1
|
Mbuyazi TB, Ajibade PA. Magnetic iron oxides nanocomposites: synthetic techniques and environmental applications for wastewater treatment. DISCOVER NANO 2024; 19:158. [PMID: 39342049 PMCID: PMC11438764 DOI: 10.1186/s11671-024-04102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Nanomaterials are an emerging class of compounds with potential to advance technology for wastewater treatment. There are many toxic substances in industrial wastewater that are dangerous to the aquatic ecosystem and public health. These pollutants require the development of novel techniques to remove them from the environment. Iron oxide nanoparticles are being studied and develop as new technology to address the problem of environmental pollution due to their unique properties and effectiveness against different kind of pollutants. A variety of modified iron oxide nanoparticles have been developed through extensive research that mitigates the shortcomings of aggregation or oxidation and enhances their efficiency as novel remediator against environmental pollutants. In this review, we present synthetic approaches used for the preparation of iron oxide nanoparticles and their corresponding nanocomposites, along with the processes in which the materials are used as adsorbent/photocatalysts for environmental remediation. Applications explored includes adsorption of dyes, photocatalytic degradation of dyes, and adsorption of heavy metal ions. The use of iron oxides nanocomposite in real wastewater samples and recyclability of adsorbents and photocatalysts were also explored.
Collapse
Affiliation(s)
- Thandi B Mbuyazi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | - Peter A Ajibade
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
2
|
Bayuo J, Rwiza MJ, Choi JW, Mtei KM, Hosseini-Bandegharaei A, Sillanpää M. Adsorption and desorption processes of toxic heavy metals, regeneration and reusability of spent adsorbents: Economic and environmental sustainability approach. Adv Colloid Interface Sci 2024; 329:103196. [PMID: 38781828 DOI: 10.1016/j.cis.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal. Therefore, the recovery of adsorbed heavy metal ions and the ability to reuse the spent adsorbents is one of the economic and environmental sustainability approaches. This study presents a state-of-the-art critical review of different desorption agents that could be used to retrieve heavy metals and regenerate the spent adsorbents for further adsorption-desorption processes. Additionally, an attempt was made to discuss and summarize some of the independent factors influencing heavy metals desorption, recovery, and adsorbent regeneration. Furthermore, isotherm and kinetic modeling have been summarized to provide insights into the adsorption-desorption mechanisms of heavy metals. Finally, the review provided future perspectives to provide room for researchers and industry players who are interested in heavy metals desorption, recovery, and spent adsorbents recycling to reduce the high cost of adsorbents reproduction, minimize secondary waste generation, and thereby provide substantial economic and environmental benefits.
Collapse
Affiliation(s)
- Jonas Bayuo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-daero1447, Gangwon-do, South Korea; School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania; Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Postal Box 24, Navrongo, Upper East Region, Ghana.
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Joon Weon Choi
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang-daero1447, Gangwon-do, South Korea
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
| | - Ahmad Hosseini-Bandegharaei
- Faculty of Chemistry, Semnan University, Semnan, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248007, India; Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India; Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
3
|
Jungcharoen P, Panaampon J, Imemkamon T, Saengboonmee C. Magnetic nanoparticles: An emerging nanomedicine for cancer immunotherapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:183-214. [PMID: 39461752 DOI: 10.1016/bs.pmbts.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer immunotherapy is a revolutionised strategy that strikingly improves cancer treatment in recent years. However, like other therapeutic modalities, immunotherapy faces several challenges and limitations. Many methods have been developed to overcome those limitations; thus, nanomedicine is one of the emerging fields with a highly promising application. Magnetite nanoparticles (MNPs) have long been used for medical applications, for example, as a contrast medium, and are being investigated as a tool for boosting and synergizing the effects of immunotherapy. With known physicochemical properties and the interaction with the surroundings in biological systems, MNPs are used to improve the efficacy of immunotherapy in both cell-based and antibody-based treatment. This chapter reviews and discusses state-of-the-art MNPs as a tool to advance cancer immunotherapy as well as its limitations that need further investigation for a better therapeutic outcome in preclinical and clinical settings.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasm, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection Kumamoto University, Kumamoto, Japan
| | - Thanit Imemkamon
- Division of Medical Oncology, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Paut A, Guć L, Vrankić M, Crnčević D, Šenjug P, Pajić D, Odžak R, Šprung M, Nakić K, Marciuš M, Prkić A, Mitar I. Plant-Mediated Synthesis of Magnetite Nanoparticles with Matricaria chamomilla Aqueous Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:729. [PMID: 38668223 PMCID: PMC11053587 DOI: 10.3390/nano14080729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Magnetite nanoparticles (NPs) possess properties that make them suitable for a wide range of applications. In recent years, interest in the synthesis of magnetite NPs and their surface functionalization has increased significantly, especially regarding their application in biomedicine such as for controlled and targeted drug delivery. There are several conventional methods for preparing magnetite NPs, all of which mostly utilize Fe(iii) and Fe(ii) salt precursors. In this study, we present a microwave hydrothermal synthesis for the precipitation of magnetite NPs at temperatures of 200 °C for 20 min and 260 °C for 5 min, with only iron(iii) as a precursor utilizing chamomile flower extract as a stabilizing, capping, and reducing agent. Products were characterized using FTIR, PXRD, SEM, and magnetometry. Our analysis revealed significant differences in the properties of magnetite NPs prepared with this approach, and the conventional two-precursor hydrothermal microwave method (sample MagH). FTIR and PXRD analyses confirmed coated magnetite particles. The temperature and magnetic-field dependence of magnetization indicate their superparamagnetic behavior. Importantly, the results of our study show the noticeable cytotoxicity of coated magnetite NPs-toxic to carcinoma cells but harmless to healthy cells-further emphasizing the potential of these NPs for biomedical applications.
Collapse
Affiliation(s)
- Andrea Paut
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (A.P.); (A.P.)
| | - Lucija Guć
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (L.G.); (D.C.); (R.O.); (M.Š.); (K.N.)
| | - Martina Vrankić
- Laboratory for Synthesis and Crystallography of Functional Materials, Division of Materials Physics, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Doris Crnčević
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (L.G.); (D.C.); (R.O.); (M.Š.); (K.N.)
| | - Pavla Šenjug
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička Cesta 32, 10000 Zagreb, Croatia; (P.Š.); (D.P.)
| | - Damir Pajić
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička Cesta 32, 10000 Zagreb, Croatia; (P.Š.); (D.P.)
| | - Renata Odžak
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (L.G.); (D.C.); (R.O.); (M.Š.); (K.N.)
| | - Matilda Šprung
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (L.G.); (D.C.); (R.O.); (M.Š.); (K.N.)
| | - Kristian Nakić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (L.G.); (D.C.); (R.O.); (M.Š.); (K.N.)
| | - Marijan Marciuš
- Laboratory for Synthesis of New Materials, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Ante Prkić
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; (A.P.); (A.P.)
| | - Ivana Mitar
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia; (L.G.); (D.C.); (R.O.); (M.Š.); (K.N.)
| |
Collapse
|
5
|
Ou Y, Gu Z, Luo Y. Efficient heavy metal ion removal by fluorographene nanochannel templated molecular sieve: a molecular dynamics simulation study. Sci Rep 2024; 14:6298. [PMID: 38491099 PMCID: PMC10943243 DOI: 10.1038/s41598-024-56908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Environmental water contamination, particularly by heavy metal ions, has emerged as a worldwide concern due to their non-biodegradable nature and propensity to accumulate in soil and living organisms, posing a significant risk to human health. Therefore, the effective removal of heavy metal ions from wastewater is of utmost importance for both public health and environmental sustainability. In this study, we propose and design a membrane consisting of fluorographene (F-GRA) nanochannels to investigate its heavy metal ion removal capacity through molecular dynamics simulation. Although many previous studies have revealed the good performance of lamellar graphene membranes for desalination, how the zero-charged graphene functionalized by fluorine atoms (fully covered by negative charges) affects the heavy metal ion removal capacity is still unknown. Our F-GRA membrane exhibits an exceptional water permeability accompanied by an ideal heavy metal ion rejection rate. The superior performance of F-GRA membrane in removing heavy metal ions can be attributed to the negative charge of the F-GRA surface, which results in electrostatic attraction to positively charged ions that facilitates the optimal ion capture. Our analysis of the potential of mean force further reveals that water molecule exhibits the lowest free energy barrier relative to ions when passing through the F-GRA channel, indicating that water transport is energetically more favorable than ion. Additional simulations of lamellar graphene membranes show that graphene membranes have higher water permeabilities compared with F-GRA membranes, while robustly compromising the heavy meal ion rejection rates, and thus F-GRA membranes show better performances. Overall, our theoretical research offers a potential design approach of F-GRA membrane for heavy metal ions removal in future industrial wastewater treatment.
Collapse
Affiliation(s)
- Youguan Ou
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
6
|
Gonçalves NPF, da Silva EF, Tarelho LAC, Labrincha JA, Novais RM. Simultaneous removal of multiple metal(loid)s and neutralization of acid mine drainage using 3D-printed bauxite-containing geopolymers. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132718. [PMID: 37844497 DOI: 10.1016/j.jhazmat.2023.132718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
The mining industry is one of the largest sources of environmental concern globally. Herein we report for the first time the application of highly porous 3D-printed sorbents containing high amounts (50 wt%) of red mud, a hazardous waste derived from the alumina industry, for the remediation of acid mine drainage (AMD). The sorption capacity of the inorganic polymers was initially evaluated for the simultaneous removal of five metal(loid) elements, namely Cu(II), Ni(II), Zn(II), Cd(II) and As(V) in synthetic wastewater. The effect of the initial concentration, pH and contact time were assessed, reaching removal efficiencies between 64% and 98%, at pH 4 and initial concentration of 50 mg L-1 of each cation, after 24 h of contact time. The 3D-printed lattices were then used for the remediation of the real AMD water samples, and the role of adsorption and acidic neutralization was investigated. Lattices were also successfully regenerated and reused up to five cycles without compromising their performance. This work paves the way for the use of an industrial waste derived from the production of alumina as raw material for the management of the hazardous AMD.
Collapse
Affiliation(s)
- Nuno P F Gonçalves
- Department of Chemistry/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | - Luís A C Tarelho
- Department of Environment and Planning & Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - João A Labrincha
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rui M Novais
- Dept. of Materials and Ceramic Engineering/CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Seo C, Lee JW, Jeong JW, Kim TS, Lee Y, Gang G, Lee SG. Current technologies for heavy metal removal from food and environmental resources. Food Sci Biotechnol 2024; 33:287-295. [PMID: 38222907 PMCID: PMC10786761 DOI: 10.1007/s10068-023-01431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 01/16/2024] Open
Abstract
Exposure to heavy metals in water and food poses a significant threat to human well-being, necessitating the efficient removal of these contaminants. The process of urban development exacerbates heavy metal pollution, thereby increasing risks to both human health and ecosystems. Heavy metals have the capacity to enter the food chain, undergo bioaccumulation and magnify, ultimately resulting in adverse effects on human health. Therefore, implementing effective pollution control measures and adopting sustainable practices are crucial for mitigating exposure and associated health risks. Various innovative approaches, including adsorption, ion exchange, and electrochemical technology, are currently being actively investigated to cope with the issue of heavy metal contamination. These innovative methods offer benefits such as efficient recycling, cost-effectiveness and environmental friendliness. In this review, we summarize recent advances for removing heavy metals from water, soil and food, providing valuable guidance for environmental engineers and researchers seeking to address contamination challenges.
Collapse
Affiliation(s)
- Chan Seo
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo, 58762 Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| | - Jin-Woo Jeong
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo, 58762 Korea
| | - Tae-Su Kim
- Division of Natural Products Research, Honam National Institute of Biological Resource, Mokpo, 58762 Korea
| | - Yoonmi Lee
- Food Safety and Processing Research Division, National Institute Fisheries Science, Busan, 46083 Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
| | - Sang Gil Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan, 48513 Republic of Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
8
|
Patel PK, Pandey LM, Uppaluri RVS. Synthesized carboxymethyl-chitosan variant composites for cyclic adsorption-desorption based removal of Fe, Pb, and Cu. CHEMOSPHERE 2023; 340:139780. [PMID: 37572711 DOI: 10.1016/j.chemosphere.2023.139780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
The global issue of environmental contamination from industrial wastewater comprising Cu, Fe and Pb demands effective treatment strategies. In this article, a functional composite sorbent was devised to selectively remove copper, iron, and lead from a real-world mimicking wastewater system. For the purpose, high, medium, and low molecular weight chitosan with amine and hydroxyl functional groups were used as a substrate, and glutaraldehyde was used to anchor the organic compound with carboxymethyl groups. Characterization with X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray analyzer accompanied by field emission scanning electron microscope, and Brunauer-Emmett-Teller were conducted for the synthesized adsorbent. Accordingly, the properties of the adsorbent were evaluated to infer that the synthesis assured a purified and functionalized system. The surface area of the medium carboxymethyl chitosan derivative was analyzed as 31.43 m2 g-1. Various adsorption parameters were examined methodically to assess upon optimal removal requirements. The effect of adsorbent dosage, contact time and concentration on the adsorption of the studied metal ions were conducted and the optimum values were achieved at pH 3.82, 540 min contact duration and 1.2 g L-1 sorbent dose. Maximum adsorbent capacities of 344.83 mg g-1, 9.59 mg g-1, and 90.09 mg g-1 were realized for Cu, Pb, and Fe, respectively. The experimental measurements of the studied heavy metal ions inferred the best fitness of Langmuir isotherm equilibrium and pseudo second order kinetic models. Further, elution studies with easy-to-deploy low-cost acidic and basic eluents (HCl, HNO3, H2SO4, KOH, and NaOH) were conducted with cyclic adsorption-desorption strategies. These investigations confirmed the adsorbent's good reusability up to 3 cycles of adsorption and its proximity to serve as a potential material for multi-heavy metal ions elimination from complex adsorbate systems.
Collapse
Affiliation(s)
- Prabhat Kumar Patel
- Centre for the Environment, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India
| | - Lalit Mohan Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India.
| |
Collapse
|
9
|
Subsanguan T, Jungcharoen P, Khondee N, Buachan P, Abeyrathne BP, Nuengchamnong N, Pranudta A, Wannapaiboon S, Luepromchai E. Copper and chromium removal from industrial sludge by a biosurfactant-based washing agent and subsequent recovery by iron oxide nanoparticles. Sci Rep 2023; 13:18603. [PMID: 37903874 PMCID: PMC10616064 DOI: 10.1038/s41598-023-45729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Industrial wastewater treatment generates sludge with high concentrations of metals and coagulants, which can cause environmental problems. This study developed a sequential sludge washing and metal recovery process for industrial sludge containing > 4500 mg/kg Cu and > 5000 mg/kg Cr. The washing agent was formulated by mixing glycolipid, lipopeptide, and phospholipid biosurfactants from Weissella cibaria PN3 and Brevibacterium casei NK8 with a chelating agent, ethylenediaminetetraacetic acid (EDTA). These biosurfactants contained various functional groups for capturing metals. The optimized formulation by the central composite design had low surface tension and contained relatively small micelles. Comparable Cu and Cr removal efficiencies of 37.8% and 38.4%, respectively, were obtained after washing the sludge by shaking with a sonication process at a 1:4 solid-to-liquid ratio. The zeta potential analysis indicated the bonding of metal ions on the surface of biosurfactant micelles. When 100 g/L iron oxide nanoparticles were applied to the washing agent without pH adjustment, 83% Cu and 100% Cr were recovered. In addition, X-ray diffraction and X-ray absorption spectroscopy of the nanoparticles showed the oxidation of nanoparticles, the reduction of Cr(V) to the less toxic Cr(III), and the absorption of Cu. The recovered metals could be further recycled, which will be beneficial for the circular economy.
Collapse
Affiliation(s)
- Tipsuda Subsanguan
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Nichakorn Khondee
- Department of Natural Resources and Environment, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, Thailand
| | - Pantita Buachan
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Buddhika Prabath Abeyrathne
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Antika Pranudta
- Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand
| | | | - Ekawan Luepromchai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Sharma R, Garg R, Bali M, Eddy NO. Biogenic synthesis of iron oxide nanoparticles using leaf extract of Spilanthes acmella: antioxidation potential and adsorptive removal of heavy metal ions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1345. [PMID: 37857875 DOI: 10.1007/s10661-023-11860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
The sequestration of contaminants from wastewater, such as heavy metals, has become a major global issue. Multiple technologies have been developed to address this issue. Nanotechnology is attracting significant interest as a new technology, and numerous nanomaterials have been produced for sequestrating heavy metals from polluted water due to their superior properties arising from the nanoscale effect. This study reports biosynthesis of iron oxide nanoparticles (IO-NPs) and their applications for adsorptive sequestration of various metal ions from aqueous solutions. Biosynthesis of IO-NPs has been carried out by using leaf extract of Spilanthes acmella, a medicinal plant. FTIR analysis of the leaf extract and biosynthesized IO-NPs marked the role of various functional groups in biosynthesis of IO-NPs. FESEM analysis revealed the average size range of IO-NPs as 50 to 80 nm, while polydisperse nature was confirmed by DLS analysis. EDX analysis revealed the presence of Fe, O, and C atoms in the elemental composition of the NPs. The antioxidant potential of the biosynthesized IO-NPs (IC50 = 136.84 µg/mL) was confirmed by DPPH assay. IO-NPs were also used for the adsorptive removal of As3+, Co2+, Cd2+, and Cu2+ ions from aqueous solutions with process optimization at an optimized pH (7.0) using dosage of IO-NPs as 0.6 g/L (As3+ and Co2+) and 0.8 g/L (Cd2+ and Cu2+). Adsorption isotherm analysis revealed the maximum adsorption efficiency for As3+ (21.83 mg/g) followed by Co2+ (20.43 mg/g), Cu2+ (15.29 mg/g), and Cd2+ (13.54 mg/g) using Langmuir isotherm model. The biosynthesized IO-NPs were equally efficient in the simultaneous sequestration of these heavy metal ions signifying their potential as effective nanoadsorbents.
Collapse
Affiliation(s)
- Rajat Sharma
- Department of Chemistry, USS, Rayat-Bahra University, Chandigarh, 140104, India
| | - Rajni Garg
- Department of Applied Sciences, Galgotias College of Engineering and Technology, Greater Noida (UP), 201310, India.
| | - Manoj Bali
- Department of Chemistry, USS, Rayat-Bahra University, Chandigarh, 140104, India
| | - Nnabuk O Eddy
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
11
|
Shetty S, Baig N, Wahed SA, Hassan A, Das N, Alameddine B. Iodine and Nickel Ions Adsorption by Conjugated Copolymers Bearing Repeating Units of Dicyclopentapyrenyl and Various Thiophene Derivatives. Polymers (Basel) 2023; 15:4153. [PMID: 37896396 PMCID: PMC10611155 DOI: 10.3390/polym15204153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The synthesis of three conjugated copolymers TPP1-3 was carried out using a palladium-catalyzed [3+2] cycloaddition polymerization of 1,6-dibromopyrene with various dialkynyl thiophene derivatives 3a-c. The target copolymers were obtained in excellent yields and high purity, as confirmed by instrumental analyses. TPP1-3 were found to divulge a conspicuous iodine adsorption capacity up to 3900 mg g-1, whereas the adsorption mechanism studies revealed a pseudo-second-order kinetic model. Furthermore, recyclability tests of TPP3, the copolymer which revealed the maximum iodine uptake, disclosed its efficient regeneration even after numerous adsorption-desorption cycles. Interestingly, the target copolymers proved promising nickel ions capture efficiencies from water with a maximum equilibrium adsorption capacity (qe) of 48.5 mg g-1.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India (A.H.); (N.D.)
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
12
|
ŞAHİN M, ATASOY M, ARSLAN Y, YILDIZ D. Removal of Ni(II), Cu(II), Pb(II), and Cd(II) from Aqueous Phases by Silver Nanoparticles and Magnetic Nanoparticles/Nanocomposites. ACS OMEGA 2023; 8:34834-34843. [PMID: 37779946 PMCID: PMC10536035 DOI: 10.1021/acsomega.3c04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
The intake of heavy metals into the body, even at very low concentrations, may cause a decrease in central nervous system functions; deterioration of blood composition; and liver, kidney, and lung damage. Therefore, heavy metal ions must be removed from water. In this study, silver, magnetic iron/copper, and iron oxide nanoparticles were synthesized using Lathyrus brachypterus extract and then Fe/Cu-AT, Fe3O4-AT, Fe/Cu-CS, and Fe3O4-CS magnetic nanocomposite beads were synthesized using alginate and chitosan. The removal of Cd(II), Pb(II), Ni(II), and Cu(II) ions from aqueous phases using synthesized nanoadsorbents was investigated by single and competitive (double and quaternary) adsorption techniques. The kinetic usability of the magnetic iron oxide chitosan (Fe3O4-CS) nanocomposite beads with the highest removal efficiency was evaluated. Based on experimental results, the order of removal was found to be 98.39, 75.52, 51.54, and 45.34%, and it was listed as Pb(II) > Cu(II) > Cd(II) > Ni(II), respectively. The Dubinin-Radushkevich, Freundlich, Langmuir, and Temkin isotherm models were used, and experimental results revealed that the experimental data fit the Langmuir model better. The maximum adsorption capacities (qm) obtained from the Langmuir isotherm model of Fe3O4-CS were found to be 8.71, 23.75, 18.57, and 12.38 mg/g for Ni(II), Pb(II), Cu(II), and Cd(II) ions, respectively. When the kinetic data were applied to the Lagergren, Ho-McKay, and Elovich models, it was observed that the adsorption kinetics mostly conformed to the Ho-McKay second-order rate equation. The binary and quaternary competitive adsorption data showed that Fe3O4-CS were selective toward Cu(II) and Pb(II). The reusability of the Fe3O4-CS nanoadsorbent was performed as three cycles with the same concentration. The adsorption capacities were found to be 95.81, 70.65, 50.50, and 42.75%, in turn for Pb(II), Cu(II), Cd(II), and Ni(II) ions after three cycles, which revealed that the Fe3O4-CS nanoadsorbent can be used after three cycles without losing its efficiency.
Collapse
Affiliation(s)
- Muradiye ŞAHİN
- Kırşehir
Ahi Evran University, Campus, Kırşehir 40100, Turkey
| | - Muhammet ATASOY
- Muğla
Vocational School, Chemistry and Chemical Treatment Technologies Department,
Chemistry Technology Program, Muğla
Sıtkı Koçman University, Muğla 48000, Turkey
| | - Yasin ARSLAN
- Faculty
of Arts and Science, Nanoscience and Nanotechnology Department, Burdur Mehmet Akif Ersoy University, Burdur 15000, Turkey
| | - Dilek YILDIZ
- Environmental
Problems Research and Application Center, Muğla Sıtkı Kocçman University, Muğla 48000, Turkey
| |
Collapse
|
13
|
Abdel-Hakeem M, El-Habaak G. Textural complications of banded iron formation and the potential production of nano-magnetite: a case study from the Central Eastern Desert of Egypt. Sci Rep 2023; 13:15158. [PMID: 37704678 PMCID: PMC10499896 DOI: 10.1038/s41598-023-42058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
The current work makes integrated value-added, geological and chemical studies on the texturally intricate banded iron formation "BIF" that is represented here, as a case in point, by the Um Nar BIF located in the Central Eastern Desert of Egypt. Geologically, the Um Nar BIF is composed mainly of oxide-rich facies and silicate-rich facies mostly expressed as bands of variable thickness (90-730 µm). Magnetite, martite, goethite, and quartz are detected as the main components of the oxide-rich facies, while epidote, stilpnomelane, and garnet occupy the other facies type. The studied ore can be classified as a low-grade iron ore containing 51.23 wt.% Fe2O3 and 39.64 wt.% SiO2 along with considerable phosphorous content (1.01 wt.% P2O5). These elemental concentrations do not match the recommended benchmarks for iron and steelmaking (e.g.75.78-95.8 wt.% Fe2O3, 5-7 wt.% SiO2, and 0.04 wt.% P2O5). Moreover, the studied BIF has a poor liberation behavior on crushing and grinding due to the complex interlocking of magnetite with quartz and stilpnomelane expressed as a sieve-like texture. This textural complication directed the current work to investigate the potential exploitation of the Um Nar BIF as a precursor of nano-magnetite that is commonly synthesized by ferrous and ferric chlorides. Accordingly, HCl-based agitation leaching followed by co-precipitation was carried out, resulting in ultrafine mesoporous nano-magnetite (2.47-4.27 nm particle size, 120 m2g-1 surface area, 0.55 cm3g-1 pore volume, and 4.88 nm pore diameter) expected to serve in water treatment as an effective adsorbent for heavy metals.
Collapse
Affiliation(s)
- Mahmoud Abdel-Hakeem
- Department of Geology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Galal El-Habaak
- Department of Geology, Faculty of Science, Assiut University, Asyut, Egypt
| |
Collapse
|
14
|
Mohamad Sarbani NM, Hidayat E, Naito K, Mitoma Y, Harada H. Cr (VI) and Pb (II) Removal Using Crosslinking Magnetite-Carboxymethyl Cellulose-Chitosan Hydrogel Beads. Gels 2023; 9:612. [PMID: 37623067 PMCID: PMC10453601 DOI: 10.3390/gels9080612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Heavy metals, such as chromium (VI) and lead (II), are the most common pollutants found in wastewater. To solve these problems, this research was intended to synthesize magnetite hydrogel beads (CMC-CS-Fe3O4) by crosslinking carboxymethyl cellulose (CMC) and chitosan (CS) and impregnating them with iron oxide (Fe3O4) as a potential adsorbent to remove Cr (VI) and Pb (II) from water. CMC-CS-Fe3O4 was characterized by pHzpc, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Batch removal experiments with different variables (CMC:CS ratio, pH, initial metals concentration, and contact time) were conducted, and the results revealed that CMC-CS-Fe3O4 with a CMC:CS (3:1) ratio had the best adsorption capacity for Cr (VI) and Pb (II) at pH levels of 2 and 4, respectively. The findings of this research revealed that the maximum adsorption capacity for Cr (VI) and Pb (II) were 3.5 mg/g and 18.26 mg/g, respectively, within 28 h at 30 ℃. The adsorption isotherm and adsorption kinetics suggested that removal of Cr (VI) and Pb (II) were fitted to Langmuir and pseudo-second orders. The highest desorption percentages for Cr (VI) and Pb (II) were 70.43% and 83.85%, achieved using 0.3 M NaOH and 0.01 M N·a2EDTA, respectively. Interestingly, after the first cycle of the adsorption-desorption process, the hydrogel showed a sudden increase in adsorption capacity for Cr (VI) and Pb (II) until it reached 7.7 mg/g and 33.0 mg/g, respectively. This outcome may have certain causes, such as entrapped metal ions providing easy access to the available sites inside the hydrogel or thinning of the outer layer of the beads leading to greater exposure toward active sites. Hence, CMC-CS-Fe3O4 hydrogel beads may have potential application in Cr (VI) and Pb (II) removal from aqueous solutions for sustainable environments.
Collapse
Affiliation(s)
- Nur Maisarah Mohamad Sarbani
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Endar Hidayat
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Kanako Naito
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Yoshiharu Mitoma
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| | - Hiroyuki Harada
- Graduate School of Comprehensive and Scientific Research, Prefectural University of Hiroshima, Shobara 727-0023, Japan; (N.M.M.S.); (E.H.); (K.N.); (Y.M.)
- Department of Life and Environmental Science, Faculty of Bioresources Science, Prefectural University of Hiroshima, Shobara 727-0023, Japan
| |
Collapse
|
15
|
Garg R, Garg R, Khan MA, Bansal M, Garg VK. Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81319-81332. [PMID: 35672639 DOI: 10.1007/s11356-022-21111-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
This study deals with heavy metal ions removal from simulated water using biosynthesized silica-supported iron oxide nanocomposites (nano-IOS). Agricultural and garden wastes have been utilized to prepare nano-IOS through a green synthesis process. Nano-IOS was characterized by XRD, SEM, FTIR, and zeta potential analysis. The nanocomposites were used to remove five heavy metals, viz., Pb2+, Cd2+, Ni2+, Cu2+, and Zn2+, with optimization of reaction parameters including pH, the concentration of heavy metals, adsorbent dosage, and contact time in batch mode experiments. The optimized dose of nano-IOS was 0.75 g/L for the adsorption of Pb2+, Cd2+, Ni2+, Cu2+, and Zn2+ (10.0 mg/L) with a contact duration of 70 min at pH 5.0 for Pb2+, Cd2+, and Cu2+ and 6.0 for Ni2+ and Zn2+. The adsorption behavior of the nano-adsorbent was well described by Langmuir adsorption isotherm and pseudo-second-order kinetic model indicating chemisorption on the surface of nano-IOS. The adsorption was also found spontaneous and endothermic. Thus, the environmentally benign and bio-synthesized nano-IOS can be utilized as an effective nano-adsorbent for the rapid sequestration of heavy metal ions from water and wastewater.
Collapse
Affiliation(s)
- Rishav Garg
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Rajni Garg
- R&D Department, Institute of Sci-Tech Affairs, Mohali, Punjab, 140301, India.
| | - Md Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering & Technology, Greater Noida, Uttar Pradesh, 201310, India
| | - Manjeet Bansal
- Department of Civil Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, 151001, Punjab, India.
| |
Collapse
|
16
|
Shahrezaei F, Gholivand MB, Shamsipur M, Moradi G, Babajani N, Barati A. Silanized fiberglass modified by carbon dots as novel and impressive adsorbent for aqueous heavy metal ion removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82297-82310. [PMID: 37326740 DOI: 10.1007/s11356-023-28013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
This work discusses the application of a silanized fiberglass (SFG) modified by carbon dots (CDs) as an effective adsorbent for up-taking some heavy metal ions including lead (Pb2+), chromium (Cr3+), cadmium (Cd2+), cobalt (Co2+), and nickel (Ni2+) as pollutant in the aqueous solution by batch method. Removal tests were carried out after optimization of pH, contact time, initial concentration of metal ions, and CDs amount. The SFG modified with CDs (CDs-SFG) was applied for the removal of 10 ppm of each metal ion solution after 100 min and the corresponding results showed the removal efficiencies of 100, 93.2, 91.8, 90, and 88.3% for Pb2+, Cd2+, Cr3+, Co2+, and Ni2+, respectively. The adsorption capacity of CDs-SFG in the metal ion mixed solution was also evaluated, and the results indicated the same trend in the adsorption capacity for metal ions in the mixed solution, though with lower absolute values compared to the single metal solutions. Moreover, the selectivity of this adsorbent for the adsorption of Pb2+ was almost twice of other tested metal ions. The regeneration of the CDs-SFG showed that its adsorption capacity after five cycles was reduced about 3.9, 6.0, 6.8, 6.7, and 8.0% for Pb2+, Cd2+, Cr3+, Co2+, and Ni2+, respectively. Finally, the applicability of the CDs-SFG adsorbent was examined with the analysis of the metal ions in water and wastewater samples.
Collapse
Affiliation(s)
- Fatemeh Shahrezaei
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran.
- Academic Center for Education, Culture & Research (ACECR), Kermanshah, Iran.
| | | | - Mojtaba Shamsipur
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Golshan Moradi
- Department of Chemical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran
| | - Nasrin Babajani
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Ali Barati
- Department of Analytical Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
17
|
Kumar V, Rout C, Singh J, Saharan Y, Goyat R, Umar A, Akbar S, Baskoutas S. A review on the clean-up technologies for heavy metal ions contaminated soil samples. Heliyon 2023; 9:e15472. [PMID: 37180942 PMCID: PMC10172878 DOI: 10.1016/j.heliyon.2023.e15472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The soil contamination with heavy metal ions is one of the grave intricacies faced worldwide over the last few decades by the virtue of rapid industrialization, human negligence and greed. Heavy metal ions are quite toxic even at low concentration a swell as non-biodegradable in nature. Their bioaccumulation in the human body leads to several chronic and persistent diseases such as lung cancer, nervous system break down, respiratory problems and renal damage etc. In addition to this, the increased concentration of these metal ions in soil, beyond the permissible limits, makes the soil unfit for further agricultural use. Hence it is our necessity, to monitor the concentration of these metal ions in the soil and water bodies and adopt some better technologies to eradicate them fully. From the literature survey, it was observed that three main types of techniques viz. physical, chemical, and biological were employed to harness the heavy metal ions from metal-polluted soil samples. The main goal of these techniques was the complete removal of the metal ions or the transformation of them into less hazardous and toxic forms. Further the selection of the remediation technology depends upon different factors such as process feasibility/mechanism of the process applied, nature and type of contaminants, type and content of the soil, etc. In this review article, we have studied in detail all the three technologies viz. physical, chemical and biological with their sub-parts, mechanism, pictures, advantages and disadvantages.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Civil Engineering, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Chadetrik Rout
- Department of Civil Engineering, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
- Corresponding author.
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, And Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Corresponding author. Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - S. Baskoutas
- Department of Materials Science, University of Patras, Patras, Greece
| |
Collapse
|
18
|
Bayuo J, Rwiza MJ, Sillanpää M, Mtei KM. Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents - a systematic review. RSC Adv 2023; 13:13052-13093. [PMID: 37124024 PMCID: PMC10140672 DOI: 10.1039/d3ra01660a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
The ecosystem and human health are both significantly affected by the occurrence of potentially harmful heavy metals in the aquatic environment. In general, wastewater comprises an array of heavy metals, and the existence of other competing heavy metal ions might affect the adsorptive elimination of one heavy metal ion. Therefore, to fully comprehend the adsorbent's efficiency and practical applications, the abatement of heavy metals in multicomponent systems is important. In the current study, the multicomponent adsorption of heavy metals from different complex mixtures, such as binary, ternary, quaternary, and quinary solutions, utilizing various adsorbents are reviewed in detail. According to the systematic review, the adsorbents made from locally and naturally occurring materials, such as biomass, feedstocks, and industrial and agricultural waste, are effective and promising in removing heavy metals from complex water systems. The systematic study further discovered that numerous studies evaluate the adsorption characteristics of an adsorbent in a multicomponent system using various important independent adsorption parameters. These independent adsorption parameters include reaction time, solution pH, agitation speed, adsorbent dosage, initial metal ion concentration, ionic strength as well as reaction temperature, which were found to significantly affect the multicomponent sorption of heavy metals. Furthermore, through the application of the multicomponent adsorption isotherms, the competitive heavy metals sorption mechanisms were identified and characterized by three primary kinds of interactive effects including synergism, antagonism, and non-interaction. Despite the enormous amount of research and extensive data on the capability of different adsorbents, several significant drawbacks hinder adsorbents from being used practically and economically to remove heavy metal ions from multicomponent systems. As a result, the current systematic review provides insights and perspectives for further studies through the thorough and reliable analysis of the relevant literature on heavy metals removal from multicomponent systems.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
- Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS) Postal Box 24 Navrongo Upper East Region Ghana
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| |
Collapse
|
19
|
A multifunctional adsorbent based on 2,3-dimercaptosuccinic acid/dopamine-modified magnetic iron oxide nanoparticles for the removal of heavy-metal ions. J Colloid Interface Sci 2023; 636:153-166. [PMID: 36623368 DOI: 10.1016/j.jcis.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Overexploitation of nature by humans has led to an increasingly serious issue of heavy-metal water pollution. To reduce the threat of water pollution to humans and the environment, it is imperative to develop or improve the water treatment technology for heavy-metal-containing wastewater. Functionalized Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) have been widely used as effective adsorbents for the removal of heavy-metal ions from water owing to their high efficiency, low cost, selective adsorption ability, and recyclability. In this study, Fe3O4@DA-DMSA magnetic nanoparticles (FDDMs) were prepared by the functionalization of Fe3O4 MNPs with environmentally friendly dopamine (DA) and a heavy-metal detoxifying agent such as 2,3-dimercaptosuccinic acid (DMSA) for the efficient and rapid adsorption of Pb2+, Cu2+, and Cd2+, with maximum adsorption capacities of 187.62, 63.01, and 49.46 mg/g, respectively. FDDMs exhibited the best ability to remove Pb2+ with a maximum adsorption capacity than that of the most reported Fe3O4 MNP-related adsorbents. In actual wastewater and multi-component simulated water samples contaminated with Pb2+, Cu2+, and Cd2+, the as-prepared adsorbent maintained a good removal ability for Pb2+ with low influence by ionic strength and interfering ions, as well as exhibited an excellent selectivity. According to the results of batch experiments and X-ray photoelectron spectroscopy (XPS) analysis of the adsorbent before and after adsorption, the adsorption mechanism of the adsorbent for the removal of heavy-metal ions mainly involves coordination and ion exchange. In addition, the adsorbent exhibited a good regeneration performance. Therefore, FDDMs can be considered as a promising adsorbent for the treatment of heavy-metal wastewater.
Collapse
|
20
|
Ukani H, Mehra S, Parmar B, Kumar A, Khan I, El Seoud OA, Malek N. Metal–Organic Framework-Based Aerogel: A Novel Adsorbent for the Efficient Removal of Heavy Metal Ions and Selective Removal of a Cationic Dye from Aqueous Solution. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Hiral Ukani
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Sanjay Mehra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Bhagyesh Parmar
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Salt and Marine Chemicals Division, CSIR-Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar, Gujarat 364002, India
| | - Imran Khan
- Chemical Engineering Department, Government Engineering College, Bhuj, Gujarat 370001, India
| | - Omar A. El Seoud
- Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Naved Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395007, India
- Institute of Chemistry, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
21
|
Nadolska M, Szkoda M, Trzciński K, Ryl J, Lewkowicz A, Sadowska K, Smalc-Koziorowska J, Prześniak-Welenc M. New light on the photocatalytic performance of NH 4V 4O 10 and its composite with rGO. Sci Rep 2023; 13:3946. [PMID: 36894657 PMCID: PMC9998451 DOI: 10.1038/s41598-023-31130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Solar-driven photocatalysis has shown great potential as a sustainable wastewater treatment technology that utilizes clean solar energy for pollutant degradation. Consequently, much attention is being paid to the development of new, efficient and low-cost photocatalyst materials. In this study, we report the photocatalytic activity of NH4V4O10 (NVO) and its composite with rGO (NVO/rGO). Samples were synthesized via a facile one-pot hydrothermal method and successfully characterized using XRD, FTIR, Raman, XPS, XAS, TG-MS, SEM, TEM, N2 adsorption, PL and UV‒vis DRS. The results indicate that the obtained NVO and NVO/rGO photocatalysts exhibited efficient absorption in the visible wavelength region, a high content of V4+ surface species and a well-developed surface area. Such features resulted in excellent performance in methylene blue photodegradation under simulated solar light illumination. In addition, the composite of NH4V4O10 with rGO accelerates the photooxidation of the dye and is beneficial for photocatalyst reusability. Moreover, it was shown that the NVO/rGO composite can be successfully used not only for the photooxidation of organic pollution but also for the photoreduction of inorganic pollutants such as Cr(VI). Finally, an active species trapping experiment was conducted, and the photodegradation mechanism was discussed.
Collapse
Affiliation(s)
- M Nadolska
- Institute of Nanotechnology and Materials Engineering, and Advanced Materials Centre, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - M Szkoda
- Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland
| | - K Trzciński
- Faculty of Chemistry, Gdansk University of Technology, Narutowicza St. 11/12, 80-233, Gdansk, Poland
| | - J Ryl
- Institute of Nanotechnology and Materials Engineering, and Advanced Materials Centre, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - A Lewkowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308, Gdańsk, Poland
| | - K Sadowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks Trojdena 4, 02-109, Warsaw, Poland
| | - J Smalc-Koziorowska
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw, Poland
| | - M Prześniak-Welenc
- Institute of Nanotechnology and Materials Engineering, and Advanced Materials Centre, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
22
|
Shaba EY, Tijani JO, Jacob JO, Suleiman MAT. Simultaneous removal of Cu (II) and Cr (VI) ions from petroleum refinery wastewater using ZnO/Fe 3O 4 nanocomposite. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 57:1146-1167. [PMID: 36601714 DOI: 10.1080/10934529.2022.2162794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The presence and removal of heavy metals such as Cu(II) as well as Cr(VI) in petroleum refinery wastewater calls for concerted efforts due to their mobility, toxicity, bioaccumulation, and non-biodegradability in the environment. In this present work, zinc oxide (ZnO), iron oxide (Fe3O4) nanoparticles and ZnO/Fe3O4 nanocomposites were synthesized via simple sol-gel and chemical reduction methods; characterized using different analytical tools and then applied as nanoadsorbent to sequester Cu(II) and Cr(VI) ions from Petroleum Refinery wastewater via batch adsorption process. Cu(II) and Cr(VI) adsorption processes were examined with respect to contact time (kinetic effect), nanoadsorbent dosage, isotherm equilibrium, and thermodynamic parameters. ZnO/Fe3O4 nanocomposites with higher surface area (39.450 m2/g) have a mixture of rod-like and spherical shapes as compared to ZnO and Fe3O4 nanoparticles with spherical shape only and surface areas of 8.62 m2/g and 7.86 m2/g) according to the high-resolution scanning electron microscopy (HRSEM) and Brunauer-Emmett-Teller (BET) analysis. The X-ray diffractometer (XRD) results revealed the formation of hexagonal wurtzite structure of ZnO and the face-centered cubic structure phase of Fe3O4 nanoparticles, after the formation of the ZnO/Fe3O4 nanocomposites the phases of the nanoparticles were not affected but the diffraction peaks shifted to higher 2θ degree. The average crystallite size of ZnO and Fe3O4 nanoparticles and ZnO/Fe3O4 nanocomposites were 20.12, 26.36 and 14.50 nm respectively. The maximum removal efficiency of Cu (II) (92.99%) and Cr (VI) (77.60%) by ZnO/Fe3O4 nanocomposites was higher than 85.83%; 65.19% for Cu (II) and 80.57%; 62.53 for Cr (VI) using ZnO and Fe3O4 nanoadsorbents individually under the following conditions: contact time (15), dosage (0.08 g) and temperature (30 °C). The experimental data for Cu (II) and Cr (VI) ion removal fitted well to the pseudo-second-order kinetic and Langmuir isotherm models. The thermodynamic study suggested that the removal of the two metal ions from petroleum wastewater was endothermic. The reusability study after the fourth adsorption-desorption cycle indicated the stability of ZnO/Fe3O4 nanocomposites with 85.51% and 69.42% removal efficiency of Cu (II) and Cr (VI). The results showed that ZnO/Fe3O4 nanocomposite achieves higher performance than ZnO and Fe3O4 alone in the removal of Cu (II) and Cr (VI) ions from the petroleum refinery wastewater.
Collapse
Affiliation(s)
- E Y Shaba
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| | - J O Tijani
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| | - J O Jacob
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| | - M A T Suleiman
- Department of Chemistry, Federal University of Technology, Minna, Niger, Nigeria
| |
Collapse
|
23
|
Gahlaut PS, Gautam D, Yadav K, Jana B. Supramolecular Gels for the Sensing and Extraction of Heavy Metal Ions from Wastewater. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Hernandez JST, Aragón-Muriel A, Corrales Quintero W, Castro Velásquez JC, Salazar-Camacho NA, Pérez Alcázar GA, Tabares JA. Characterization of Fe 3O 4 Nanoparticles for Applications in Catalytic Activity in the Adsorption/Degradation of Methylene Blue and Esterification. Molecules 2022; 27:molecules27248976. [PMID: 36558109 PMCID: PMC9781974 DOI: 10.3390/molecules27248976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study is to evaluate the applicability of the catalytic activity (CA) of the Fe3O4 magnetic system in the adsorption/degradation of methylene blue and esterification. The thermal decomposition method allowed the preparation of Fe3O4 nanoparticles. The crystallites of the Fe3O4 structural phase present an acicular form confirmed by X-ray diffraction. Transmission electron microscopy results identified the acicular shape and agglomeration of the nanoparticles. Mössbauer spectroscopy showed that the spectrum is composed of five components at room temperature, a hyperfine magnetic field distribution (HMFD), two sextets, a doublet, and a singlet. The presence of the HMFD means that a particle size distribution is present. Fluorescence spectroscopy studied the CA of the nanoparticles with methylene blue and found adsorption/degradation properties of the dye. The catalytic activity of the nanoparticles was evaluated in the esterification reaction by comparing the results in the presence and absence of catalyst for the reaction with isobutanol and octanol, where it is observed that the selectivity for the products MIBP and MNOP is favored in the first three hours of reaction.
Collapse
Affiliation(s)
- Juan Sebastian Trujillo Hernandez
- Grupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, Cali 25360, Colombia
- Centro de Excelencia de Nuevos Materiales (CENM), Universidad del Valle, Cali 25360, Colombia
- Correspondence:
| | - Alberto Aragón-Muriel
- Laboratorio de Investigación en Catálisis y Procesos (LICAP), Departamento de Química, Universidad del Valle, Cali 25360, Colombia
| | | | | | | | - German Antonio Pérez Alcázar
- Grupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, Cali 25360, Colombia
- Centro de Excelencia de Nuevos Materiales (CENM), Universidad del Valle, Cali 25360, Colombia
| | - Jesús Anselmo Tabares
- Grupo de Metalurgia Física y Teoría de Transiciones de Fase, Departamento de Física, Universidad del Valle, Cali 25360, Colombia
- Centro de Excelencia de Nuevos Materiales (CENM), Universidad del Valle, Cali 25360, Colombia
| |
Collapse
|
25
|
Ccamerccoa MH, Falcon NLT, Félix LL, Pacheco-Salazar DG, Aragón FFH, Coaquira JAH, Garnier J, Vera-Gonzales C. High efficiency of magnetite nanoparticles for the arsenic removal from an aqueous solution and natural water taken from Tambo River in Peru. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:849-860. [PMID: 36406591 PMCID: PMC9672299 DOI: 10.1007/s40201-022-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Water is an essential compound on earth and necessary for life. The presence of highly toxic contaminants such as arsenic and others, in many cases, represents one of the biggest problems facing the earth´s population. Treatment of contaminated water with magnetite (Fe3O4) nanoparticles (NPs) can play a crucial role in arsenic removal. In this report, we demonstrate arsenic removal from an aqueous solution and natural water taken from the Peruvian river (Tambo River in Arequipa, Peru) using magnetite NPs synthesized by the coprecipitation method. XRD data analysis of Fe3O4 NPs revealed the formation of the cubic-spinel phase of magnetite with an average crystallite size of ~ 13 nm, which is found in good agreement with the physical size assessed from TEM image analysis. Magnetic results evidence that our NPs show a superparamagnetic-like behavior with a thermal relaxation of magnetic moments mediated by strong particle-particle interactions. FTIR absorption band shows the interactions between arsenate anions and Fe-O and Fe-OH groups through a complex mechanism. The experimental results showed that arsenic adsorption is fast during the first 10 min; while the equilibrium is reached within 60 min, providing an arsenic removal efficiency of ~ 97%. Adsorption kinetics is well modeled using the pseudo-second-order kinetic equation, suggesting that the adsorption process is related to the chemisorption model. According to Langmuir's model, the maximum arsenic adsorption capacity of 81.04 mg·g- 1 at pH = 2.5 was estimated, which describes the adsorption process as being monolayer, However, our results suggest that multilayer adsorption can be produced after monolayer saturation in agreement with the Freundlich model. This finding was corroborated by the Sips model, which showed a good correlation to the experimental data. Tests using natural water taken from Tambo River indicate a significant reduction of arsenic concentration from 356 µg L- 1 to 7.38 µg L- 1, the latter is below the limit imposed by World Health Organization (10 µg L- 1), suggesting that magnetite NPs show great potential for the arsenic removal.
Collapse
Affiliation(s)
- M. Huanca Ccamerccoa
- Departamento de Química, Universidad Nacional de San Agustín de Arequipa. Laboratorio LAPCI-Nano, Independencia s/n, Arequipa, Perú
| | - N. L. Tapia Falcon
- Departamento de Química, Universidad Nacional de San Agustín de Arequipa. Laboratorio LAPCI-Nano, Independencia s/n, Arequipa, Perú
| | - L. León Félix
- Laboratorio de Películas Delgadas, Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Av. Independencia s/n, Arequipa, Perú
| | - D. G. Pacheco-Salazar
- Laboratorio de Películas Delgadas, Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Av. Independencia s/n, Arequipa, Perú
| | - F. F. H. Aragón
- Laboratorio de Películas Delgadas, Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Av. Independencia s/n, Arequipa, Perú
- Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, 70910-900 Brasília, DF Brazil
| | - J. A. H. Coaquira
- Laboratorio de Películas Delgadas, Universidad Nacional de San Agustín de Arequipa, Escuela Profesional de Física, Av. Independencia s/n, Arequipa, Perú
- Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, 70910-900 Brasília, DF Brazil
| | - Jéremie Garnier
- Instituto de Geociências, Universidade de Brasília, Campus Darcy Ribeiro, L2, Asa Norte, 70910900 Brasília, Distrito Federal, Brazil
| | - C. Vera-Gonzales
- Departamento de Química, Universidad Nacional de San Agustín de Arequipa. Laboratorio LAPCI-Nano, Independencia s/n, Arequipa, Perú
| |
Collapse
|
26
|
Inobeme A, Mathew JT, Adetunji CO, Ajai AI, Inobeme J, Maliki M, Okonkwo S, Adekoya MA, Bamigboye MO, Jacob JO, Eziukwu CA. Recent advances in nanotechnology for remediation of heavy metals. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:111. [PMID: 36378336 DOI: 10.1007/s10661-022-10614-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal contamination of the environment has become an alarming environmental issue that has constituted serious threats to humans and the ecosystem. These metals have been identified as a priority class of pollutants due to their persistency in the environment and their potential to bioaccumulate in biological systems. Consequently, the remediation of heavy metals from various environmental matrices becomes a critical topic from the biological and environmental perspectives. To this end, various research interests have shifted to the need to put forward economically feasible and highly efficient approaches for mitigating these contaminants in the environment. Thus, numerous conventional approaches have reportedly been employed for the remediation of heavy metals, with each of the methods having its inherent limitations. More recently, studies have revealed that nanomaterials in their various forms show unique potential for the removal of various contaminants including heavy metals in comparison to their bulk counterparts making them a topic of importance to researchers in various fields. Also, various studies have documented specifically tailored nanomaterials that have been synthesized for the removal of heavy metals from various environmental matrices. This review provides up-to-date information on the application of nanotechnology for the remediation of heavy metals. It highlights various nanomaterials that have been employed for the remediation of heavy metals, current details on their methods of synthesis, factors affecting their adsorption processes, and the environmental and health impact of nanomaterials. Finally, it provides the challenges and future trends of nanomaterials for heavy metal removal.
Collapse
Affiliation(s)
- Abel Inobeme
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria.
| | - John Tsado Mathew
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, Lapai, Nigeria
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University Uzairue, Edo State, Nigeria
| | | | - Jonathan Inobeme
- Department of Geography, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| | - Muniratu Maliki
- Department of Chemistry, Edo State University Uzairue, Edo State, Nigeria
| | - Stanley Okonkwo
- Department of Chemistry, Osaka Kyoiku University, Osaka, Japan
| | | | | | - John Olusanya Jacob
- Department of Chemistry, Federal University of Technology Minna, Niger State, Nigeria
| | | |
Collapse
|
27
|
Şahin M, Arslan Y, Tomul F. Removal of naproxen and diclofenac using magnetic nanoparticles/nanocomposites. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [PMCID: PMC9628605 DOI: 10.1007/s11164-022-04862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Magnetic iron oxide and iron/copper nanoparticles were synthesized using Lathyrus brachypterus extract, and then magnetic Fe3O4–CS, Fe3O4–AT, Fe/Cu–CS and Fe/Cu–AT nanocomposite beads were synthesized using chitosan and alginate natural polymers. They were used for both adsorption and heterogeneous catalysts for the catalytic wet peroxidation (CWPO) of naproxen (NPX), diclofenac (DCF) and NPX + DCF drugs which are important micro-organic pollutants, separately and together (NPX + DCF) from aqueous media. In adsorption studies, the drugs were adsorbed very quickly in the first minutes and then, desorbed in between 8 and 10 min. In competitive adsorption, the adsorbents showed selective properties for DCF and NPX. In CWPO technique, drug removal was achieved in 9 min with a conversion capacity of 92% for DCF with Fe/Cu–CS and 84% for NPX with Fe/Cu–AT optimum experimental conditions, such as pH 5, 30% of H2O2, 100 mg catalyst and 298 K. Based on reusability of the catalysts, it was seen that there was a slight decrease in the removal efficiencies in the third cycle and the stable and active structure of the catalyst was preserved to the desired extent. Furthermore, the oxidation reaction was in good agreement with the pseudo-first-order kinetic model.
Collapse
Affiliation(s)
- Muradiye Şahin
- Campus, Kırşehir Ahi Evran University, 40100 Kırşehir, Turkey
| | - Yasin Arslan
- Department of Nanoscience and Nanotechnology, Faculty of Arts and Science, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Fatma Tomul
- Department of Chemistry, Faculty of Arts and Science, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| |
Collapse
|
28
|
Bobik M, Korus I, Synoradzki K, Wojnarowicz J, Biniaś D, Biniaś W. Poly(sodium acrylate)-Modified Magnetite Nanoparticles for Separation of Heavy Metals from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6562. [PMID: 36233904 PMCID: PMC9572998 DOI: 10.3390/ma15196562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Two types of magnetite nanoparticles: unmodified (Fe3O4 NPs), and modified with poly(sodium acrylate) (Fe3O4/PSA NPs) were synthesized by the co-precipitation method and characterized using different techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), Brunauer-Emmett-Teller (BET) adsorption, Fourier-transform infrared spectroscopy (FTIR). Additionally, magnetic properties and the effect of pH on the zeta potential were analyzed for both types of nanoparticles. Magnetites were used as adsorbents for seven heavy metal ions (Zn(II), Cu(II), Ni(II), Cd(II), Pb(II), Cr(III), Cr(VI)) within the pH range of 3-7. Research revealed nanometric particle sizes, a specific surface area of 140-145 m2/g, and superparamagnetic properties of both tested materials. Moreover, the presence of PSA functional groups in modified magnetite was confirmed, which lowered the pH of the isoelectric point. Both types of magnetite were effective metal ion adsorbents, with metal cations more effectively removed on Fe3O4/PSA NPs and Cr(VI) anions on Fe3O4 NPs. The adsorption of most of the examined cations (performed at pH = 5) can be well described by the Langmuir isotherm model, whereas the adsorption of Cr(VI) ions on modified magnetite correlated better with the Freundlich model. The Dubinin-Radushkevich model confirmed that chemisorption is the predominant process. The adsorption of all metal ions was well-characterized by the pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Magdalena Bobik
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Irena Korus
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
| | - Karol Synoradzki
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Dorota Biniaś
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| | - Włodzimierz Biniaś
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Willowa 2, 43-309 Bielsko-Biala, Poland
| |
Collapse
|
29
|
Development of Adsorptive Materials for Selective Removal of Toxic Metals in Wastewater: A Review. Catalysts 2022. [DOI: 10.3390/catal12091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Removal of toxic metals is essential to achieving sustainability in wastewater purification. The achievement of efficient treatment at a low cost can be seriously challenging. Adsorption methods have been successfully demonstrated for possession of capability in the achievement of the desirable sustainable wastewater treatment. This review provides insights into important conventional and unconventional materials for toxic metal removal from wastewater through the adsorption process. The importance of the role due to the application of nanomaterials such as metal oxides nanoparticle, carbon nanomaterials, and associated nanocomposite were presented. Besides, the principles of adsorption, classes of the adsorbent materials, as well as the mechanisms involved in the adsorption phenomena were discussed.
Collapse
|
30
|
Ighalo JO, Yap PS, Iwuozor KO, Aniagor CO, Liu T, Dulta K, Iwuchukwu FU, Rangabhashiyam S. Adsorption of persistent organic pollutants (POPs) from the aqueous environment by nano-adsorbents: A review. ENVIRONMENTAL RESEARCH 2022; 212:113123. [PMID: 35339467 DOI: 10.1016/j.envres.2022.113123] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The intensification of urbanisation and industrial activities significantly exacerbates the distribution of toxic contaminations into the aqueous environment. Persistent organic pollutants (POPs) have received considerable attention in the past few decades because of their persistence, long-distance migration, potential bioaccumulation, latent toxicity for humans and wildlife. There is no doubt that POPs cause serious effects on the global ecosystem. Therefore, it is necessary to develop a simple, safe and sustainable approach to remove POPs from water bodies. Among other conventional techniques, the adsorption process has proven to be a more effective method for eliminating POPs and to a larger extent meet discharge regulations. Nanomaterials can effectively adsorb POPs from aqueous solutions. For most POPs, a >70% adsorptive removal efficiency was achieved. The major mechanisms for POPS uptake by nano-adsorbents includes electrostatic interaction, hydrophobic (van der Waals, π-π and electron donor-acceptor) interaction and hydrogen bonding. Nano-adsorbent can sustain a >90% POPs adsorptive removal for about 3 cycles and reuseable for up to 10 cycles. Challenges around adsorbent ecotoxicity and safe disposal were also discussed. The present review evaluated recent research outcomes on nanomaterials that are employed to remove POPs in water systems.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria; Department of Chemical Engineering, University of Ilorin, P. M. B., 1515, Ilorin, Nigeria.
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Kingsley O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Chukwunonso O Aniagor
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Tianqi Liu
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Kanika Dulta
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, India
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B., 5025, Awka, Nigeria
| | - Selvasembian Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
31
|
Zhu M, Wang X, Huang Y, Yue L, Zhong S, Zeng L. Synthesis of thiol‐functionalized resin and its adsorption of heavy metal ions. J Appl Polym Sci 2022. [DOI: 10.1002/app.52976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meiling Zhu
- Key Laboratory of the Assembly and Application of Organic Functional Molecules Hunan Normal University Changsha China
| | - Xiaolin Wang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules Hunan Normal University Changsha China
| | - Yun Huang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules Hunan Normal University Changsha China
| | - Ling Yue
- Key Laboratory of the Assembly and Application of Organic Functional Molecules Hunan Normal University Changsha China
| | - Shihua Zhong
- Key Laboratory of the Assembly and Application of Organic Functional Molecules Hunan Normal University Changsha China
| | - Lihua Zeng
- Key Laboratory of the Assembly and Application of Organic Functional Molecules Hunan Normal University Changsha China
| |
Collapse
|
32
|
Lourens A, Falch A, Otto D, Malgas-Enus R. Magnetic styrene polymers obtained via coordination polymerization of styrene by Ni and Cu nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Bakhtiari S, Shahrashoub M, Keyhanpour A. A comprehensive study on single and competitive adsorption-desorption of copper and cadmium using eco-friendly magnetite (Fe3O4) nanoparticles. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
35
|
Recycling of Waste Toner Powder as Adsorbent to Remove Aqueous Heavy Metals. MATERIALS 2022; 15:ma15124150. [PMID: 35744209 PMCID: PMC9230598 DOI: 10.3390/ma15124150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
The removal of Cd2+, Zn2+ and Ni2+ from metal solutions onto waste toner power (WTP) was investigated. The influence of parameters such as pH, contact time, initial metal concentration and adsorbent dosage was studied in batch adsorption experiments. Batch equilibrium experiments showed that the highest removal efficiency for Zn2+ and Cd2+ occurs at pH 7, while pH 5 is the most suitable for Ni2+ removal. The amount of metal removed (mg/g) improved when increasing the initial concentration, and sorption of heavy metals reached equilibrium in 24 h. Metals’ uptake increased with increasing adsorbent dosage. The adsorption isotherms of Zn2+, Cd2+ and Ni2+ onto WTP fit the Langmuir better than the Freundlich model with correlation coefficient R2 values ranging from 0.998 to 0.968 and 0.989 to 0.881, respectively. The data showed that the maximum adsorption capacity of heavy metals, amax, ranged from 2.42 to 1.61 mg/g, from 6.22 to 2.01 mg/g and from 3.49 to 2.56 mg/g for Ni2+, Zn2+ and Cd2+, respectively, with the three WTPs used in this study. This adsorbent can potentially be used to remove metal ions from wastewater.
Collapse
|
36
|
Threepanich A, Praipipat P. Efficacy study of recycling materials by lemon peels as novel lead adsorbents with comparing of material form effects and possibility of continuous flow experiment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46077-46090. [PMID: 35156169 DOI: 10.1007/s11356-022-19131-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Lead contamination in the industrial wastewater is a major concern because of human health effects, so wastewater treatment is required before uses. Adsorption is an effective method with a reasonable cost, and natural wastes are an interesting choice as low-cost adsorbent. Lemon peels were chosen with their proper chemical properties for lead removal. This study is aimed at synthesizing lemon peel adsorbents; analyzing adsorbent characterizations; investigating affecting factors on dose, contact time, pH, and concentration; examining adsorption isotherms and kinetics; and exploring desorption experiments and fixed-bed column experiments. This study was successful synthesized adsorbents of lemon peel powder (LP) and beads (LPB) and was characterized through XRD, FESEM-FIB, EDS, BET, and FTIR. The optimum conditions of LP and LPB of 50 mg L-1 lead concentration were 4 g, 6 h, and pH 5 and 3 g, 5 h, and pH 5, respectively. Both adsorbents were corresponded to Freundlich and pseudo-second-order kinetic model. Fixed-bed column experiments which represented LPB had high lead removal efficiency with the adsorption capacity of 1.67 mg g-1, and it was also a good reusability more than 2 cycles. Therefore, LPB is a potential adsorbent to possibly apply for wastewater treatment.
Collapse
Affiliation(s)
- Arpassorn Threepanich
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pornsawai Praipipat
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Environmental Applications of Recycled and Natural Materials (EARN) Laboratory, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
37
|
Synthesis of Iron Nanomaterials for Environmental Applications from Hydrometallurgical Liquors. MINERALS 2022. [DOI: 10.3390/min12050556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrometallurgical leaching solutions are often rich in iron, which was traditionally considered a major impurity. However, iron can be selectively separated and recovered by applying appropriate solvent extraction and stripping techniques, and the resulting solutions can be valorized for the synthesis of high-added-value products, such as magnetic iron oxide nanoparticles (mIONPs). The aim of this study was to synthesize high-quality mIONPs from solutions simulating the composition of two alternative stripping processes. The precursor solutions consisted of Fe(II) in an acidic sulfate environment and Fe(III) in an acidic chloride medium. The Fe(II)-SO4 solution was treated with a mixture of KNO3-KOH reagents, and the product (M(II)) was identified as pure magnetite with a high specific magnetization of 95 emu·g−1. The treatment of Fe(III)-Cl solution involved the partial reduction of Fe(III) using metallic iron and the co-precipitation of iron cations with base addition combined with microwave-assisted heating. The product (M(III)) was a powder, which consisted of two phases, e.g., maghemite (75%) and magnetite (25%), and also had a high magnetic saturation of 80 emu·g−1. The nanopowders were evaluated for their effectiveness in removing Cr(VI) from contaminated waters. The maximum adsorption capacity was found to be equal to 11.4 and 17.4 mg/g for M(II) and M(III), respectively. The magnetic nanopowders could be easily separated from treated waters, a property that makes them promising materials for the water treatment sector.
Collapse
|
38
|
Klekotka U, Wińska E, Zambrzycka-Szelewa E, Satuła D, Kalska-Szostko B. Magnetic Nanoparticles as Effective Heavy Ion Adsorbers in Natural Samples. SENSORS (BASEL, SWITZERLAND) 2022; 22:3297. [PMID: 35590985 PMCID: PMC9099534 DOI: 10.3390/s22093297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
This paper refers to research based on tests completed on the adsorption of heavy metal ions (Pb2+, Cu2+, Cd2+) from selected natural liquid samples such as apple, tomato, and potato juices using surface-functionalized Mn ferrite nanoparticles (Mn0.2Fe2.8O4). To determine the most efficient adsorption conditions of these heavy metals, the nanoparticles' surfaces were modified with five different ligands (phthalic anhydride, succinic anhydride, acetic anhydride, 3-phosphonopropionic acid, and 16-phosphonohexadecanoic acid). To evaluate the success of the adsorption process, the resultant liquid samples were examined for the amount of residuals using the flame atomic absorption spectroscopy method. The Mn ferrite particles selected for these tests were first characterized physicochemically by the following methods: transmission electron microscopy, scanning electron microscopy, X-ray diffraction, IR spectroscopy, Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Urszula Klekotka
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (U.K.); (E.W.); (E.Z.-S.)
| | - Ewelina Wińska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (U.K.); (E.W.); (E.Z.-S.)
| | - Elżbieta Zambrzycka-Szelewa
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (U.K.); (E.W.); (E.Z.-S.)
| | - Dariusz Satuła
- Faculty of Physics, University of Bialystok, Ciolkowskiego 1L, 15-245 Bialystok, Poland;
| | - Beata Kalska-Szostko
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (U.K.); (E.W.); (E.Z.-S.)
| |
Collapse
|
39
|
Dinu MV, Humelnicu I, Ghiorghita CA, Humelnicu D. Aminopolycarboxylic Acids-Functionalized Chitosan-Based Composite Cryogels as Valuable Heavy Metal Ions Sorbents: Fixed-Bed Column Studies and Theoretical Analysis. Gels 2022; 8:gels8040221. [PMID: 35448122 PMCID: PMC9030056 DOI: 10.3390/gels8040221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Over the years, a large number of sorption experiments using the aminopolycarboxylic acid (APCA)-functionalized adsorbents were carried out in batch conditions, but prospective research should also be directed towards column studies to check their industrial/commercial feasibility. In this context, sorption studies of five-component heavy metal ion (HMI) solutions containing Zn2+, Pb2+, Cd2+, Ni2+, and Co2+ in equimolar concentrations were assessed in fixed-bed columns using some APCA-functionalized chitosan-clinoptilolite (CS-CPL) cryogel sorbents in comparison to unmodified composite materials. The overall sorption tendency of the APCA-functionalized composite sorbents followed the sequence Co2+ < Zn2+ < Cd2+ ≤ Pb2+ < Ni2+, meaning that Co2+ ions had the lowest affinity for the sorbent’s functional groups, whereas the Ni2+ ions were strongly and preferentially adsorbed. To get more insights into the application of the composite microbeads into continuous flow set-up, the kinetic data were described by Thomas and Yoon−Nelson models. A maximum theoretical HMI sorption capacity of 145.55 mg/g and a 50% breakthrough time of 121.5 min were estimated for the column containing CSEDTA-CPL cryogel sorbents; both values were much higher than those obtained for the column filled with pristine CS-CPL sorbents. In addition, desorption of HMIs from the composite microbeads in dynamic conditions was successfully achieved using 0.1 M HCl aqueous solution. Moreover, a theoretical analysis of APCA structures attached to composite adsorbents and their spatial structures within the complex combinations with transition metals was systematically performed. Starting from the most stable conformer of EDTA, coordinative combinations with HMIs can be obtained with an energy consumption of only 1 kcal/mole, which is enough to shift the spatial structure into a favorable conformation for HMI chelation.
Collapse
Affiliation(s)
- Maria Valentina Dinu
- “Mihai Dima” Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
- Correspondence:
| | - Ionel Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania; (I.H.); (D.H.)
| | - Claudiu Augustin Ghiorghita
- “Mihai Dima” Department of Functional Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
| | - Doina Humelnicu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, Carol I Bd. 11, 700506 Iasi, Romania; (I.H.); (D.H.)
| |
Collapse
|
40
|
Badsha MAH, Lo IMC. Dual-function hydrogel composite for post-electroplating cationic and anionic metal removal: A practicality study. CHEMOSPHERE 2022; 291:133068. [PMID: 34843828 DOI: 10.1016/j.chemosphere.2021.133068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Metals produced as by-products of the electroplating process pose threats to both human and environmental health, so it is important that they are removed from electroplating effluents. In this study, a dual-function hydrogel composite, prepared from a pair of cationic and anionic hydrogel composites via a facile method, was tested in batch and in a fluidized-bed column to treat a simulated electroplating effluent. For the batch treatment, both adsorption and desorption reached equilibrium within 30 min, showing the dual-function composite's fast adsorption capacity. Additionally, the removal efficiency was found to be pH-independent, and insignificant effect was found in the co-presence of monovalent ions (up to 10 meq L-1). Reusability of the dual-function composite was tested for six cycles, where the treated effluent consistently met discharge standards, and the reused adsorbent was confirmed by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy to be highly stable. The fast settling by gravity of the dual-function composite in batch motivated further studies of the material in a fluidized-bed column. Process variables such as feed flow, airflow, and adsorbent's bed depth were optimized using response surface methodology (RSM). Using an optimal solution, the model predicted a treatable cationic volume of 1045 mL and an anionic volume of 1695 mL; their corresponding experimental values were 1028 and 1680 mL. Therefore, in terms of practicality (fast removal, pH-independence, high stability, and gravity-driven settling), the application of the dual-function composite in a fluidized-bed reactor has shown much promise for the simultaneous removal of post-electroplating cationic and anionic metals.
Collapse
Affiliation(s)
- Mohammad A H Badsha
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
41
|
Perumal S, Atchudan R, Thirukumaran P, Yoon DH, Lee YR, Cheong IW. Simultaneous removal of heavy metal ions using carbon dots-doped hydrogel particles. CHEMOSPHERE 2022; 286:131760. [PMID: 34352536 DOI: 10.1016/j.chemosphere.2021.131760] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal ions (HMI) have attracted worldwide concern due to their serious environmental pollution which led to the risk of health conditions. From Red Malus floribunda fruits, nitrogen-doped carbon dots (N-CDs) were prepared, followed by hybrid-spherical shaped hydrogel particles (CGCDs) were prepared. The prepared CGCDs were utilized as adsorbents for HMI-(Hg(II), Cd(II), Pb(II), and Cr(III)) from water. N-CDs with about 4.0 nm in diameter were characterized by various techniques such as field emission-scanning electron microscopy (FE-SEM) and attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR) that confirm the presence of nitrogen, oxygen, and carbon functionalities. The prepared spherical CGCDs were characterized very well before it was used as HMI adsorbents. The sizes of the CGCDs were ranges between 20 and 300 μm and the degree of swelling was calculated as 1320 %. ATR-FTIR and X-ray diffraction analyses reveal the presence of N-CDs in CGCDs. Further, FE-SEM confirms the spherical shape morphology of CGCDs. Three different concentrations of HMI solutions were 500 mg/L, 1000 mg/L, and 1500 mg/L. Hg(II) adsorbed proficiently by CGCDs in single metal ion systems with ~72 % and almost complete removal of Hg(II) ions (99 %) in multiple metal ion systems was observed. Moreover, all metal ions Hg(II), Cd(II), Pb(II), and Cr(III) were efficiently (>70 %) removed in multiple systems by CGCDs. After HMI adsorption experiments, the elemental mapping from FE-SEM and X-ray photoelectron spectroscopy studies conveys the presence of HMI on CGCDs. This suggests that CGCDs would be a suitable adsorbent for the simultaneous removal of multiple HMI from wastewater.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu, 41566, Republic of Korea; School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Dong Ho Yoon
- R& D Center, Kuk-Il Paper Mfg. Co., Ltd., Baekok-daero 563, Cheoin-gu, Yongin, 17128, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - In Woo Cheong
- Department of Applied Chemistry, School of Engineering, Kyungpook National University, Buk-gu, Daehak-ro 80, Daegu, 41566, Republic of Korea.
| |
Collapse
|
42
|
Boudjemaa S. Evaluation of Natural Montmorillonite Clay for Removal of Cd2+ from Aqueous Solution in a Batch Adsorption System. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421130045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Cherono F, Mburu N, Kakoi B. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon 2021; 7:e08254. [PMID: 34765777 PMCID: PMC8571509 DOI: 10.1016/j.heliyon.2021.e08254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Heavy metal pollution has emerged as one of the most serious environmental challenges facing the world today. The removal of heavy metals from the effluent is of special environmental concern because of their toxicity and persistence in nature. This study presents the suitability of activated carbon from waste rubber tire as a low-cost adsorbent for multiple adsorption of copper, lead and zinc from wastewater. The adsorbent removed heavy metal ions effectively from solution medium in the order of copper > lead > Zinc. The adsorption process was rapid with all metals reaching equilibrium within 120 min. The optimum pH for Lead was achieved at 5 and 6 for copper and Zinc. The removal of heavy metals was discovered to increase with adsorbent dosage and contact time and reduced with initial concentration. The adsorption of multiple heavy metals was modeled using Freundlich and Langmuir adsorption isotherms to assess the experimental findings. The equilibrium data better fitted to the Langmuir isotherm with regression coefficient (R2) of 0.9831, 0.9992 and 0.9953 for lead, copper and zinc respectively. The maximum adsorption capacities (Qmax) at equilibrium were 9.6805 mg/g, 12.4378 mg/g and 4.9950 mg/g for Lead, Copper and Zinc respectively. The adsorption kinetics indicated that pseudo-second-order kinetic model described well the sorption mechanism for multiple adsorption of heavy metals with R2 of more than 0.99 for all metal ions. An empirical model for predicting and designing of a single batch adsorber for 95 % multiple heavy metal ion removal at any given initial heavy metal ion concentration and effluent volume was further developed using activated carbon from waste rubber tires. Waste rubber tire Activated carbon demonstrated an ability for the treatment of wastewater containing these heavy metals in multimetal solutions.
Collapse
Affiliation(s)
- Faith Cherono
- Civil and Environmental Engineering, Pan African University Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Njenga Mburu
- Department of Civil Engineering, Dedan Kimathi University of Technology, Private Bag - 10143, Dedan Kimathi
| | - Beatrice Kakoi
- Department of Civil, Construction and Environmental Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
44
|
Mokarram M, Saber A, Obeidi R. Effects of heavy metal contamination released by petrochemical plants on marine life and water quality of coastal areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51369-51383. [PMID: 33982260 DOI: 10.1007/s11356-021-13763-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The present study attempts to assess the threat of water contamination in Persian Gulf by heavy metals (Fe, Cr, Pb, Cu, Zn, Cd, Se, and Ni) and its subsequent effects on five fish species including Scomberomorus guttatus (S. guttatus), Lethrinus nebulosus (L. nebulosus), Brachirus orientalis (B. orientalis), Pomadasys kaakan (P. kaakan), and Scomberomorus commerson (S. commerson). Water and fish samples from fourteen monitoring stations were obtained to determine the concentrations of contaminants in water and fish. Heavy metal pollution index (HMPI) and non-carcinogenic hazard quotient (NHQI) were employed to evaluate contamination level in water and fish muscle. The Kriging geostatistical method was employed to determine the spatial distribution of different heavy metals around petrochemical plants. The highest NHQI values for P. kaakan and B. orientalis species were 1.036 and 1.046, respectively. In both cases, the NHQI values were higher than the maximum allowable value of 1, indicating that both fish species were on the verge of contamination by heavy metals, which in turn makes the consumption of these fish highly hazardous to human health. The lowest NHQI value was observed in S. commerson species at a value of 0.394, indicating its harmlessness to human health. Overall, fish species living within the top 5 m of the water column (S. commerson and S. guttatus) were found to be less contaminated by heavy metals compared to species dwelling near the seafloor (P. kaakan and B. orientalis). Results also indicated the pollution absorption rate in S. commerson and S. guttatus were 0.45 and 3.4 mg/kg-year, while the corresponding values for the B. orientalis and L. nebulosus species were 6 and 2 mg/kg-year, respectively. P. kaakan species showed a pollution absorption rate of 3.2 mg/kg-year. High heavy metal concentrations of 4.8, 10, 9.8, 5.2, 9.4, and 6.7 mg/L were obtained for Cr, Zn, Pb, Ni, Fe, Cu, and Cd, respectively, in water samples obtained from stations nearby petrochemical plants. The HMPI index for the most contaminated stations was ten times that of the maximum allowable limit. Given the intense activity of oil, gas, and petrochemical plants in the Persian Gulf, defining safe fishing areas by management practices similar to contamination zoning maps presented in this study can substantially protect the public health from heavy metal contamination.
Collapse
Affiliation(s)
- Marzieh Mokarram
- Department of Range and Watershed Management, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, Iran
| | - Ali Saber
- Department of Civil and Environmental Engineering and Construction, University of Nevada Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV, 89154, USA.
| | - Razagh Obeidi
- Young Researchers and Elite Club, Islamic Azad University of Bushehr, Bushehr, Iran
| |
Collapse
|
45
|
Ramos-Guivar JA, Flores-Cano DA, Caetano Passamani E. Differentiating Nanomaghemite and Nanomagnetite and Discussing Their Importance in Arsenic and Lead Removal from Contaminated Effluents: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2310. [PMID: 34578626 PMCID: PMC8471304 DOI: 10.3390/nano11092310] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Arsenic and lead heavy metals are polluting agents still present in water bodies, including surface (lake, river) and underground waters; consequently, the development of new adsorbents is necessary to uptake these metals with high efficiency, quick and clean removal procedures. Magnetic nanoparticles, prepared with iron-oxides, are excellent candidates to achieve this goal due to their ecofriendly features, high catalytic response, specific surface area, and pulling magnetic response that favors an easy removal. In particular, nanomagnetite and maghemite are often found as the core and primary materials regarding magnetic nanoadsorbents. However, these phases show interesting distinct physical properties (especially in their surface magnetic properties) but are not often studied regarding correlations between the surface properties and adsorption applications, for instance. Thus, in this review, we summarize the main characteristics of the co-precipitation and thermal decomposition methods used to prepare the nano-iron-oxides, being the co-precipitation method most promising for scaling up processes. We specifically highlight the main differences between both nano-oxide species based on conventional techniques, such as X-ray diffraction, zero and in-field Mössbauer spectroscopy, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism, the latter two techniques performed with synchrotron light. Therefore, we classify the most recent magnetic nanoadsorbents found in the literature for arsenic and lead removal, discussing in detail their advantages and limitations based on various physicochemical parameters, such as temperature, competitive and coexisting ion effects, i.e., considering the simultaneous adsorption removal (heavy metal-heavy metal competition and heavy metal-organic removal), initial concentration, magnetic adsorbent dose, adsorption mechanism based on pH and zeta potential, and real water adsorption experiments. We also discuss the regeneration/recycling properties, after-adsorption physicochemical properties, and the cost evaluation of these magnetic nanoadsorbents, which are important issues, but less discussed in the literature.
Collapse
Affiliation(s)
- Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | - Diego A. Flores-Cano
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Perú;
| | | |
Collapse
|
46
|
Wang X, Zhang J, Xu Z, Rao C, Pi L, Fu Y, Dong Y, Shen C, Yao L, Xiong C. Synthesis and application of recyclable
core‐shell
structure microspheres
MCTS‐g‐AT
in detection of Hg(
II
) in aquatic products. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoqing Wang
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou PR China
- Department of Applied Chemistry Zhejiang Gongshang University Hangzhou PR China
| | - Jing Zhang
- School of Biological and Chemical Engineering Zhejiang University of Science and Technology Hangzhou PR China
| | - Zimeng Xu
- Department of Applied Chemistry Zhejiang Gongshang University Hangzhou PR China
| | - Chen Rao
- Department of Applied Chemistry Zhejiang Gongshang University Hangzhou PR China
| | - Leilei Pi
- Department of Applied Chemistry Zhejiang Gongshang University Hangzhou PR China
| | - Yaqin Fu
- Key laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education Zhejiang Sci‐Tech University Hangzhou PR China
| | - Yubing Dong
- Key laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education Zhejiang Sci‐Tech University Hangzhou PR China
| | - Chen Shen
- Department of Applied Chemistry Zhejiang Gongshang University Hangzhou PR China
| | - Lanying Yao
- Department of Applied Chemistry Zhejiang Gongshang University Hangzhou PR China
| | - Chunhua Xiong
- Department of Applied Chemistry Zhejiang Gongshang University Hangzhou PR China
| |
Collapse
|
47
|
Nanoadsorbants for the Removal of Heavy Metals from Contaminated Water: Current Scenario and Future Directions. Processes (Basel) 2021. [DOI: 10.3390/pr9081379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heavy metal pollution of aquatic media has grown significantly over the past few decades. Therefore, a number of physical, chemical, biological, and electrochemical technologies are being employed to tackle this problem. However, they possess various inescapable shortcomings curbing their utilization at a commercial scale. In this regard, nanotechnology has provided efficient and cost-effective solutions for the extraction of heavy metals from water. This review will provide a detailed overview on the efficiency and applicability of various adsorbents, i.e., carbon nanotubes, graphene, silica, zero-valent iron, and magnetic nanoparticles for scavenging metallic ions. These nanoparticles exhibit potential to be used in extracting a variety of toxic metals. Recently, nanomaterial-assisted bioelectrochemical removal of heavy metals has also emerged. To that end, various nanoparticle-based electrodes are being developed, offering more efficient, cost-effective, ecofriendly, and sustainable options. In addition, the promising perspectives of nanomaterials in environmental applications are also discussed in this paper and potential directions for future works are suggested.
Collapse
|
48
|
A free nitrogen-containing Sm-MOF for selective detection and facile removal of mercury(II). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Long M, Jiang H, Li X. Biosorption of Cu 2+, Pb 2+, Cd 2+ and their mixture from aqueous solutions by Michelia figo sawdust. Sci Rep 2021; 11:11527. [PMID: 34075177 PMCID: PMC8169883 DOI: 10.1038/s41598-021-91052-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
The study aimed at investigating copper, lead, and cadmium removal from both single and mixed metal solutions by Michelia figo (Lour.) Spreng. wood sawdust treated with 0.5 mol l−1 NaOH for four hours. In order to evaluate the effects of each factor and interactions between factors on metal ion biosorption, a 23 factorial experimental design was applied. FTIR results showed that the metal ions would bind to the hydroxyl and carboxyl groups of M. figo wood sawdust biomass. The main effects and interactions of three factors pH (3 and 5), initial metal ion concentration (C0, 0.157 and 1.574 mmol L−1), and dosage of biomass (D, 4 and 10 g L−1) at two levels were analyzed. The most significant variable regarding Cu2+ and Pb2+ biosorption was initial metal iron concentration. For Cd2+, pH was found to be the most significant factor. The maximum removal efficiencies were 94.12 and 100% for Cu2+ and Cd2+, respectively, at conditions of (+ 1, − 1, + 1): pH 5, initial metal concentration 0.157 mmol L−1 and dosage of biomass 10 g L−1, while 96.39% for Pb2+ at conditions of (− 1, − 1, + 1): pH 3, initial metal concentration 0.157 mmol L−1 and dosage of biomass 10 g L−1. There were some interactions between factors: pH*C0 and C0*D for Cu2+, pH*C0, pH*D and C0*D for Pb2+, pH*C0 and C0*D for Cd2+. Biosorption from a multi metal system showed that the presence of Cu2+ and Cd2+ had no significant influence on the Pb2+ removal, while Pb2+ in solution significantly decreased the removal efficiencies of the other two metals.
Collapse
Affiliation(s)
- Mingzhong Long
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China. .,College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Hong Jiang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaona Li
- School of Karst Science, Guizhou Normal University, Guiyang, 550001, China
| |
Collapse
|
50
|
A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118459] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|