred in both bacterial species, however this was more pronounced for S. aureus cultures after 21 days. We found that the nanostructured surface showed antibacterial properties throughout this longitudinal study. To our knowledge this is the first in vitro study to show reduction in the viability of bacterial colonisation on a nanostructured surface over a clinically relevant time frame, providing potential to reduce the likelihood of implant associated infections.
Collapse
Affiliation(s)
- Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Daniel Fernandes
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Anouck Burzava
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Neethu Ninan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| | - Toby Brown
- Corin Australia, Pymble, NSW 2073, Australia
| | - Dan Barker
- Corin Australia, Pymble, NSW 2073, Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, Adelaide, 5095, South Australia, Australia
| |
Collapse
|
38
|
|
39
|
Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity. Bioact Mater 2021; 15:173-184. [PMID: 35386355 PMCID: PMC8941167 DOI: 10.1016/j.bioactmat.2021.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
Nanorods can induce mechano-puncture of Staphylococcus aureus (S. aureus) that often impairs osseointegration of orthopedic implants, while the critical nanorod top sharpness able to puncture S. aureus and the predominant contributor between top sharpness and length to mechano-puncture activity remains elusive. Herein, we fabricated three kinds of Al2O3-wrapped nanorods patterned arrays with different lengths and top sharpness. The top-sharp nanorods have lengths of 469 and 884 nm and the shorter show a length identical to the top-flat nanorods. Driven by the equivalent adhesive force of S. aureus, the top-flat nanorods deform cell envelops, showing a bacteriostatic rate of 29% owing to proliferation-inhibited manner. The top-sharp nanorods puncture S. aureus, showing a bactericidal rate of 96% for the longer, and 98% for the shorter that simultaneously exhibits fair osseointegration in bacteria-infected rat tibias, identifying top sharpness as a predominate contributor to mechano-puncture activity. Based on finite-element simulation, such top-flat nanorod derives the maximum stress (Smax) of 5.65 MPa on cell wall, lower than its ultimate-tensile-strength (13 MPa); while such top-sharp and shorter nanorod derives Smax of 20.15 MPa to puncture cell envelop. Moreover, a critical top conical angle of 138° is identified for nanorods able to puncture S. aureus. Top sharpness depended mechano-puncture of nanorods against S. aureus is clarified. Top-flat nanorods deform bacterial cell envelop to inhibit their proliferation. Top-sharp nanorods (conical angle of 50°) puncture bacteria to intensely kill them. 138° is confirmed as critical top conical angle for nanorods to puncture S. aureus.
Collapse
|
40
|
Michalska M, Divan R, Noirot P, Laible PD. Antimicrobial properties of nanostructured surfaces - demonstrating the need for a standard testing methodology. NANOSCALE 2021; 13:17603-17614. [PMID: 34668503 DOI: 10.1039/d1nr02953c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioinspired nanostructured materials that exhibit antimicrobial properties are being synthesized and tested at increasing rates for use in healthcare, manufacturing processes, and diagnostics. Although progress has been made in improving and understanding their bactericidal activity, arguably, the biggest problem currently in the field is the lack of a standard testing methodology that allows for optimal characterization and better comparison of emerging nanostructures. Here, we examine two forms of nanostructured silicon that vary in their ability to kill certain bacterial species due to different physical mechanisms and derive guidelines for the comparative testing. We perform a comprehensive evaluation of methodologies used extensively in the field (e.g., colony counting and live dead analysis) and the novel application of high-throughput flow cytometry. The data reveal how the techniques are complementary but not always directly equivalent or correlative. Therefore, comparison of results obtained using different methodologies on different materials can be grossly misleading. We report significant variations in bactericidal efficiencies depending on experimental environments (medium type, etc.) and methodologies employed. In addition, we demonstrate how cytometry is yet another powerful complementary tool that can aid the mechanistic understanding of antimicrobial activities of rough surfaces. Besides standardization for comparison, ultimately, evaluation methods need to consider anticipated applications. Then and only then can the true potential (or limitation) of a novel material be determined for its suitability for advancement in a particular field of use.
Collapse
Affiliation(s)
- Martyna Michalska
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Philippe Noirot
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
41
|
Li X, Guo M, Chen C. Graphdiyne: from Preparation to Biomedical Applications. Chem Res Chin Univ 2021; 37:1176-1194. [PMID: 34720525 PMCID: PMC8536907 DOI: 10.1007/s40242-021-1343-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 01/15/2023]
Abstract
Graphdiyne(GDY) is a kind of two-dimensional carbon nanomaterial with specific configurations of sp and sp 2 carbon atoms. The key progress in the preparation and application of GDY is bringing carbon materials to a brand-new level. Here, the various properties and structures of GDY are introduced, including the existing strategies for the preparation and modification of GDY. In particular, GDY has gradually emerged in the field of life sciences with its unique properties and performance, therefore, the development of biomedical applications of GDY is further summarized. Finally, the challenges of GDY toward future biomedical applications are discussed.
Collapse
Affiliation(s)
- Xiaodan Li
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 P. R. China
| |
Collapse
|
42
|
Michalska M, Laney SK, Li T, Portnoi M, Mordan N, Allan E, Tiwari MK, Parkin IP, Papakonstantinou I. Bioinspired Multifunctional Glass Surfaces through Regenerative Secondary Mask Lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102175. [PMID: 34514638 PMCID: PMC11469219 DOI: 10.1002/adma.202102175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Nature-inspired nanopatterning offers exciting multifunctionality spanning antireflectance and the ability to repel water/fog, oils, and bacteria; strongly dependent upon nanofeature size and morphology. However, such patterning in glass is notoriously difficult, paradoxically, due to the same outstanding chemical and thermal stability that make glass so attractive. Here, regenerative secondary mask lithography is introduced and exploited to enable customized glass nanopillars through dynamic nanoscale tunability of the side-wall profile and aspect ratio (>7). The method is simple and versatile, comprising just two steps. First, sub-wavelength scalable soft etch masks (55-350 nm) are generated through an example of block copolymer micelles or nanoimprinted photoresist. Second, their inherent durability problem is addressed by an innovative cyclic etching, when the original mask becomes embedded within a protective secondary organic mask, which is tuned and regenerated, permitting dynamic nanofeature profiling with etching selectivity >1:32. It is envisioned that such structuring in glass will facilitate fundamental studies and be useful for numerous practical applications-from displays to architectural windows. To showcase the potential, glass features are tailored to achieve excellent broadband omnidirectional antireflectivity, self-cleaning, and unique antibacterial activity toward Staphylococcus aureus.
Collapse
Affiliation(s)
- Martyna Michalska
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Sophia K. Laney
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Tao Li
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Mark Portnoi
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Nicola Mordan
- Division of Biomaterials and Tissue EngineeringUCL Eastman Dental InstituteRoyal Free CampusUniversity College LondonPond StreetLondonNW3 2QGUK
| | - Elaine Allan
- Department of Microbial DiseasesUCL Eastman Dental InstituteRoyal Free CampusUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Manish K. Tiwari
- Nanoengineered Systems LaboratoryDepartment of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS)University College LondonLondonW1W 7TSUK
| | - Ivan P. Parkin
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Ioannis Papakonstantinou
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
43
|
Liang J, Li W, Chen J, Huang X, Liu Y, Zhang X, Shu W, Lei B, Zhang H. Antibacterial Activity and Synergetic Mechanism of Carbon Dots against Gram-Positive and -Negative Bacteria. ACS APPLIED BIO MATERIALS 2021; 4:6937-6945. [PMID: 35006993 DOI: 10.1021/acsabm.1c00618] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon dots (CDs) with exciting photoluminescence characteristics, mild toxicity, and good biocompatibility are the research hotspots in biomedical application. Here, a compact antibacterial activity of CDs from levofloxacin hydrochloride is reported. The obtained CDs with an average size of 1.27 nm have fascinating antibacterial properties against both gram-positive and negative bacteria, with minimum inhibitory concentrations (MICs) of 64, 128, 64, and 128 μg/mL for Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis). The antibacterial processes of CDs from extracellular to intracellular were demonstrated, including physical/chemical binding to membrane, wrapping on the surface, destruction of the cell membrane, and promoting reactive oxygen species (ROS) production into the cell without additional light or oxidant. Surprisingly, CDs exert moderate cytotoxicity on mammalian cells at the equivalent bactericidal concentration, in which the cell viability is more than 80% at 100 μg/mL of CDs. The investigation of antibacterial CDs may provide a useful avenue for further exploiting CD-based nano-bactericides in biomedical applications.
Collapse
Affiliation(s)
- Jiarong Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P.R. China
| | - Jianying Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Xiaoman Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P.R. China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P.R. China
| | - Wei Shu
- Instrumental Analysis & Research Centre, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, Maoming 525100, P.R. China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P.R. China
| |
Collapse
|
44
|
Hosseinpour S, Nanda A, Walsh LJ, Xu C. Microbial Decontamination and Antibacterial Activity of Nanostructured Titanium Dental Implants: A Narrative Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2336. [PMID: 34578650 PMCID: PMC8471155 DOI: 10.3390/nano11092336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Peri-implantitis is the major cause of the failure of dental implants. Since dental implants have become one of the main therapies for teeth loss, the number of patients with peri-implant diseases has been rising. Like the periodontal diseases that affect the supporting tissues of the teeth, peri-implant diseases are also associated with the formation of dental plaque biofilm, and resulting inflammation and destruction of the gingival tissues and bone. Treatments for peri-implantitis are focused on reducing the bacterial load in the pocket around the implant, and in decontaminating surfaces once bacteria have been detached. Recently, nanoengineered titanium dental implants have been introduced to improve osteointegration and provide an osteoconductive surface; however, the increased surface roughness raises issues of biofilm formation and more challenging decontamination of the implant surface. This paper reviews treatment modalities that are carried out to eliminate bacterial biofilms and slow their regrowth in terms of their advantages and disadvantages when used on titanium dental implant surfaces with nanoscale features. Such decontamination methods include physical debridement, chemo-mechanical treatments, laser ablation and photodynamic therapy, and electrochemical processes. There is a consensus that the efficient removal of the biofilm supplemented by chemical debridement and full access to the pocket is essential for treating peri-implantitis in clinical settings. Moreover, there is the potential to create ideal nano-modified titanium implants which exert antimicrobial actions and inhibit biofilm formation. Methods to achieve this include structural and surface changes via chemical and physical processes that alter the surface morphology and confer antibacterial properties. These have shown promise in preclinical investigations.
Collapse
Affiliation(s)
| | | | - Laurence J. Walsh
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| |
Collapse
|
45
|
Teng W, Zhang Z, Wang Y, Ye Y, Yinwang E, Liu A, Zhou X, Xu J, Zhou C, Sun H, Wang F, Zhang L, Cheng C, Lin P, Wu Y, Gou Z, Yu X, Ye Z. Iodine Immobilized Metal-Organic Framework for NIR-Triggered Antibacterial Therapy on Orthopedic Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102315. [PMID: 34309186 DOI: 10.1002/smll.202102315] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Indexed: 05/19/2023]
Abstract
Iodine has been known as an effective disinfectant with broad-spectrum antimicrobial potency yet without drug resistance risk when used in clinic. However, the exploration of iodine for antibacterial therapy in orthopedics remains sparse due to its volatile nature and poor solubility. Herein, leveraging the superior absorption capability of metal-organic frameworks (MOFs) and their inherent photocatalytic properties, iodine-loaded MOF surface is presented to realize responsive iodine release along with intracellular reactive oxygen species(ROS) oxidation under near-infrared (NIR) exposure to achieve synergistic antibacterial effect. Iodine is successfully loaded using vapor deposition process onto zeolitic imidazolate framework-8(ZIF-8), which is immobilized onto micro arc oxidized titanium via a hydrothermal approach. The combination of NIR-triggered iodine release and ZIF-8 mediated ROS oxidative stress substantially augments the antibacterial efficacy of this approach both in vitro and in vivo. Furthermore, this composite coating also supported osteogenic differentiation of bone marrow stromal cells, as well as improved osseointegration of coated implants using an intramedullary rat model, suggesting improvement of antibacterial efficacy does not impair osteogenic potential of the implants. Altogether, immobilization of iodine via MOF on orthopedic implants with synergistic antibacterial effect can be a promising strategy to combat bacterial infections.
Collapse
Affiliation(s)
- Wangsiyuan Teng
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Zengjie Zhang
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Yikai Wang
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Yuxiao Ye
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Eloy Yinwang
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - An Liu
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Xingzhi Zhou
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Jianxiang Xu
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Chengwei Zhou
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Hangxiang Sun
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Fangqian Wang
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Lingling Zhang
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Chongguang Cheng
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Peng Lin
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Yan Wu
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaohua Yu
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| | - Zhaoming Ye
- Orthopedics Research Institute of Zhejiang University, Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P. R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, 310000, P. R. China
| |
Collapse
|
46
|
Kumaravel V, Nair KM, Mathew S, Bartlett J, Kennedy JE, Manning HG, Whelan BJ, Leyland NS, Pillai SC. Antimicrobial TiO 2 nanocomposite coatings for surfaces, dental and orthopaedic implants. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 416:129071. [PMID: 33642937 PMCID: PMC7899925 DOI: 10.1016/j.cej.2021.129071] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 05/03/2023]
Abstract
Engineering of self-disinfecting surfaces to constrain the spread of SARS-CoV-2 is a challenging task for the scientific community because the human coronavirus spreads through respiratory droplets. Titania (TiO2) nanocomposite antimicrobial coatings is one of the ideal remedies to disinfect pathogens (virus, bacteria, fungi) from common surfaces under light illumination. The photocatalytic disinfection efficiency of recent TiO2 nanocomposite antimicrobial coatings for surfaces, dental and orthopaedic implants are emphasized in this review. Mostly, inorganic metals (e.g. copper (Cu), silver (Ag), manganese (Mn), etc), non-metals (e.g. fluorine (F), calcium (Ca), phosphorus (P)) and two-dimensional materials (e.g. MXenes, MOF, graphdiyne) were incorporated with TiO2 to regulate the charge transfer mechanism, surface porosity, crystallinity, and the microbial disinfection efficiency. The antimicrobial activity of TiO2 coatings was evaluated against the most crucial pathogenic microbes such as Escherichia coli, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Legionella pneumophila, Staphylococcus aureus, Streptococcus mutans, T2 bacteriophage, H1N1, HCoV-NL63, vesicular stomatitis virus, bovine coronavirus. Silane functionalizing agents and polymers were used to coat the titanium (Ti) metal implants to introduce superhydrophobic features to avoid microbial adhesion. TiO2 nanocomposite coatings in dental and orthopaedic metal implants disclosed exceptional bio-corrosion resistance, durability, biocompatibility, bone-formation capability, and long-term antimicrobial efficiency. Moreover, the commercial trend, techno-economics, challenges, and prospects of antimicrobial nanocomposite coatings are also discussed briefly.
Collapse
Affiliation(s)
- Vignesh Kumaravel
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Keerthi M Nair
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - Snehamol Mathew
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | - John Bartlett
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| | | | | | | | | | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo, Ireland
| |
Collapse
|
47
|
Jenkins J, Ishak MI, Eales M, Gholinia A, Kulkarni S, Keller TF, May PW, Nobbs AH, Su B. Resolving physical interactions between bacteria and nanotopographies with focused ion beam scanning electron microscopy. iScience 2021; 24:102818. [PMID: 34355148 PMCID: PMC8319809 DOI: 10.1016/j.isci.2021.102818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/04/2021] [Accepted: 07/02/2021] [Indexed: 01/31/2023] Open
Abstract
To robustly assess the antibacterial mechanisms of nanotopographies, it is critical to analyze the bacteria-nanotopography adhesion interface. Here, we utilize focused ion beam milling combined with scanning electron microscopy to generate three-dimensional reconstructions of Staphylococcus aureus or Escherichia coli interacting with nanotopographies. For the first time, 3D morphometric analysis has been exploited to quantify the intrinsic contact area between each nanostructure and the bacterial envelope, providing an objective framework from which to derive the possible antibacterial mechanisms of synthetic nanotopographies. Surfaces with nanostructure densities between 36 and 58 per μm2 and tip diameters between 27 and 50 nm mediated envelope deformation and penetration, while surfaces with higher nanostructure densities (137 per μm2) induced envelope penetration and mechanical rupture, leading to marked reductions in cell volume due to cytosolic leakage. On nanotopographies with densities of 8 per μm2 and tip diameters greater than 100 nm, bacteria predominantly adhered between nanostructures, resulting in cell impedance. Bacteria-nanotopography interactions can be quantified using FIB-SEM Envelope penetration and cell impedance are influenced by nanotopography density Low density nanotopographies (8 per μm2) mediate cell impedance High-density nanotopographies (36–137 per μm2) mediate deformation and penetration
Collapse
Affiliation(s)
- Joshua Jenkins
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Mohd I Ishak
- Bristol Dental School, University of Bristol, Bristol, UK.,Faculty of Engineering Technology, Universiti Malaysia Perlis, Malaysia
| | - Marcus Eales
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Ali Gholinia
- School of Materials Science, University of Manchester, Manchester, UK
| | | | - Thomas F Keller
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany.,Physics Department, University of Hamburg, Hamburg, Germany
| | - Paul W May
- School of Chemistry, University of Bristol, Bristol, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol, UK
| |
Collapse
|
48
|
Ishak MI, Jenkins J, Kulkarni S, Keller TF, Briscoe WH, Nobbs AH, Su B. Insights into complex nanopillar-bacteria interactions: Roles of nanotopography and bacterial surface proteins. J Colloid Interface Sci 2021; 604:91-103. [PMID: 34265695 DOI: 10.1016/j.jcis.2021.06.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Nanopillared surfaces have emerged as a promising strategy to combat bacterial infections on medical devices. However, the mechanisms that underpin nanopillar-induced rupture of the bacterial cell membrane remain speculative. In this study, we have tested three medically relevant poly(ethylene terephthalate) (PET) nanopillared-surfaces with well-defined nanotopographies against both Gram-negative and Gram-positive bacteria. Focused ion beam scanning electron microscopy (FIB-SEM) and contact mechanics analysis were utilised to understand the nanobiophysical response of the bacterial cell envelope to a single nanopillar. Given their importance to bacterial adhesion, the contribution of bacterial surface proteins to nanotopography-mediated cell envelope damage was also investigated. We found that, whilst cell envelope deformation was affected by the nanopillar tip diameter, the nanopillar density affected bacterial metabolic activities. Moreover, three different types of bacterial cell envelope deformation were observed upon contact of bacteria with the nanopillared surfaces. These were attributed to bacterial responses to cell wall stresses resulting from the high intrinsic pressure caused by the engagement of nanopillars by bacterial surface proteins. Such influences of bacterial surface proteins on the antibacterial action of nanopillars have not been previously reported. Our findings will be valuable to the improved design and fabrication of effective antibacterial surfaces.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - J Jenkins
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - S Kulkarni
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - T F Keller
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany; Physics Department, University of Hamburg, Hamburg, Germany
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
49
|
Cui Q, Liu T, Li X, Zhao L, Wu Q, Wang X, Song K, Ge D. Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation. Colloids Surf B Biointerfaces 2021; 206:111929. [PMID: 34147928 DOI: 10.1016/j.colsurfb.2021.111929] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The mechano-bactericidal property of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, especially in the current era of spreading antibiotic resistance. However, the mechanisms underlying nanostructured surfaces mechanically damaging bacteria remain unclear, which ultimately limits translational potential toward real-world applications. Using finite element simulation technique, we developed the three-dimensional thin wall with turgor pressure finite element model (3D-TWTP-FEM) of bacterial cell and verified the reliability of this model by the AFM indentation experiment simulation of the cell, and the cell model is able to simulate suspended bacterial cell and the process of cell adhering to the flat and nanopillar surfaces. Since bacterial cells suffer greater stress and deformation on the nanopillar surfaces, a two-stage model of the elastic and creep deformation stage of the cells on the nanostructured surfaces was developed. The calculations show that the location of the maximum stress/strain on the cells adhered to the nanopillar surfaces is at the liquid-cell-nanopillar three phase contact line. The computational results confirmed the ability of nanostructured surfaces to mechanically lyse bacteria and gave the effect of nanopillar geometry on the efficiency and speed of bacterial cell rupture. This study provides fundamental physical insights into how nanopillar surfaces can serve as effective and fast mechanical antimicrobial materials.
Collapse
Affiliation(s)
- Qianqian Cui
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China
| | - Tianqing Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China.
| | - Xiangqin Li
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China
| | - Lidan Zhao
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China
| | - Qiqi Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China
| | - Xin Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China
| | - Kedong Song
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China
| | - Dan Ge
- School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning Province, PR China
| |
Collapse
|
50
|
Kladko DV, Falchevskaya AS, Serov NS, Prilepskii AY. Nanomaterial Shape Influence on Cell Behavior. Int J Mol Sci 2021; 22:5266. [PMID: 34067696 PMCID: PMC8156540 DOI: 10.3390/ijms22105266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. Despite this fact, only surface chemistry, charge, and area are often linked to these phenomena. Moreover, most attention in this field is directed exclusively at nanomaterial cytotoxicity. At the same time, there is a large body of studies showing the influence of nanomaterials on cellular metabolism, proliferation, differentiation, reprogramming, gene transfer, and many other processes. Furthermore, it has been revealed that in all these cases, the shape of the nanomaterial plays a crucial role. In this paper, the mechanisms of nanomaterials shape control, approaches toward its synthesis, and the influence of nanomaterial shape on various biological activities of mammalian and microbial cells, such as proliferation, differentiation, and metabolism, as well as the prospects of this emerging field, are reviewed.
Collapse
Affiliation(s)
| | | | | | - Artur Y. Prilepskii
- International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, 191002 Saint Petersburg, Russia; (D.V.K.); (A.S.F.); (N.S.S.)
| |
Collapse
|