1
|
Tamilarasi W, Balamurugan BJ. New reverse sum Revan indices for physicochemical and pharmacokinetic properties of anti-filovirus drugs. Front Chem 2024; 12:1486933. [PMID: 39749221 PMCID: PMC11693449 DOI: 10.3389/fchem.2024.1486933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Ebola and Marburg viruses, biosafety level 4 pathogens, cause severe hemorrhaging and organ failure with high mortality. Although some FDA-approved vaccines or therapeutics like Ervebo for Zaire Ebola virus exist, still there is a lack of effective therapeutics that cover all filoviruses, including both Ebola and Marburg viruses. Therefore, some anti-filovirus drugs such as Pinocembrin, Favipiravir, Remdesivir and others are used to manage infections. In theoretical chemistry, a chemical molecule is converted into an isomorphic molecular graph, G ( V , E ) by considering atom set V as vertices and bond set E as edges. A topological index is a molecular descriptor derived from the molecular graph of a chemical compound that characterizes its topology. The relationship between a compound's chemical structure and its properties is investigated through the quantitative structure-property relationship (QSPR). This article introduces new reverse sum Revan degree based indices to explore the physicochemical and pharmacokinetic properties of anti-filovirus drugs via multilinear regression. The findings reveal a strong correlation between these proposed indices and the properties of anti-filovirus drugs when compared to reverse and Revan degree-based indices. Thus, reverse sum Revan indices offer valuable insights for analyzing the drugs properties used to treat Ebola and Marburg virus infections. Moreover, the multilinear regression (MLR) results through reverse sum Revan indices are compared with Artificial Neural Network (ANN) modelling technique and it provides the better prediction of the physicochemical and pharmacokinetic properties of anti-filovirus drugs.
Collapse
Affiliation(s)
| | - B. J. Balamurugan
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Boulon R, Mazeaud C, Farahani MD, Broquière M, Iddir M, Charpentier T, Anton A, Ayotte Y, Woo S, Lamarre A, Chatel-Chaix L, LaPlante SR. Repurposing Drugs and Synergistic Combinations as Potential Therapies for Inhibiting SARS-CoV-2 and Coronavirus Replication. ACS Pharmacol Transl Sci 2024; 7:4043-4055. [PMID: 39698276 PMCID: PMC11650740 DOI: 10.1021/acsptsci.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 12/20/2024]
Abstract
Drug repurposing can serve an important role in rapidly discovering medicament options for emerging microbial pandemics. In this study, a pragmatic approach is demonstrated for screening and testing drug combinations as potential broad-spectrum therapies against SARS-CoV-2 and other betacoronaviruses. Rapid cell-based phenotypic small molecule screens were executed using related common-cold-causing HCoV-OC43 betacoronavirus to identify replication inhibitors from a library of drugs approved by regulatory agencies for other indications. Given the best inhibitors, an expedient checkerboard strategy then served to identify synergistic drug combinations. These combinations were then validated using more challenging assays involving SARS-CoV-2 and variants. Promising drug combinations against multiple viral variants were discovered and involved Tilorone with Nelfinavir or Molnupiravir.
Collapse
Affiliation(s)
- Richard Boulon
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Clément Mazeaud
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Majid D. Farahani
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Mathilde Broquière
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Mustapha Iddir
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Tania Charpentier
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Anaïs Anton
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Yann Ayotte
- NMX
Research and Solutions|Accelerating drug discovery, 500 boulevard Cartier Ouest, Laval, Quebec H7V 5B7, Canada
| | - Simon Woo
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
- NMX
Research and Solutions|Accelerating drug discovery, 500 boulevard Cartier Ouest, Laval, Quebec H7V 5B7, Canada
| | - Alain Lamarre
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Laurent Chatel-Chaix
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| | - Steven R. LaPlante
- Institut
National de la Recherche Scientifique−Centre Armand-Frappier
Santé Biotechnologie, 531 boulevard des Prairies, Laval, Québec H7V
1B7, Canada
| |
Collapse
|
3
|
Abla N, Almond LM, Bonner JJ, Richardson N, Wells TNC, Möhrle JJ. PBPK-led assessment of antimalarial drugs as candidates for Covid-19: Simulating concentrations at the site of action to inform repurposing strategies. Clin Transl Sci 2024; 17:e13865. [PMID: 39020517 PMCID: PMC11254780 DOI: 10.1111/cts.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/19/2024] Open
Abstract
The urgent need for safe, efficacious, and accessible drug treatments to treat coronavirus disease 2019 (COVID-19) prompted a global effort to evaluate drug repurposing opportunities. Pyronaridine and amodiaquine are both components of approved antimalarials with in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro activity does not always translate to clinical efficacy across a therapeutic dose range. This study applied available, verified, physiologically based pharmacokinetic (PBPK) models for pyronaridine, amodiaquine, and its active metabolite N-desethylamodiaquine (DEAQ) to predict drug concentrations in lung tissue relative to plasma or blood in the default healthy virtual population. Lung exposures were compared to published data across the reported range of in vitro EC50 values against SARS-CoV-2. In the multicompartment permeability-limited PBPK model, the predicted total Cmax in lung mass for pyronaridine was 34.2 μM on Day 3, 30.5-fold greater than in blood (1.12 μM) and for amodiaquine was 0.530 μM, 8.83-fold greater than in plasma (0.060 μM). In the perfusion-limited PBPK model, the DEAQ predicted total Cmax on Day 3 in lung mass (30.2 μM) was 21.4-fold greater than for plasma (1.41 μM). Based on the available in vitro data, predicted drug concentrations in lung tissue for pyronaridine and DEAQ, but not amodiaquine, appeared sufficient to inhibit SARS-CoV-2 replication. Simulations indicated standard dosing regimens of pyronaridine-artesunate and artesunate-amodiaquine have potential to treat COVID-19. These findings informed repurposing strategies to select the most relevant compounds for clinical investigation in COVID-19. Clinical data for model verification may become available from ongoing clinical studies.
Collapse
Affiliation(s)
- Nada Abla
- MMV Medicines for Malaria VentureGenevaSwitzerland
| | | | | | | | | | | |
Collapse
|
4
|
Kang DW, Kim JH, Kim KM, Cho SJ, Choi GW, Cho HY. Inter-Species Pharmacokinetic Modeling and Scaling for Drug Repurposing of Pyronaridine and Artesunate. Int J Mol Sci 2024; 25:6998. [PMID: 39000107 PMCID: PMC11241507 DOI: 10.3390/ijms25136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (D.W.K.); (J.H.K.); (K.M.K.); (S.-j.C.); (G.-W.C.)
| |
Collapse
|
5
|
Chaudhary M, Kumar A, Bala Sharma K, Vrati S, Sehgal D. In silico identification of chikungunya virus replication inhibitor validated using biochemical and cell-based approaches. FEBS J 2024; 291:2656-2673. [PMID: 38303163 DOI: 10.1111/febs.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Discovering an alternative therapy with a long-lasting effect on symptoms caused by chikungunya virus (CHIKV) infection is prompted by the lack of a vaccine and the absence of safe, effective and non-toxic medications. One potential strategy is synthesizing or identifying small compounds that can specifically target the active site of an essential enzyme and prevent virus replication. Previous site-directed mutagenesis studies have demonstrated the crucial role of the macrodomain, which is a part of non-structural protein 3 (nsP3), in virus replication. Exploiting this fact, the macrodomain can be targeted to discover a natural substance that can inhibit its function and thereby impede virus replication. With this aim, the present study focused on potential CHIKV nsP3 macrodomain (nsP3MD) inhibitors through in silico, in vitro and cell-based methods. Through virtual screening of the natural compound library, nine nsP3MD inhibitors were initially identified. Molecular dynamics (MD) simulations were employed to evaluate these nine compounds based on the stability of their ligand-receptor complexes and energy parameters. Target analysis and ADMET (i.e. absorption, distribution, metabolism, excretion and toxicity) prediction of the selected compounds revealed their drug-like characteristics. Subsequent in vitro investigation allowed us to narrow the selection down to one compound, N-[2-(5-methoxy-1H-indol-3-yl) ethyl]-2-oxo-1,2-dihydroquinoline-4-carboxamide, which exhibited potent inhibition of CHIKV growth. This molecule effectively inhibited CHIKV replication in the stable embryonal rhabdomyosarcoma cell line capable of producing CHIKV. Our findings demonstrate that the selected compound possesses substantial anti-CHIKV nsP3MD activity both in vitro and in vivo. This work provides a promising molecule for further preclinical studies to develop a potential drug against the CHIKV.
Collapse
Affiliation(s)
- Meenakshi Chaudhary
- Virology Laboratory, Department of Life Sciences, Shiv Nadar Institute of Eminence, Greater Noida, India
| | - Akash Kumar
- Virology Laboratory, Department of Life Sciences, Shiv Nadar Institute of Eminence, Greater Noida, India
| | - Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Deepak Sehgal
- Virology Laboratory, Department of Life Sciences, Shiv Nadar Institute of Eminence, Greater Noida, India
| |
Collapse
|
6
|
Lyu Y, Li W, Guo Q, Wu H. Mapping knowledge landscapes and emerging trends of Marburg virus: A text-mining study. Heliyon 2024; 10:e29691. [PMID: 38655363 PMCID: PMC11036101 DOI: 10.1016/j.heliyon.2024.e29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Background Marburg virus (MARV), a close relative of Ebola virus, could induce hemorrhagic fevers in humans with high mortality rate. In recent years, increasing attention has been paid to this highly lethal virus due to sporadic outbreaks observed in various African nations. This bibliometric analysis endeavors to elucidate the trends, dynamics, and focal points of knowledge that have delineated the landscape of research concerning MARV. Methods Relevant literature on MARV from 1968 to 2023 was extracted from the Web of Science Core Collection database. Following this, the data underwent bibliometric analysis and visualization procedures utilizing online analysis platform, CiteSpace 6.2R6, and VOSviewer 1.6.20. Three different types of bibliometric indicators including quantitative indicator, qualitative indicators, and structural indicators were used to gauge a researcher's productivity, assess the quality of their work, and analyze publication relationships, respectively. Results MARV is mainly prevalent in Africa. And approximately 643 confirmed cases have been described in the literature to date, and mortality observed was 81.2 % in overall patients. A total of 1014 papers comprising 869 articles and 145 reviews were included. The annual publications showed an increasing growth pattern from 1968 to 2023 (R2 = 0.8838). The United States stands at the forefront of this discipline, having dedicated substantial financial and human resources to scientific inquiry. However, co-authorship analysis showed the international research collaboration needs to be further strengthened. Based on reference and keywords analysis, contemporary MARV research encompasses pivotal areas: primarily, prioritizing the creation of prophylactic vaccines to impede viral spread, and secondarily, exploring targeted antiviral strategies, including small-molecule antivirals or MARV-specific monoclonal antibodies. Additionally, a comprehensive grasp of viral transmission, transcription, and replication mechanisms remains a central focus in ongoing investigations. And future MARV studies are expected to focus on evaluating clinical trial safety and efficacy, developing inhibitors to contain viral spread, exploring vaccine immunogenicity, virus-host association studies, and elucidating the role of neutralizing antibodies in MARV treatment. Conclusion The present study offered comprehensive insights into the contemporary status and trajectories of MARV over the past decades. This enables researchers to discern novel collaborative prospects, institutional partnerships, emerging topics, and research forefronts within this domain.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052, Henan, China
| | - Wanqing Li
- Department of Operating Room, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Orthopaedics, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
7
|
Freidel MR, Armen RS. Research Progress on Spike-Dependent SARS-CoV-2 Fusion Inhibitors and Small Molecules Targeting the S2 Subunit of Spike. Viruses 2024; 16:712. [PMID: 38793593 PMCID: PMC11125925 DOI: 10.3390/v16050712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, extensive drug repurposing efforts have sought to identify small-molecule antivirals with various mechanisms of action. Here, we aim to review research progress on small-molecule viral entry and fusion inhibitors that directly bind to the SARS-CoV-2 Spike protein. Early in the pandemic, numerous small molecules were identified in drug repurposing screens and reported to be effective in in vitro SARS-CoV-2 viral entry or fusion inhibitors. However, given minimal experimental information regarding the exact location of small-molecule binding sites on Spike, it was unclear what the specific mechanism of action was or where the exact binding sites were on Spike for some inhibitor candidates. The work of countless researchers has yielded great progress, with the identification of many viral entry inhibitors that target elements on the S1 receptor-binding domain (RBD) or N-terminal domain (NTD) and disrupt the S1 receptor-binding function. In this review, we will also focus on highlighting fusion inhibitors that target inhibition of the S2 fusion function, either by disrupting the formation of the postfusion S2 conformation or alternatively by stabilizing structural elements of the prefusion S2 conformation to prevent conformational changes associated with S2 function. We highlight experimentally validated binding sites on the S1/S2 interface and on the S2 subunit. While most substitutions to the Spike protein to date in variants of concern (VOCs) have been localized to the S1 subunit, the S2 subunit sequence is more conserved, with only a few observed substitutions in proximity to S2 binding sites. Several recent small molecules targeting S2 have been shown to have robust activity over recent VOC mutant strains and/or greater broad-spectrum antiviral activity for other more distantly related coronaviruses.
Collapse
Affiliation(s)
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, 901 Walnut St. Suite 918, Philadelphia, PA 19170, USA;
| |
Collapse
|
8
|
Srivastava S, Kumar S, Ashique S, Sridhar SB, Shareef J, Thomas S. Novel antiviral approaches for Marburg: a promising therapeutics in the pipeline. Front Microbiol 2024; 15:1387628. [PMID: 38725678 PMCID: PMC11079314 DOI: 10.3389/fmicb.2024.1387628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Marburg virus disease (MVD) presents a significant global health threat, lacking effective antivirals and with current supportive care offering limited therapeutic options. This mini review explores the emerging landscape of novel antiviral strategies against MVD, focusing on promising therapeutics currently in the development pipeline. We delve into direct-acting antiviral approaches, including small molecule inhibitors targeting viral entry, replication, and assembly, alongside nucleic acid antisense and RNA interference strategies. Host-targeting antivirals are also considered, encompassing immune modulators like interferons and cytokine/chemokine modulators, broad-spectrum antivirals, and convalescent plasma and antibody-based therapies. The paper then examines preclinical and clinical development for the novel therapeutics, highlighting in vitro and in vivo models for antiviral evaluation, safety and efficacy assessments, and the critical stages of clinical trials. Recognizing the challenges of drug resistance and viral escape, the mini review underscores the potential of combination therapy strategies and emphasizes the need for rapid diagnostic tools to optimize treatment initiation. Finally, we discuss the importance of public health preparedness and equitable access to these promising therapeutics in achieving effective MVD control and global health security. This mini review presents a comprehensive overview of the burgeoning field of MVD antivirals, highlighting the potential of these novel approaches to reshape the future of MVD treatment and prevention.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, India
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - Javedh Shareef
- Clinical Pharmacy & Pharmacology, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras al Khaimah, United Arab Emirates
| | - Sabin Thomas
- College of Health Sciences, University of Nizwa, Nizwa, Oman
| |
Collapse
|
9
|
Puhl AC, Raman R, Havener TM, Minerali E, Hickey AJ, Ekins S. Identification of New Modulators and Inhibitors of Palmitoyl-Protein Thioesterase 1 for CLN1 Batten Disease and Cancer. ACS OMEGA 2024; 9:11870-11882. [PMID: 38496939 PMCID: PMC10938339 DOI: 10.1021/acsomega.3c09607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Palmitoyl-protein thioesterase 1 (PPT1) is an understudied enzyme that is gaining attention due to its role in the depalmitoylation of several proteins involved in neurodegenerative diseases and cancer. PPT1 is overexpressed in several cancers, specifically cholangiocarcinoma and esophageal cancers. Inhibitors of PPT1 lead to cell death and have been shown to enhance the killing of tumor cells alongside known chemotherapeutics. PPT1 is hence a viable target for anticancer drug development. Furthermore, mutations in PPT1 cause a lysosomal storage disorder called infantile neuronal ceroid lipofuscinosis (CLN1 disease). Molecules that can inhibit, stabilize, or modulate the activity of this target are needed to address these diseases. We used PPT1 enzymatic assays to identify molecules that were subsequently tested by using differential scanning fluorimetry and microscale thermophoresis. Selected compounds were also tested in neuroblastoma cell lines. The resulting PPT1 screening data was used for building machine learning models to help select additional compounds for testing. We discovered two of the most potent PPT1 inhibitors reported to date, orlistat (IC50 178.8 nM) and palmostatin B (IC50 11.8 nM). When tested in HepG2 cells, it was found that these molecules had decreased activity, indicating that they were likely not penetrating the cells. The combination of in vitro enzymatic and biophysical assays enabled the identification of several molecules that can bind or inhibit PPT1 and may aid in the discovery of modulators or chaperones. The molecules identified could be used as a starting point for further optimization as treatments for other potential therapeutic applications outside CLN1 disease, such as cancer and neurological diseases.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Tammy M. Havener
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eni Minerali
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anthony J. Hickey
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Kumar S, Dubey R, Mishra R, Gupta S, Dwivedi VD, Ray S, Jha NK, Verma D, Tsai LW, Dubey NK. Repurposing of SARS-CoV-2 compounds against Marburg Virus using MD simulation, mm/GBSA, PCA analysis, and free energy landscape. J Biomol Struct Dyn 2024:1-20. [PMID: 38450706 DOI: 10.1080/07391102.2024.2323701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
The significant mortality rate associated with Marburg virus infection made it the greatest hazard among infectious diseases. Drug repurposing using in silico methods has been crucial in identifying potential compounds that could prevent viral replication by targeting the virus's primary proteins. This study aimed at repurposing the drugs of SARS-CoV-2 for identifying potential candidates against the matrix protein VP40 of the Marburg virus. Virtual screening was performed where the control compound, Nilotinib, showed a binding score of -9.99 kcal/mol. Based on binding scores, hit compounds 9549298, 11960895, 44545852, 51039094, and 89670174 were selected that had a lower binding score than the control. Subsequent molecular dynamics (MD) simulation revealed that compound 9549298 consistently formed a hydrogen bond with the residue Gln290. This was observed both in molecular docking and MD simulation poses, indicating a strong and significant interaction with the protein. 11960895 had the most stable and consistent RMSD pattern exhibited in 100 ns simulation, while 9549298 had the most identical RMSD plot compared to the control molecule. MM/PBSA analysis showed that the binding free energy (ΔG) of 9549298 and 11960895 was lower than the control, with -30.84 and -38.86 kcal/mol, respectively. It was observed by the PCA (principal component analysis) and FEL (free energy landscape) analysis that compounds 9549298 and 11960895 had lesser conformational variation. Overall, this study proposed 9549298 and 11960895 as potential binders of VP40 MARV that can cause its inhibition, however it inherently lacks experimental validation. Furthermore, the study proposes in-vitro experiments as the next step to validate these computational findings, offering a practical approach to further explore these compounds' potential as antiviral agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Greater Noida, UP, India
| | - Subhasree Ray
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
11
|
Jones T, Monakhova N, Guivel-Benhassine F, Lepioshkin A, Bruel T, Lane TR, Schwartz O, Puhl AC, Makarov V, Ekins S. Synthesis and Evaluation of 9-Aminoacridines with SARS-CoV-2 Antiviral Activity. ACS OMEGA 2023; 8:40817-40822. [PMID: 37929131 PMCID: PMC10620940 DOI: 10.1021/acsomega.3c05900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
There have been relatively few small molecules developed with direct activity against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two existing antimalarial drugs, pyronaridine and quinacrine, display whole cell activity against SARS-CoV-2 in A549 + ACE2 cells (pretreatment, IC50 = 0.23 and 0.19 μM, respectively) with moderate cytotoxicity (CC50 = 11.53 and 9.24 μM, respectively). Moreover, pyronaridine displays in vitro activity against SARS-CoV-2 PLpro (IC50 = 1.8 μM). Given their existing antiviral activity, these compounds are strong candidates for repurposing against COVID-19 and prompt us to study the structure-activity relationship of the 9-aminoacridine scaffold against SARS-CoV-2 using traditional medicinal chemistry to identify promising new analogs. Our studies identified several novel analogs possessing potent in vitro activity in U2-OS ACE2 GFP 1-10 and 1-11 (IC50 < 1.0 μM) as well as moderate cytotoxicity (CC50 > 4.0 μM). Compounds such as 7g, 9c, and 7e were more active, demonstrating selectivity indices SI > 10, and 9c displayed the strongest activity (IC50 ≤ 0.42 μM, CC50 ≥ 4.41 μM, SI > 10) among them, indicating that it has potential as a new lead molecule in this series against COVID-19.
Collapse
Affiliation(s)
- Thane Jones
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Natalia Monakhova
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, Moscow 119071, Russia
| | | | - Alexander Lepioshkin
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Timothée Bruel
- Institut
Pasteur, 28 rue du Dr Roux, Paris Cedex 15 75724, France
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Olivier Schwartz
- Institut
Pasteur, 28 rue du Dr Roux, Paris Cedex 15 75724, France
| | - Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Vadim Makarov
- Federal
Research Centre “Fundamentals of Biotechnology” of the
Russian Academy of Sciences (Research Centre of Biotechnology RAS), 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
12
|
Ardanuy J, Johnson R, Dillen C, Taylor L, Hammond H, Weston S, Frieman M. Pyronaridine tetraphosphate is an efficacious antiviral and anti-inflammatory active against multiple highly pathogenic coronaviruses. mBio 2023; 14:e0158723. [PMID: 37581442 PMCID: PMC10653794 DOI: 10.1128/mbio.01587-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023] Open
Abstract
IMPORTANCE Pyronaridine tetraphosphate is on the WHO Essential Medicine List for its importance as a widely available and safe treatment for malaria. We find that pyronaridine is a highly effective antiviral therapeutic across mouse models using multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and the highly pathogenic viruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus responsible for previous coronavirus outbreaks. Additionally, we find that pyronaridine additively combines with current COVID-19 treatments such as nirmatrelvir (protease inhibitor in Paxlovid) and molnupiravir to further inhibit SARS-CoV-2 infections. There are many antiviral compounds that demonstrate efficacy in cellular models, but few that show this level of impact in multiple mouse models and represent a promising therapeutic for the current coronavirus pandemic as well as future outbreaks as well.
Collapse
Affiliation(s)
- Jeremy Ardanuy
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Johnson
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Louis Taylor
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Holly Hammond
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stuart Weston
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Puhl AC, Lane TR, Ekins S. Learning from COVID-19: How drug hunters can prepare for the next pandemic. Drug Discov Today 2023; 28:103723. [PMID: 37482237 PMCID: PMC10994687 DOI: 10.1016/j.drudis.2023.103723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Over 3 years, the SARS-CoV-2 pandemic killed nearly 7 million people and infected more than 767 million globally. During this time, our very small company was able to contribute to antiviral drug discovery efforts through global collaborations with other researchers, which enabled the identification and repurposing of multiple molecules with activity against SARS-CoV-2 including pyronaridine tetraphosphate, tilorone, quinacrine, vandetanib, lumefantrine, cetylpyridinium chloride, raloxifene, carvedilol, olmutinib, dacomitinib, crizotinib, and bosutinib. We highlight some of the key findings from this experience of using different computational and experimental strategies, and detail some of the challenges and strategies for how we might better prepare for the next pandemic so that potential antiviral treatments are available for future outbreaks.
Collapse
Affiliation(s)
- Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| |
Collapse
|
14
|
Flamier A, Bisht P, Richards A, Tomasello DL, Jaenisch R. Human iPS cell-derived sensory neurons can be infected by SARS-CoV-2. iScience 2023; 26:107690. [PMID: 37680484 PMCID: PMC10480666 DOI: 10.1016/j.isci.2023.107690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
COVID-19 has impacted billions of people since 2019 and unfolded a major healthcare crisis. With an increasing number of deaths and the emergence of more transmissible variants, it is crucial to better understand the biology of the disease-causing virus, the SARS-CoV-2. Peripheral neuropathies appeared as a specific COVID-19 symptom occurring at later stages of the disease. In order to understand the impact of SARS-CoV-2 on the peripheral nervous system, we generated human sensory neurons from induced pluripotent stem cells that we infected with the SARS-CoV-2 strain WA1/2020 and the variants delta and omicron. Using single-cell RNA sequencing, we found that human sensory neurons can be infected by SARS-CoV-2 but are unable to produce infectious viruses. Our data indicate that sensory neurons can be infected by the original WA1/2020 strain of SARS-CoV-2 as well as the delta and omicron variants, yet infectability differs between the original strain and the variants.
Collapse
Affiliation(s)
- Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | | | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
15
|
Valipour M, Irannejad H, Keyvani H. An Overview on Anti-COVID-19 Drug Achievements and Challenges Ahead. ACS Pharmacol Transl Sci 2023; 6:1248-1265. [PMID: 37705590 PMCID: PMC10496143 DOI: 10.1021/acsptsci.3c00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/15/2023]
Abstract
The appearance of several coronavirus pandemics/epidemics during the last two decades (SARS-CoV-1 in 2002, MERS-CoV in 2012, and SARS-CoV-2 in 2019) indicates that humanity will face increasing challenges from coronaviruses in the future. The emergence of new strains with similar transmission characteristics as SARS-CoV-2 and mortality rates similar to SARS-CoV-1 (∼10% mortality) or MERS-CoV (∼35% mortality) in the future is a terrifying possibility. Therefore, getting enough preparations to face such risks is an inevitable necessity. The present study aims to review the drug achievements and challenges in the fight against SARS-CoV-2 with a combined perspective derived from pharmacology, pharmacotherapy, and medicinal chemistry insights. Appreciating all the efforts made during the past few years, there is strong evidence that the desired results have not yet been achieved and research in this area should still be pursued seriously. By expressing some pessimistic possibilities and concluding that the drug discovery and pharmacotherapy of COVID-19 have not been successful so far, this short essay tries to draw the attention of responsible authorities to be more prepared against future coronavirus epidemics/pandemics.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi
Drug Research Center, Iran University of
Medical Sciences, Tehran 1134845764, Iran
| | - Hamid Irannejad
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hossein Keyvani
- Department
of Virology, School of Medicine, Iran University
of Medical Sciences, Tehran 1134845764, Iran
| |
Collapse
|
16
|
Sessions Z, Bobrowski T, Martin HJ, Beasley JMT, Kothari A, Phares T, Li M, Alves VM, Scotti MT, Moorman NJ, Baric R, Tropsha A, Muratov EN. Praemonitus praemunitus: can we forecast and prepare for future viral disease outbreaks? FEMS Microbiol Rev 2023; 47:fuad048. [PMID: 37596064 PMCID: PMC10532129 DOI: 10.1093/femsre/fuad048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the origins of past and present viral epidemics is critical in preparing for future outbreaks. Many viruses, including SARS-CoV-2, have led to significant consequences not only due to their virulence, but also because we were unprepared for their emergence. We need to learn from large amounts of data accumulated from well-studied, past pandemics and employ modern informatics and therapeutic development technologies to forecast future pandemics and help minimize their potential impacts. While acknowledging the complexity and difficulties associated with establishing reliable outbreak predictions, herein we provide a perspective on the regions of the world that are most likely to be impacted by future outbreaks. We specifically focus on viruses with epidemic potential, namely SARS-CoV-2, MERS-CoV, DENV, ZIKV, MAYV, LASV, noroviruses, influenza, Nipah virus, hantaviruses, Oropouche virus, MARV, and Ebola virus, which all require attention from both the public and scientific community to avoid societal catastrophes like COVID-19. Based on our literature review, data analysis, and outbreak simulations, we posit that these future viral epidemics are unavoidable, but that their societal impacts can be minimized by strategic investment into basic virology research, epidemiological studies of neglected viral diseases, and antiviral drug discovery.
Collapse
Affiliation(s)
- Zoe Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Tesia Bobrowski
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Jon-Michael T Beasley
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Aneri Kothari
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Trevor Phares
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
- School of Chemistry, University of Louisville, 2320 S Brook St, Louisville, KY 40208, United States
| | - Michael Li
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Marcus T Scotti
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus I Lot. Cidade Universitaria, PB, 58051-900, Brazil
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, University of North Carolina, 116 Manning Drive, Chapel Hill, NC 27599, United States
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, 401 Pittsboro St, Chapel Hill, NC 27599, United States
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, 301 Pharmacy Ln, Chapel Hill, NC 27599, United States
| |
Collapse
|
17
|
Diesendorf V, Roll V, Geiger N, Fähr S, Obernolte H, Sewald K, Bodem J. Drug-induced phospholipidosis is not correlated with the inhibition of SARS-CoV-2 - inhibition of SARS-CoV-2 is cell line-specific. Front Cell Infect Microbiol 2023; 13:1100028. [PMID: 37637460 PMCID: PMC10450944 DOI: 10.3389/fcimb.2023.1100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Recently, Tummino et al. reported that 34 compounds, including Chloroquine and Fluoxetine, inhibit SARS-CoV-2 replication by inducing phospholipidosis, although Chloroquine failed to suppress viral replication in Calu-3 cells and patients. In contrast, Fluoxetine represses viral replication in human precision-cut lung slices (PCLS) and Calu-3 cells. Thus, it is unlikely that these compounds have similar mechanisms of action. Here, we analysed a subset of these compounds in the viral replication and phospholipidosis assays using the Calu-3 cells and PCLS as the patient-near system. Trimipramine and Chloroquine induced phospholipidosis but failed to inhibit SARS-CoV-2 replication in Calu-3 cells, which contradicts the reported findings and the proposed mechanism. Fluoxetine, only slightly induced phospholipidosis in Calu-3 cells but reduced viral replication by 2.7 orders of magnitude. Tilorone suppressed viral replication by 1.9 orders of magnitude in Calu-3 cells without causing phospholipidosis. Thus, induction of phospholipidosis is not correlated with the inhibition of SARS-CoV-2, and the compounds act via other mechanisms. However, we show that compounds, such as Amiodarone, Tamoxifen and Tilorone, with antiviral activity on Calu-3 cells, also inhibited viral replication in human PCLS. Our results indicate that antiviral assays against SARS-CoV-2 are cell-line specific. Data from Vero E6 can lead to non-transferable results, underlining the importance of an appropriate cell system for analysing antiviral compounds against SARS-CoV-2. We observed a correlation between the active compounds in Calu-3 cells and PCLS.
Collapse
Affiliation(s)
- Viktoria Diesendorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Valeria Roll
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nina Geiger
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Sofie Fähr
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover, Germany
| | - Jochen Bodem
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Maity S, Santra A, Vardhan Hebbani A, Pulakuntla S, Chatterjee A, Rao Badri K, Damodara Reddy V. Targeting cytokine storm as the potential anti-viral therapy: Implications in regulating SARS-CoV-2 pathogenicity. Gene 2023:147612. [PMID: 37423400 DOI: 10.1016/j.gene.2023.147612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The latest global pandemic corona virus disease - 2019 (COVID-19) caused by the virus SARS-CoV-2 is still a matter of worrying concern both for the scientific communities and health care organizations. COVID-19 disease is proved to be a highly contagious disease transmitted through respiratory droplets and even close contact with affected individuals. COVID-19 disease is also understood to exhibit diverse symptoms of ranging severities i.e., from mild fatigue to death. Affected individuals' susceptibility to induce immunologic dysregulation phenomena termed 'cytokine storm' seems to be playing the damaging role of escalating the disease manifestation from mild to severe. Cytokine storm in patients with severe symptoms is understood to be characterized by enhanced serum levels of many cytokines including interleukin-1β, interleukin-6, IL-10, TNF, interferon-γ, MIP-1α, MIP-1β and VEGF. Since cytokine production in general is the most important antiviral defense response, understanding the COVID-19 associated cytokine storm in particular and differentiating it from the regular cytokine production response becomes crucial in developing an effective therapeutic strategy.This review focuses on the potential targeting of COVID-19 associated cytokine storm and its challenges.
Collapse
Affiliation(s)
- Subashish Maity
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ayantika Santra
- Department of Biochemistry, Indian Academy Degree College, Bengaluru, 560 043, India
| | | | - Swetha Pulakuntla
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Kameswara Rao Badri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Morehouse School of Medicine, GA, Atlanta-30310, USA; Clinical Analytical Chemistry Laboratory, COVID-19 Testing Laboratory, Morehouse School of Medicine, GA, Atlanta-30310, USA.
| | - Vaddi Damodara Reddy
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India.
| |
Collapse
|
19
|
Puhl AC, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Oliva G, Ekins S. Discovery of PL pro and M pro Inhibitors for SARS-CoV-2. ACS OMEGA 2023; 8:22603-22612. [PMID: 37387790 PMCID: PMC10275482 DOI: 10.1021/acsomega.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
There are very few small-molecule antivirals for SARS-CoV-2 that are either currently approved (or emergency authorized) in the US or globally, including remdesivir, molnupiravir, and paxlovid. The increasing number of SARS-CoV-2 variants that have appeared since the outbreak began over three years ago raises the need for continual development of updated vaccines and orally available antivirals in order to fully protect or treat the population. The viral main protease (Mpro) and the papain-like protease (PLpro) are key for viral replication; therefore, they represent valuable targets for antiviral therapy. We herein describe an in vitro screen performed using the 2560 compounds from the Microsource Spectrum library against Mpro and PLpro in an attempt to identify additional small-molecule hits that could be repurposed for SARS-CoV-2. We subsequently identified 2 hits for Mpro and 8 hits for PLpro. One of these hits was the quaternary ammonium compound cetylpyridinium chloride with dual activity (IC50 = 2.72 ± 0.09 μM for PLpro and IC50 = 7.25 ± 0.15 μM for Mpro). A second inhibitor of PLpro was the selective estrogen receptor modulator raloxifene (IC50 = 3.28 ± 0.29 μM for PLpro and IC50 = 42.8 ± 6.7 μM for Mpro). We additionally tested several kinase inhibitors and identified olmutinib (IC50 = 0.54 ± 0.04 μM), bosutinib (IC50 = 4.23 ± 0.28 μM), crizotinib (IC50 = 3.81 ± 0.04 μM), and dacominitinib (IC50 = IC50 3.33 ± 0.06 μM) as PLpro inhibitors for the first time. In some cases, these molecules have also been tested by others for antiviral activity for this virus, or we have used Calu-3 cells infected with SARS-CoV-2. The results suggest that approved drugs can be identified with promising activity against these proteases, and in several cases we or others have validated their antiviral activity. The additional identification of known kinase inhibitors as molecules targeting PLpro may provide new repurposing opportunities or starting points for chemical optimization.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Andre S. Godoy
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Gabriela D. Noske
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Aline M. Nakamura
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Victor O. Gawriljuk
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Rafaela S. Fernandes
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Glaucius Oliva
- Sao
Carlos Institute of Physics, University
of Sao Paulo, Av. Joao
Dagnone, 1100—Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
20
|
Liu P, Li Y, Liu Y, Liu J, Dong K, Jia Q. Molecular Insights into the Binding Behavior of Imidazolium Ionic Liquids to the Receptor Binding Domain of the SARS-CoV-2 Spike Protein. J Phys Chem B 2023; 127:4396-4405. [PMID: 37194950 DOI: 10.1021/acs.jpcb.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is considered as a key target for the design and development of COVID-19 drugs and inhibitors. Due to their unique structure and properties, ionic liquids (ILs) have many special interactions with proteins, showing great potential in biomedicine. Nevertheless, few research studies have been carried out on ILs and the spike RBD protein. Here, we explore the interaction of ILs and the RBD protein through large-scale molecular dynamics simulations (4 μs in total). It was found that IL cations with long alkyl chain lengths (nchain) could spontaneously bind to the cavity region of the RBD protein. The longer the alkyl chain is, the stabler the cations bind to the protein. The binding free energy (ΔG) had the same trend, peaking at nchain = 12 with -101.19 kJ/mol. The cationic chain lengths and their fit to the pocket are decisive factors that influence the binding strength of cations and proteins. The cationic imidazole ring has a high contact frequency with phenylalanine and tryptophan, and the hydrophobic residues phenylalanine, valine, leucine, and isoleucine are the most interacting residues with side chains of cations. Meanwhile, through analysis of the interaction energy, the hydrophobic and π-π interactions are the main contributors to the high affinity between cations and the RBD protein. In addition, the long-chain ILs would also act on the protein through clustering. These studies not only provide insights into the molecular interaction between ILs and the RBD of SARS-CoV-2 but also contribute to the rational design of IL-based drugs, drug carriers, and selective inhibitors as a therapeutic for SARS-CoV-2.
Collapse
Affiliation(s)
- Peng Liu
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, 13St. 29, TEDA, 300457 Tianjin, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China
| | - Ju Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Kun Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, P. R. China
| | - Qingzhu Jia
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, 13St. 29, TEDA, 300457 Tianjin, P. R. China
| |
Collapse
|
21
|
Vignaux P, Lane TR, Puhl AC, Hau RK, Wright SH, Cherrington NJ, Ekins S. Transporter Inhibition Profile for the Antivirals Tilorone, Quinacrine and Pyronaridine. ACS OMEGA 2023; 8:12532-12537. [PMID: 37033868 PMCID: PMC10077433 DOI: 10.1021/acsomega.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 05/28/2023]
Abstract
Pyronaridine, tilorone and quinacrine are cationic molecules that have in vitro activity against Ebola, SARS-CoV-2 and other viruses. All three molecules have also demonstrated in vivo activity against Ebola in mice, while pyronaridine showed in vivo efficacy against SARS-CoV-2 in mice. We have recently tested these molecules and other antivirals against human organic cation transporters (OCTs) and apical multidrug and toxin extruders (MATEs). Quinacrine was found to be an inhibitor of OCT2, while tilorone and pyronaridine were less potent, and these displayed variability depending on the substrate used. To assess whether any of these three molecules have other potential interactions with additional transporters, we have now screened them at 10 μM against various human efflux and uptake transporters including P-gp, OATP1B3, OAT1, OAT3, MRP1, MRP2, MRP3, BCRP, as well as confirmational testing against OCT1, OCT2, MATE1 and MATE2K. Interestingly, in this study tilorone appears to be a more potent inhibitor of OCT1 and OCT2 than pyronaridine or quinacrine. However, both pyronaridine and quinacrine appear to be more potent inhibitors of MATE1 and MATE2K. None of the three compounds inhibited MRP1, MRP2, MRP3, OAT1, OAT3, P-gp or OATP1B3. Similarly, we previously showed that tilorone and pyronaridine do not inhibit OATP1B1 and have confirmed that quinacrine behaves similarly. In total, these observations suggest that the three compounds only appear to interact with OCTs and MATEs to differing extents, suggesting they may be involved in fewer clinically relevant drug-transporter interactions involving pharmaceutical substrates of the other major transporters tested.
Collapse
Affiliation(s)
- Patricia
A. Vignaux
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Raymond K. Hau
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Stephen H. Wright
- Department
of Physiology, College of Medicine, University
of Arizona, Tucson, Arizona 85721, United
States
| | - Nathan J. Cherrington
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
22
|
Application of Minimal Physiologically-Based Pharmacokinetic Model to Simulate Lung and Trachea Exposure of Pyronaridine and Artesunate in Hamsters. Pharmaceutics 2023; 15:pharmaceutics15030838. [PMID: 36986698 PMCID: PMC10058671 DOI: 10.3390/pharmaceutics15030838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
A fixed-dose combination of pyronaridine and artesunate, one of the artemisinin-based combination therapies, has been used as a potent antimalarial treatment regimen. Recently, several studies have reported the antiviral effects of both drugs against severe acute respiratory syndrome coronavirus two (SARS-CoV-2). However, there are limited data on the pharmacokinetics (PKs), lung, and trachea exposures that could be correlated with the antiviral effects of pyronaridine and artesunate. The purpose of this study was to evaluate the pharmacokinetics, lung, and trachea distribution of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) using a minimal physiologically-based pharmacokinetic (PBPK) model. The major target tissues for evaluating dose metrics are blood, lung, and trachea, and the nontarget tissues were lumped together into the rest of the body. The predictive performance of the minimal PBPK model was evaluated using visual inspection between observations and model predictions, (average) fold error, and sensitivity analysis. The developed PBPK models were applied for the multiple-dosing simulation of daily oral pyronaridine and artesunate. A steady state was reached about three to four days after the first dosing of pyronaridine and an accumulation ratio was calculated to be 1.8. However, the accumulation ratio of artesunate and dihydroartemisinin could not be calculated since the steady state of both compounds was not achieved by daily multiple dosing. The elimination half-life of pyronaridine and artesunate was estimated to be 19.8 and 0.4 h, respectively. Pyronaridine was extensively distributed to the lung and trachea with the lung-to-blood and trachea-to-blood concentration ratios (=Cavg,tissue/Cavg,blood) of 25.83 and 12.41 at the steady state, respectively. Also, the lung-to-blood and trachea-to-blood AUC ratios for artesunate (dihydroartemisinin) were calculated to be 3.34 (1.51) and 0.34 (0.15). The results of this study could provide a scientific basis for interpreting the dose–exposure–response relationship of pyronaridine and artesunate for COVID-19 drug repurposing.
Collapse
|
23
|
Flamier A, Bisht P, Richards A, Tomasello D, Jaenisch R. Human iPS cell-derived sensory neurons can be infected by SARS-CoV-2 strain WA1/2020 as well as variants delta and omicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523422. [PMID: 36711852 PMCID: PMC9882040 DOI: 10.1101/2023.01.10.523422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
COVID-19 has impacted billions of people in the world since 2019 and unfolded a major healthcare crisis. With an increasing number of deaths and the emergence of more transmissible variants, it is crucial to better understand the biology of the disease-causing virus, the SARS-CoV-2. Peripheral neuropathies appeared as a specific COVID-19 symptom occurring at later stages of the disease. In order to understand the impact of SARS-CoV-2 on the peripheral nervous system, we generated human sensory neurons from induced pluripotent stem cells that we infected with the SARS-CoV-2 strain WA1/2020 and the variants delta and omicron. Using single cell RNA sequencing, we found that human sensory neurons can be infected by SARS-CoV-2 but are unable to produce new viruses. Our data suggests that sensory neurons can be infected by the original WA1/2020 strain of SARS-CoV-2 as well as the delta and omicron variants.
Collapse
|
24
|
Abdelghafour MM, Deák Á, Kiss T, Budai-Szűcs M, Katona G, Ambrus R, Lőrinczi B, Keller-Pintér A, Szatmári I, Szabó D, Rovó L, Janovák L. Self-Assembling Injectable Hydrogel for Controlled Drug Delivery of Antimuscular Atrophy Drug Tilorone. Pharmaceutics 2022; 14:2723. [PMID: 36559217 PMCID: PMC9782908 DOI: 10.3390/pharmaceutics14122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7-45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak appeared in the FTIR spectrum of the 10% w/v PVA-CHO/CHIT-SH hydrogel at 1647 cm-1, indicating the formation of a Schiff base (-CH=N-) and confirming the interaction between the NH2 groups of CHIT-SH and the CHO groups of PVA-CHO for the formation of the dynamic hydrogel. The reaction between the NH2 and CHO groups of the modified biopolymers resulted in a significant increase in the hydrogel's viscosity which was more than one thousand times greater (9800 mPa·s) than that of the used polymer solutions, which have a viscosity of only 4.6 and 5.8 mPa·s, respectively. Furthermore, the initial chitosan was modified with mercaptopropionic acid (thiol content = 201.85 ± 12 µmol/g) to increase the mucoadhesive properties of the hydrogel. The thiolated chitosan showed a significant increase (~600 mN/mm) in adhesion to the pig intestinal membrane compared to the initial one (~300 mN/mm). The in vitro release of tilorone from the hydrogel was controlled with the crosslinking density/concentration of the hydrogel; the 10% w/v PVA-CHO/CHIT-SH hydrogel had the slowest releasing (21.7 h-1/2) rate, while the 2% w/v PVA-CHO/CHIT-SH hydrogel had the fastest releasing rate (34.6 h-1/2). Due to the characteristics of these hydrogels, their future uses include tissue regeneration scaffolds, wound dressings for skin injuries, and injectable or in situ forming drug delivery systems. Eventually, we hope that the developed hydrogel will be useful in the local treatment of muscle atrophy, such as laryngotracheal atrophy.
Collapse
Affiliation(s)
- Mohamed M. Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Tamás Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Anikó Keller-Pintér
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Diána Szabó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head & Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6724 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| |
Collapse
|
25
|
Nandi S, Nayak BS, Khede MK, Saxena AK. Repurposing of Chemotherapeutics to Combat COVID-19. Curr Top Med Chem 2022; 22:2660-2694. [PMID: 36453483 DOI: 10.2174/1568026623666221130142517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is a novel strain of SARS coronavirus. The COVID-19 disease caused by this virus was declared a pandemic by the World Health Organization (WHO). SARS-CoV-2 mainly spreads through droplets sprayed by coughs or sneezes of the infected to a healthy person within the vicinity of 6 feet. It also spreads through asymptomatic carriers and has negative impact on the global economy, security and lives of people since 2019. Numerous lives have been lost to this viral infection; hence there is an emergency to build up a potent measure to combat SARS-CoV-2. In view of the non-availability of any drugs or vaccines at the time of its eruption, the existing antivirals, antibacterials, antimalarials, mucolytic agents and antipyretic paracetamol were used to treat the COVID-19 patients. Still there are no specific small molecule chemotherapeutics available to combat COVID-19 except for a few vaccines approved for emergency use only. Thus, the repurposing of chemotherapeutics with the potential to treat COVID-19 infected people is being used. The antiviral activity for COVID-19 and biochemical mechanisms of the repurposed drugs are being explored by the biological assay screening and structure-based in silico docking simulations. The present study describes the various US-FDA approved chemotherapeutics repositioned to combat COVID-19 along with their screening for biological activity, pharmacokinetic and pharmacodynamic evaluation.
Collapse
Affiliation(s)
- Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| | - Bhabani Shankar Nayak
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Mayank Kumar Khede
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, Affiliated to Biju Patnaik University of Technology, Odisha, 754202, India
| | - Anil Kumar Saxena
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
26
|
Rank L, Puhl AC, Havener TM, Anderson E, Foil DH, Zorn KM, Monakhova N, Riabova O, Hickey AJ, Makarov V, Ekins S. Multiple approaches to repurposing drugs for neuroblastoma. Bioorg Med Chem 2022; 73:117043. [PMID: 36208544 PMCID: PMC9870653 DOI: 10.1016/j.bmc.2022.117043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023]
Abstract
Neuroblastoma (NB) is the second leading extracranial solid tumor of early childhood with about two-thirds of cases presenting before the age of 5, and accounts for roughly 15 percent of all pediatric cancer fatalities in the United States. Treatments against NB are lacking, resulting in a low survival rate in high-risk patients. A repurposing approach using already approved or clinical stage compounds can be used for diseases for which the patient population is small, and the commercial market limited. We have used Bayesian machine learning, in vitro cell assays, and combination analysis to identify molecules with potential use for NB. We demonstrated that pyronaridine (SH-SY5Y IC50 1.70 µM, SK-N-AS IC50 3.45 µM), BAY 11-7082 (SH-SY5Y IC50 0.85 µM, SK-N-AS IC50 1.23 µM), niclosamide (SH-SY5Y IC50 0.87 µM, SK-N-AS IC50 2.33 µM) and fingolimod (SH-SY5Y IC50 4.71 µM, SK-N-AS IC50 6.11 µM) showed cytotoxicity against NB. As several of the molecules are approved drugs in the US or elsewhere, they may be repurposed more readily for NB treatment. Pyronaridine was also tested in combinations in SH-SY5Y cells and demonstrated an antagonistic effect with either etoposide or crizotinib. Whereas when crizotinib and etoposide were combined with each other they had a synergistic effect in these cells. We have also described several analogs of pyronaridine to explore the structure-activity relationship against cell lines. We describe multiple molecules demonstrating cytotoxicity against NB and the further evaluation of these molecules and combinations using other NB cells lines and in vivo models will be important in the future to assess translational potential.
Collapse
Affiliation(s)
- Laura Rank
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| | - Tammy M Havener
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Edward Anderson
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA
| | | | - Olga Riabova
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Anthony J Hickey
- Research Center of Biotechnology RAS, 119071 Moscow, Russia; RTI International, Research Triangle Park, NC, USA
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc, 840 Main Campus Drive, Lab 3510, Raleigh, NC, USA.
| |
Collapse
|
27
|
Patten J, Keiser PT, Morselli-Gysi D, Menichetti G, Mori H, Donahue CJ, Gan X, Valle ID, Geoghegan-Barek K, Anantpadma M, Boytz R, Berrigan JL, Stubbs SH, Ayazika T, O’Leary C, Jalloh S, Wagner F, Ayehunie S, Elledge SJ, Anderson D, Loscalzo J, Zitnik M, Gummuluru S, Namchuk MN, Barabási AL, Davey RA. Identification of potent inhibitors of SARS-CoV-2 infection by combined pharmacological evaluation and cellular network prioritization. iScience 2022; 25:104925. [PMID: 35992305 PMCID: PMC9374494 DOI: 10.1016/j.isci.2022.104925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Pharmacologically active compounds with known biological targets were evaluated for inhibition of SARS-CoV-2 infection in cell and tissue models to help identify potent classes of active small molecules and to better understand host-virus interactions. We evaluated 6,710 clinical and preclinical compounds targeting 2,183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target, and cell interactome produced cellular networks important for infection. This analysis revealed 389 small molecules with micromolar to low nanomolar activities, representing >12 scaffold classes and 813 host targets. Representatives were evaluated for mechanism of action in stable and primary human cell models with SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of host factor dependencies and treatments for viral diseases.
Collapse
Affiliation(s)
- J.J. Patten
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Patrick T. Keiser
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Deisy Morselli-Gysi
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giulia Menichetti
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroyuki Mori
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Callie J. Donahue
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Xiao Gan
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Italo do Valle
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
| | - Kathleen Geoghegan-Barek
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Manu Anantpadma
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - RuthMabel Boytz
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Jacob L. Berrigan
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Sarah H. Stubbs
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Tess Ayazika
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Colin O’Leary
- Department of Genetics, Program in Virology, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Sallieu Jalloh
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Florence Wagner
- Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Stephen J. Elledge
- Department of Genetics, Program in Virology, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Deborah Anderson
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Albert-László Barabási
- Network Science Institute, Northeastern University, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Network and Data Science, Central European University, Budapest 1051, Hungary
| | - Robert A. Davey
- Department of Microbiology, Boston University School of Medicine and NEIDL, Boston University, Boston, MA 02118, USA
| |
Collapse
|
28
|
Puhl AC, Gomes GF, Damasceno S, Fritch EJ, Levi JA, Johnson NJ, Scholle F, Premkumar L, Hurst BL, Lee-Montiel F, Veras FP, Batah SS, Fabro AT, Moorman NJ, Yount BL, Dickmander RJ, Baric RS, Pearce KH, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Vandetanib Blocks the Cytokine Storm in SARS-CoV-2-Infected Mice. ACS OMEGA 2022; 7:31935-31944. [PMID: 36097511 PMCID: PMC9454268 DOI: 10.1021/acsomega.2c02794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Giovanni F. Gomes
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Samara Damasceno
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Ethan J. Fritch
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - James A. Levi
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695-7001, United States
| | - Nicole J. Johnson
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695-7001, United States
| | - Frank Scholle
- Department
of Biological Sciences, North Carolina State
University, Raleigh, North Carolina 27695-7001, United States
| | - Lakshmanane Premkumar
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Brett L. Hurst
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322-1400, United States
- Department
of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-1400, United States
| | - Felipe Lee-Montiel
- PhenoVista
Biosciences, 6195 Cornerstone
Ct E. #114, San Diego, California 92121, United States
| | - Flavio P. Veras
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Sabrina S. Batah
- Department
of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14090900, Brazil
| | - Alexandre T. Fabro
- Department
of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14090900, Brazil
| | - Nathaniel J. Moorman
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging
Antiviral Drug Discovery Initiative, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Boyd L. Yount
- Department
of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Rebekah J. Dickmander
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging
Antiviral Drug Discovery Initiative, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Ralph S. Baric
- Department
of Microbiology and Immunology, University
of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
- Rapidly Emerging
Antiviral Drug Discovery Initiative, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Department
of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger
Comprehensive Cancer Center, Chapel
Hill, North Carolina 27599, United States
| | - Fernando Q. Cunha
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - José C. Alves-Filho
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Thiago M. Cunha
- Center for
Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, Sao Paulo, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
29
|
Nepali K, Sharma R, Sharma S, Thakur A, Liou JP. Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. J Biomed Sci 2022; 29:65. [PMID: 36064696 PMCID: PMC9444709 DOI: 10.1186/s12929-022-00847-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 02/08/2023] Open
Abstract
Unprecedented efforts of the researchers have been witnessed in the recent past towards the development of vaccine platforms for the control of the COVID-19 pandemic. Albeit, vaccination stands as a practical strategy to prevent SARS-CoV-2 infection, supplementing the anti-COVID19 arsenal with therapeutic options such as small molecules/peptides and antibodies is being conceived as a prudent strategy to tackle the emerging SARS-CoV-2 variants. Noteworthy to mention that collective efforts from numerous teams have led to the generation of a voluminous library composed of chemically and mechanistically diverse small molecules as anti-COVID19 scaffolds. This review article presents an overview of medicinal chemistry campaigns and drug repurposing programs that culminated in the identification of a plethora of small molecule-based anti-COVID19 drugs mediating their antiviral effects through inhibition of proteases, S protein, RdRp, ACE2, TMPRSS2, cathepsin and other targets. In light of the evidence ascertaining the potential of small molecule drugs to approach conserved proteins required for the viral replication of all coronaviruses, accelerated FDA approvals are anticipated for small molecules for the treatment of COVID19 shortly. Though the recent attempts invested in this direction in pursuit of enrichment of the anti-COVID-19 armoury (chemical tools) are praiseworthy, some strategies need to be implemented to extract conclusive benefits of the recently reported small molecule viz. (i) detailed preclinical investigation of the generated anti-COVID19 scaffolds (ii) in-vitro profiling of the inhibitors against the emerging SARS-CoV-2 variants (iii) development of assays enabling rapid screening of the libraries of anti-COVID19 scaffold (iv) leveraging the applications of machine learning based predictive models to expedite the anti-COVID19 drug discovery campaign (v) design of antibody-drug conjugates.
Collapse
Affiliation(s)
- Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
30
|
Puhl AC, Mottin M, Sacramento CQ, Tavella TA, Dias GG, Fintelman-Rodrigues N, Temerozo JR, Dias SSG, Ramos PRPS, Merten EM, Pearce KH, Costa FT, Premkumar L, Souza TML, Andrade CH, Ekins S. Computational and Experimental Approaches Identify Beta-Blockers as Potential SARS-CoV-2 Spike Inhibitors. ACS OMEGA 2022; 7:27950-27958. [PMID: 35983371 PMCID: PMC9380819 DOI: 10.1021/acsomega.2c01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Finding antivirals for SARS-CoV-2 is still a major challenge, and many computational and experimental approaches have been employed to find a solution to this problem. While the global vaccination campaigns are the primary driver of controlling the current pandemic, orally bioavailable small-molecule drugs and biologics are critical to overcome this global issue. Improved therapeutics and prophylactics are required to treat people with circulating and emerging new variants, addressing severe infection, and people with underlying or immunocompromised conditions. The SARS-CoV-2 envelope spike is a challenging target for viral entry inhibitors. Pindolol presented a good docking score in a previous virtual screening using computational docking calculations after screening a Food and Drug Administration (FDA)-approved drug library of 2400 molecules as potential candidates to block the SARS-CoV-2 spike protein interaction with the angiotensin-converting enzyme 2 (ACE-2). Here, we expanded the computational evaluation to identify five beta-blockers against SARS-CoV-2 using several techniques, such as microscale thermophoresis, NanoDSF, and in vitro assays in different cell lines. These data identified carvedilol with a K d of 364 ± 22 nM for the SARS-CoV-2 spike and in vitro activity (EC50 of 7.57 μM, CC50 of 18.07 μM) against SARS-CoV-2 in Calu-3 cells. We have shown how we can apply multiple computational and experimental approaches to find molecules that can be further optimized to improve anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Melina Mottin
- LabMol
- Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, GO, Brazil
- Pathogen-Host
Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Carolina Q. Sacramento
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
- Center
of Technological Development in Health (CDTS)/National Institute of
Science and Technology for Innovation on Neglected Population Diseases
(INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil
| | - Tatyana Almeida Tavella
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas 13083-970, SP, Brazil
| | - Gabriel Gonçalves Dias
- LabMol
- Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, GO, Brazil
| | - Natalia Fintelman-Rodrigues
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
- Center
of Technological Development in Health (CDTS)/National Institute of
Science and Technology for Innovation on Neglected Population Diseases
(INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil
| | - Jairo R. Temerozo
- Laboratory
on Thymus Research, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
- National
Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | - Suelen S. G. Dias
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
| | | | - Eric M. Merten
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center
for Integrative Chemical Biology and Drug Discovery, Chemical Biology
and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- UNC
Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Fabio Trindade
Maranhão Costa
- Laboratory
of Tropical Diseases—Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas 13083-970, SP, Brazil
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Thiago Moreno L. Souza
- Laboratory
of Immunopharmacology, Oswaldo Cruz Institute—Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil
- Center
of Technological Development in Health (CDTS)/National Institute of
Science and Technology for Innovation on Neglected Population Diseases
(INCT-IDPN), Rio de Janeiro 21040-900, RJ, Brazil
| | - Carolina Horta Andrade
- LabMol
- Laboratory of Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia 74605-170, GO, Brazil
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
31
|
He W, Gao Y, Zhou J, Shi Y, Xia D, Shen HM. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19. Int J Biol Sci 2022; 18:4690-4703. [PMID: 35874956 PMCID: PMC9305279 DOI: 10.7150/ijbs.72544] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 12/14/2022] Open
Abstract
There is increasing amount of evidence indicating the close interplays between the replication cycle of SARS-CoV-2 and the autophagy-lysosome pathway in the host cells. While autophagy machinery is known to either assist or inhibit the viral replication process, the reciprocal effects of the SARS-CoV-2 on the autophagy-lysosome pathway have also been increasingly appreciated. More importantly, despite the disappointing results from the clinical trials of chloroquine and hydroxychloroquine in treatment of COVID-19, there is still ongoing effort in discovering new therapeutics targeting the autophagy-lysosome pathway. In this review, we provide an update-to-date summary of the interplays between the autophagy-lysosome pathway in the host cells and the pathogen SARS-CoV-2 at the molecular level, to highlight the prognostic value of autophagy markers in COVID-19 patients and to discuss the potential of developing novel therapeutic strategies for COVID-19 by targeting the autophagy-lysosome pathway. Thus, understanding the nature of such interactions between SARS-CoV-2 and the autophagy-lysosome pathway in the host cells is expected to provide novel strategies in battling against this global pandemic.
Collapse
Affiliation(s)
- Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuan Gao
- Faculty of Health Sciences, University of Macau, Macau, China
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jing Zhou
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yi Shi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, Department of Gynecologic Oncology of Women's Hospital; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
32
|
Puhl AC, Gomes GF, Damasceno S, Godoy AS, Noske GD, Nakamura AM, Gawriljuk VO, Fernandes RS, Monakhova N, Riabova O, Lane TR, Makarov V, Veras FP, Batah SS, Fabro AT, Oliva G, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Pyronaridine Protects against SARS-CoV-2 Infection in Mouse. ACS Infect Dis 2022; 8:1147-1160. [PMID: 35609344 PMCID: PMC9159503 DOI: 10.1021/acsinfecdis.2c00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
There are currently relatively few small-molecule antiviral drugs that are either approved or emergency-approved for use against severe acute respiratory coronavirus 2 (SARS-CoV-2). One of these is remdesivir, which was originally repurposed from its use against Ebola. We evaluated three molecules we had previously identified computationally with antiviral activity against Ebola and Marburg and identified pyronaridine, which inhibited the SARS-CoV-2 replication in A549-ACE2 cells. The in vivo efficacy of pyronaridine has now been assessed in a K18-hACE transgenic mouse model of COVID-19. Pyronaridine treatment demonstrated a statistically significant reduction of viral load in the lungs of SARS-CoV-2-infected mice, reducing lung pathology, which was also associated with significant reduction in the levels of pro-inflammatory cytokines/chemokine and cell infiltration. Pyronaridine inhibited the viral PLpro activity in vitro (IC50 of 1.8 μM) without any effect on Mpro, indicating a possible molecular mechanism involved in its ability to inhibit SARS-CoV-2 replication. We have also generated several pyronaridine analogs to assist in understanding the structure activity relationship for PLpro inhibition. Our results indicate that pyronaridine is a potential therapeutic candidate for COVID-19.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| | - Giovanni F. Gomes
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Samara Damasceno
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Andre S. Godoy
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Gabriela D. Noske
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Aline M. Nakamura
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Victor O. Gawriljuk
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Rafaela S. Fernandes
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Natalia Monakhova
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Olga Riabova
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Thomas R. Lane
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| | - Vadim Makarov
- Research Center of Biotechnology
RAS, Leninsky prospect, 33, Building 2, 119071 Moscow,
Russia
| | - Flavio P. Veras
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Sabrina S. Batah
- Department of Pathology and Legal Medicine,
Ribeirão Preto Medical School, University of São
Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São
Paulo, Brazil
| | - Alexandre T. Fabro
- Department of Pathology and Legal Medicine,
Ribeirão Preto Medical School, University of São
Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São
Paulo, Brazil
| | - Glaucius Oliva
- Institute of Physics of Sao Carlos,
University of São Paulo, Av. Joao Dagnone, 1100 -
Jardim Santa Angelina, Sao Carlos 13563-120, Brazil
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - José C. Alves-Filho
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID),
Ribeirao Preto Medical School, University of São Paulo,
Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, São Paulo,
Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals,
Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606,
United States
| |
Collapse
|
33
|
Stalinskaya AL, Martynenko NV, Shulgau ZT, Shustov AV, Keyer VV, Kulakov IV. Synthesis and Antiviral Properties against SARS-CoV-2 of Epoxybenzooxocino[4,3- b]Pyridine Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123701. [PMID: 35744830 PMCID: PMC9230803 DOI: 10.3390/molecules27123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
The COVID-19 pandemic is ongoing as of mid-2022 and requires the development of new therapeutic drugs, because the existing clinically approved drugs are limited. In this work, seven derivatives of epoxybenzooxocinopyridine were synthesized and tested for the ability to inhibit the replication of the SARS-CoV-2 virus in cell cultures. Among the described compounds, six were not able to suppress the SARS-CoV-2 virus’ replication. One compound, which is a derivative of epoxybenzooxocinopyridine with an attached side group of 3,4-dihydroquinoxalin-2-one, demonstrated antiviral activity comparable to that of one pharmaceutical drug. The described compound is a prospective lead substance, because the half-maximal effective concentration is 2.23 μg/μL, which is within a pharmacologically achievable range.
Collapse
Affiliation(s)
- Alena L. Stalinskaya
- Institute of Chemistry, Tyumen State University, 15a Perekopskaya St., 625003 Tyumen, Russia; (A.L.S.); (N.V.M.)
| | - Nadezhda V. Martynenko
- Institute of Chemistry, Tyumen State University, 15a Perekopskaya St., 625003 Tyumen, Russia; (A.L.S.); (N.V.M.)
| | - Zarina T. Shulgau
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
| | - Alexandr V. Shustov
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
| | - Viktoriya V. Keyer
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
| | - Ivan V. Kulakov
- Institute of Chemistry, Tyumen State University, 15a Perekopskaya St., 625003 Tyumen, Russia; (A.L.S.); (N.V.M.)
- National Center for Biotechnology, 13/5 Kurgalzhynskoe road, Nur-Sultan 010000, Kazakhstan; (Z.T.S.); (A.V.S.); (V.V.K.)
- Correspondence: ; Tel.: +7-912-0775957
| |
Collapse
|
34
|
Peng H, Ding C, Jiang L, Tang W, Liu Y, Zhao L, Yi Z, Ren H, Li C, He Y, Zheng X, Tang H, Chen Z, Qi Z, Zhao P. Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1181-1197. [PMID: 34962614 PMCID: PMC8713546 DOI: 10.1007/s11427-021-2031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo. In this study, 94 compounds showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2 infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and IL-6 and TNF-α mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro, suggesting promising application for COVID-19 treatment.
Collapse
Affiliation(s)
- Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Cuiling Ding
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Liangliang Jiang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Wanda Tang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Yan Liu
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Lanjuan Zhao
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hao Ren
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Chong Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200000, China
| | - Yanhua He
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Xu Zheng
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Hailin Tang
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China
| | - Zhihui Chen
- Department of Infectious Disease, Changhai Hospital, Shanghai, 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai Key Laboratory of Medical Biodefense, Shanghai, 200433, China.
| |
Collapse
|
35
|
Su W, Qiu J, Mei Y, Zhang XE, He Y, Li F. A microfluidic cell chip for virus isolation via rapid screening for permissive cells. Virol Sin 2022; 37:547-557. [PMID: 35504535 PMCID: PMC9437619 DOI: 10.1016/j.virs.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/11/2022] [Indexed: 12/09/2022] Open
Abstract
Virus identification is a prerequisite not only for the early diagnosis of viral infectious diseases but also for the effective prevention of epidemics. Successful cultivation is the gold standard for identifying a virus, according to the Koch postulates. However, this requires screening for a permissive cell line, which is traditionally time-, reagent- and labor-intensive. Here, a simple and easy-to-operate microfluidic chip, formed by seeding a variety of cell lines and culturing them in parallel, is reported for use in virus cultivation and virus-permissive host-cell screening. The chip was tested by infection with two known viruses, enterovirus 71 (EV71) and influenza virus H1N1. Infection with EV71 and H1N1 caused significant cytopathic effects (CPE) in RD and MDCK cells, respectively, demonstrating that virus cultivation based on this microfluidic cell chip can be used as a substitute for the traditional plate-based culture method and reproduce the typical CPE caused by virus infection. Using this microfluidic cell chip method for virus cultivation could make it possible to identify an emerging virus in a high-throughput, automatic, and unprecedentedly fast way. A simple microfluidic chip for tandem culture of different cell lines is achieved. The cell chip has been used for permissive cell screening and culture of viruses. The cell chip has advantages of being sample-, reagent-, and time-saving. The cell chip system holds potential for high-throughput and automated screening.
Collapse
|
36
|
Xiang R, Yu Z, Wang Y, Wang L, Huo S, Li Y, Liang R, Hao Q, Ying T, Gao Y, Yu F, Jiang S. Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharm Sin B 2022; 12:1591-1623. [PMID: 34249607 PMCID: PMC8260826 DOI: 10.1016/j.apsb.2021.06.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 virus has caused havoc across the entire world. Even though several COVID-19 vaccines are currently in distribution worldwide, with others in the pipeline, treatment modalities lag behind. Accordingly, researchers have been working hard to understand the nature of the virus, its mutant strains, and the pathogenesis of the disease in order to uncover possible drug targets and effective therapeutic agents. As the research continues, we now know the genome structure, epidemiological and clinical features, and pathogenic mechanism of SARS-CoV-2. Here, we summarized the potential therapeutic targets involved in the life cycle of the virus. On the basis of these targets, small-molecule prophylactic and therapeutic agents have been or are being developed for prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rong Xiang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Zhengsen Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yang Wang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China
| | - Shanshan Huo
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yanbai Li
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Ruiying Liang
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Qinghong Hao
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yaning Gao
- Beijing Pharma and Biotech Center, Beijing 100176, China,Corresponding authors. Tel.: +86 21 54237673, fax: +86 21 54237465 (Shibo Jiang); Tel.: +86 312 7528935, fax: +86 312 7521283 (Fei Yu); Tel.: +86 10 62896868; fax: +86 10 62899978, (Yanning Gao).
| | - Fei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China,Corresponding authors. Tel.: +86 21 54237673, fax: +86 21 54237465 (Shibo Jiang); Tel.: +86 312 7528935, fax: +86 312 7521283 (Fei Yu); Tel.: +86 10 62896868; fax: +86 10 62899978, (Yanning Gao).
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China,Corresponding authors. Tel.: +86 21 54237673, fax: +86 21 54237465 (Shibo Jiang); Tel.: +86 312 7528935, fax: +86 312 7521283 (Fei Yu); Tel.: +86 10 62896868; fax: +86 10 62899978, (Yanning Gao).
| |
Collapse
|
37
|
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, causing COVID-19, is the most challenging pandemic of the modern era. It has resulted in over 5 million deaths worldwide. To quickly explore therapeutics for COVID-19, we utilized a previously-established system, namely CEBIT. We performed a high-throughput screening of FDA-approved drugs to inhibit the interaction between the receptor-binding domain (RBD) of SARS-CoV-2 spike protein and its obligate receptor ACE2. This interaction is essential for viral entry and therefore represents a promising therapeutic target. Based on the recruitment of interacting molecules into phase-separated condensates as a readout, we identified six positive candidates from a library of 2572 compounds, most of which have been reported to inhibit the entry of SARS-CoV-2 into host cells. Our surface plasmon resonance (SPR) and molecular docking analyses revealed the possible mechanisms via which these compounds interfere with the interaction between RBD and ACE2. Hence, our results indicate that CEBIT is highly versatile for identifying drugs against SARS-CoV-2 entry, and targeting CoV-2 entry by small molecule drugs is a viable therapeutic option to treat COVID-19 in addition to commonly used monoclonal antibodies.
Collapse
|
38
|
Upadhya S, Rehman J, Malik AB, Chen S. Mechanisms of Lung Injury Induced by SARS-CoV-2 Infection. Physiology (Bethesda) 2022; 37:88-100. [PMID: 34698589 PMCID: PMC8873036 DOI: 10.1152/physiol.00033.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The lung is the major target organ of SARS-CoV-2 infection, which causes COVID-19. Here, we outline the multistep mechanisms of lung epithelial and endothelial injury induced by SARS-CoV-2: direct viral infection, chemokine/cytokine-mediated damage, and immune cell-mediated lung injury. Finally, we discuss the recent progress in terms of antiviral therapeutics as well as the development of anti-inflammatory or immunomodulatory therapeutic approaches. This review also provides a systematic overview of the models for studying SARS-CoV-2 infection and discusses how an understanding of mechanisms of lung injury will help identify potential targets for future drug development to mitigate lung injury.
Collapse
Affiliation(s)
- Samsara Upadhya
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Jalees Rehman
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Asrar B Malik
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, New York
| |
Collapse
|
39
|
Abu-Saleh AAAA, Yadav A, Poirier RA. Accelerating the discovery of the beyond rule of five compounds that have high affinities toward SARS-CoV-2 spike RBD. J Biomol Struct Dyn 2022; 41:2518-2527. [PMID: 35132950 DOI: 10.1080/07391102.2022.2036640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The battle against SARS-CoV-2 coronavirus is the focal point for the global pandemic that has affected millions of lives worldwide. The need for effective and selective therapeutics for the treatment of the disease caused by SARS-CoV-2 is critical. Herein, we performed a hierarchical computational approach incorporating molecular docking studies, molecular dynamics simulations, absolute binding energy calculations, and steered molecular dynamics simulations for the discovery of potential compounds with high affinity towards SARS-CoV-2 spike RBD. By leveraging ZINC15 database, a total of 1282 in-clinical and FDA approved drugs were filtered out from nearly 0.5 million protomers of relatively large compounds (MW > 500, and LogP ≤ 5). Our results depict plausible mechanistic aspects related to the blockage of SARS-CoV-2 spike RBD by the top hits discovered. We found that the most promising candidates, namely, ZINC95628821, ZINC95617623, ZINC3979524, and ZINC261494658, strongly bind to the spike RBD and interfere with the human ACE2 receptor. These findings accelerate the rational design of selective inhibitors targeting the spike RBD protein of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Arpita Yadav
- Department of Chemistry, University Institute of Engineering & Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | | |
Collapse
|
40
|
Caldera-Crespo LA, Paidas MJ, Roy S, Schulman CI, Kenyon NS, Daunert S, Jayakumar AR. Experimental Models of COVID-19. Front Cell Infect Microbiol 2022; 11:792584. [PMID: 35096645 PMCID: PMC8791197 DOI: 10.3389/fcimb.2021.792584] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
COVID-19 is the most consequential pandemic of the 21st century. Since the earliest stage of the 2019-2020 epidemic, animal models have been useful in understanding the etiopathogenesis of SARS-CoV-2 infection and rapid development of vaccines/drugs to prevent, treat or eradicate SARS-CoV-2 infection. Early SARS-CoV-1 research using immortalized in-vitro cell lines have aided in understanding different cells and receptors needed for SARS-CoV-2 infection and, due to their ability to be easily manipulated, continue to broaden our understanding of COVID-19 disease in in-vivo models. The scientific community determined animal models as the most useful models which could demonstrate viral infection, replication, transmission, and spectrum of illness as seen in human populations. Until now, there have not been well-described animal models of SARS-CoV-2 infection although transgenic mouse models (i.e. mice with humanized ACE2 receptors with humanized receptors) have been proposed. Additionally, there are only limited facilities (Biosafety level 3 laboratories) available to contribute research to aid in eventually exterminating SARS-CoV-2 infection around the world. This review summarizes the most successful animal models of SARS-CoV-2 infection including studies in Non-Human Primates (NHPs) which were found to be susceptible to infection and transmitted the virus similarly to humans (e.g., Rhesus macaques, Cynomolgus, and African Green Monkeys), and animal models that do not require Biosafety level 3 laboratories (e.g., Mouse Hepatitis Virus models of COVID-19, Ferret model, Syrian Hamster model). Balancing safety, mimicking human COVID-19 and robustness of the animal model, the Murine Hepatitis Virus-1 Murine model currently represents the most optimal model for SARS-CoV-2/COVID19 research. Exploring future animal models will aid researchers/scientists in discovering the mechanisms of SARS-CoV-2 infection and in identifying therapies to prevent or treat COVID-19.
Collapse
Affiliation(s)
- Luis A Caldera-Crespo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- St. George's University Graduate Medical Education Program, University Centre Grenada, West Indies, Grenada
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carl I Schulman
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Norma Sue Kenyon
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami Miller School of Medicine, Miami, FL, United States
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- University of Miami Clinical and Translational Science Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
41
|
Johnson KN, Kalveram B, Smith JK, Zhang L, Juelich T, Atkins C, Ikegami T, Freiberg AN. Tilorone-Dihydrochloride Protects against Rift Valley Fever Virus Infection and Disease in the Mouse Model. Microorganisms 2021; 10:microorganisms10010092. [PMID: 35056541 PMCID: PMC8781158 DOI: 10.3390/microorganisms10010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Middle East that can affect humans and ruminant livestock. Currently, there are no approved vaccines or therapeutics for the treatment of severe RVF disease in humans. Tilorone-dihydrochloride (Tilorone) is a broad-spectrum antiviral candidate that has previously shown efficacy against a wide range of DNA and RNA viruses, and which is clinically utilized for the treatment of respiratory infections in Russia and other Eastern European countries. Here, we evaluated the antiviral activity of Tilorone against Rift Valley fever virus (RVFV). In vitro, Tilorone inhibited both vaccine (MP-12) and virulent (ZH501) strains of RVFV at low micromolar concentrations. In the mouse model, treatment with Tilorone significantly improved survival outcomes in BALB/c mice challenged with a lethal dose of RVFV ZH501. Treatment with 30 mg/kg/day resulted in 80% survival when administered immediately after infection. In post-exposure prophylaxis, Tilorone resulted in 30% survival at one day after infection when administered at 45 mg/kg/day. These findings demonstrate that Tilorone has potent antiviral efficacy against RVFV infection in vitro and in vivo and supports further development of Tilorone as a potential antiviral therapeutic for treatment of RVFV infection.
Collapse
Affiliation(s)
- Kendra N. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Birte Kalveram
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Colm Atkins
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
| | - Tetsuro Ikegami
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.K.); (J.K.S.); (L.Z.); (T.J.); (C.A.); (T.I.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence:
| |
Collapse
|
42
|
Atazanavir Is a Competitive Inhibitor of SARS-CoV-2 M pro, Impairing Variants Replication In Vitro and In Vivo. Pharmaceuticals (Basel) 2021; 15:ph15010021. [PMID: 35056078 PMCID: PMC8777605 DOI: 10.3390/ph15010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Atazanavir (ATV) has already been considered as a potential repurposing drug to 2019 coronavirus disease (COVID-19); however, there are controversial reports on its mechanism of action and effectiveness as anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Through the pre-clinical chain of experiments: enzymatic, molecular docking, cell-based and in vivo assays, it is demonstrated here that both SARS-CoV-2 B.1 lineage and variant of concern gamma are susceptible to this antiretroviral. Enzymatic assays and molecular docking calculations showed that SARS-CoV-2 main protease (Mpro) was inhibited by ATV, with Morrison’s inhibitory constant (Ki) 1.5-fold higher than GC376 (a positive control) dependent of the catalytic water (H2Ocat) content. ATV was a competitive inhibitor, increasing the Mpro’s Michaelis–Menten (Km) more than sixfold. Cell-based assays indicated that different lineages of SARS-CoV-2 is susceptible to ATV. Using oral administration of ATV in mice to reach plasmatic exposure similar to humans, transgenic mice expression in human angiotensin converting enzyme 2 (K18-hACE2) were partially protected against lethal challenge with SARS-CoV-2 gamma. Moreover, less cell death and inflammation were observed in the lung from infected and treated mice. Our studies may contribute to a better comprehension of the Mpro/ATV interaction, which could pave the way to the development of specific inhibitors of this viral protease.
Collapse
|
43
|
Puhl AC, Gomes GF, Damasceno S, Fritch EJ, Levi JA, Johnson NJ, Scholle F, Premkumar L, Hurst BL, LeeMontiel F, Veras FP, Batah SS, Fabro AT, Moorman NJ, Yount BL, Dickmander R, Baric R, Pearce KH, Cunha FQ, Alves-Filho JC, Cunha TM, Ekins S. Vandetanib Reduces Inflammatory Cytokines and Ameliorates COVID-19 in Infected Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.16.472155. [PMID: 34981062 PMCID: PMC8722599 DOI: 10.1101/2021.12.16.472155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib) or in advanced clinical trials. We have tested 45 FDA-approved kinase inhibitors in vitro against murine hepatitis virus (MHV) as a model of SARS-CoV-2 replication and identified 12 showing inhibition in the delayed brain tumor (DBT) cell line. Vandetanib, which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), and the RET-tyrosine kinase showed the most promising results on inhibition versus toxic effect on SARS-CoV-2-infected Caco-2 and A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of > 3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, TNF-α, and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved vandetanib is a potential therapeutic candidate for COVID-19 positioned for follow up in clinical trials either alone or in combination with other drugs to address the cytokine storm associated with this viral infection.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Giovanni F. Gomes
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Samara Damasceno
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Ethan J. Fritch
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - James A. Levi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole J. Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
| | - Brett L. Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Felipe LeeMontiel
- PhenoVista Biosciences, 6195 Cornerstone Ct E. #114 San Diego CA 92121
| | - Flavio P. Veras
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Sabrina S. Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre T. Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Boyd L. Yount
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebekah Dickmander
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill NC 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, USA
| | - Fernando Q. Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - José C. Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Thiago M. Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto, 14049-900 ; Sao Paulo, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
44
|
Rodriguez-Rodriguez BA, Noval MG, Kaczmarek ME, Jang KK, Thannickal SA, Cifuentes Kottkamp A, Brown RS, Kielian M, Cadwell K, Stapleford KA. Atovaquone and Berberine Chloride Reduce SARS-CoV-2 Replication In Vitro. Viruses 2021; 13:v13122437. [PMID: 34960706 PMCID: PMC8706021 DOI: 10.3390/v13122437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.
Collapse
Affiliation(s)
- Bruno A. Rodriguez-Rodriguez
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria G. Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Maria E. Kaczmarek
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | - Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sara A. Thannickal
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
| | | | - Rebecca S. Brown
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (R.S.B.); (M.K.)
| | - Ken Cadwell
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; (B.A.R.-R.); (M.G.N.); (M.E.K.); (K.K.J.); (S.A.T.); (K.C.)
- Correspondence:
| |
Collapse
|
45
|
Lane TR, Ekins S. Defending Antiviral Cationic Amphiphilic Drugs That May Cause Drug-Induced Phospholipidosis. J Chem Inf Model 2021; 61:4125-4130. [PMID: 34516123 DOI: 10.1021/acs.jcim.1c00903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recent publication in Science has proposed that cationic amphiphilic drugs repurposed for COVID-19 typically use phosholipidosis as their antiviral mechanism of action in cells but will have no in vivo efficacy. On the contrary, our viewpoint, supported by additional experimental data for similar cationic amphiphilic drugs, indicates that many of these molecules have both in vitro and in vivo efficacy with no reported phospholipidosis, and therefore, this class of compounds should not be avoided but further explored, as we continue the search for broad spectrum antivirals.
Collapse
Affiliation(s)
- Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
46
|
Coghi P, Yang LJ, Ng JPL, Haynes RK, Memo M, Gianoncelli A, Wong VKW, Ribaudo G. A Drug Repurposing Approach for Antimalarials Interfering with SARS-CoV-2 Spike Protein Receptor Binding Domain (RBD) and Human Angiotensin-Converting Enzyme 2 (ACE2). Pharmaceuticals (Basel) 2021; 14:954. [PMID: 34681178 PMCID: PMC8537658 DOI: 10.3390/ph14100954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Host cell invasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by the interaction of the viral spike protein (S) with human angiotensin-converting enzyme 2 (ACE2) through the receptor-binding domain (RBD). In this work, computational and experimental techniques were combined to screen antimalarial compounds from different chemical classes, with the aim of identifying small molecules interfering with the RBD-ACE2 interaction and, consequently, with cell invasion. Docking studies showed that the compounds interfere with the same region of the RBD, but different interaction patterns were noted for ACE2. Virtual screening indicated pyronaridine as the most promising RBD and ACE2 ligand, and molecular dynamics simulations confirmed the stability of the predicted complex with the RBD. Bio-layer interferometry showed that artemisone and methylene blue have a strong binding affinity for RBD (KD = 0.363 and 0.226 μM). Pyronaridine also binds RBD and ACE2 in vitro (KD = 56.8 and 51.3 μM). Overall, these three compounds inhibit the binding of RBD to ACE2 in the μM range, supporting the in silico data.
Collapse
Affiliation(s)
- Paolo Coghi
- School of Pharmacy, Macau University of Science and Technology, Taipa 999078, China;
| | - Li Jun Yang
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, China; (L.J.Y.); (J.P.L.N.)
| | - Jerome P. L. Ng
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, China; (L.J.Y.); (J.P.L.N.)
| | - Richard K. Haynes
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University Potchefstroom, Potchefstroom 2531, South Africa;
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.M.); (A.G.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.M.); (A.G.)
| | - Vincent Kam Wai Wong
- Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, China; (L.J.Y.); (J.P.L.N.)
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.M.); (A.G.)
| |
Collapse
|
47
|
Miller SR, McGrath ME, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Remdesivir and EIDD-1931 Interact with Human Equilibrative Nucleoside Transporters 1 and 2: Implications for Reaching SARS-CoV-2 Viral Sanctuary Sites. Mol Pharmacol 2021; 100:548-557. [PMID: 34503974 DOI: 10.1124/molpharm.121.000333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) are present at the blood-testis barrier (BTB), where they can facilitate antiviral drug disposition to eliminate a sanctuary site for viruses detectable in semen. The purpose of this study was to investigate ENT-drug interactions with three nucleoside analogs, remdesivir, molnupiravir, and molnupiravir's active metabolite, β-d-N4-hydroxycytidine (EIDD-1931), and four non-nucleoside molecules repurposed as antivirals for coronavirus disease 2019 (COVID-19). The study used three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors and Bayesian machine learning models to identify potential interactions with these transporters. In vitro transport experiments demonstrated that remdesivir was the most potent inhibitor of ENT-mediated [3H]uridine uptake (ENT1 IC50: 39 μM; ENT2 IC50: 77 μM), followed by EIDD-1931 (ENT1 IC50: 259 μM; ENT2 IC50: 467 μM), whereas molnupiravir was a modest inhibitor (ENT1 IC50: 701 μM; ENT2 IC50: 851 μM). Other proposed antivirals failed to inhibit ENT-mediated [3H]uridine uptake below 1 mM. Remdesivir accumulation decreased in the presence of 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) by 30% in ENT1 cells (P = 0.0248) and 27% in ENT2 cells (P = 0.0054). EIDD-1931 accumulation decreased in the presence of NBMPR by 77% in ENT1 cells (P = 0.0463) and by 64% in ENT2 cells (P = 0.0132), which supported computational predictions that both are ENT substrates that may be important for efficacy against COVID-19. NBMPR failed to decrease molnupiravir uptake, suggesting that ENT interaction is likely inhibitory. Our combined computational and in vitro data can be used to identify additional ENT-drug interactions to improve our understanding of drugs that can circumvent the BTB. SIGNIFICANCE STATEMENT: This study identified remdesivir and EIDD-1931 as substrates of equilibrative nucleoside transporters 1 and 2. This provides a potential mechanism for uptake of these drugs into cells and may be important for antiviral potential in the testes and other tissues expressing these transporters.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Meghan E McGrath
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Kimberley M Zorn
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Sean Ekins
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., M.E.M., N.J.C.) and Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (K.M.Z., S.E.)
| |
Collapse
|
48
|
Gawriljuk VO, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. Machine Learning Models Identify Inhibitors of SARS-CoV-2. J Chem Inf Model 2021; 61:4224-4235. [PMID: 34387990 DOI: 10.1021/acs.jcim.1c00683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the rapidly evolving SARS-CoV-2 variants of concern, there is an urgent need for the discovery of further treatments for the coronavirus disease (COVID-19). Drug repurposing is one of the most rapid strategies for addressing this need, and numerous compounds have already been selected for in vitro testing by several groups. These have led to a growing database of molecules with in vitro activity against the virus. Machine learning models can assist drug discovery through prediction of the best compounds based on previously published data. Herein, we have implemented several machine learning methods to develop predictive models from recent SARS-CoV-2 in vitro inhibition data and used them to prioritize additional FDA-approved compounds for in vitro testing selected from our in-house compound library. From the compounds predicted with a Bayesian machine learning model, lumefantrine, an antimalarial was selected for testing and showed limited antiviral activity in cell-based assays while demonstrating binding (Kd 259 nM) to the spike protein using microscale thermophoresis. Several other compounds which we prioritized have since been tested by others and were also found to be active in vitro. This combined machine learning and in vitro testing approach can be expanded to virtually screen available molecules with predicted activity against SARS-CoV-2 reference WIV04 strain and circulating variants of concern. In the process of this work, we have created multiple iterations of machine learning models that can be used as a prioritization tool for SARS-CoV-2 antiviral drug discovery programs. The very latest model for SARS-CoV-2 with over 500 compounds is now freely available at www.assaycentral.org.
Collapse
Affiliation(s)
- Victor O Gawriljuk
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Phyo Phyo Kyaw Zin
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Ana C Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H Foil
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States.,Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84322-4815, United States
| | - Tatyana Almeida Tavella
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Premkumar Lakshmanane
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill North Carolina 27599, United States
| | - Jean Bernatchez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Andre S Godoy
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Glaucius Oliva
- São Carlos Institute of Physics, University of São Paulo, Av. João Dagnone, 1100-Santa Angelina, São Carlos, São Paulo 13563-120, Brazil
| | - Jair L Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, California 92093, United States
| | - Peter B Madrid
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
49
|
Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel) 2021; 14:691. [PMID: 34358117 PMCID: PMC8308787 DOI: 10.3390/ph14070691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The SARS-CoV-2 outbreak is characterized by the need of the search for curative drugs for treatment. In this paper, we present an update of knowledge about the interest of the functional inhibitors of acid sphingomyelinase (FIASMAs) in SARS-CoV-2 infection. Forty-nine FIASMAs have been suggested in the treatment of SARS-CoV-2 infection using in silico, in vitro or in vivo studies. Further studies using large-sized, randomized and double-blinded controlled clinical trials are needed to evaluate FIASMAs in SARS-CoV-2 infection as off-label therapy.
Collapse
Affiliation(s)
- Gwenolé Loas
- Department of Psychiatry, Hôpital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Research Unit (ULB 266), Hôpital Erasme, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Pascal Le Corre
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU de Rennes, 35033 Rennes, France;
- Irset (Institut de Recherche en Santé, Environnement et Travail)-Inserm UMR 1085, University of Rennes, CHU Rennes, INSERM, EHESP, 35000 Rennes, France
- Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de Pharmacie, Université de Rennes 1, 35043 Rennes, France
| |
Collapse
|
50
|
Recent advances in drug repurposing using machine learning. Curr Opin Chem Biol 2021; 65:74-84. [PMID: 34274565 DOI: 10.1016/j.cbpa.2021.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Drug repurposing aims to find new uses for already existing and approved drugs. We now provide a brief overview of recent developments in drug repurposing using machine learning alongside other computational approaches for comparison. We also highlight several applications for cancer using kinase inhibitors, Alzheimer's disease as well as COVID-19.
Collapse
|