1
|
Chen Y, Zhen Z, Wu W, Yang C, Yang G, Li X, Li Q, Zhong X, Yin J, Lin Z, Zhang D. Biochar modification accelerates soil atrazine biodegradation by altering bacterial communities, degradation-related genes and metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135693. [PMID: 39216246 DOI: 10.1016/j.jhazmat.2024.135693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Atrazine is one of the most used herbicides, posing non-neglectable threats to ecosystem and human health. This work studied the performance and mechanisms of surface-modified biochar in accelerating atrazine biodegradation by exploring the changes in atrazine metabolites, bacterial communities and atrazine degradation-related genes. Among different types of biochar, nano-hydroxyapatite modified biochar achieved the highest degradation efficiency (85.13 %), mainly attributing to the increasing pH, soil organic matter, soil humus, and some enriched indigenous bacterial families of Bradyrhizobiaceae, Rhodospirillaceae, Methylophilaceae, Micrococcaceae, and Xanthobacteraceae. The abundance of 4 key atrazine degradation-related genes (atzA, atzB, atzC and triA) increased after biochar amendment, boosting both dechlorination and dealkylation pathways in atrazine metabolism. Our findings evidenced that biochar amendment could accelerate atrazine biodegradation by altering soil physicochemical properties, microbial composition and atrazine degradation pathways, providing clues for improving atrazine biodegradation performance at contaminated sites.
Collapse
Affiliation(s)
- Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaofeng Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Qing Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaolan Zhong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Junyong Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
2
|
Brown A, Al-Azawi TNI, Methela NJ, Rolly NK, Khan M, Faluku M, Huy VN, Lee DS, Mun BG, Hussian A, Yun BW. Chitosan-fulvic acid nanoparticles enhance drought tolerance in maize via antioxidant defense and transcriptional reprogramming. PHYSIOLOGIA PLANTARUM 2024; 176:e14455. [PMID: 39073158 DOI: 10.1111/ppl.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Nanoparticles are promising alternatives to synthetic fertilizers in the context of climate change and sustainable agriculture. Maize plants were grown under gradient concentrations (50 μM, 100 μM, 200 μM, 500 μM, and 1 mM) of chitosan (Ch), fulvic acid (FA) or chitosan-fulvic acid nanoparticles (Ch-FANPs). Based on the overall phenotypic assessment, 100 μM was selected for downstream experiments. Maize plants grown under this optimized concentration were thereafter subjected to drought stress by water withholding for 14 days. Compared to the individual performances, the combined treatment of Ch-FANPs supported the best plant growth over chitosan, fulvic acid, or sole watered plants and alleviated the adverse effects of drought by enhancing root and shoot growth, and biomass by an average 20%. In addition, Ch-FANPs-treated plants exhibited a significant reduction in hydrogen peroxide (H2O2) content (~10%), with a concomitant increase in ascorbate peroxidase (APX) activity (>100%) while showing a reduced lipid peroxidation level observed by the decrease in malondialdehyde (MDA) content (~100%) and low electrolyte leakage level. Furthermore, chlorophyll content increased significantly (>100%) in maize plants treated with Ch-FANPs compared to Ch or FA and control in response to drought. The expression of drought-induced transcription factors, ZmDREB1A, ZmbZIP1, and ZmNAC28, and the ABA-dependent ZmCIPK3 was upregulated by Ch-FANPs. Owing to the above, Ch-FANPs are proposed as a growth-promoting agent and elicitor of drought tolerance in maize via activation of antioxidant machinery and transcriptional reprogramming of drought-related genes.
Collapse
Affiliation(s)
- Alexander Brown
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Tiba Nazar Ibrahim Al-Azawi
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Murtaza Khan
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Mwondha Faluku
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Vu Ngoc Huy
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Adil Hussian
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Byung-Wook Yun
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| |
Collapse
|
3
|
Chamorro AF, Palencia M, Combatt EM. Biodegradable Cassava Starch/Phosphorite/Citric Acid Based Hydrogel for Slow Release of Phosphorus: In Vitro Study. Gels 2024; 10:431. [PMID: 39057454 PMCID: PMC11276383 DOI: 10.3390/gels10070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphorous (P) is one the most important elements in several biological cycles, and is a fundamental component of soil, plants and living organisms. P has a low mobility and is quickly adsorbed on clayey soils, limiting its availability and absorption by plants. Here, biodegradable hydrogels based on Cassava starch crosslinked with citric acid (CA) were made and loaded with KH2PO4 and phosphorite to promote the slow release of phosphorus, the storing of water, and the reduction in P requirements during fertilization operations. Crosslinking as a function of CA concentrations was investigated by ATR-FTIR and TGA. The water absorption capacity (WAC) and P release, under different humic acid concentration regimens, were studied by in vitro tests. It is concluded that hydrogel formed from 10% w/w of CA showed the lowest WAC because of a high crosslinking degree. Hydrogel containing 10% w/w of phosphorite was shown to be useful to encouraging the slow release of P, its release behavior being fitted to the Higuchi kinetics model. In addition, P release increased as humic acid contents were increased. These findings suggest that these hydrogels could be used for encouraging P slow release during crop production.
Collapse
Affiliation(s)
- Andrés F. Chamorro
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Manuel Palencia
- Research Group in Science with Technological Applications (GICAT), Department of Chemistry, Faculty of Natural and Exact Science, Universidad del Valle, Cali 760032, Colombia
| | - Enrique M. Combatt
- Department of Agricultural and Rural Development, Faculty of Agricultural Sciences, Universidad de Córdoba, Monteria 230002, Colombia;
| |
Collapse
|
4
|
Chae HG, Margenot AJ, Jeon JR, Kim MS, Jang KS, Yoon HY, Kim PJ, Lee JG. Linking the humification of organic amendments with size aggregate distribution: Insights into molecular composition using FT-ICR-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172147. [PMID: 38569966 DOI: 10.1016/j.scitotenv.2024.172147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Soil organic matter (SOM) plays a pivotal role in enhancing physical and biological characteristics of soil. Humic substances constitute a substantial proportion of SOM and their increase can improve crop yields and promote agricultural sustainability. While previous research has primarily assessed the influence that humic acids (HAs) derived from natural water have on soil structure, our study focuses on the impact of HAs on soil aggregation under different fertilizer regimes. During the summer cropping season, maize was cultivated under organic and synthetic fertilizer treatments. The organic fertilizer treatment utilized barley (Hordeum vulgare L.) and hairy vetch (Vicia villosa R.) as an organic amendment five days prior to maize planting. The synthetic treatment included a synthetic fertilizer (NPK) applied at South Korea's recommended rates. The organic treatment resulted in significant improvements in the soil aggregates and stability (mean weight diameter, MWD; p < 0.05) compared to the synthetic fertilizer application. These improvements could be primarily attributed to the increased quantity and quality of HAs in the soil derived from the organic amendment. The amount of extracted HAs in the organic treatment was nearly twice that of the synthetic treatment. Additionally, the organic treatment had a 140 % larger MWD and a 40 % increase in total phenolic content compared to the synthetic treatment. The organic treatment also had an increased macronutrient uptake (p < 0.001), an 11 % increase in aboveground maize biomass, and a 21 % increase in grain yield relative to the synthetic treatment. Thus, the enhancement of HA properties through the incorporation of fresh organic manure can both directly and indirectly increase crop productivity.
Collapse
Affiliation(s)
- Ho Gyeong Chae
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Andrew J Margenot
- Department of Crop Sciences, University of Illinois Urbana-Champaign, 1102 S. Goodwin Avenue, Urbana, IL 61801, USA; Agroecosystem Sustainability Center, Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Jong-Rok Jeon
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Sung Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Kyoung-Soon Jang
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pil Joo Kim
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea; Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Gu Lee
- Department of Crop Sciences, University of Illinois Urbana-Champaign, 1102 S. Goodwin Avenue, Urbana, IL 61801, USA; Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Mikhnevich T, Grigorenko VG, Rubtsova MY, Rukhovich GD, Yiming S, Khreptugova AN, Zaitsev KV, Perminova IV. Solid-Phase Extraction at High pH as a Promising Tool for Targeted Isolation of Biologically Active Fractions of Humic Acids. ACS OMEGA 2024; 9:1858-1869. [PMID: 38222597 PMCID: PMC10785653 DOI: 10.1021/acsomega.3c08555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
A search for novel sources of biologically active compounds is at the top of the agenda for biomedical technologies. Natural humic substances (HSs) contain a large variety of different chemotypes, such as condensed tannins, hydrolyzable tannins, terpenoids, lignins, etc. The goal of this work was to develop an efficient separation technique based on solid-phase extraction (SPE) for the isolation of narrow fractions of HS with higher biological activity compared to the initial material. We used lignite humic acid as the parent humic material, which showed moderate inhibition activity toward beta-lactamase TEM 1 and antioxidant activity. We applied two different SPE techniques: the first one was based on a gradient elution with water/methanol mixtures of the humic material sorbed at pH 2, and the second one implied separation by a difference in the pKa value by the use of sequential sorption of HS at pH from 8 to 3. SPE cartridges Bond Elute PPL (Agilent) were used in the fractionation experiments. The first and second techniques yielded 9 and 7 fractions, respectively. All fractions were characterized using high-resolution mass spectrometry and biological assays, including the determination of beta-lactamase (TEM 1) inhibition activity and antioxidant activity. The acidity-based separation technique demonstrated substantial advantages: it enabled the isolation of components, outcompeting the initial material at the first step of separation (sorption at pH 8). It showed moderate orthogonality in separation with regard to the polarity-based technique. Good perspectives are shown for developing a 2D separation scheme using a combination of polarity and acidity-based approaches to reduce structural heterogeneity of the narrow fractions of HS.
Collapse
Affiliation(s)
- Tatiana
A. Mikhnevich
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vitaly G. Grigorenko
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Maya Yu. Rubtsova
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Gleb D. Rukhovich
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Sun Yiming
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Anna N. Khreptugova
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Kirill V. Zaitsev
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Irina V. Perminova
- Department of Chemistry, Lomonosov
Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| |
Collapse
|
6
|
Zhang M, Wei W, Chen Y, Han X. Effects of Cr(VI) oxyanion, humic acid and solution chemistry on the aggregation and colloidal stability of green synthesized chlorapatite nanoparticles. CHEMOSPHERE 2023; 342:140147. [PMID: 37716557 DOI: 10.1016/j.chemosphere.2023.140147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/19/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
Aggregation is a crucial process determining the fate, mobility and ecological risks of nanomaterials. Chlorapatite nanoparticles (nClAP) exhibit widely applications in environmental remediation and consequently will inevitably enter aquatic systems. However, the aggregation characteristics of nClAP are still mostly uncovered. This study investigated the aggregation kinetics and colloidal stability of nClAP as a function of pH, humic acid (HA), Cr(VI) oxyanions, monovalent and divalent electrolytes. Results showed that pH values from 5 to 9 had a notable impact on the aqueous behaviors of nClAP. The addition of HA made the zeta potential (ZP) of nClAP more negative and thus enhanced nClAP stability through electrostatic and steric effects. Similarly, the adsorption of Cr(VI) on the surface of nClAP created a physical barrier and negative charge, improving the stability of nClAP by inducing steric force. Lower ZP and hydrodynamic diameter (HDD) reflected that the enhanced stability of nClAP by HA was more significant than Cr(VI). In comparison, the presence of Ca2+ ions were more effective than monovalent Na + ions in promoting the aggregation of nClAP. The classical DLVO theory incorporating the steric repulsion were used to interpret the aggregation and dispersion of nClAP, making it was easier to overcome energy barriers and agglomerate. This study provides new mechanistic insights which could help better understand the effects of Cr(VI) oxyanions and HA on nClAP's colloidal stability.
Collapse
Affiliation(s)
- Mengjia Zhang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Wei Wei
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Yang Chen
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Xuan Han
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
7
|
Balusamy SR, Joshi AS, Perumalsamy H, Mijakovic I, Singh P. Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications. J Nanobiotechnology 2023; 21:372. [PMID: 37821961 PMCID: PMC10568898 DOI: 10.1186/s12951-023-02135-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
Undoubtedly, nanoparticles are one of the ideal choices for achieving challenges related to bio sensing, drug delivery, and biotechnological tools. After gaining success in biomedical research, scientists are exploring various types of nanoparticles for achieving sustainable agriculture. The active nanoparticles can be used as a direct source of micronutrients or as a delivery platform for delivering the bioactive agrochemicals to improve crop growth, crop yield, and crop quality. Till date, several reports have been published showing applications of nanotechnology in agriculture. For instance, several methods have been employed for application of nanoparticles; especially metal nanoparticles to improve agriculture. The physicochemical properties of nanoparticles such as core metal used to synthesize the nanoparticles, their size, shape, surface chemistry, and surface coatings affect crops, soil health, and crop-associated ecosystem. Therefore, selecting nanoparticles with appropriate physicochemical properties and applying them to agriculture via suitable method stands as smart option to achieve sustainable agriculture and improved plant performance. In presented review, we have compared various methods of nanoparticle application in plants and critically interpreted the significant differences to find out relatively safe and specific method for sustainable agricultural practice. Further, we have critically analyzed and discussed the different physicochemical properties of nanoparticles that have direct influence on plants in terms of nano safety and nanotoxicity. From literature review, we would like to point out that the implementation of smaller sized metal nanoparticles in low concentration via seed priming and foliar spray methods could be safer method for minimizing nanotoxicity, and for exhibiting better plant performance during stress and non-stressed conditions. Moreover, using nanomaterials for delivery of bioactive agrochemicals could pose as a smart alternative for conventional chemical fertilizers for achieving the safer and cleaner technology in sustainable agriculture. While reviewing all the available literature, we came across some serious drawbacks such as the lack of proper regulatory bodies to control the usage of nanomaterials and poor knowledge of the long-term impact on the ecosystem which need to be addressed in near future for comprehensive knowledge of applicability of green nanotechnology in agriculture.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul, 05006 Republic of Korea
| | - Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul, Republic of Korea
- Center for Creative Convergence Education, Hanyang University, Seoul, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Salama DM, Osman SA, Shaaban EA, Abd Elwahed MS, Abd El-Aziz ME. Effect of foliar application of phosphorus nanoparticles on the performance and sustainable agriculture of sweet corn. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108058. [PMID: 37778115 DOI: 10.1016/j.plaphy.2023.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Traditional phosphorus fertilizers are necessary for plant growth but about 80-90% are lost into the surrounding environment via irrigation, therefore nano-fertilizers have been developed as slow-release fertilizers to achieve sustainable agriculture. This trial investigated the impact of the foliar application of hydroxyapatite nanoparticles (HA-NPs) as a source of nano-phosphorus (P-NPs) on two cultivars of sweet corn (yellow and white) throughout two seasons. The morphology and structure of the prepared HA-NPs were characterized via transmission electron microscopy (TEM) and X-ray diffractometry (XRD). In addition, agro-morphological criteria, chemical contents (i.e., photosynthetic pigments, phenols, indoles, minerals, etc.), and genomic template stability percentage (GTS%) were evaluated in the produced sweet corn. The application of 50 mg/l HA-NPs improved the growth characteristics, yield per hectare, leaf pigments, and chemical content of yellow sweet corn, whereas the application of 100 mg/l of HA-NPs to white sweet corn enhanced the vegetative characteristics, production, photosynthetic pigments, phenols, and indoles. The difference in results may be due to the presence of a +ve unique band with SCoT-4 and SCot-2 primers at 1250 and 470 bp in yellow and white corn treated with 50 and 100 mg/l, respectively. The minimum GTS% was recorded at a concentration of 75 mg/l for both white and yellow corn. The HA-NPs can be applied as a foliar source of P-NPs to achieve agricultural sustainability.
Collapse
Affiliation(s)
- Dina M Salama
- Vegetable Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| | - Samira A Osman
- Genetics and Cytology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Essam A Shaaban
- Pomology Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - M S Abd Elwahed
- Botany Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt
| | - Mahmoud E Abd El-Aziz
- Polymers & Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
9
|
Ramirez-Gil JG, Lopera AA, Garcia C. Calcium phosphate nanoparticles improve growth parameters and mitigate stress associated with climatic variability in avocado fruit. Heliyon 2023; 9:e18658. [PMID: 37576330 PMCID: PMC10412774 DOI: 10.1016/j.heliyon.2023.e18658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
The avocado cv. Hass is one of the most dynamic fruits in the world and is of particular significance in tropical areas, where climate variability phenomena have a high impact on productivity and sustainability. Nanotechnology-based tools could be an alternative to mitigate and/or adapt plants to these phenomena. Our approach was based on identifying changes in temperature and precipitation associated with climate variability in avocado areas in Colombia and proposing mitigation strategies based on the use of nanotechnology. This study had two objectives: (i) to identify variations in temperature and precipitation in avocado-producing areas in Colombia and (ii) to evaluate the effect of calcium phosphate nanoparticles (nano CP) as an alternative to reduce stress in avocados under simulate climatic variability condition. Climatic clusters were determined based on the spatial K-means method and with the climatic temporal series data (1981-2020), a time series analysis we carried out. Later changes in each cluster were simulated in growth chambers, evaluating physiological and developmental responses in avocado seedlings subjected to nanoCaP after adjusting the application form and dose. XRD diffraction shows that the calcium phosphate phases obtained by solution combustion correspond to a mixture of hydroxyapatite and witocklite nanoparticles with irregular morphologies and particle sizes of 100 nm. Three clusters explained ∼90% of the climate variation, with increases and decreases in temperature and precipitation in the range of 1-1.4 °C and 4.1-7.3% respectively. The best-fitted time series models were of stationary autoregressive integrated moving averages (SARIMA). The avocado seedlings had differential responses (P<0.05) depending on the clusters, with a decrease in physiological behavior and development between 10 and 35%. Additionally, the nanoCaP reduced the climatic stress (P< 0.05) in a range between 10 and 22.5%. This study identified the negative effect of climate variability on avocado seedlings and how nanoCaP can mitigate these phenomena.
Collapse
Affiliation(s)
- Joaquin Guillermo Ramirez-Gil
- Universidad Nacional de Colombia Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Colombia
- Laboratorio de Agrocomputación y Análisis epidemiológico, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Alex A. Lopera
- Grupo de Nanoestructuras y Física Aplicada (NANOUPAR), Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, Km 9 vía Valledupar La Paz, La Paz 202010, Colombia
| | - C. Garcia
- Universidad Nacional de Colombia, Sede Medellin, Carrera 65 # 59A-100, Medellín 050034, Colombia
| |
Collapse
|
10
|
Yadav A, Yadav K, Abd-Elsalam KA. Exploring the potential of nanofertilizers for a sustainable agriculture. PLANT NANO BIOLOGY 2023; 5:100044. [DOI: 10.1016/j.plana.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Fincheira P, Hoffmann N, Tortella G, Ruiz A, Cornejo P, Diez MC, Seabra AB, Benavides-Mendoza A, Rubilar O. Eco-Efficient Systems Based on Nanocarriers for the Controlled Release of Fertilizers and Pesticides: Toward Smart Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1978. [PMID: 37446494 DOI: 10.3390/nano13131978] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The excessive application of pesticides and fertilizers has generated losses in biological diversity, environmental pollution, and harmful effects on human health. Under this context, nanotechnology constitutes an innovative tool to alleviate these problems. Notably, applying nanocarriers as controlled release systems (CRSs) for agrochemicals can overcome the limitations of conventional products. A CRS for agrochemicals is an eco-friendly strategy for the ecosystem and human health. Nanopesticides based on synthetic and natural polymers, nanoemulsions, lipid nanoparticles, and nanofibers reduce phytopathogens and plant diseases. Nanoproducts designed with an environmentally responsive, controlled release offer great potential to create formulations that respond to specific environmental stimuli. The formulation of nanofertilizers is focused on enhancing the action of nutrients and growth stimulators, which show an improved nutrient release with site-specific action using nanohydroxyapatite, nanoclays, chitosan nanoparticles, mesoporous silica nanoparticles, and amorphous calcium phosphate. However, despite the noticeable results for nanopesticides and nanofertilizers, research still needs to be improved. Here, we review the relevant antecedents in this topic and discuss limitations and future challenges.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Nicolas Hoffmann
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias en Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil
| | | | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
12
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
13
|
Righi S, Prato E, Magnani G, Lama V, Biandolino F, Parlapiano I, Carella F, Iafisco M, Adamiano A. Calcium phosphates from fish bones in sunscreen: An LCA and toxicity study of an emerging material for circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160751. [PMID: 36493829 DOI: 10.1016/j.scitotenv.2022.160751] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The use of sustainable and natural materials is an ever-increasing trend in cosmetic. Natural calcium phosphate (CaP-N) from food by-products and especially from fisheries (i.e., bones), has been suggested as a sustainable option to chemicals commonly used in cosmetic products, in particular to UV-filters in sunscreens. However, the environmental benefits and impacts of its production and use are still uncertain as they have never been quantified. In this paper, we report on toxicological characterization of CaP-N produced from incineration of fish meal in a pilot scale plant. Furthermore, we quantified the environmental burdens linked to the partial substitution of UV-filters by CaP-N through the life cycle assessment (LCA) comparing CaP-N with zinc oxide nanoparticles (ZnO NPs) as alternative option. CaP-N consists in a biphasic mixture 53:47 of hydroxyapatite:β-tricalcium phosphate, and is made of round particles with a diameter in the range of a few microns. Toxicity tests on 4 aquatic species (Dunaliella tertiolecta, Tigriopus fulvus, Corophium insidiosum and Gammarus aequicauda) revealed that CaP-N does not produce any adverse effect, all the species showing EC/LC50 values higher than 100 mg L-1. Moreover, during the 96 h acute toxicity test on C. insidiosum, which is a tube-building species, the specimens built their tubes with the available CaP-N, further attesting the non-toxicity of the material. The LCA study showed that the environmental performance of CaP-N is better than that of ZnO NPs for 11 out of 16 impact categories analysed in this study, especially for the categories Ecotoxicity and Eutrophication of freshwaters (an order of magnitude lower), and with the exception of fossil resources for which CaP-N has a significantly higher impact than ZnO NPs (+140 %). Concluding, our study demonstrates that the replacement of ZnO NPs with CaP-N thermally extracted from fish bones in cosmetic products can increase their safety and sustainability.
Collapse
Affiliation(s)
- Serena Righi
- CIRSA (Interdepartmental Research Centre for Environmental Sciences), University of Bologna, via Sant'Alberto, 163, 48123 Ravenna, Italy; Department of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2, 40127 Bologna, Italy
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Giulia Magnani
- Dipartimento di Chimica Giacomo Ciamician Università di Bologna, Via Selmi, 2, 40126 Bologna, Italy
| | - Virginia Lama
- CIRSA (Interdepartmental Research Centre for Environmental Sciences), University of Bologna, via Sant'Alberto, 163, 48123 Ravenna, Italy; Department of Physics and Astronomy, University of Bologna, viale Berti Pichat, 6/2, 40127 Bologna, Italy
| | - Francesca Biandolino
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Isabella Parlapiano
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Francesca Carella
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC, ex ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
14
|
Giordana A, Malandrino M, Zambon A, Lusvardi G, Operti L, Cerrato G. Biostimulants derived from organic urban wastes and biomasses: An innovative approach. Front Chem 2023; 11:969865. [PMID: 36846855 PMCID: PMC9950392 DOI: 10.3389/fchem.2023.969865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
We used humic and fulvic acids extracted from digestate to formulate nanohybrids with potential applications in agronomy. In order to obtain a synergic co-release of plant-beneficial agents, we functionalized with humic substances two inorganic matrixes: hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂, HP) and silica (SiO₂) nanoparticles (NPs). The former is a potential controlled-release fertilizer of P, and the latter has a beneficial effect on soil and plants. SiO2 NPs are obtained from rice husks by a reproducible and fast procedure, but their ability to absorb humic substances is very limited. HP NPs coated with fulvic acid are instead a very promising candidate, based on desorption and dilution studies. The different dissolutions observed for HP NPs coated with fulvic and humic acids could be related to the different interaction mechanisms, as suggested by the FT-IR study.
Collapse
Affiliation(s)
- Alessia Giordana
- Dipartimento di Chimica, Università degli Studi di Torino, Turin, Italy
| | - Mery Malandrino
- Dipartimento di Chimica, Università degli Studi di Torino, Turin, Italy
| | - Alfonso Zambon
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Gigliola Lusvardi
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Lorenza Operti
- Dipartimento di Chimica, Università degli Studi di Torino, Turin, Italy
| | - Giuseppina Cerrato
- Dipartimento di Chimica, Università degli Studi di Torino, Turin, Italy,*Correspondence: Giuseppina Cerrato,
| |
Collapse
|
15
|
Wu WX, Huang CH, Tang ZR, Xia XQ, Li W, Li YH. Response of electron transfer capacity of humic substances to soil microenvironment. ENVIRONMENTAL RESEARCH 2022; 213:113504. [PMID: 35640709 DOI: 10.1016/j.envres.2022.113504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The humic substances (HS) - mediated electron transfer process is of great significance to the reduction and degradation of pollutants and the improvement of soil quality. Different soil conditions lead to different characteristics of HS, resulting in differences in the electron transfer capacity (ETC) of HS. It is unclear how the environmental conditions in soil affect the ETC by affecting on HS. In this study, the response relationship of soil microenvironment, HS and ETC has been studied. The results show that the ETC follows the descending order of: Langshan > Nanchang > Anqing > Beijing > Guilin. There were significant differences in ETC in soil HS in different regions. There were significant differences in electron-donating capacity (EDC) in soil HS in different regions and depths. EDC in soil was higher than electron-accepting capacity (EAC), and on average, are 22.4 times higher than the EAC. The HS components of soils in different regions are different. The most significant differences were in tyrosine-like substances and soluble microbial by-products (SMPs). The five components of the soil HS from Langshan were the most different from those in other regions. There were differences in SMPs and humic-like substances in soils of different depths in Anqing and Guilin. ETC can be affected by the composition of HS components in different regions. The composition of HS at different soil depths in the same regions had little effect on ETC. SMPs can promote ETC and EDC, and tyrosine-like substance can promote EDC. Moisture content, pH and TOC are the main factors affecting the composition of HS components. This results can provide a research basis for the sustainable and safe utilization of agricultural soil.
Collapse
Affiliation(s)
- Wei-Xia Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 10012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Cai-Hong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 10012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhu-Rui Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 10012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiang-Qin Xia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 10012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Hunan Yijing Environmental Protection Technology Company Limited, Hunan, 410221, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Dayangfang, Beiyuan Road, Chaoyang District, Beijing, 10012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan-Hong Li
- School of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| |
Collapse
|
16
|
Sharma B, Shrivastava M, Afonso LOB, Soni U, Cahill DM. Metal doped nitrogenous hydroxyapatite nanohybrids slowly release nitrogen to crops and mitigate ammonia volatilization: An impact assessment. NANOIMPACT 2022; 28:100424. [PMID: 36087836 DOI: 10.1016/j.impact.2022.100424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
To supply adequate food, the ongoing and unrestrained administration of nitrogen fertilizer to agricultural fields is polluting the climate and living organisms. On the other hand, the agriculture sector urgently needs a technological upgrade to effectively confront hunger and poverty. Here, we report a rapid synthesis of zinc and magnesium-doped hydroxyapatite-urea nanohybrids for slow release and delivery of nitrogen to wheat and rice crops. Nanohybrids slowly release nitrogen for up to six weeks compared to the burst release of nitrogen from urea, and their use substantially reduces, by at least 3.8 times, ammonia emissions into the environment compared with that of urea fertilizer. A half‑nitrogen dose applied as multi-nutrient complexed nanohybrids maintained crop growth, yield, and nutritional compositions in wheat and subsequent rice crops. Nanohybrids enhanced the wheat crop yield and nitrogen uptake by 22.13% and 58.30%, respectively. The synthesized nitrogen nanohybrids remained in the soil for two continuous crop cycles, reduced ammonia volatilization, and achieved nitrogen delivery to the crops. Additionally, soil dehydrogenase activity (534.55% above control) and urease activities (81.82% above control) suggest that nanohybrids exhibited no adverse impact on soil microorganisms. Our comprehensive study demonstrates the advantages of 'doping' as a method for tailoring hydroxyapatite nanoparticles properties for extended agricultural and environmental applications. The use of nanohybrids substantially reduced greenhouse gas emissions and enabled the reduction, by half, of nitrogen inputs into the agricultural fields. This study, therefore, reports a novel nano-enabled platform of engineered hydroxyapatite-urea nanohybrids as a nitrogen fertilizer for efficient nitrogen delivery that results in improved crop growth while minimizing environmental pollution.
Collapse
Affiliation(s)
- Bhaskar Sharma
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521, United States.
| | - Manoj Shrivastava
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia.
| | - Udit Soni
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi 110070, India.
| | - David M Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia.
| |
Collapse
|
17
|
Ranjan A, Rajput VD, Kumari A, Mandzhieva SS, Sushkova S, Prazdnova EV, Zargar SM, Raza A, Minkina T, Chung G. Nanobionics in Crop Production: An Emerging Approach to Modulate Plant Functionalities. PLANTS (BASEL, SWITZERLAND) 2022; 11:692. [PMID: 35270162 PMCID: PMC8912566 DOI: 10.3390/plants11050692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/05/2023]
Abstract
The "Zero Hunger" goal is one of the key Sustainable Development Goals (SDGs) of the United Nations. Therefore, improvements in crop production have always been a prime objective to meet the demands of an ever-growing population. In the last decade, studies have acknowledged the role of photosynthesis augmentation and enhancing nutrient use efficiency (NUE) in improving crop production. Recently, the applications of nanobionics in crop production have given hope with their lucrative properties to interact with the biological system. Nanobionics have significantly been effective in modulating the photosynthesis capacity of plants. It is documented that nanobionics could assist plants by acting as an artificial photosynthetic system to improve photosynthetic capacity, electron transfer in the photosystems, and pigment content, and enhance the absorption of light across the UV-visible spectrum. Smart nanocarriers, such as nanobionics, are capable of delivering the active ingredient nanocarrier upon receiving external stimuli. This can markedly improve NUE, reduce wastage, and improve cost effectiveness. Thus, this review emphasizes the application of nanobionics for improving crop yield by the two above-mentioned approaches. Major concerns and future prospects associated with the use of nanobionics are also deliberated concisely.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Saglara S. Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Evgenya V. Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar 190025, India;
| | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia; (V.D.R.); (A.K.); (S.S.M.); (S.S.); (E.V.P.); (T.M.)
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea
| |
Collapse
|
18
|
Shao C, Zhao H, Wang P. Recent development in functional nanomaterials for sustainable and smart agricultural chemical technologies. NANO CONVERGENCE 2022; 9:11. [PMID: 35235069 PMCID: PMC8891417 DOI: 10.1186/s40580-022-00302-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 05/27/2023]
Abstract
New advances in nanotechnology are driving a wave of technology revolution impacting a broad range of areas in agricultural production. The current work reviews nanopesticides, nano-fabricated fertilizers, and nano activity-based growth promoters reported in the last several years, focusing on mechanisms revealed for preparation and functioning. It appears to us that with many fundamental concepts have been demonstrated over last two decades, new advances in this area continue to expand mainly in three directions, i.e., efficiency improvement, material sustainability and environment-specific stimulation functionalities. It is also evident that environmental and health concerns associated with nano agrochemicals are the primary motivation and focus for most recent work. Challenges and perspectives for future development of nano agrochemicals are also discussed.
Collapse
Affiliation(s)
- Chen Shao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Huawei Zhao
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, 264025, Shandong, China.
- School of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA.
| |
Collapse
|
19
|
Priyam A, Yadav N, Reddy PM, Afonso LO, Schultz AG, Singh PP. Fertilizing benefits of biogenic phosphorous nanonutrients on Solanum lycopersicum in soils with variable pH. Heliyon 2022; 8:e09144. [PMID: 35846461 PMCID: PMC9280576 DOI: 10.1016/j.heliyon.2022.e09144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ayushi Priyam
- National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia
| | - Natasha Yadav
- National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia
| | - Pallavolu M. Reddy
- National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia
| | - Luis O.B. Afonso
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia
| | - Aaron G. Schultz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia
| | - Pushplata Prasad Singh
- National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi, 110003, India
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, 3217, Australia
- Corresponding author.
| |
Collapse
|
20
|
Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Shivay YS, Nisar S, Gaber A, Brestic M, Barek V, Skalicky M, Ondrisik P, Hossain A. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041340. [PMID: 35209127 PMCID: PMC8877941 DOI: 10.3390/molecules27041340] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/21/2022]
Abstract
Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.
Collapse
Affiliation(s)
- Salwinder Singh Dhaliwal
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | | | - Vibha Verma
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Manmeet Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Yashbir Singh Shivay
- Department of Agronomy, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India;
| | - Shahida Nisar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Correspondence: (M.B.); (A.H.)
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Peter Ondrisik
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: (M.B.); (A.H.)
| |
Collapse
|
21
|
Priyam A, Singh PP, Afonso LOB, Schultz AG. Abiotic factors and aging alter the physicochemical characteristics and toxicity of Phosphorus nanomaterials to zebrafish embryos. NANOIMPACT 2022; 25:100387. [PMID: 35559893 DOI: 10.1016/j.impact.2022.100387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/30/2021] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Nanoscale phosphorus (P)-based formulations are being investigated as potentially new fertilizers to overcome the challenges of conventional bulk P fertilizers in agriculture, including low efficacy rates and high application levels. After agricultural applications, the NMs may be released into aquatic environments and transform over time (by aging) or in the presence of abiotic factors such as natural organic matter or sunlight exposure. It is, therefore, important to investigate the physicochemical changes of NMs in environmentally realistic conditions and assess their potential acute and sublethal toxic effects on aquatic organisms. To investigate this, two separate studies were conducted: 1. the effects of 3-months aged P-based NMs on zebrafish embryos, and 2. the influence of humic acid (HA), UV exposure, or a combination of both on P-based NM toxicity in zebrafish embryos. Four different types of nanohydroxyapatites (nHAPs) and a nanophosphorus (nP) were included in the study. These NMs differed in their physicochemical properties, most prominently their shape and size. Environmental transformations were observed for P-based NMs due to aging or interaction with abiotic factors. The aging of the NMs increased the hydrodynamic diameter (HDD) of rod- and needle-shaped NMs and decreased the size of the platelet and spherical NMs, whereas interactions with HA and UV decreased the NMs' HDD. It was observed that no LC50 (survival) and IC50 (hatch and heart rates) were obtained when the zebrafish embryos were exposed to the aged NMs or when NMs were added in the presence of HA and UV. Overall, these results suggest that P-based NMs cause no acute toxicity and minimal sub-lethal toxicity to zebrafish embryos in environmentally realistic experimental conditions.
Collapse
Affiliation(s)
- Ayushi Priyam
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia; National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Pushplata Prasad Singh
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia; National Centre of Excellence for Advanced Research in Agricultural Nanotechnology, TERI - Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute (TERI), DS Block, India Habitat Centre, Lodhi Road, New Delhi 110003, India
| | - Luis O B Afonso
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia.
| |
Collapse
|
22
|
Barghi A, Esposti LD, Iafisco M, Adamiano A, Casado GE, Ivanchenko P, Mino L, Yoon HY, Joe EN, Jeon JR, Chang YS. Microbial Volatile Organic Compound (VOC)-Driven Dissolution and Surface Modification of Phosphorus-Containing Soil Minerals for Plant Nutrition: An Indirect Route for VOC-Based Plant-Microbe Communications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14478-14487. [PMID: 34813307 DOI: 10.1021/acs.jafc.1c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated the ability of microbial volatile organic compounds (MVOCs) emitted by Bacillus megaterium (a well-known MVOC producer) to modify the dissolution kinetics and surface of hydroxyapatite, a natural soil mineral. Facilitated phosphate release was induced by the airborne MVOCs in a time-dependent manner. Use of each standard chemical of the MVOCs then revealed that acetic and oxalic acids are crucial for the phenomenon. In addition, the ability of such MVOCs to engineer the apatite surfaces was evidenced by FT-IR spectra showing the COO- band variation with incubation time and the prolonged acceleration of phosphate release during the negligible acidification of the hydroxyapatite-containing solutions. The formation of calcium oxalate was revealed through SEM-EDS and XRD analyses, suggesting that MVOC oxalic acid interacts with calcium ions, leading to the precipitation of calcium oxalate, thus preventing the recrystallization of calcium phosphates. Gel- and soil-based plant cultivation tests employing Arabidopsis thaliana and solid calcium phosphates (i.e., nano- and microsized hydroxyapatites and calcium phosphate dibasic) demonstrated that these MVOC mechanisms facilitate plant growth by ensuring the prolonged supply of plant-available phosphate. The relationship between the growth enhancement and the particle size of the calcium phosphates also substantiated the MVOC sorption onto soil minerals related to plant growth. Given that most previous studies have assumed that MVOCs are a molecular lexicon directly detected by the dedicated sensing machinery of plants, our approach provides a new mechanistic view of the presence of abiotic mediators in the interaction between plants and microbes via MVOCs.
Collapse
Affiliation(s)
- Anahita Barghi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (P.O.STECH), 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Lorenzo Degli Esposti
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, Faenza (RA) 48018, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, Faenza (RA) 48018, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, Faenza (RA) 48018, Italy
| | | | - Pavlo Ivanchenko
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, Torino 10125, Italy
- ETEC Department, MOBI Research Group, Belgium Flanders Make, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 3001 Heverlee, Brussels 1050, Belgium
| | - Lorenzo Mino
- Department of Chemistry and NIS Centre, University of Torino, Via Giuria 7, Torino 10125, Italy
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Department of Agricultural Chemistry and Food Science & Technology and IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Nam Joe
- Division of Applied Life Science (BK21Plus), Department of Agricultural Chemistry and Food Science & Technology and IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Division of Applied Life Science (BK21Plus), Department of Agricultural Chemistry and Food Science & Technology and IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (P.O.STECH), 77 Cheongam-ro, Pohang 37673, Republic of Korea
| |
Collapse
|
23
|
The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. MATERIALS 2021; 14:ma14216398. [PMID: 34771927 PMCID: PMC8585361 DOI: 10.3390/ma14216398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022]
Abstract
Calcium phosphates (CaPs) belong to a class of biomimetic materials widely employed for medical applications thanks to their excellent properties, such as biodegradability, biocompatibility and osteoinductivity. The recent trend in the cosmetics field of substituting potentially hazardous materials with natural, safe, and sustainable ingredients for the health of consumers and for the environment, as well as the progress in the materials science of academics and chemical industries, has opened new perspectives in the use of CaPs in this field. While several reviews have been focused on the applications of CaP-based materials in medicine, this is the first attempt to catalogue the properties and use of CaPs in cosmetics. In this review a brief introduction on the chemical and physical characteristics of the main CaP phases is given, followed by an up-to-date report of their use in cosmetics through a large literature survey of research papers and patents. The application of CaPs as agents in oral care, skin care, hair care, and odor control has been selected and extensively discussed, highlighting the correlation between the chemical, physical and toxicological properties of the materials with their final applications. Finally, perspectives on the main challenges that should be addressed by the scientific community and cosmetics companies to widen the application of CaPs in cosmetics are given.
Collapse
|
24
|
Wojasiński M, Latocha J, Liszewska P, Makowski Ł, Sobieszuk P, Ciach T. Scaled-Up 3D-Printed Reactor for Precipitation of Lecithin-Modified Hydroxyapatite Nanoparticles. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michał Wojasiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Joanna Latocha
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Paulina Liszewska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Łukasz Makowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Paweł Sobieszuk
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
25
|
Fincheira P, Tortella G, Seabra AB, Quiroz A, Diez MC, Rubilar O. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. PLANTA 2021; 254:66. [PMID: 34491441 DOI: 10.1007/s00425-021-03714-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
Advances in nanotechnology make it an important tool for improving agricultural production. Strong evidence supports the role of nanomaterials as nutrients or nanocarriers for the controlled release of fertilizers to improve plant growth. Scientific research shows that nanotechnology applied in plant sciences is smart technology. Excessive application of mineral fertilizers has produced a harmful impact on the ecosystem. Furthermore, the projected increase in the human population by 2050 has led to the search for alternatives to ensure food security. Nanotechnology is a promising strategy to enhance crop productivity while minimizing fertilizer inputs. Nanofertilizers can contribute to the slow and sustainable release of nutrients to improve the efficiency of nutrient use in plants. Nanomaterial properties (i.e., size, morphology and charge) and plant physiology are crucial factors that influence the impact on plant growth. An important body of scientific research highlights the role of carbon nanomaterials, metal nanoparticles and metal oxide nanoparticles to improve plant development through the modulation of physiological and metabolic processes. Modulating nutrient concentrations, photosynthesis processes and antioxidant enzyme activities have led to increases in shoot length, root development, photosynthetic pigments and fruit yield. In parallel, nanocarriers (nanoclays, nanoparticles of hydroxyapatite, mesoporous silica and chitosan) have been shown to be an important tool for the controlled and sustainable release of conventional fertilizers to improve plant nutrition; however, the technical advances in nanofertilizers need to be accompanied by modernization of the regulations and legal frameworks to allow wider commercialization of these elements. Nanofertilizers are a promising strategy to improve plant development and nutrition, but their application in sustainable agriculture remains a great challenge. The present review summarizes the current advance of research into nanofertilizers, and their future prospects.
Collapse
Affiliation(s)
- Paola Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| | - Gonzalo Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
| |
Collapse
|
26
|
Nano-Enable Materials Promoting Sustainability and Resilience in Modern Agriculture. NANOMATERIALS 2021; 11:nano11082068. [PMID: 34443899 PMCID: PMC8398611 DOI: 10.3390/nano11082068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
Intensive conventional agriculture and climate change have induced severe ecological damages and threatened global food security, claiming a reorientation of agricultural management and public policies towards a more sustainable development model. In this context, nanomaterials promise to support this transition by promoting mitigation, enhancing productivity, and reducing contamination. This review gathers recent research innovations on smart nanoformulations and delivery systems improving crop protection and plant nutrition, nanoremediation strategies for contaminated soils, nanosensors for plant health and food quality and safety monitoring, and nanomaterials as smart food-packaging. It also highlights the impact of engineered nanomaterials on soil microbial communities, and potential environmental risks, along with future research directions. Although large-scale production and in-field testing of nano-agrochemicals are still ongoing, the collected information indicates improvements in uptake, use efficiency, targeted delivery of the active ingredients, and reduction of leaching and pollution. Nanoremediation seems to have a low negative impact on microbial communities while promoting biodiversity. Nanosensors enable high-resolution crop monitoring and sustainable management of the resources, while nano-packaging confers catalytic, antimicrobial, and barrier properties, preserving food safety and preventing food waste. Though, the application of nanomaterials to the agri-food sector requires a specific risk assessment supporting proper regulations and public acceptance.
Collapse
|
27
|
Adamiano A, Fellet G, Vuerich M, Scarpin D, Carella F, Piccirillo C, Jeon JR, Pizzutti A, Marchiol L, Iafisco M. Calcium Phosphate Particles Coated with Humic Substances: A Potential Plant Biostimulant from Circular Economy. Molecules 2021; 26:molecules26092810. [PMID: 34068646 PMCID: PMC8126095 DOI: 10.3390/molecules26092810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
Nowadays, the use of biostimulants to reduce agrochemical input is a major trend in agriculture. In this work, we report on calcium phosphate particles (CaP) recovered from the circular economy, combined with natural humic substances (HSs), to produce a plant biostimulant. CaPs were obtained by the thermal treatment of Salmo salar bones and were subsequently functionalized with HSs by soaking in a HS water solution. The obtained materials were characterized, showing that the functionalization with HS did not sort any effect on the bulk physicochemical properties of CaP, with the exception of the surface charge that was found to get more negative. Finally, the effect of the materials on nutrient uptake and translocation in the early stages of development (up to 20 days) of two model species of interest for horticulture, Valerianella locusta and Diplotaxis tenuifolia, was assessed. Both species exhibited a similar tendency to accumulate Ca and P in hypogeal tissues, but showed different reactions to the treatments in terms of translocation to the leaves. CaP and CaP–HS treatments lead to an increase of P accumulation in the leaves of D. tenuifolia, while the treatment with HS was found to increase only the concentration of Ca in V. locusta leaves. A low biostimulating effect on both plants’ growth was observed, and was mainly scribed to the low concentration of HS in the tested materials. In the end, the obtained material showed promising results in virtue of its potential to elicit phosphorous uptake and foliar translocation by plants.
Collapse
Affiliation(s)
- Alessio Adamiano
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (F.C.); (M.I.)
- Correspondence: ; Tel.: +39-054-669-9724
| | - Guido Fellet
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Marco Vuerich
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Dora Scarpin
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Francesca Carella
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (F.C.); (M.I.)
| | - Clara Piccirillo
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy;
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry, Food Science & Technology, IALS, Gyeongsang National University, Jinju 52828, Korea;
| | - Alessia Pizzutti
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 10, 34127 Trieste, Italy
| | - Luca Marchiol
- Department of AgriFood, Animal and Environmental Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy; (G.F.); (M.V.); (D.S.); (A.P.); (L.M.)
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; (F.C.); (M.I.)
| |
Collapse
|
28
|
Pérez-Álvarez EP, Ramírez-Rodríguez GB, Carmona FJ, Martínez-Vidaurre JM, Masciocchi N, Guagliardi A, Garde-Cerdán T, Delgado-López JM. Towards a more sustainable viticulture: foliar application of N-doped calcium phosphate nanoparticles on Tempranillo grapes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1307-1313. [PMID: 32789867 DOI: 10.1002/jsfa.10738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND The use of nanomaterials for the efficient delivery of active species in viticulture is still an unexplored opportunity. Nitrogen, an essential nutrient for grapevine development and wine quality, is commonly provided in the form of urea. However, the application of conventional fertilisers contributes to nitrate leaching and denitrification, thus polluting groundwater and causing a serious environmental impact. Nanotechnology is offering smart solutions towards more sustainable and efficient agriculture. In the present work, we assessed the efficiency of nontoxic amorphous calcium phosphate (ACP) nanoparticles as nanocarriers of urea (U-ACP) through field experiments on Tempranillo grapevines. Four treatments were foliarly applied: U-ACP nanofertiliser (0.4 kg N ha-1 ), commercial urea solutions at 3 and 6 kg N ha-1 (U3 and U6) and a control treatment (water). RESULTS The grapes harvested from plants treated with U-ACP and U6 provided similar levels of yeast assimilable nitrogen, despite the very large reduction of nitrogen dosage. The concentration of amino acids was greater in U-ACP-treated plants than those of the control and U3 treatments and, barring a few exceptions, the values were comparable with those observed in grapes obtained following U6 treatment. Nanofertilisers provided a high arginine concentration in the musts but low proline concentrations in comparison to the U6 treatment. CONCLUSIONS The results of this work show the potential benefits of nanotechnology over conventional practices for nitrogen fertilisation. Significantly, the application of U-ACP allowed a considerable reduction of nitrogen dosage to maintain the quality of the harvest, thereby mitigating the environmental impact. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva P Pérez-Álvarez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | | | - Francisco J Carmona
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Como, Italy
| | - José M Martínez-Vidaurre
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab, University of Insubria, Como, Italy
| | - Antonella Guagliardi
- Institute of Crystallography and To.Sca.Lab, Consiglio Nazionale delle Ricerche, Como, Italy
| | - Teresa Garde-Cerdán
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de La Rioja, Universidad de La Rioja), Logroño, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
29
|
Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:213-239. [PMID: 33447834 DOI: 10.1039/d0em00404a] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Modern agricultural practices have triggered the process of agricultural pollution. This process can cause the degradation of eco-systems, land, and environment owing to the modern-day by-products of agriculture. The substantial use of chemical fertilizers, pesticides, and, contaminated water for irrigation cause further damage to agriculture. The current scenario of the agriculture and food sector has therefore become unsustainable. Nanotechnology has provided innovative and resourceful frontiers to the agriculture sector by contributing practical applications in conventional agricultural ways and practices. There is a large possibility that agri-nanotechnology can have a significant impact on the sustainable agriculture and crop growth. Recent research has shown the potential of nanotechnology in improving the agriculture sector by enhancing the efficiency of agricultural inputs and providing solutions to agricultural problems for improving food productivity and security. The prospective use of nanoscale agrochemicals such as nanofertilizers, nanopesticides, nanosensors, and nanoformulations in agriculture has transformed traditional agro-practices, making them more sustainable and efficient. However, the application of these nano-products in real field situations raises concern about nanomaterial safety, exposure levels, and toxicological repercussions to the environment and human health. The present review gives an insight into recent advancements in nanotechnology-based agrochemicals that have revolutionized the agriculture sector. Further, the implementation barriers related to the nanomaterial use in agriculture, their commercialization potential, and the need for policy regulations to assess possible nano-agricultural risks are also discussed.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Archita Sharma
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Sanjeev K Bhardwaj
- Amesys India, Cross Road No. 4, Near Geeta Gopal Bhawan, Ambala Cantt-133001, Haryana, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
30
|
Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? Molecules 2021; 26:molecules26030760. [PMID: 33540638 PMCID: PMC7867258 DOI: 10.3390/molecules26030760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Humic substances (HSs) are chromogenic organic assemblies that are widespread in the environment, including soils, oceans, rivers, and coal-related resources. HSs are known to directly and indirectly stimulate plants based on their versatile organic structures. Their beneficial activities have led to the rapid market growth of agronomical HSs. However, there are still several technical issues and concerns to be addressed to advance sustainable agronomical practices for HSs and allow growers to use HSs reliably. First, it is necessary to elucidate the evident structure (component)–function relationship of HSs. Specifically, the core structural features of HSs corresponding to crop species, treatment method (i.e., soil, foliar, or immersion applications), and soil type-dependent plant stimulatory actions as well as specific plant responses (e.g., root genesis and stress resistance) should be detailed to identify practical crop treatment methodologies. These trials must then be accompanied by means to upgrade crop marketability to help the growers. Second, structural differences of HSs depending on extraction sources should be compared to develop quality control and assurance measures for agronomical uses of HSs. In particular, coal-related HSs obtainable in bulk amounts for large farmland applications should be structurally and functionally distinguishable from other natural HSs. The diversity of organic structures and components in coal-based HSs must thus be examined thoroughly to provide practical information to growers. Overall, there is a consensus amongst researchers that HSs have the potential to enhance soil quality and crop productivity, but appropriate research directions should be explored for growers’ needs and farmland applications.
Collapse
|
31
|
Jeong HJ, Oh MS, Rehman JU, Yoon HY, Kim JH, Shin J, Shin SG, Bae H, Jeon JR. Effects of Microbes from Coal-Related Commercial Humic Substances on Hydroponic Crop Cultivation: A Microbiological View for Agronomical Use of Humic Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:805-814. [PMID: 33249847 DOI: 10.1021/acs.jafc.0c05474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, coal-related humic substances (HSs) were examined to confirm whether sterilization treatments induce their inferior ability to stimulate lettuce in hydroponic cultivations. Interestingly, a drastic reduction in both lettuce biomass and microbial colony-forming units of the crop culture solutions was observed when the autoclaved HSs were treated. Some microbial genera (i.e., Bacillus and Aspergillus) identifiable in the bare HS-treated hydroponic systems were able to be isolated by direct inoculation of bare HS powders on conventional microbial nutrients, supporting that flourishing microbes in the hydroponic cultivations derive from bare HSs-treated. Moreover, coincubation of some isolated bacterial and fungal strains (i.e., Bacillus and Aspergillus genera) from HSs with lettuce resulted in a significant increase in plant biomass and enhanced resistance to NaCl-related abiotic stresses. Microbial volatile organic compounds renowned for plant stimulation were detected by using solid-phase microextraction coupled with gas chromatography-mass spectrometry. It was finally confirmed that the isolates are capable of utilizing carbon substrates such as pectin and tween 20 or 40, which are relevant to those of microbes isolated from peat and leonardite (i.e., HS extraction sources). Overall, our results suggest that microbiological factors could be considered when commercial coal-related HSs are applied in hydroponic crop cultivations.
Collapse
Affiliation(s)
- Hae Jin Jeong
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Seung Oh
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jalil Ur Rehman
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Young Yoon
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jae-Hwan Kim
- Advanced Geo-materials R&D Department, Korea Institute of Geoscience and Mineral Resources, Pohang Branch, Pohang 37559, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH), Jinju 52727, Republic of Korea
| | - Hyomin Bae
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
- IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
32
|
Recent Developments in the Application of Nanomaterials in Agroecosystems. NANOMATERIALS 2020; 10:nano10122411. [PMID: 33276643 PMCID: PMC7761570 DOI: 10.3390/nano10122411] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Nanotechnology implies the scientific research, development, and manufacture, along with processing, of materials and structures on a nano scale. Presently, the contamination of metalloids and metals in the soil has gained substantial attention. The consolidation of nanomaterials and plants in ecological management has received considerable research attention because certain nanomaterials could enhance plant seed germination and entire plant growth. Conversely, when the nanomaterial concentration is not properly controlled, toxicity will definitely develop. This paper discusses the role of nanomaterials as: (1) nano-pesticides (for improving the plant resistance against the biotic stress); and (2) nano-fertilizers (for promoting the plant growth by providing vital nutrients). This review analyzes the potential usages of nanomaterials in agroecosystem. In addition, the adverse effects of nanomaterials on soil organisms are discussed. We mostly examine the beneficial effects of nanomaterials such as nano-zerovalent iron, iron oxide, titanium dioxide, nano-hydroxyapatite, carbon nanotubes, and silver- and copper-based nanomaterials. Some nanomaterials can affect the growth, survival, and reproduction of soil organisms. A change from testing/using nanomaterials in plants for developing nanomaterials depending on agricultural requirements would be an important phase in the utilization of nanomaterials in sustainable agriculture. Conversely, the transport as well as ecological toxicity of nanomaterials should be seriously examined for guaranteeing its benign usage in agriculture.
Collapse
|
33
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
34
|
Calcium Phosphate Nanoparticle Precipitation by a Continuous Flow Process: A Design of Experiment Approach. CRYSTALS 2020. [DOI: 10.3390/cryst10100953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calcium phosphate nanoparticles (CaP NPs) are an efficient class of nanomaterials mainly used for biomedical applications but also very promising in other sectors such as cosmetics, catalysis, water remediation, and agriculture. Unfortunately, as in the case of other nanomaterials, their wide application is hindered by the difficulty to control size, morphology, purity and degree of particle aggregation in the translation from laboratory to industrial scale production that is usually carried out in batch or semi-batch systems. In this regard, the use of continuous flow synthesis can help to solve this problem, providing more homogenous reaction conditions and highly reproducible synthesis. In this paper, we have studied with a design of experiment approach the precipitation of citrate functionalized CaP NPs aided by sonication using a continuous flow wet chemical precipitation, and the effect of some of the most relevant process factors (i.e., reactant flow rate, sonication amplitude, and maturation time) on the physico-chemical properties of the NPs were evaluated. From the statistical data analysis, we have found that CaP NP dimensions are influenced by the reactor flow rate, while the crystalline domain dimensions and product purity are influenced by the maturation process. This work provides a deeper understanding of the relationships between reaction process factors and CaP NP properties, and is a relevant contribution for the scale-up production of CaP NPs for nanomedical or other applications.
Collapse
|
35
|
Yoon HY, Jeong HJ, Cha JY, Choi M, Jang KS, Kim WY, Kim MG, Jeon JR. Structural variation of humic-like substances and its impact on plant stimulation: Implication for structure-function relationship of soil organic matters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138409. [PMID: 32464747 DOI: 10.1016/j.scitotenv.2020.138409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Here, five aromatic monomers, one bearing a long alkyl chain [3-pentadecylphenol (3-PP)], the second bearing a polycyclic aromatic hydrocarbon [dihydroxynaphthalene (DHN)], the third bearing an organic amine [l-3,4-dihydroxyphenylalanine (l-DOPA)], the fourth bearing a carboxylic acid [vanillic acid (VA)], and the fifth bearing a phenol [catechol (CA)] were oxidatively coupled to produce four humic-like substances (3-PP, DHN, l-DOPA, and CAVA products) to mimic the diverse organic architectures of natural humus. Analysis using several methods, including SEM, EPR, elemental analysis, FT-IR-ATR, 13C NMR and anti-oxidant capability, revealed that each of the monomeric structures was well incorporated into the corresponding humic-like substances. Seed germination acceleration and NaCl-involved abiotic stress resistance of Arabidopsis thaliana were then tested to determine whether the different structures resulted in different levels of plant stimulation. The l-DOPA, CAVA and DHN-based materials showed enhanced stimulatory activities compared with no treatment, whereas the effects of the 3-PP-based materials were meager. Interestingly, high-resolution (15 T) ESI FT-ICR mass spectrometry-based van Krevelen diagrams clearly showed that the presence of molecules with H/C and O/C ratios ranging from 0.5 to 1.0 and 0.2 to 0.4, respectively, could be connected with such biological actions. Here, the l-DOPA sample showed the highest content of such molecules, followed by the CAVA, DHN and 3-PP samples. Next, the ability of l-DOPA and CAVA products to induce resistance in A. thaliana to a pathogen-related biotic stress was tested to confirm whether the proposed molecular features are associated with multi-stimulatory actions on plants. The expression level of pathogenesis-related protein 1 and inspection of plant morphology clearly revealed that both the l-DOPA and CAVA products stimulate plants to respond to biotic stresses. Size-exclusion chromatography together with NMR and IR data of both the materials strongly suggests that lignin-like supramolecular assemblages play an important role in versatile biological activities of humus.
Collapse
Affiliation(s)
- Ho Young Yoon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hae Jin Jeong
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Mira Choi
- Bio-Chemical Analysis Group, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Group, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Woe-Yeon Kim
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju 52828, Republic of Korea; PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Rok Jeon
- Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; IALS, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|