1
|
Ding P, Chen D, Tamtaji M, Hu S, Qammar M, Ko PK, Sergeev AA, Zou B, Tang B, Wong KS, Guo L, Chen G, Rogach AL, Halpert JE. Intense Circular Dichroism and Spin Selectivity in AgBiS 2 Nanocrystals by Chiral Ligand Exchange. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410087. [PMID: 39390893 DOI: 10.1002/adma.202410087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Chiral semiconducting nanomaterials offer many potential applications in photodetection, light emission, quantum information, and so on. However, it is difficult to achieve a strong circular dichroism (CD) signal in semiconducting nanocrystals (NCs) due to the complexity of chiral ligand surface engineering and multiple, uncertain mechanisms of chiroptical behavior. Here, a chiral ligand exchange strategy with cysteine on the ternary metal chalcogenide AgBiS2 NCs is developed, and a strong, long-lasting CD signal in the near-UV region is achieved. By carefully optimizing the ligand concentration, the CD peaks are observed at 260 and 320 nm, respectively, giving insight into the different ligand binding mechanisms influencing the CD signal of AgBiS2 NCs. Using density-functional theory, a large degree of crystal distortion by the bidentate mode of ligand chelation, and efficient ligand-NC electron transfer, synergistically resulting in the strongest CD signal (g-factor over 10-2) observed in chiral ligand-exchanged semiconductor NCs to date, is demonstrated. To demonstrate the effective chiral properties of these AgBiS2 NCs, a spin-filter device with over 86% efficiency is fabricated. This work represents a considerable leap in the field of chiral semiconductor NCs and points toward their future applications.
Collapse
Affiliation(s)
- Pengbo Ding
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dezhang Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Mohsen Tamtaji
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR, 999077, China
| | - Sile Hu
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Memoona Qammar
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Pui Kei Ko
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Aleksandr A Sergeev
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, 999077, China
| | - Bosen Zou
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Bing Tang
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, 999077, China
| | - Liang Guo
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Guanhua Chen
- Hong Kong Quantum AI Lab Limited, Pak Shek Kok, Hong Kong SAR, 999077, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jonathan E Halpert
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| |
Collapse
|
2
|
Han P, Yang X, Du T, Zhao J, Zhou S. Intrinsic Chiroptical Activity and Excitonic Properties of Group II-VI Magic-Size Clusters. J Phys Chem Lett 2024; 15:7502-7508. [PMID: 39018236 DOI: 10.1021/acs.jpclett.4c01687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Semiconductor magic-size clusters (MSCs), lying in the local minima of the potential landscape, are important intermediates that emerge during the synthesis of colloidal quantum dots. They have definite geometrical and electronic structures, thus serving as atomically precise building blocks for assembling supramolecular structures and devices with unprecedented functionalities. Here we report the intrinsic chiroptical activity in the magic-size cadmium and zinc chalcogenide clusters with magic numbers of 13, 33, and 34 possessing unique core-shell structures. They are responsive to circularly polarized light from the ultraviolet to visible region, with size-tunable energy gap, absorption wavelength, and excitonic characteristics. The origin of the chiroptical activity and the evolution of excitonic states with magic size are disclosed by time-dependent density functional theory calculations within a correlated electron-hole picture. This molecular-level understanding of the photophysical properties of group II-VI MSCs provides essential guidelines for utilizing them for chiral optoelectronics and photonics.
Collapse
Affiliation(s)
- Pingping Han
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Xiaowei Yang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Tingli Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
3
|
Purcell-Milton F, Kuznetsova VA, Bai X, Coogan Á, Martínez-Carmona M, Garcia JA, Bradley AL, Gun'ko YK. Chiroptically active quantum nanonails. NANOSCALE HORIZONS 2024; 9:1013-1022. [PMID: 38597212 DOI: 10.1039/d4nh00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent years, extensive research efforts have been dedicated to the investigation of CdSe/CdS-based quantum-confined nanostructures, driven by their distinctive properties. The morphologies of these nanostructures have been shown to directly affect their properties, an area which has proven to be an important field of study. Herein, we report a new morphology of CdSe/CdS core-shell heterostructures in the form of a 'nanonail' - a modified nanorod-like morphology, in which a distinctive triangular head can be observed at one end of the structure. In-depth studies of this morphology reveal a material with tuneable rod length and width, as well as exceptional photoluminescent properties. Following this, we have demonstrated the ability to induce chiroptical activity via ligand exchange, revealing the important role of the specific morphology, shell thickness and chiral ligand concentration in the effect of ligand induced chirality. In addition, the cellular uptake and cytotoxicity of obtained chiral nanostructures were evaluated on human lung-derived A549 cancer cells, revealing a significant enantioselectivity in biological activity. Finally, analysis on monolayers of the material demonstrate the complete absence of FRET processes. Overall, this CdSe/CdS heterostructure is another tuneable morphology of a very important nanomaterial, one which shows great advantages and a range of potential applications.
Collapse
Affiliation(s)
- Finn Purcell-Milton
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
- School of Chemical & BioPharmaceutical Sciences, Technological University Dublin, Grangegorman, Dublin, Ireland
| | - Vera A Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
| | - Xue Bai
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
| | - Áine Coogan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
| | - Marina Martínez-Carmona
- Departamento de Didáctica de las Ciencias Experimentales, Universidad de Murcia, 30100 Murcia, Spain
| | - Jorge A Garcia
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
| | | | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Kuznetsova V, Coogan Á, Botov D, Gromova Y, Ushakova EV, Gun'ko YK. Expanding the Horizons of Machine Learning in Nanomaterials to Chiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308912. [PMID: 38241607 PMCID: PMC11167410 DOI: 10.1002/adma.202308912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/10/2024] [Indexed: 01/21/2024]
Abstract
Machine learning holds significant research potential in the field of nanotechnology, enabling nanomaterial structure and property predictions, facilitating materials design and discovery, and reducing the need for time-consuming and labor-intensive experiments and simulations. In contrast to their achiral counterparts, the application of machine learning for chiral nanomaterials is still in its infancy, with a limited number of publications to date. This is despite the great potential of machine learning to advance the development of new sustainable chiral materials with high values of optical activity, circularly polarized luminescence, and enantioselectivity, as well as for the analysis of structural chirality by electron microscopy. In this review, an analysis of machine learning methods used for studying achiral nanomaterials is provided, subsequently offering guidance on adapting and extending this work to chiral nanomaterials. An overview of chiral nanomaterials within the framework of synthesis-structure-property-application relationships is presented and insights on how to leverage machine learning for the study of these highly complex relationships are provided. Some key recent publications are reviewed and discussed on the application of machine learning for chiral nanomaterials. Finally, the review captures the key achievements, ongoing challenges, and the prospective outlook for this very important research field.
Collapse
Affiliation(s)
- Vera Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Áine Coogan
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Dmitry Botov
- Everypixel Media Innovation Group, 021 Fillmore St., PMB 15, San Francisco, CA, 94115, USA
- Neapolis University Pafos, 2 Danais Avenue, Pafos, 8042, Cyprus
| | - Yulia Gromova
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford St., Cambridge, MA, 02138, USA
| | - Elena V Ushakova
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| |
Collapse
|
5
|
Szepke D, Zarzeczny M, Pawlak M, Jarmuła P, Yoshizawa A, Pociecha D, Lewandowski W. Disentangling optical effects in 3D spiral-like, chiral plasmonic assemblies templated by a dark conglomerate liquid crystal. J Chem Phys 2024; 160:074201. [PMID: 38380754 DOI: 10.1063/5.0179535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Chiral thin films showing electronic and plasmonic circular dichroism (CD) are intensively explored for optoelectronic applications. The most studied chiral organic films are the composites exhibiting a helical geometry, which often causes entanglement of circular optical properties with unwanted linear optical effects (linearly polarized absorption or refraction). This entanglement limits tunability and often translates to a complex optical response. This paper describes chiral films based on dark conglomerate, sponge-like, liquid crystal films, which go beyond the usual helical type geometry, waiving the problem of linear contributions to chiroptical electronic and plasmonic properties. First, we show that purely organic films exhibit high electronic CD and circular birefringence, as studied in detail using Mueller matrix polarimetry. Analogous linear properties are two orders of magnitude lower, highlighting the benefits of using the bi-isotropic dark conglomerate liquid crystal for chiroptical purposes. Next, we show that the liquid crystal can act as a template to guide the assembly of chemically compatible gold nanoparticles into 3D spiral-like assemblies. The Mueller matrix polarimetry measurements confirm that these composites exhibit both electronic and plasmonic circular dichroisms, while nanoparticle presence is not compromising the beneficial optical properties of the matrix.
Collapse
Affiliation(s)
- Dorota Szepke
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Mateusz Zarzeczny
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Mateusz Pawlak
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Paweł Jarmuła
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Atsushi Yoshizawa
- National University Corporation, Hirosaki University, 1 Bunkyo-cho, Hirosaki, Aomori 036-8560, Japan
| | - Damian Pociecha
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| | - Wiktor Lewandowski
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Kurtina DA, Zaytsev VB, Vasiliev RB. Chirality in Atomically Thin CdSe Nanoplatelets Capped with Thiol-Free Amino Acid Ligands: Circular Dichroism vs. Carboxylate Group Coordination. MATERIALS (BASEL, SWITZERLAND) 2024; 17:237. [PMID: 38204090 PMCID: PMC10779562 DOI: 10.3390/ma17010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Chiral semiconductor nanostructures and nanoparticles are promising materials for applications in biological sensing, enantioselective separation, photonics, and spin-polarized devices. Here, we studied the induction of chirality in atomically thin only two-monolayer-thick CdSe nanoplatelets (NPLs) grown using a colloidal method and exchanged with L-alanine and L-phenylalanine as model thiol-free chiral ligands. We have developed a novel two-step approach to completely exchange the native oleic acid ligands for chiral amino acids at the basal planes of NPLs. We performed an analysis of the optical and chiroptical properties of the chiral CdSe nanoplatelets with amino acids, which was supplemented by an analysis of the composition and coordination of ligands. After the exchange, the nanoplatelets retained heavy-hole, light-hole, and spin-orbit split-off exciton absorbance and bright heavy-hole exciton luminescence. Capping with thiol-free enantiomer amino acid ligands induced the pronounced chirality of excitons in the nanoplatelets, as proven by circular dichroism spectroscopy, with a high dissymmetry g-factor of up to 3.4 × 10-3 achieved for heavy-hole excitons in the case of L-phenylalanine.
Collapse
Affiliation(s)
- Daria A. Kurtina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Vladimir B. Zaytsev
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Roman B. Vasiliev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Jiang W, Li Q, Zhang R, Li J, Lin Q, Li J, Zhou X, Yan X, Fan K. Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson's disease. Nat Commun 2023; 14:8137. [PMID: 38065945 PMCID: PMC10709450 DOI: 10.1038/s41467-023-43870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Nanomedicine-based anti-neuroinflammation strategy has become a promising dawn of Parkinson's disease (PD) treatment. However, there are significant gaps in our understanding of the therapeutic mechanisms of antioxidant nanomedicines concerning the pathways traversing the blood-brain barrier (BBB) and subsequent inflammation mitigation. Here, we report nanozyme-integrated metal-organic frameworks with excellent antioxidant activity and chiral-dependent BBB transendocytosis as anti-neuroinflammatory agents for the treatment of PD. These chiral nanozymes are synthesized by embedding ultra-small platinum nanozymes (Ptzymes) into L-chiral and D-chiral imidazolate zeolite frameworks (Ptzyme@L-ZIF and Ptzyme@D-ZIF). Compared to Ptzyme@L-ZIF, Ptzyme@D-ZIF shows higher accumulation in the brains of male PD mouse models due to longer plasma residence time and more pathways to traverse BBB, including clathrin-mediated and caveolae-mediated endocytosis. These factors contribute to the superior therapeutic efficacy of Ptzyme@D-ZIF in reducing behavioral disorders and pathological changes. Bioinformatics and biochemical analyses suggest that Ptzyme@D-ZIF inhibits neuroinflammation-induced apoptosis and ferroptosis in damaged neurons. The research uncovers the biodistribution, metabolic variances, and therapeutic outcomes of nanozymes-integrated chiral ZIF platforms, providing possibilities for devising anti-PD drugs.
Collapse
Affiliation(s)
- Wei Jiang
- Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Henan, 450052, China
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qing Li
- Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Henan, 450052, China.
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Qianyu Lin
- Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jingyun Li
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Xinyao Zhou
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Xiyun Yan
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Kelong Fan
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| |
Collapse
|
8
|
Liang K, Xue Y, Zhao B, Wen M, Xu Z, Sukhorukov G, Zhang L, Shang L. Chirality-Dependent Angiogenic Activity of MoS 2 Quantum Dots toward Regulatable Tissue Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304857. [PMID: 37590390 DOI: 10.1002/smll.202304857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Despite great advances in understanding the biological behaviors of chiral materials, the effect of chirality-configured nanoparticles on tissue regeneration-related biological processes remains poorly understood. Herein, the chirality of MoS2 quantum dots (QDs) is tailored by functionalization with l-/d-penicillamine, and the profound chiral effects of MoS2 QDs on cellular activities, angiogenesis, and tissue regeneration are thoroughly investigated. Specifically, d-MoS2 QDs show a positive effect in promoting the growth, proliferation, and migration of human umbilical vein endothelial cells. The expression of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), and fibroblast growth factor (FGF) in d-MoS2 QDs group is substantially up-regulated, resulting in enhanced tube formation activity. This distinct phenomenon is largely due to the higher internalization efficiency of d-MoS2 QDs than l-MoS2 QDs and chirality-dependent nano-bio interactions. In vivo angiogenic assay shows the expression level of angiogenic markers in newly-formed skin tissues of d-MoS2 QDs group is higher than that in l-MoS2 QDs group, leading to an accelerated re-epithelialization and improved skin regeneration. The findings of chirality-dependent angiogenesis activity of MoS2 QDs provide new insights into the biological activity of MoS2 nanomaterials, which also opens up a new path to the rational design of chiral nanomaterials for tissue regeneration application.
Collapse
Affiliation(s)
- Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Yumeng Xue
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Bin Zhao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Mengyao Wen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Ziqi Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Gleb Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Centre for Neuroscience and Brain Research, Skolkovo Institute of Science and Technology, Bolshoi pr.30, 143025, Moscow, Russia
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| |
Collapse
|
9
|
Branzi L, Lavet O, Gun'ko YK. Ligand induced chirality in In 2S 3 nanoparticles. NANOSCALE 2023; 15:18753-18761. [PMID: 37953729 DOI: 10.1039/d3nr04320g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Chiral inorganic nanostructures have attracted a lot of attention over the last few years. Here we report the first observation of chirality in indium sulfide nanoparticles, which have been produced by a co-precipitation reaction in the presence of cysteine as a chiral agent. The process resulted in the production of spherical nanoparticles with an average diameter of around 3.6 nm. Circular dichroism spectroscopy of the nanoparticles showed an intense chiroptical signal corresponding to the indium sulfide excitonic transition, confirming the successful transfer of chirality to the In2S3 inorganic matrix. Nuclear magnetic resonance analysis of a colloidal solution of the nanoparticles demonstrated critical evidence of chemisorption of the chiral ligand on the surface of the nanoparticles and revealed a characteristic fast chemical exchange between the ligand chemisorbed on the surface of the nanoparticles and the free ligand in solution. Finally, the effect of the chiral ligand's structure on the transfer of chirality was investigated, with consideration of other amino acid ligands, and the critical role of the thiolate group in the optimisation of the chiral transfer was observed. This research is expected to stimulate further development and applications of new chiral semiconductor nanomaterials.
Collapse
Affiliation(s)
- Lorenzo Branzi
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Oriane Lavet
- Chemistry Department, University of Clermont Auvergne, Antenne du Puy en Velay, 43009 Le Puy en Velay Cedex, France
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
10
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
11
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
12
|
Wu Y, Zhao T, Shao X, Chen J, Zhang T, Li B, Jiang S. Ligand-Assisted Self-Assembly of 3D Perovskite Nanocrystals into Chiral Inorganic Quasi-2D Perovskites (n = 3) with Ligand-Ratio-Dependent Chirality Inversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301034. [PMID: 37165614 DOI: 10.1002/smll.202301034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/08/2023] [Indexed: 05/12/2023]
Abstract
Chiral inorganic quasi-2D perovskites are prepared by self-assembling 3D perovskites in solution for the first time. The quasi-2D perovskite synthesized is a pure-phase perovskite with = 3 and is periodically arranged, which is a big breakthrough in quasi-2D inorganic perovskites. With the individual chiral CsPbBr3 nanocrystals (NCs) assemble into quasi-2D perovskite, the g-factor significantly improved (≈5 × 10-3 ). In addition, the chiroptical activity of quasi-2D perovskites is explored to be improved with the lateral size increasing. In the first stage of assembly, chiral optical activity is increased due to the lateral size-dependent optical activity, while the changes in the later stages are attributable to the chiral morphology. Interestingly, chirality inversion is found to be correlated to the number of ligands. It is believed that different conformers of chiral ligands caused by steric hindrance of the original ligand oleylamine result in opposite circular dichroism (CD) polarities. The chirality inversion phenomenon is universal, regardless of the choice of ligands. This work opens up a new path for the synthesis of quasi-2D perovskites and provides more opportunities for the modulation of chiral optical activity.
Collapse
Affiliation(s)
- Yue Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Tianzhe Zhao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Junyu Chen
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
13
|
Lu Y, Qiu T, Bloom BP, Subotnik JE, Waldeck DH. Spin-Based Chiral Separations and the Importance of Molecule-Solvent Interactions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14155-14162. [PMID: 37529661 PMCID: PMC10389781 DOI: 10.1021/acs.jpcc.3c01159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/01/2023] [Indexed: 08/03/2023]
Abstract
This work uses magneto-electrochemical quartz crystal microbalance methods to study the enantiospecific adsorption of chiral molecules onto a ferromagnetic substrate. The effects of solution conditions, pH, and solvent isotope composition indicate that the kinetics of the enantiomeric adsorption depend strongly on the charge state and geometry of the adsorbate, whereas no thermodynamic contributions to enantiospecificity are found. Density functional theory calculations reveal that an interplay between the adsorbate and solvent molecules is important for defining the observed enantiospecific preference with an applied magnetic field; however, it remains unclear if intermolecular vibrational couplings contribute to the phenomenon.
Collapse
Affiliation(s)
- Yiyang Lu
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tian Qiu
- Departments
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brian P. Bloom
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joseph E. Subotnik
- Departments
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David H. Waldeck
- Chemistry
Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
14
|
Kwon YH, Joh YA, Leonard BM, Balaz M, Varga K. Threonine functionalized colloidal cadmium sulfide (CdS) quantum dots: The role of solvent and counterion in ligand induced chiroptical properties. J Colloid Interface Sci 2023; 642:771-778. [PMID: 37037081 PMCID: PMC10164713 DOI: 10.1016/j.jcis.2023.03.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The functionalization of semiconductor nanocrystals, quantum dots (QDs), with small organic molecules has been studied extensively to gain better knowledge on how to tune the electronic, optical and chiroptical properties of QDs. Chiral QDs have progressively emerged as key materials in a vast range of applications including biosensing and biorecognition, imaging, asymmetric catalysis, optoelectronic devices, and spintronics. To engage the full potential of the unique properties of chiral nanomaterials and be able to prepare them with tailorable chiroptical characteristics, it is essential to understand how chirality is rendered from chiral molecular ligands at the surface of nanocrystals to the electronic states of QDs. Using a series of polar protic and aprotic solvents together with ammonium (NH4+), tetramethylammonium (TMA+), and tetrabutylammonium (TBA+) countercations in the preparation of threonine-functionalized cadmium sulfide (Thr-CdS) QDs by phase transfer ligand exchange approach, we demonstrated the significance of the role both the solvent and the countercations play in the transfer of chirality from chiral molecular ligand to achiral semiconductor QDs as apparent by the modulations of the signatures and anisotropy of the circular dichroism (CD) spectra. Moreover, we have utilized tetrabutylammonium countercation to successfully synthesize chiral QDs in nonpolar cyclohexane solvent for the first time. This study provides further insights into the origin of the ligand induced chirality of colloidal nanomaterials and facilitates the synthesis of tailormade chiral QDs.
Collapse
Affiliation(s)
- Yuri H Kwon
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, United States
| | - Yoonbin A Joh
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, United States
| | - Brian M Leonard
- Department of Chemistry, University of Wyoming, 1000 E. University Ave, Laramie, WY 82071, United States
| | - Milan Balaz
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, United States.
| |
Collapse
|
15
|
Wei J, Luo Q, Liang S, Zhou L, Chen P, Pang Q, Zhang JZ. Metal Halide Perovskite Nanocrystals for Near-Infrared Circularly Polarized Luminescence with High Photoluminescence Quantum Yield via Chiral Ligand Exchange. J Phys Chem Lett 2023:5489-5496. [PMID: 37289830 DOI: 10.1021/acs.jpclett.3c01184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using ligand exchange on FAPbI3 perovskite nanocrystals (PNCs) surface with chiral tridentate l-cysteine (l-cys) ligand, we successfully prepared chiral FAPbI3 PNCs that show circularly polarized luminescence (CPL) (dissymmetry factor; glum = 2.1 × 10-3) in the near-infrared (NIR) region from 700 to 850 nm and a photoluminescence quantum yield (PLQY) of 81%. The chiral characteristics of FAPbI3 PNCs are ascribed to induction by chiral l/d-cys, and the high PLQY is attributed to the passivation of the PNCs defects with l-cys. Also, effective passivation of defects on the surface of FAPbI3 PNCs by l-cys results in excellent stability toward atmospheric water and oxygen. The conductivity of the l-cys treated FAPbI3 NC films is improved, which is attributed to the partial substitution of l-cys for the insulating long oleyl ligand. The CPL of the l-cys ligand treated FAPbI3 PNCs film retains a glum of -2.7 × 10-4. This study demonstrates a facile yet effective approach to generating chiral PNCs with CPL for NIR photonics applications.
Collapse
Affiliation(s)
- Jianwu Wei
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Qiulian Luo
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Sengui Liang
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, and Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
16
|
Zhang Y, Kim G, Zhu Y, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Small Extracellular Vesicles. ACS NANO 2023. [PMID: 37127891 DOI: 10.1021/acsnano.3c00305] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, small extracellular vesicles (sEVs) have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with sEV-based drug delivery systems, there are still challenges to drug loading into sEVs, which hinder the clinical applications of sEVs. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) sEV-loading platform, based on chirality matching with the sEV lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for doxorubicin and siRNA, which is significantly higher than other reported sEV loading techniques.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yini Zhu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Runyao Zhu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
17
|
Liu P, Battie Y, Kimura T, Okazaki Y, Pranee P, Wang H, Pouget E, Nlate S, Sagawa T, Oda R. Chiral Perovskite Nanocrystal Growth inside Helical Hollow Silica Nanoribbons. NANO LETTERS 2023; 23:3174-3180. [PMID: 37052340 DOI: 10.1021/acs.nanolett.2c04823] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Helical perovskite nanocrystals (H-PNCs) were prepared using nanometric silica helical ribbons as platforms for the in situ growth of the crystals using the supersaturated recrystallization method. The H-PNCs grow inside nanometric helical porous silica, and their handedness is determined by the handedness of porous silica templates. They show both strong induced circular dichroism (CD) and strong induced circularly polarized luminescence (CPL) signals, with high dissymmetry g-factors. Right-handed and left-handed PNCs show respectively positive and negative CD and CPL signals, with a dissymmetry g-factor (abs and lum) of ∼±2 × 10-2. Simulations based on the boundary element method demonstrate that the circular dichroism originates from the chiral shape of H-PNCs.
Collapse
Affiliation(s)
- Peizhao Liu
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Graduate School of Energy Science, Kyoto University, 606-8501 Kyoto, Japan
| | - Yann Battie
- Université de Lorraine, Laboratoire de Chimie et Physique - Approche Multi-échelles des milieux Complexes, (LCP-A2MC), 57078 Metz, France
| | - Takaki Kimura
- Graduate School of Energy Science, Kyoto University, 606-8501 Kyoto, Japan
| | - Yutaka Okazaki
- Graduate School of Energy Science, Kyoto University, 606-8501 Kyoto, Japan
| | - Piyanan Pranee
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Hao Wang
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Emilie Pouget
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Sylvain Nlate
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
| | - Takashi Sagawa
- Graduate School of Energy Science, Kyoto University, 606-8501 Kyoto, Japan
| | - Reiko Oda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- WPI-Advanced Institute for Materials Research, Tohoku University, Katahira, Aoba-Ku, 980-8577 Sendai, Japan
| |
Collapse
|
18
|
Wang F, Yue X, Ding Q, Lin H, Xu C, Li S. Chiral inorganic nanomaterials for biological applications. NANOSCALE 2023; 15:2541-2552. [PMID: 36688473 DOI: 10.1039/d2nr05689e] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral nanomaterials in biology play indispensable roles in maintaining numerous physiological processes, such as signaling, site-specific catalysis, transport, protection, and synthesis. Like natural chiral nanomaterials, chiral inorganic nanomaterials can also be established with similar size, charge, surface properties, and morphology. However, chiral inorganic nanomaterials usually exhibit extraordinary properties that are different from those of organic materials, such as high g-factor values, broad distribution range, and symmetrical mirror configurations. Because of these unique characteristics, there is great potential for application in the fields of biosensing, drug delivery, early diagnosis, bio-imaging, and disease therapy. Related research is summarized and discussed in this review to showcase the bio-functions and bio-applications of chiral inorganic nanomaterials, including the construction methods, classification and properties, and biological applications of chiral inorganic nanomaterials. Moreover, the deficiencies in existing studies are noted, and future development is prospected. This review will provide helpful guidance for constructing chiral inorganic nanomaterials with specific bio-functions for problem solving in living systems.
Collapse
Affiliation(s)
- Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Xiaoyong Yue
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
| |
Collapse
|
19
|
Kurtina DA, Grafova VP, Vasil’eva IS, Maksimov SV, Zaytsev VB, Vasiliev RB. Induction of Chirality in Atomically Thin ZnSe and CdSe Nanoplatelets: Strengthening of Circular Dichroism via Different Coordination of Cysteine-Based Ligands on an Ultimate Thin Semiconductor Core. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1073. [PMID: 36770081 PMCID: PMC9920291 DOI: 10.3390/ma16031073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Chiral nanostructures exhibiting different absorption of right- and left-handed circularly polarized light are of rapidly growing interest due to their potential applications in various fields. Here, we have studied the induction of chirality in atomically thin (0.6-1.2 nm thick) ZnSe and CdSe nanoplatelets grown by a colloidal method and coated with L-cysteine and N-acetyl-L-cysteine ligands. We conducted an analysis of the optical and chiroptical properties of atomically thin ZnSe and CdSe nanoplatelets, which was supplemented by a detailed analysis of the composition and coordination of ligands. Different signs of circular dichroism were shown for L-cysteine and N-acetyl-L-cysteine ligands, confirmed by different coordination of these ligands on the basal planes of nanoplatelets. A maximum value of the dissymmetry factor of (2-3) × 10-3 was found for N-acetyl-L-cysteine ligand in the case of the thinnest nanoplatelets.
Collapse
Affiliation(s)
- Daria A. Kurtina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Valeria P. Grafova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina S. Vasil’eva
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071 Moscow, Russia
| | - Sergey V. Maksimov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir B. Zaytsev
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman B. Vasiliev
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
20
|
Zhang Y, Zhu Y, Kim G, Wang C, Zhu R, Lu X, Chang HC, Wang Y. Chiral Graphene Quantum Dots Enhanced Drug Loading into Exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.523510. [PMID: 36711460 PMCID: PMC9882333 DOI: 10.1101/2023.01.20.523510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As nanoscale extracellular vesicles secreted by cells, exosomes have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with exosome-based drug delivery systems, there are still challenges to drug loading into exosome, which hinder the clinical applications of exosomes. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) exosome-loading platform, based on chirality matching with the exosome lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for Doxorubicin and siRNA, which is significantly higher than other reported exosome loading techniques.
Collapse
|
21
|
Clever C, Wierzbinski E, Bloom BP, Lu Y, Grimm HM, Rao SR, Horne WS, Waldeck DH. Benchmarking Chiral Induced Spin Selectivity Measurements ‐ Towards Meaningful Comparisons of Chiral Biomolecule Spin Polarizations. Isr J Chem 2022. [DOI: 10.1002/ijch.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caleb Clever
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Emil Wierzbinski
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Brian P. Bloom
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Yiyang Lu
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Haley M. Grimm
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Silpa R. Rao
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - W. Seth Horne
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - David H. Waldeck
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
22
|
Branzi L, Purcell-Milton F, Cressoni C, Back M, Cattaruzza E, Speghini A, Gun'ko YK, Benedetti A. Chiral non-stoichiometric ternary silver indium sulfide quantum dots: investigation on the chirality transfer by cysteine. NANOSCALE 2022; 14:12174-12182. [PMID: 35968905 DOI: 10.1039/d2nr03330e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chiral semiconductor quantum dots have recently received broad attention due to their promising application in several fields such as sensing and photonics. The extensive work in the last few years was focused on the observation of the chiroptical properties in binary Cd based systems. Herein, we report on the first evidence of ligand-induced chirality in silver indium sulfide semiconductor quantum dots. Ternary disulfide quantum dots are of great interest due to their remarkable optical properties and low toxicity. Non-stoichiometric silver indium sulfide quantum dots were produced via a room temperature coprecipitation in water, in the presence of cysteine as a capping agent. The obtained nanocrystals show a notable photoluminescence quantum yield of 0.24 in water dispersions. Several critical aspects of the nanocrystal growth and chemico-physical characterization, and the optimisation of the surface passivation by the chiral ligand in order to optimize the nanoparticle chirality are thoroughly investigated. Optical spectroscopy methods such as circular dichroism and luminescence as well as nuclear magnetic resonance techniques are exploited to analyze the coordination processes leading to the formation of the ligand-nanocrystal chiral interface. This study highlights the dynamic nature of the interaction between the nanocrystal surface and the chiral ligand and clarifies some fundamental aspects for the transfer and optimization of the chiroptical properties.
Collapse
Affiliation(s)
- Lorenzo Branzi
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Finn Purcell-Milton
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
- School of Chemical & Pharmaceutical Sciences, Technological University Dublin, Grangegorman, Dublin 2, Ireland
| | - Chiara Cressoni
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy.
| | - Michele Back
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Elti Cattaruzza
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, Verona, Italy.
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Alvise Benedetti
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Italy.
| |
Collapse
|
23
|
Cai J, Zhao J, Gao X, Ma W, Meng D, Zhang H, Hao C, Sun M, Kuang H, Xu C, Xu L. Magnetic Field Tuning Ionic Current Generated by Chiromagnetic Nanofilms. ACS NANO 2022; 16:11066-11075. [PMID: 35776106 DOI: 10.1021/acsnano.2c03778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The realization of chiral magnetic effect by macroscopically manipulating quantum states of chiral matter under the magnetic field makes a future for information transmission, memory storage, magnetic cooling materials etc., while the microscopic tiny signal differences of at the interface electrons are laborious to be discerned. Here, chiromagnetic iron oxide (Fe3O4) nanofilms were successfully prepared by modulating the magnetic and electrical transition dipoles and combined with confined ion transport, enabling magnetic field-tunable ionic currents with markedly ∼7.91-fold higher for l-tartaric acid (TA)-modified Fe3O4 nanofilms than that by d-TA. The apparent amplification results from the charge redistribution at the ferromagnetic-organic interface under the influence of the chiral magnetic effect, resulting in a significant potential difference across the nanofilms that drive ion transport in the confined environment. This strategy, on the one hand, makes it possible to efficiently characterize the electronic microimbalance state in chiral substances induced by the magnetic field and, on the other hand realizes the discrimination and highly sensitive quantitative detection of chiral drug enantiomers, which give insights for the in-depth understanding of chiral magnetic effects and efficient enantiomeric recognition.
Collapse
Affiliation(s)
- Jiarong Cai
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, and Oujiang Laboratory, Wenzhou, Zhejiang 325001, P. R. China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
24
|
Qu S, Jia Q, Li Z, Wang Z, Shang L. Chiral NIR-II fluorescent Ag 2S quantum dots with stereospecific biological interactions and tumor accumulation behaviors. Sci Bull (Beijing) 2022; 67:1274-1283. [PMID: 36546157 DOI: 10.1016/j.scib.2022.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Near-infrared II (NIR-II) fluorescent nanoprobes hold great potential for biomedical applications. Elucidating the relationship between surface properties of NIR-II nanoprobes and their biological behaviors is particularly important for future probe design and their performance optimization. Despite the rapid development of NIR-II nanoprobes, the distinct role of surface chirality on their biological fates has rarely been exploited. Herein, chiral NIR-II fluorescent Ag2S quantum dots (QDs) are synthesized to investigate the relationship between their chirality and biological functions at both in vitro and in vivo levels. D-/L-Ag2S QDs exhibit significant differences on their interactions with serum proteins, which further affect the cellular uptake. As a result, D-Ag2S QDs can be internalized with higher efficiency (over 2-fold) than that of L-Ag2S QDs. Moreover, in vivo studies reveal that the chirality determines the primary localization of these chiral QDs, where a more efficient renal elimination of D-Ag2S QDs was observed than that of L-Ag2S QDs. Importantly, D-Ag2S QDs show preferential accumulation in tumor region than that of L-Ag2S QDs in orthotopic kidney tumor model, which points out a new avenue of enhancing targeting capabilities of nanoprobes by engineering their surface chirality.
Collapse
Affiliation(s)
- Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qian Jia
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zheng Li
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China; Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, China.
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
| |
Collapse
|
25
|
Control of light, spin and charge with chiral metal halide semiconductors. Nat Rev Chem 2022; 6:470-485. [PMID: 37117313 DOI: 10.1038/s41570-022-00399-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
The relationship between the structural asymmetry and optoelectronic properties of functional materials is an active area of research. The movement of charges through an oriented chiral medium depends on the spin configuration of the charges, and such systems can be used to control spin populations without magnetic components - termed the chiral-induced spin selectivity (CISS) effect. CISS has mainly been studied in chiral organic molecules and their assemblies. Semiconductors are non-magnetic extended systems that allow for the control of charge transport, as well as the absorption and emission of light. Therefore, introducing chirality into semiconductors would enable control over charge, spin and light without magnetic components. Chiral metal halide semiconductors (MHSs) are hybrid organic-inorganic materials that combine the properties of small chiral organic molecules with those of extended inorganic semiconductors. Reports of CISS in chiral MHSs have resulted in breakthroughs in our understanding of CISS and in the realization of spin-dependent optoelectronic properties. This Review examines the fundamentals and applications of CISS in chiral MHSs. The structural diversity and key structure-property relationships, such as chiral transfer from the organic to the inorganic components, are summarized. With a focus on the underlying chemistry and physics, the control of spin, light and charge in these semiconductors is explored.
Collapse
|
26
|
Park YJ, Peñas-Defrutos MN, Drummond MJ, Gordon Z, Kelly OR, Garvey IJ, Gullett KL, García-Melchor M, Fout AR. Secondary Coordination Sphere Influences the Formation of Fe(III)-O or Fe(III)-OH in Nitrite Reduction: A Synthetic and Computational Study. Inorg Chem 2022; 61:8182-8192. [PMID: 35580163 DOI: 10.1021/acs.inorgchem.2c00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reduction of nitrite (NO2-) to generate nitric oxide (NO) is a significant area of research due to their roles in the global nitrogen cycle. Here, we describe various modifications of the tris(5-cyclohexyliminopyrrol-2-ylmethyl)amine H3[N(piR)3] ligand where the steric bulk and acidity of the secondary coordination sphere were explored in the non-heme iron system for nitrite reduction. The cyclohexyl and 2,4,6-trimethylphenyl variants of the ligand were used to probe the mechanism of nitrite reduction. While previously stoichiometric addition of nitrite to the iron(II)-species generated an iron(III)-oxo complex, changing the secondary coordination sphere to mesityl resulted in an iron(III)-hydroxo complex. Subsequent addition of an electron and two protons led to the release of water and regeneration of the starting iron(II) catalyst. This sequence mirrored the proposed mechanism of nitrite reduction in biological systems, where the distal histidine residue shuttles protons to the active site. Computational studies aimed at interrogating the dissimilar behavior of the cyclohexyl and mesityl ligand systems resulting in Fe(III)-oxo and Fe(III)-hydroxo complexes, respectively, shed light on the key role of H-bonds involving the secondary coordination sphere in the relative stability of these species.
Collapse
Affiliation(s)
- Yun Ji Park
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Marconi N Peñas-Defrutos
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Michael J Drummond
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Zachary Gordon
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Oscar R Kelly
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Ian J Garvey
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Kelly L Gullett
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Alison R Fout
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Sun M, Wang X, Guo X, Xu L, Kuang H, Xu C. Chirality at nanoscale for bioscience. Chem Sci 2022; 13:3069-3081. [PMID: 35414873 PMCID: PMC8926252 DOI: 10.1039/d1sc06378b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
In the rapidly expanding fields of nanoscience and nanotechnology, there is considerable interest in chiral nanomaterials, which are endowed with unusually strong circular dichroism. In this review, we summarize the principles of organization underlying chiral nanomaterials and generalize the recent advances in the main strategies used to fabricate these nanoparticles for bioscience applications. The creation of chirality from nanoscale building blocks has been investigated both experimentally and theoretically, and the tunability of chirality using external fields, such as light and magnetic fields, has allowed the optical activity of these materials to be controlled and their properties understood. Therefore, the specific recognition and potential applications of chiral materials in bioscience are discussed. The effects of the chirality of nanostructures on biological systems have been exploited to sense and cut molecules, for therapeutic applications, and so on. In the final part of this review, we examine the future perspectives for chiral nanomaterials in bioscience and the challenges posed by them.
Collapse
Affiliation(s)
- Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiuxiu Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
28
|
Liu R, Li J, Xiao S, Zhang D, He T, Cheng J, Zhu X. Authentic Intelligent Machine for Scaling Driven Discovery: A Case for Chiral Quantum Dots. ACS NANO 2022; 16:1600-1611. [PMID: 34978184 DOI: 10.1021/acsnano.1c10299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The scaling laws have long been used as evidence of science where many fundamental physics laws emerge. As emerging nanomaterials, quantum dots are also sensitive to scaling because of their strong size effect. In this work, we developed the chiral dielectric theory based on the exciton absorption mechanism to explain the increment of the dielectric constant from chirality via its dimensionality. To help researchers discover and develop scaling relevant theories, the Authentic Intelligent Machine (AIM) protocol was developed to generate and interpret experimental data in an analytical and scaling-oriented manner. We show how the AIM protocol interprets spectra such as transient absorption data of chiral quantum dots with theories, where discrepancies concerning the dielectric constant were discovered. Examples for applying the AIM protocol on other spectra, such as absorption spectra and photoluminescence spectra, are also given.
Collapse
Affiliation(s)
- Rulin Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
| | - Jiagen Li
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong 518172, China
| | - Shuyu Xiao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dongxiang Zhang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong 518172, China
- School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen, Guangdong 518172, China
| |
Collapse
|
29
|
Tan L, Yu S, Jin Y, Li J, Wang P. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality‐Dependent Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shang‐Jie Yu
- Department of Electrical Engineering Stanford University Stanford CA 94305 USA
| | - Yiran Jin
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jiaming Li
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Peng‐peng Wang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
30
|
Forde A, Ghosh D, Kilin D, Evans AC, Tretiak S, Neukirch AJ. Induced Chirality in Halide Perovskite Clusters through Surface Chemistry. J Phys Chem Lett 2022; 13:686-693. [PMID: 35023749 DOI: 10.1021/acs.jpclett.1c04060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiroptical properties are of interest for various applications, including structure determination, polarized photodetectors, and spintronics. Inducing chiroptical activity into semiconductors is challenging because of difficulties in creating asymmetric crystal structures. One promising method is to use chirality transfer by deploying chiral organic molecules as capping ligands for nanocrystals. Experimentally, chiral-capped nanocrystals show emergent chiroptical signatures, but the mechanisms for chirality transfer remain unclear. Here we utilize atomistic modeling using time-dependent density functional theory calculations to explore chirality transfer in CsPbX3 (X = Cl, I) clusters capped with chiral diaminocyclohexane (DACH) enantiomers. When DACH enantiomers are bound to the cluster surface, the perovskite optical transitions gain chiral signatures. This observed chirality transfer is best rationalized by chiral molecular dipole-cluster transition dipole coupling. With multiple DACH molecules bound to the cluster surface, anisotropy factors are found to increase proportionally to the surface ligand density, providing mechanistic insight toward improving chiroptical functionality in semiconductor nanomaterials.
Collapse
Affiliation(s)
- Aaron Forde
- Department of Materials Science and Nanotechnology, North Dakota State University, Fargo, North Dakota 58102, United States
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Materials Science and Engineering and Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Amanda C Evans
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J Neukirch
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
31
|
Jiang S, Song Y, Kang H, Li B, Yang K, Xing G, Yu Y, Li S, Zhao P, Zhang T. Ligand Exchange Strategy to Achieve Chiral Perovskite Nanocrystals with a High Photoluminescence Quantum Yield and Regulation of the Chiroptical Property. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3385-3394. [PMID: 34932328 DOI: 10.1021/acsami.1c18978] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral nanomaterials have drawn extensive attention on account of numerous application prospects in optoelectronics, asymmetric catalysis, chiral recognition, and three-dimensional (3D) display. Thereinto, chiral perovskite has been a hotspot due to brilliant optoelectronic properties, but some problems limit the development, including low quantum yield, low chiral intensity, and the lack of facile regulation. To overcome these issues, an effective ligand exchange strategy, i.e. the interface modification has been proposed for chiral perovskite nanocrystals (PNCs). With the surface modification of CsPbBr3 PNCs with chiral organic ammonium in methyl acetate in the typical purification process, excellent circular dichroism (CD) signals were obtained and defects were eliminated, leading to an increase in the photoluminescence quantum yield (PLQY) from 50% to nearly 100%. The CD signal can be regulated through a ligand exchange strategy in the longitudinal dimension, the chiral intensity, and the transverse dimension, the wavelength range. Here, the proper addition of R-α-PEAI into the R-α-PEABr-capped CsPbBr3 PNCs can produce a superstrong CD signal with the highest anisotropy factor (g-factor) of 0.0026 in the visible region among reported chiral colloidal PNCs. Simultaneously, the luminescence emission can be tuned from the green to red region with boosted PLQY through the approach. The density functional theory (DFT) calculation result supports that chirality comes from the hybridization between the energy level of a perovskite structure and that of chiral organic molecules. These properties can be used in the structural engineering of high-performance chiral optical materials, spin-polarized light-emitting devices, and polarized optoelectronic devices.
Collapse
Affiliation(s)
- Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Yuxin Song
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Huimin Kang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Kunlong Yang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Guoxiang Xing
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Ying Yu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Siyi Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Peisheng Zhao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, No. 135, Yaguan Road, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
32
|
Liu Y, Li H, Li S, Zhang X, Xiong J, Jiang F, Liu Y, Jiang P. Chiral Cu 2-xSe Nanoparticles for Enhanced Synergistic Cancer Chemodynamic/Photothermal Therapy in the Second Near-Infrared Biowindow. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60933-60944. [PMID: 34923825 DOI: 10.1021/acsami.1c20486] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral nanomaterials have great potential in improving the clinical therapeutic effect due to the unique chiral selectivity of biosystems. However, such a promising therapeutic strategy has so far received little attention in cancer treatment. Here, we report a first chiral Fenton catalyst, d-/l-penicillamine-modified Cu2-xSe nanoparticles (d-/l-NPs), for enhanced synergistic cancer chemodynamic therapy (CDT) and photothermal therapy (PTT) under the second near-infrared (NIR-II) light irradiation. The chiral effect study of chiral Cu2-xSe NPs on cancer cells shows that d-NPs exhibit stronger CDT-induced cytotoxicity than l -NPs due to the stronger internalization ability. Moreover, the hydroxyl radicals (•OH) produced in d-NP-treated cancer cells via the CDT effect can be further improved by NIR-II light irradiation, thereby increasing the apoptosis of cancer cells. In vivo experiments show that, compared with l-NPs, d-NPs exhibit a stronger photothermal effect on the tumor site under NIR-II light irradiation and could completely eliminate the tumor under the synergistic effect of CDT and PTT. This work shows that the chirality of the surface ligand of the nanomaterials could significantly affect their cancer curative effect, which opens up a new way for the development of anticancer nanomedicine.
Collapse
Affiliation(s)
- Yaofa Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Haimei Li
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Shulan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xiaoyang Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Fenglei Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), College of Chemistry and Molecular Sciences & School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
33
|
Tan L, Yu SJ, Jin Y, Li J, Wang PP. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality-Dependent Photocatalysis. Angew Chem Int Ed Engl 2021; 61:e202112400. [PMID: 34936187 DOI: 10.1002/anie.202112400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Indexed: 11/08/2022]
Abstract
Inorganic chiral hybrid nanostructures embedding chirality within distinct material compositions can create novel chiral properties and functionalities absent from achiral ones, but remain largely unexplored. We report for the first time a class of chiral plasmonic metal-semiconductor core-shell nanostructures by employing structurally chiral nanoparticles as chirality inducing templates to grow functional shell materials, which allows us to independently control material parameters including core geometry and shell thickness, as well as handedness of the system. We experimentally and theoretically achieve enhanced and tunable chiroptical activity of the hetero-structures as a result of the core-shell strong coupling effect. As a proof-of-concept demonstration, we show the chiral hybrid nanostructures can drive chirality-dependent photocatalytic hydrogen generation under circularly polarized light. This study enables rational design and functionalization of chiral hybrid nanomaterials towards enhanced chiral light-matter interactions and chiral device applications.
Collapse
Affiliation(s)
- Lili Tan
- Xi'an Jiaotong University, School of Materials Science and Engineering, CHINA
| | - Shang-Jie Yu
- Stanford University, Electrical Engineering, UNITED STATES
| | - Yiran Jin
- Xi'an Jiaotong University, School of Materials Science and Engineering, CHINA
| | - Jiaming Li
- Xi'an Jiaotong University, School of Materials Science and Engineering, CHINA
| | - Peng-Peng Wang
- Xi'an Jiaotong University, School of Materials Science and Engineering, 28 Xianning West Rd, 710049, Xi'an, CHINA
| |
Collapse
|
34
|
Kwon YH, Tannir S, Balaz M, Varga K. Apple juice and red wine induced mirror-image circular dichroism in quantum dots. Chirality 2021; 34:70-76. [PMID: 34710252 DOI: 10.1002/chir.23380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022]
Abstract
Juices, wines, and extracts from plants contain high concentrations of various chiral compounds such as carboxylic acids or sugars. Several prior studies reported the synthesis of metallic and semiconducting nanoparticles relying on components of complex biological solutions. Herein, we present preparation of chiral CdS and CdSe quantum dots (QDs) using apple juice and red wine via phase transfer ligand exchange. Although both apple juice and red wine contain a complex mixture of chiral and achiral compounds, we have successfully used them for selective induction of predicted chiroptical properties and confirmed L-malic acid from the apple juice and L-tartaric acid from the red wine as the chiral inducers. This work illustrates the capability of using complex mixtures to construct chiral QDs with desired chiroptical properties as well as potential of QDs to selectively report a chiral molecule in a complex chiral mixture without the need for elaborate chiral recognition system.
Collapse
Affiliation(s)
- Yuri H Kwon
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Shambhavi Tannir
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - Milan Balaz
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
35
|
Liu P, Battie Y, Decossas M, Tan S, Pouget E, Okazaki Y, Sagawa T, Oda R. Chirality Induction to CdSe Nanocrystals Self-Organized on Silica Nanohelices: Tuning Chiroptical Properties. ACS NANO 2021; 15:16411-16421. [PMID: 34617734 DOI: 10.1021/acsnano.1c05819] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CdSe nanocrystals (NCs) were grafted on chiral silica nanoribbons, and the mechanism of resulting chirality induction was investigated. Because of their chiral organization, these NCs show optically active properties that depend strongly on their grafting densities and sizes of the NCs. The effect of the morphology of the chiral silica templates between helical (cylindrical curvature) vs twisted (saddle like curvature) ribbons was investigated. The g-factor of NCs-silica helical ribbons is larger than that of the NCs-silica twisted ribbons. Finally, rod-like NCs (QR) with different lengths were grafted on the twisted silica ribbons. Interestingly, their grafting direction with respect to the helix surface changed from side-grafting for short QR to tip-grafting for long rods and the corresponding CD spectra switched signs.
Collapse
Affiliation(s)
- Peizhao Liu
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Graduate School of Energy Science, Kyoto University, 606-8501 Kyoto, Japan
| | - Yann Battie
- Laboratoire de Chimie et Physique, Approche Multi-échelles des Milieux Complexes (LCP-A2MC), Université de Lorraine, 1 Boulevard Arago, 57078 Metz, France
| | - Marion Decossas
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Sisareuth Tan
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Emilie Pouget
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| | - Yutaka Okazaki
- Graduate School of Energy Science, Kyoto University, 606-8501 Kyoto, Japan
| | - Takashi Sagawa
- Graduate School of Energy Science, Kyoto University, 606-8501 Kyoto, Japan
| | - Reiko Oda
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
| |
Collapse
|
36
|
Debnath GH, Georgieva ZN, Bloom BP, Tan S, Waldeck DH. Using post-synthetic ligand modification to imprint chirality onto the electronic states of cesium lead bromide (CsPbBr 3) perovskite nanoparticles. NANOSCALE 2021; 13:15248-15256. [PMID: 34553742 DOI: 10.1039/d1nr04274b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study presents a post-synthetic ligand modification strategy for the generation of chiroptically active, blue emitting CsPbBr3 nanoparticles (NPs) - an expansion to the library of 3D chiral perovskite nanomaterials. Addition of [R- and S-] 1-phenylethylamine, 1-(1-naphthyl)ethylamine, or 2-aminooctane to the synthesized CsPbBr3 NPs is shown to induce Cotton effects in the NP first exciton transition, suggestive of a successful electronic coupling between the chiral ligands and the NPs. The availability of these chiral CsPbBr3 NPs thrusts them into the forefront of perovskite nanomaterials for examining the implications of the chiral induced spin selectivity (CISS) effect and other applications in spintronics.
Collapse
Affiliation(s)
- Gouranga H Debnath
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Zheni N Georgieva
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Susheng Tan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
- Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
- Petersen Institute of NanoScience and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
37
|
Cui P, Xue Y. Effects of co-adsorption on interfacial charge transfer in a quantum dot@dye composite. NANOSCALE RESEARCH LETTERS 2021; 16:147. [PMID: 34542732 PMCID: PMC8452815 DOI: 10.1186/s11671-021-03604-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The sensitive electronic environment at the quantum dot (QD)-dye interface becomes a roadblock to enhancing the energy conversion efficiency of dye-functionalized quantum dots (QDs). Energy alignments and electronic couplings are the critical factors governing the directions and rates of different charge transfer pathways at the interface, which are tunable by changing the specific linkage groups that connect a dye to the QD surface. The variation of specific anchors changes the binding configurations of a dye on the QD surface. In addition, the presence of a co-adsorbent changes the dipole-dipole and electronic interactions between a QD and a dye, resulting in different electronic environments at the interface. In the present work, we performed density functional theory (DFT)-based calculations to study the different binding configurations of N719 dye on the surface of a Cd33Se33 QD with a co-adsorbent D131 dye. The results revealed that the electronic couplings for electron transfer were greater than for hole transfer when the structure involved isocyanate groups as anchors. Such strong electronic couplings significantly stabilize the occupied states of the dye, pushing them deep inside the valence band of the QD and making hole transfer in these structures thermodynamically unfavourable. When carboxylates were involved as anchors, the electronic couplings for hole transfer were comparable to electron transfer, implying efficient charge separation at the QD-dye interface and reduced electron-hole recombination within the QD. We also found that the electronic couplings for electron transfer were larger than those for back electron transfer, suggesting efficient charge separation in photoexcited QDs. Overall, the current computational study reveals some fundamental aspects of the relationship between the interfacial charge transfer for QD@dye composites and their morphologies which benefit the design of QD-based nanomaterials for photovoltaic applications.
Collapse
Affiliation(s)
- Peng Cui
- Nanotechnology Research Laboratory, School of Textile Science and Engineering, Jiangnan University, No.1800 Lihu Road, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| | - Yuan Xue
- Nanotechnology Research Laboratory, School of Textile Science and Engineering, Jiangnan University, No.1800 Lihu Road, Wuxi, 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
38
|
Lu Y, Bloom BP, Qian S, Waldeck DH. Enantiospecificity of Cysteine Adsorption on a Ferromagnetic Surface: Is It Kinetically or Thermodynamically Controlled? J Phys Chem Lett 2021; 12:7854-7858. [PMID: 34380316 DOI: 10.1021/acs.jpclett.1c02087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This work uses electrochemical quartz crystal microbalance methods to demonstrate the enantiospecific interaction between a magnetized surface and a chiral amino acid. The enantiospecific adsorption of chiral molecules (cysteine is used as a model) on a ferromagnetic surface is shown to arise from the kinetics of adsorption and not from a thermodynamic stabilization. Measurements of the Gibbs free energy of adsorption for different chiral forms of cysteine and different electrode magnetization states show no significant differences, whereas measurements of the adsorption and desorption kinetics reveal a strong dependence on the magnetization state of the electrode surface. In addition, the enantioselectivity is shown to depend sensitively on the solution pH and the charge state of the chiral adsorbate.
Collapse
Affiliation(s)
- Y Lu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - B P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - S Qian
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - D H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
39
|
Martínez-Carmona M, Cela C, Kuznetsova VA, Geoghegan JA, Gun'ko YK. Enantioselective effect of cysteine functionalized mesoporous silica nanoparticles in U87 MG and GM08680 human cells and Staphylococcus aureus bacteria. J Mater Chem B 2021; 9:3544-3553. [PMID: 33909741 DOI: 10.1039/d0tb02532a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chirality is a fundamental phenomenon in biological systems, since most of the biomolecules and biological components and species are chiral and therefore recognize and respond differently depending on the enantiomer present. With increasing research into the use of nanomaterials for biomedical purposes, it is essential to understand the role that chirality of nanoparticles plays at the cellular level. Here, the chiral cysteine functionalization of mesoporous silica nanoparticles has been shown to broadly affect its interaction with U87 MG human glioblastoma cell, healthy human fibroblast (GM08680) and methicillin-resistant S. aureus bacteria. We believe that this research is important to further advancement of nano-biotechnology.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Carmela Cela
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Vera A Kuznetsova
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland and Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Yurii K Gun'ko
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
40
|
Sahm CD, Mates-Torres E, Eliasson N, Sokołowski K, Wagner A, Dalle KE, Huang Z, Scherman OA, Hammarström L, García-Melchor M, Reisner E. Imidazolium-modification enhances photocatalytic CO 2 reduction on ZnSe quantum dots. Chem Sci 2021; 12:9078-9087. [PMID: 34276937 PMCID: PMC8261709 DOI: 10.1039/d1sc01310f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Colloidal photocatalysts can utilize solar light for the conversion of CO2 to carbon-based fuels, but controlling the product selectivity for CO2 reduction remains challenging, in particular in aqueous solution. Here, we present an organic surface modification strategy to tune the product selectivity of colloidal ZnSe quantum dots (QDs) towards photocatalytic CO2 reduction even in the absence of transition metal co-catalysts. Besides H2, imidazolium-modified ZnSe QDs evolve up to 2.4 mmolCO gZnSe -1 (TONQD > 370) after 10 h of visible light irradiation (AM 1.5G, λ > 400 nm) in aqueous ascorbate solution with a CO-selectivity of up to 20%. This represents a four-fold increase in CO-formation yield and 13-fold increase in CO-selectivity compared to non-functionalized ZnSe QDs. The binding of the thiolated imidazolium ligand to the QD surface is characterized quantitatively using 1H-NMR spectroscopy and isothermal titration calorimetry, revealing that a subset of 12 to 17 ligands interacts strongly with the QDs. Transient absorption spectroscopy reveals an influence of the ligand on the intrinsic charge carrier dynamics through passivating Zn surface sites. Density functional theory calculations indicate that the imidazolium capping ligand plays a key role in stabilizing the surface-bound *CO2 - intermediate, increasing the yield and selectivity toward CO production. Overall, this work unveils a powerful tool of using organic capping ligands to modify the chemical environment on colloids, thus enabling control over the product selectivity within photocatalyzed CO2 reduction.
Collapse
Affiliation(s)
- Constantin D Sahm
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| | - Eric Mates-Torres
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green Dublin 2 Ireland
| | - Nora Eliasson
- Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Kamil Sokołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk.,Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK.,Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| | - Kristian E Dalle
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| | - Zehuan Huang
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk.,Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK
| | - Oren A Scherman
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk.,Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK
| | - Leif Hammarström
- Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green Dublin 2 Ireland
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK http://www-reisner.ch.cam.ac.uk
| |
Collapse
|
41
|
Gogoi A, Konwer S, Zhuo GY. Polarimetric Measurements of Surface Chirality Based on Linear and Nonlinear Light Scattering. Front Chem 2021; 8:611833. [PMID: 33644001 PMCID: PMC7902787 DOI: 10.3389/fchem.2020.611833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023] Open
Abstract
A molecule, molecular aggregate, or protein that cannot be superimposed on its mirror image presents chirality. Most living systems are organized by chiral building blocks, such as amino acids, peptides, and carbohydrates, and any change in their molecular structure (i.e., handedness or helicity) alters the biochemical and pharmacological functions of the molecules, many of which take place at surfaces. Therefore, studying surface chirogenesis at the nanoscale is fundamentally important and derives various applications. For example, since proteins contain highly ordered secondary structures, the intrinsic chirality can be served as a signature to measure the dynamics of protein adsorption and protein conformational changes at biological surfaces. Furthermore, a better understanding of chiral recognition and separation at bio-nanointerfaces is helpful to standardize chiral drugs and monitor the synthesis of adsorbents with high precision. Thus, exploring the changes in surface chirality with polarized excitations would provide structural and biochemical information of the adsorbed molecules, which has led to the development of label-free and noninvasive measurement tools based on linear and nonlinear optical effects. In this review, the principles and selected applications of linear and nonlinear optical methods for quantifying surface chirality are introduced and compared, aiming to conceptualize new ideas to address critical issues in surface biochemistry.
Collapse
Affiliation(s)
- Ankur Gogoi
- Department of Physics, Jagannath Barooah College, Jorhat, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Guan-Yu Zhuo
- Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
42
|
Shao X, Zhang T, Li B, Wu Y, Li S, Wang J, Jiang S. Controllable chiral behavior of type-II core/shell quantum dots adjusted by shell thickness and coordinated ligands. Chirality 2021; 33:167-175. [PMID: 33469961 DOI: 10.1002/chir.23298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 11/08/2022]
Abstract
Chiral semiconductor nanomaterials induced by capped chiral ligands are of great interest for both theoretical studies and advanced applications. In this study, CdTe/CdSe quantum dots (QDs), defined as type-II core/shell nanostructure, with the advantage of a good separation of holes and electrons are imparted chirality with L/D-cysteine and L/D-penicillamine molecules. Circular dichroism (CD) at exciton transitions from cysteine- and penicillamine-capped QDs is different in shape and intensity. CD intensities decrease with increasing shell thickness from three monolayers to six monolayers, indicating a decreased hybridization degree between the holes in CdTe core and the electrons in chiral ligands. Elevated cysteine concentration leads to decreased g-factor, probably due to an altered binding mode from tridentate to bidentate. Our observations provide further insights into the understanding of chiral phenomenon as well as optimized design and applications of chiral nanostructures.
Collapse
Affiliation(s)
- Xiao Shao
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.,Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, China
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Yue Wu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Siyi Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jingchao Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
43
|
Liang K, Qu S, Li Y, Tan LL, Shang L. Surface chemistry regulates the optical properties and cellular interactions of ultrasmall MoS 2 quantum dots for biomedical applications. J Mater Chem B 2021; 9:5682-5690. [PMID: 34212168 DOI: 10.1039/d1tb00647a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molybdenum disulfide quantum dots (MoS2 QDs) have drawn increasing attention owing to their distinct optical properties and potential applications in many fields such as biosensing, photocatalysis and cell imaging. Elucidating the relationship between the surface chemistry of MoS2 QDs and their optical properties as well as biological behaviors is critical for their practical applications, which remain largely unclear. Herein, by adopting a sulfur vacancy modification strategy, a toolbox of MoS2 QDs functionalized with different thiolate ligands was prepared. The effect of surface chemistry on the optical properties of MoS2 QDs was systematically explored by various spectroscopic techniques, revealing the important role of surface ligands in defining their absorption band gap and luminescence quantum yield. Furthermore, cellular experiments showed that the cytotoxicity and intracellular fate (i.e., lysosomal accumulation) of MoS2 QDs are closely related to the properties of surface ligands. Our results underscore the important roles of surface ligands in regulating the properties and biological interactions of these QDs, which will facilitate the future development of MoS2-based materials with precisely controlled functions for biomedical applications.
Collapse
Affiliation(s)
- Kangqiang Liang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Shaohua Qu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Yixiao Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, China and NPU-QMUL Joint Research Institute of Advanced Materials and Structures (JRI-AMAS), Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
44
|
Zhu F, Wang J, Xie S, Zhu Y, Wang L, Xu J, Liao S, Ren J, Liu Q, Yang H, Chen X. l-Pyroglutamic Acid-Modified CdSe/ZnS Quantum Dots: A New Fluorescence-Responsive Chiral Sensing Platform for Stereospecific Molecular Recognition. Anal Chem 2020; 92:12040-12048. [DOI: 10.1021/acs.analchem.0c02668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fawei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Siqi Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yuqiu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Sen Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jiwei Ren
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
45
|
Kim YH, Zhai Y, Gaulding EA, Habisreutinger SN, Moot T, Rosales BA, Lu H, Hazarika A, Brunecky R, Wheeler LM, Berry JJ, Beard MC, Luther JM. Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic-Inorganic Hybrid Perovskite Nanocrystals. ACS NANO 2020; 14:8816-8825. [PMID: 32644773 PMCID: PMC10906077 DOI: 10.1021/acsnano.0c03418] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Colloidal metal halide perovskite nanocrystals (NCs) with chiral ligands are outstanding candidates as a circularly polarized luminescence (CPL) light source due to many advantages such as high photoluminescence quantum efficiency, large spin-orbit coupling, and extensive tunability via composition and choice of organic ligands. However, achieving pronounced and controllable polarized light emission remains challenging. Here, we develop strategies to achieve high CPL responses from colloidal formamidinium lead bromide (FAPbBr3) NCs at room temperature using chiral surface ligands. First, we show that replacing a portion of typical ligands (oleylamine) with short chiral ligands ((R)-2-octylamine) during FAPbBr3 NC synthesis results in small and monodisperse NCs that yield high CPL with average luminescence dissymmetry g-factor, glum = 6.8 × 10-2. To the best of our knowledge, this is the highest among reported perovskite materials at room temperature to date and represents around 10-fold improvement over the previously reported colloidal CsPbClxBryI3-x-y NCs. In order to incorporate NCs into any optoelectronic or spintronic application, the NCs necessitate purification, which removes a substantial amount of the chiral ligands and extinguishes the CPL signals. To circumvent this issue, we also developed a postsynthetic ligand treatment using a different chiral ligand, (R-/S-)methylbenzylammonium bromide, which also induces a CPL with an average glum = ±1.18 × 10-2. This postsynthetic method is also amenable for long-range charge transport since methylbenzylammonium is quite compact in relation to other surface ligands. Our demonstrations of high CPL and glum from both as-synthesized and purified perovskite NCs at room temperature suggest a route to demonstrate colloidal NC-based spintronics.
Collapse
Affiliation(s)
- Young-Hoon Kim
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Yaxin Zhai
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - E. Ashley Gaulding
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | | | - Taylor Moot
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Bryan A. Rosales
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Haipeng Lu
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Abhijit Hazarika
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Roman Brunecky
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Lance M. Wheeler
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joseph J. Berry
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Matthew C. Beard
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
46
|
Goryacheva OA, Guhrenz C, Schneider K, Beloglazova NV, Goryacheva IY, De Saeger S, Gaponik N. Silanized Luminescent Quantum Dots for the Simultaneous Multicolor Lateral Flow Immunoassay of Two Mycotoxins. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24575-24584. [PMID: 32372638 DOI: 10.1021/acsami.0c05099] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A critical point for the successful development of a fluorescent quantum dot (QD)-based immunoassay is maintaining the high fluorescence quantum yield of QDs during hydrophilization and bioconjugation. In this paper, we carefully designed CdSe/CdS and CdSe/CdS/ZnS core-shell heterostructures and extended them with silica coating of different surface composition allowing preservation of fluorescence quantum yield as high as 70% in aqueous media. The silanized QDs containing epoxy and carboxy surface groups were bioconjugated with monoclonal antibodies. The synthesized fluorescent conjugates were used in a multicolor lateral flow immunoassay for simultaneous determination of two mycotoxins. Zearalenone and deoxynivalenol were chosen as a proof of concept. Cutoff levels for the zearalenone and deoxynivalenol detection were adjusted to be at 40 and 400 μg kg-1, respectively, complying with the European Commission regulation. Validation of the developed test was performed by analysis of 34 naturally contaminated maize and wheat samples; as a confirmatory method, LC-MS/MS was used.
Collapse
Affiliation(s)
- Olga A Goryacheva
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
- Chemistry Institute, Department of General and Inorganic Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia
| | - Chris Guhrenz
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
| | - Kristian Schneider
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
| | - Natalia V Beloglazova
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
- Nanotechnology Education and Research Center, South Ural State University, Chelyabinsk 454080, Russia
| | - Irina Yu Goryacheva
- Chemistry Institute, Department of General and Inorganic Chemistry, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Nikolai Gaponik
- Physical Chemistry, Technische Universität Dresden, Bergstr. 66b, Dresden 01062, Germany
| |
Collapse
|
47
|
Li G, Fei X, Liu H, Gao J, Nie J, Wang Y, Tian Z, He C, Wang JL, Ji C, Oron D, Yang G. Fluorescence and Optical Activity of Chiral CdTe Quantum Dots in Their Interaction with Amino Acids. ACS NANO 2020; 14:4196-4205. [PMID: 32298573 PMCID: PMC7467813 DOI: 10.1021/acsnano.9b09101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/16/2020] [Indexed: 05/21/2023]
Abstract
Ligand-induced chirality in semiconducting nanocrystals has been the subject of extensive study in the past few years and shows potential applications in optics and biology. Yet, the origin of the chiroptical effect in semiconductor nanoparticles is still not fully understood. Here, we examine the effect of the interaction with amino acids on both the fluorescence and the optical activity of chiral semiconductor quantum dots (QDs). A significant fluorescence enhancement is observed for l/d-Cys-CdTe QDs upon interaction with all the tested amino acids, indicating suppression of nonradiative pathways as well as the passivation of surface trap sites brought via the interaction of the amino group with the CdTe QDs' surface. Heterochiral amino acids are shown to weaken the circular dichroism (CD) signal, which may be attributed to a different binding configuration of cysteine molecules on the QDs' surface. Furthermore, a red shift of both CD and fluorescence signals in l/d-Cys-CdTe QDs is only observed upon adding cysteine, while other tested amino acids do not exhibit such an effect. We speculate that the thiol group induces orbital hybridization of the highest occupied molecular orbital (HOMOs) of cysteine and the valence band of CdTe QDs, leading to the decrease of the energy band gap and a concomitant red shift of CD and fluorescence spectra. This is further verified by density functional theory calculations. Both the experimental and theoretical findings indicate that the addition of ligands that do not "directly" interact with the valence band (VB) of the QD (noncysteine moieties) changes the QD photophysical properties, as it probably modifies the way cysteine is bound to the surface. Hence, we conclude that it is not only the chemistry of the amino acid ligand that affects both CD and PL but also the exact geometry of binding that modifies these properties. Understanding the relationship between the QD's surface and chiral amino acid thus provides an additional perspective on the fundamental origin of induced chiroptical effects in semiconductor nanoparticles, potentially enabling us to optimize the design of chiral semiconductor QDs for chiroptic applications.
Collapse
Affiliation(s)
- Guangmin Li
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
- E-mail: ;
| | - Xuening Fei
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
- E-mail:
| | - Hongfei Liu
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Jing Gao
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiayang Nie
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanbo Wang
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhaodong Tian
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Caicai He
- College
of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Jiang-Long Wang
- Hebei
Key Lab of Optic-Electronic Information and Materials, College of
Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Chao Ji
- Key
Laboratory of Catalysis, Center Tech Tianjin
Chemical Research and Design Institute Co., Ltd., Tianjin 300131, China
| | - Dan Oron
- Department
of Physics of Complex Systems, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Gaoling Yang
- Department
of Physics of Complex Systems, Weizmann
Institute of Science, Rehovot 76100, Israel
- E-mail:
| |
Collapse
|