1
|
Ervik K, Li YZ, Ji RR, Serhan CN, Hansen TV. Synthesis of the methyl ester of 17( R/ S)-Me-RvD5 n-3 DPA and relief of postoperative pain in male mice. Org Biomol Chem 2024. [PMID: 39513388 PMCID: PMC11563200 DOI: 10.1039/d4ob01534g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The synthesis and biological evaluation of 17(R/S)-Me-RvD5n-3 DPA, an analog of the specialized pro-resolving mediators RvD5 and RvD5n-3 DPA, are presented. The synthesis was successfully accomplished utilizing Midland Alpine borane reduction, Sonogashira cross-coupling and a one-pot hydrozirconation/iodination protocol. In vivo evaluation of RvD5, RvD5n-3 DPA and 17(R/S)-Me-RvD5n-3 DPA in a mouse model of fracture revealed that all three compounds inhibited postoperative pain in male mice, but not in female mice.
Collapse
Affiliation(s)
- Karina Ervik
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O Box 1068, 0316 Oslo, Norway.
| | - Yi-Ze Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, NC 27710, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Trond V Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O Box 1068, 0316 Oslo, Norway.
| |
Collapse
|
2
|
Giardini E, Moore D, Sadlier D, Godson C, Brennan E. The dual role of lipids in chronic kidney disease: Pathogenic culprits and therapeutic allies. Atherosclerosis 2024; 398:118615. [PMID: 39370307 DOI: 10.1016/j.atherosclerosis.2024.118615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Chronic kidney disease (CKD) is a significant health burden, with rising incidence and prevalence, attributed in part to increasing obesity and diabetes rates. Lipid accumulation in the kidney parenchyma and chronic, low-grade inflammation are believed to significantly contribute to the development and progression of CKD. The effect of dysregulated kidney lipid metabolism in CKD progression, including altered cholesterol and fatty acid metabolism contribute to glomerular and tubular cell injury through the activation of oxidative stress and inflammatory signalling cascades. In contrast, classes of endogenous specialized pro-resolving lipid mediators (SPMs) have been described that act to limit the inflammatory response and promote the resolution of inflammation. This review highlights our current understanding of how lipids can cause damage within the kidney, and classes of protective lipid metabolites that offer therapeutic benefits.
Collapse
Affiliation(s)
- Elena Giardini
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Dean Moore
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Denise Sadlier
- Mater Misericordiae University Hospital, Eccles Street, Dublin 7, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Döring Y, van der Vorst EPC, Weber C. Targeting immune cell recruitment in atherosclerosis. Nat Rev Cardiol 2024; 21:824-840. [PMID: 38664575 DOI: 10.1038/s41569-024-01023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 10/17/2024]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction and stroke. Atherosclerotic cardiovascular disease is characterized by a chronic inflammatory reaction in medium-to-large-sized arteries, with its onset and perpetuation driven by leukocytes infiltrating the subendothelial space. Activation of endothelial cells triggered by hyperlipidaemia and lipoprotein retention in the arterial intima initiates the accumulation of pro-inflammatory leukocytes in the arterial wall, fostering the progression of atherosclerosis. This inflammatory response is coordinated by an array of soluble mediators, namely cytokines and chemokines, that amplify inflammation both locally and systemically and are complemented by tissue-specific molecules that regulate the homing, adhesion and transmigration of leukocytes. Despite abundant evidence from mouse models, only a few therapies targeting leukocytes in atherosclerosis have been assessed in humans. The major challenges for the clinical translation of these therapies include the lack of tissue specificity and insufficient selectivity of inhibition strategies. In this Review, we discuss the latest research on receptor-ligand pairs and interactors that regulate leukocyte influx into the inflamed artery wall, primarily focusing on studies that used pharmacological interventions. We also discuss mechanisms that promote the resolution of inflammation and highlight how major findings from these research areas hold promise as potential therapeutic strategies for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany.
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Szczuko M, Kacprzak J, Przybylska A, Szczuko U, Pobłocki J, Syrenicz A, Drozd A. The Influence of an Anti-Inflammatory Gluten-Free Diet with EPA and DHA on the Involvement of Maresin and Resolvins in Hashimoto's Disease. Int J Mol Sci 2024; 25:11692. [PMID: 39519244 PMCID: PMC11546266 DOI: 10.3390/ijms252111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The potential modulation of thyroid inflammatory conditions via a gluten-free diet has been suggested after establishing a link between Hashimoto's thyroiditis (HT) and celiac disease. However, the majority of targeted studies in this field do not support the general recommendation of prescribing a gluten-free diet (GFD) for all HT patients. This study aims to analyze data regarding the impact of a GFD supplemented with eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), along with vegetables, on the course of inflammation involving long-chain fatty acid mediators. The study cohort consisted of 39 Caucasian female patients with autoimmune HT. Metabolite separations were performed using a liquid chromatograph with a DAD detector. Absorption peaks were read at 210 nm for resolvin E1, protectin DX, and maresin 1 and at 302 nm for resolvin D1. The introduction of a gluten-free diet completed with omega-3, including EPA and DHA, may contribute to a reduction in the inflammatory state in HT patients. This effect is supported by the elevation in the levels of anti-inflammatory mediators derived from long-chain fatty acids with anti-inflammatory properties but not by eliminating gluten. Significant statistical changes in the levels of all derivatives were observed before and after the implementation of the diet. It is worth noting that this effect was not observed in anti-TPO and anti-TG levels. The induction of anti-inflammatory changes can be achieved by supplementing the diet with EPA, DHA and vegetables with increased anti-inflammatory potential.
Collapse
Affiliation(s)
- Małgorzata Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (A.P.); (A.D.)
- Department of Human Nutrition and Bromatology, Pomeranian Medical University, 71-210 Szczecin, Poland
| | - Julia Kacprzak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (A.P.); (A.D.)
| | - Aleksandra Przybylska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (A.P.); (A.D.)
| | - Urszula Szczuko
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (A.P.); (A.D.)
| | - Jakub Pobłocki
- Department of Endocrinology, Metabolic Diseases and Internal Diseases, Pomeranian Medical University, 70-252 Szczecin, Poland; (J.P.); (A.S.)
| | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic Diseases and Internal Diseases, Pomeranian Medical University, 70-252 Szczecin, Poland; (J.P.); (A.S.)
| | - Arleta Drozd
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland (A.P.); (A.D.)
| |
Collapse
|
6
|
Alnouri MW, Roquid KA, Bonnavion R, Cho H, Heering J, Kwon J, Jäger Y, Wang S, Günther S, Wettschureck N, Geisslinger G, Gurke R, Müller CE, Proschak E, Offermanns S. SPMs exert anti-inflammatory and pro-resolving effects through positive allosteric modulation of the prostaglandin EP4 receptor. Proc Natl Acad Sci U S A 2024; 121:e2407130121. [PMID: 39365815 PMCID: PMC11474063 DOI: 10.1073/pnas.2407130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024] Open
Abstract
Inflammation is a protective response to pathogens and injury. To be effective it needs to be resolved by endogenous mechanisms in order to avoid prolonged and excessive inflammation, which can become chronic. Specialized pro-resolving mediators (SPMs) are a group of lipids derived from omega-3 fatty acids, which can induce the resolution of inflammation. How SPMs exert their anti-inflammatory and pro-resolving effects is, however, not clear. Here, we show that SPMs such as protectins, maresins, and D-series resolvins function as biased positive allosteric modulators (PAM) of the prostaglandin E2 (PGE2) receptor EP4 through an intracellular binding site. They increase PGE2-induced Gs-mediated formation of cAMP and thereby promote anti-inflammatory signaling of EP4. In addition, SPMs endow the endogenous EP4 receptor on macrophages with the ability to couple to Gi-type G-proteins, which converts the EP4 receptor on macrophages from an anti-phagocytotic receptor to one increasing phagocytosis, a central mechanism of the pro-resolving activity of synthetic SPMs. In the absence of the EP4 receptor, SPMs lose their anti-inflammatory and pro-resolving activity in vitro and in vivo. Our findings reveal an unusual mechanism of allosteric receptor modulation by lipids and provide a mechanism by which synthetic SPMs exert pro-resolving and anti-inflammatory effects, which may facilitate approaches to treat inflammation.
Collapse
Affiliation(s)
- Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Rémy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Haaglim Cho
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
| | - Jeonghyeon Kwon
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Yannick Jäger
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi’an710061, China
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Deep Sequencing Platform, Bad Nauheim61231, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn53121, Germany
- PharmaCenter Bonn, University of Bonn, Bonn53121, Germany
| | - Ewgenij Proschak
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| |
Collapse
|
7
|
He S, Zhuo Y, Cui L, Zhang S, Tu Z, Wang M, Lv X, Ge L, Lin J, Yang L, Wang X. Naringin dihydrochalcone alleviates sepsis-induced acute lung injury via improving gut microbial homeostasis and activating GPR18 receptor. Int Immunopharmacol 2024; 137:112418. [PMID: 38901244 DOI: 10.1016/j.intimp.2024.112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
Acute lung injury (ALI) is a life-threatening disease characterized by severe lung inflammation and intestinal microbiota disorder. The GPR18 receptor has been demonstrated to be a potential therapeutic target against ALI. Extracting Naringin dihydrochalcone (NDC) from the life-sustaining orange peel is known for its diverse anti-inflammatory properties, yet the specific action target remains uncertain. In the present study, we identified NDC as a potential agonist of the GPR18 receptor using virtual screening and investigated the pharmacological effects of NDC on sepsis-induced acute lung injury in rats and explored underlying mechanisms. In in vivo experiments, CLP-induced ALI model was established by cecum puncture and treated with NDC gavage one hour prior to drug administration, lung histopathology and inflammatory cytokines were evaluated, and feces were subjected to 16s rRNA sequencing and untargeted metabolomics analysis. In in vitro experiments, the anti-inflammatory properties were exerted by evaluating NDC targeting the GPR18 receptor to inhibit lipopolysaccharide (LPS)-induced secretion of TNF-α, IL-6, IL-1β and activation of inflammatory signaling pathways in MH-S cells. Our findings showed that NDC significantly ameliorated lung damage and pro-inflammatory cytokine levels (TNF-α, IL-6, IL-1β) in both cells and lung tissues via inhibiting the activation of STAT3, NF-κB, and NLRP3 inflammatory signaling pathways through GRP18 receptor activation. In addition, NDC can also partly reverse the imbalance of gut microbiota composition caused by CLP via increasing the proportion of Firmicutes/Bacteroidetes and Lactobacillus and decreasing the relative abundance of Proteobacteria. Meanwhile, the fecal metabolites in the NDC treatment group also significantly were changed, including decreased secretion of Phenylalanin, Glycine, and bile secretion, and increased secretion of Lysine. In conclusion, these findings suggest that NDC can alleviate sepsis-induced ALI via improving gut microbial homeostasis and metabolism and mitigate inflammation via activating GPR18 receptor. In conclusion, the results indicate that NDC, derived from the typical orange peel of food, could significantly contribute to development by enhancing intestinal microbial balance and metabolic processes, and reducing inflammation by activating the GPR18 receptor, thus mitigating sepsis-induced ALI and expanding the range of functional foods.
Collapse
Affiliation(s)
- Siqi He
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin 300270, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Mukuo Wang
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Xinyue Lv
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lixiu Ge
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China
| | - Jianping Lin
- College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin NanKai Hospital Tianjin Medical University, Tianjin 300100, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin 300270, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, Tianjin Medical University Third Center Clinical College, Tianjin 300170, China.
| |
Collapse
|
8
|
Kagaya H, Kim AS, Chen M, Lin P, Yin X, Spite M, Conte MS. Dynamic changes in proresolving lipid mediators and their receptors following acute vascular injury in male rats. Physiol Rep 2024; 12:e16178. [PMID: 39128880 PMCID: PMC11317191 DOI: 10.14814/phy2.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024] Open
Abstract
Acute vascular injury provokes an inflammatory response, resulting in neointimal hyperplasia (NIH) and downstream pathologies. The resolution of inflammation is an active process in which specialized proresolving lipid mediators (SPM) and their receptors play a central role. We sought to examine the acute phase response of SPM and their receptors in both circulating blood and the arterial wall in a rat angioplasty model. We found that the ratio of proresolving to pro-inflammatory lipid mediators (LM) in plasma decreased sharply 1 day after vascular injury, then increased slightly by day 7, while that in arteries remained depressed. Granulocyte expression of SPM receptors ALX/FPR2 and DRV2/GPR18, and a leukotriene B4 receptor BLT1 increased postinjury, while ERV1/ChemR23 expression was reduced early and then recovered by day 7. Importantly, we show unique arterial expression patterns of SPM receptors in the acute setting, with generally low levels through day 7 that contrasted sharply with that of the pro-inflammatory CCR2 receptor. Overall, these data document acute, time-dependent changes of LM biosynthesis and SPM receptor expression in plasma, leukocytes, and artery walls following acute vascular injury. A biochemical imbalance between inflammation and resolution LM pathways appears persistent 7 days after angioplasty in this model. These findings may help guide therapeutic approaches to accelerate vascular healing and improve the outcomes of vascular interventions for patients with advanced atherosclerosis.
Collapse
Affiliation(s)
- Hideo Kagaya
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Alexander S. Kim
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mian Chen
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Pei‐Yu Lin
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xuanzhi Yin
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael S. Conte
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
9
|
Livshits G, Kalinkovich A. Restoration of epigenetic impairment in the skeletal muscle and chronic inflammation resolution as a therapeutic approach in sarcopenia. Ageing Res Rev 2024; 96:102267. [PMID: 38462046 DOI: 10.1016/j.arr.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Sarcopenia is an age-associated loss of skeletal muscle mass, strength, and function, accompanied by severe adverse health outcomes, such as falls and fractures, functional decline, high health costs, and mortality. Hence, its prevention and treatment have become increasingly urgent. However, despite the wide prevalence and extensive research on sarcopenia, no FDA-approved disease-modifying drugs exist. This is probably due to a poor understanding of the mechanisms underlying its pathophysiology. Recent evidence demonstrate that sarcopenia development is characterized by two key elements: (i) epigenetic dysregulation of multiple molecular pathways associated with sarcopenia pathogenesis, such as protein remodeling, insulin resistance, mitochondria impairments, and (ii) the creation of a systemic, chronic, low-grade inflammation (SCLGI). In this review, we focus on the epigenetic regulators that have been implicated in skeletal muscle deterioration, their individual roles, and possible crosstalk. We also discuss epidrugs, which are the pharmaceuticals with the potential to restore the epigenetic mechanisms deregulated in sarcopenia. In addition, we discuss the mechanisms underlying failed SCLGI resolution in sarcopenia and the potential application of pro-resolving molecules, comprising specialized pro-resolving mediators (SPMs) and their stable mimetics and receptor agonists. These compounds, as well as epidrugs, reveal beneficial effects in preclinical studies related to sarcopenia. Based on these encouraging observations, we propose the combination of epidrugs with SCLI-resolving agents as a new therapeutic approach for sarcopenia that can effectively attenuate of its manifestations.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, School of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
10
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
11
|
Easwaran M, Maria CS, Martinez JD, Hung B, Yu X, Soo J, Kimura A, Gross ER, Erickson-DiRenzo E. Effects of Short-term Electronic(e)-Cigarette Aerosol Exposure in the Mouse Larynx. Laryngoscope 2024; 134:1316-1326. [PMID: 37698394 PMCID: PMC10922082 DOI: 10.1002/lary.31043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES The effects of electronic cigarettes (e-cigarettes) on the larynx are relatively unknown. This study examined the short-term effects of e-cigarette inhalation on cellular and inflammatory responses within the mouse laryngeal glottic and subglottic regions after exposure to pod-based devices (JUUL). METHODS Male C57BL6/J mice (8-9 weeks) were assigned to control (n = 9), JUUL flavors Mint (JMi; n = 10) or Mango (JMa; n = 10). JUUL mice were exposed to 2 h/day for 1, 5, and 10 days using the inExpose inhalation system. Control mice were in room air. Vocal fold (VF) epithelial thickness, cell proliferation, subglandular area and composition, inflammatory cell infiltration, and surface topography were evaluated in the harvested larynges. Mouse body weight and urinary nicotine biomarkers were also measured. Chemical analysis of JUUL aerosols was conducted using selective ion flow tube mass spectrometry. RESULTS JUUL-exposed mice had reduced body weight after day 5. Urinary nicotine biomarker levels indicated successful JUUL exposure and metabolism. Quantitative analysis of JUUL aerosol indicated that chemical constituents differ between JMi and JMa flavors. VF epithelial thickness, cellular proliferation, glandular area, and surface topography remained unchanged after JUUL exposures. Acidic mucus content increased after 1 day of JMi exposure. VF macrophage and T-cell levels slightly increased after 10 days of JMi exposures. CONCLUSIONS Short-term e-cigarette exposures cause minimal flavor- and region-specific cellular and inflammatory changes in the mouse larynx. This work provides a foundation for long-term studies to determine if these responses are altered with multiple e-cigarette components and concentrations. LEVEL OF EVIDENCE N/A Laryngoscope, 134:1316-1326, 2024.
Collapse
Affiliation(s)
- Meena Easwaran
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Chloe Santa Maria
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Joshua D. Martinez
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Barbara Hung
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Xuan Yu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Joanne Soo
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Akari Kimura
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| | - Eric R. Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA
| | - Elizabeth Erickson-DiRenzo
- Department of Otolaryngology - Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA
| |
Collapse
|
12
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
13
|
Natami M, Hosseini SM, Khaleel RA, Addulrahman TS, Zarei M, Asadi S, Gholami S, Mehrvar A. The role of specialized pro-resolving mediators (SPMs) in inflammatory arthritis: A therapeutic strategy. Prostaglandins Other Lipid Mediat 2024; 170:106798. [PMID: 37977352 DOI: 10.1016/j.prostaglandins.2023.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Rheumatoid arthritis (RA) is classified as a persistent inflammatory autoimmune disorder leading to the subsequent erosion of articular cartilage and bone tissue originating from the synovium. The fundamental objective of therapeutic interventions in RA has been the suppression of inflammation. Nevertheless, conventional medicines that lack target specificity may exhibit unpredictable effects on cell metabolism. In recent times, there has been evidence suggesting that specialized pro-resolving mediators (SPMs), which are lipid metabolites, have a role in facilitating the resolution of inflammation and the reestablishment of tissue homeostasis. SPMs are synthesized by immune cells through the enzymatic conversion of omega-3 fatty acids. In the context of RA, there is a possibility of dysregulation in the production of these SPMs. In this review, we delve into the present comprehension of the endogenous functions of SPMs in RA as lipids that exhibit pro-resolutive, protective, and immunoresolvent properties.
Collapse
Affiliation(s)
- Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Seyed Mehdi Hosseini
- Department of Oral and Maxillofacial surgery, School of Dentistry, Azad University of Medical Science, Shiraz, Iran
| | | | | | - Mehdi Zarei
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Sahar Asadi
- Department of Community and Family Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepideh Gholami
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amir Mehrvar
- Taleghani Hospital Clinical Research Development Unit, Shahid Beheshti University of Medical Science, Tehran, Iran.
| |
Collapse
|
14
|
Ervik K, Reinertsen AF, Koenis DS, Dalli J, Hansen TV. Stereoselective Synthesis, Pro-resolution, and Anti-inflammatory Actions of RvD5 n-3 DPA. JOURNAL OF NATURAL PRODUCTS 2023; 86:2546-2553. [PMID: 37879110 PMCID: PMC10683074 DOI: 10.1021/acs.jnatprod.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/27/2023]
Abstract
The methyl ester of resolvin D5n-3 DPA, a lipid mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid, was stereoselectively prepared in 8% yield over 12 steps (longest linear sequence). The key steps for the introduction of the two stereogenic secondary alcohols were an organocatalyzed oxyamination and the Midland Alpine borane reduction. For the assembly of the carbon chain, the Sonogashira cross-coupling reaction and the Takai olefination were utilized. The physical properties, including retention time in liquid chromatography and tandem mass spectra, of the synthetic material were matched against material from human peripheral blood and mouse infectious exudates. Synthetic RvD5n-3 DPA, obtained just prior to biological experiments, displayed potent leukocyte-directed activities, upregulating the ability of neutrophils and macrophages to phagocytose bacteria, known as hallmark bioactions of specialized pro-resolving endogenous mediators.
Collapse
Affiliation(s)
- Karina Ervik
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Amalie F. Reinertsen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Duco S. Koenis
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Jesmond Dalli
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Trond V. Hansen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|
15
|
Aguirre GA, Goulart MR, Dalli J, Kocher HM. Arachidonate 15-lipoxygenase-mediated production of Resolvin D5 n-3 DPA abrogates pancreatic stellate cell-induced cancer cell invasion. Front Immunol 2023; 14:1248547. [PMID: 38035115 PMCID: PMC10687150 DOI: 10.3389/fimmu.2023.1248547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Activation of pancreatic stellate cells (PSCs) to cancer-associated fibroblasts (CAFs) is responsible for the extensive desmoplastic reaction observed in PDAC stroma: a key driver of pancreatic ductal adenocarcinoma (PDAC) chemoresistance leading to poor prognosis. Specialized pro-resolving mediators (SPMs) are prime modulators of inflammation and its resolution, traditionally thought to be produced by immune cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipid mediator profiling PSCs as well as primary human CAFs express enzymes and receptors to produce and respond to SPMs. Human PSC/CAF SPM secretion profile can be modulated by rendering these cells activated [transforming growth factor beta (TGF-β)] or quiescent [all-trans retinoic acid (ATRA)]. ATRA-induced nuclear translocation of arachidonate-15-lipoxygenase (ALOX15) was linked to increased production of n-3 docosapentaenoic acid-derived Resolvin D5 (RvD5n-3 DPA), among other SPMs. Inhibition of RvD5n-3 DPA formation increases cancer cell invasion, whereas addback of this molecule reduced activated PSC-mediated cancer cell invasion. We also observed that circulating concentrations of RvD5n-3 DPA levels were decreased in peripheral blood of metastatic PDAC patients when compared with those measured in plasma of non-metastatic PDAC patients. Together, these findings indicate that RvD5n-3 DPA may regulate cancer-stroma cross-talk and invasion.
Collapse
Affiliation(s)
- Gabriel A. Aguirre
- Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| | | | | | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, John Vane Science Centre, Queen Mary University of London, London, United Kingdom
| | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, London, United Kingdom
| |
Collapse
|
16
|
Sandoval C, Nahuelqueo K, Mella L, Recabarren B, Souza-Mello V, Farías J. Role of long-chain polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic, in the regulation of gene expression during the development of obesity: a systematic review. Front Nutr 2023; 10:1288804. [PMID: 38024342 PMCID: PMC10665854 DOI: 10.3389/fnut.2023.1288804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction There exists a correlation between obesity and the consumption of an excessive amount of calories, with a particular association between the intake of saturated and trans fats and an elevated body mass index. Omega-3 fatty acids, specifically eicosapentaenoic and docosahexaenoic acids, have been identified as potential preventive nutrients against the cardiometabolic hazards that are commonly associated with obesity. The objective of this comprehensive review was to elucidate the involvement of long-chain polyunsaturated fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, in the modulation of gene expression during the progression of obesity. Methods The present analysis focused on primary studies that investigated the association between long-chain polyunsaturated fatty acids, gene expression, and obesity in individuals aged 18 to 65 years. Furthermore, a comprehensive search was conducted on many databases until August 2023 to identify English-language scholarly articles utilizing MeSH terms and textual content pertaining to long-chain polyunsaturated fatty acids, gene expression, obesity, and omega-3. The protocol has been registered on PROSPERO under the registration number CRD42022298395. A comprehensive analysis was conducted on a total of nine primary research articles. All research collected and presented quantitative data. Results and Discussion The findings of our study indicate that the incorporation of eicosapentaenoic and docosahexaenoic acid may have potential advantages and efficacy in addressing noncommunicable diseases, including obesity. This can be attributed to their anti-inflammatory properties and their ability to regulate genes associated with obesity, such as PPARγ and those within the ALOX family. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022298395, CRD42022298395.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Karen Nahuelqueo
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Luciana Mella
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Blanca Recabarren
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
17
|
Tylek K, Trojan E, Leśkiewicz M, Ghafir El Idrissi I, Lacivita E, Leopoldo M, Basta-Kaim A. Microglia Depletion Attenuates the Pro-Resolving Activity of the Formyl Peptide Receptor 2 Agonist AMS21 Related to Inhibition of Inflammasome NLRP3 Signalling Pathway: A Study of Organotypic Hippocampal Cultures. Cells 2023; 12:2570. [PMID: 37947648 PMCID: PMC10648897 DOI: 10.3390/cells12212570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Microglial cells have been demonstrated to be significant resident immune cells that maintain homeostasis under physiological conditions. However, prolonged or excessive microglial activation leads to disturbances in the resolution of inflammation (RoI). Formyl peptide receptor 2 (FPR2) is a crucial player in the RoI, interacting with various ligands to induce distinct conformational changes and, consequently, diverse biological effects. Due to the poor pharmacokinetic properties of endogenous FPR2 ligands, the aim of our study was to evaluate the pro-resolving effects of a new ureidopropanamide agonist, compound AMS21, in hippocampal organotypic cultures (OHCs) stimulated with lipopolysaccharide (LPS). Moreover, to assess whether AMS21 exerts its action via FPR2 specifically located on microglial cells, we conducted a set of experiments in OHCs depleted of microglial cells using clodronate. We demonstrated that the protective and anti-inflammatory activity of AMS21 manifested as decreased levels of lactate dehydrogenase (LDH), nitric oxide (NO), and proinflammatory cytokines IL-1β and IL-6 release evoked by LPS in OHCs. Moreover, in LPS-stimulated OHCs, AMS21 treatment downregulated NLRP3 inflammasome-related factors (CASP1, NLRP3, PYCARD) and this effect was mediated through FPR2 because it was blocked by the FPR2 antagonist WRW4 pre-treatment. Importantly this beneficial effect of AMS21 was only observed in the presence of microglial FPR2, and absent in OHCs depleted with microglial cells using clodronate. Our results strongly suggest that the compound AMS21 exerts, at nanomolar doses, protective and anti-inflammatory properties and an FPR2 receptor located specifically on microglial cells mediates the anti-inflammatory response of AMS21. Therefore, microglial FPR2 represents a promising target for the enhancement of RoI.
Collapse
Affiliation(s)
- Kinga Tylek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| | - Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| | - Imane Ghafir El Idrissi
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (I.G.E.I.); (E.L.); (M.L.)
| | - Enza Lacivita
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (I.G.E.I.); (E.L.); (M.L.)
| | - Marcello Leopoldo
- Department of Pharmacy—Drug Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy; (I.G.E.I.); (E.L.); (M.L.)
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343 Kraków, Poland; (K.T.); (E.T.); (M.L.)
| |
Collapse
|
18
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
19
|
Bogen KT. Ultrasensitive dose-response for asbestos cancer risk implied by new inflammation-mutation model. ENVIRONMENTAL RESEARCH 2023; 230:115047. [PMID: 36965808 DOI: 10.1016/j.envres.2022.115047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
Alterations in complex cellular phenotype each typically involve multistep activation of an ultrasensitive molecular switch (e.g., to adaptively initiate an apoptosis, inflammasome, Nrf2-ARE anti-oxidant, or heat-shock activation pathway) that triggers expression of a suite of target genes while efficiently limiting false-positive switching from a baseline state. Such switches exhibit nonlinear signal-activation relationships. In contrast, a linear no-threshold (LNT) dose-response relationship is expected for damage that accumulates in proportion to dose, as hypothesized for increased risk of cancer in relation to genotoxic dose according to the multistage somatic mutation/clonal-expansion theory of cancer, e.g., as represented in the Moolgavkar-Venzon-Knudsen (MVK) cancer model by a doubly stochastic nonhomogeneous Poisson process. Mesothelioma and lung cancer induced by exposure to carcinogenic (e.g., certain asbestos) fibers in humans and experimental animals are thought to involve modes of action driven by mutations, cytotoxicity-associated inflammation, or both, rendering ambiguous expectations concerning the nature of model-implied shape of the low-dose response for above-background increase in risk of incurring these endpoints. A recent Inflammation Somatic Mutation (ISM) theory of cancer posits instead that tissue-damage-associated inflammation that epigenetically recruits, activates and orchestrates stem cells to engage in tissue repair does not merely promote cancer, but rather is a requisite co-initiator (acting together with as few as two somatic mutations) of the most efficient pathway to any type of cancer in any reparable tissue (Dose-Response 2019; 17(2):1-12). This theory is reviewed, implications of this theory are discussed in relation to mesothelioma and lung cancer associated with chronic asbestos inhalation, one of the two types of ISM-required mutations is here hypothesized to block or impede inflammation resolution (e.g., by doing so for GPCR-mediated signal transduction by one or more endogenous autacoid specialized pro-resolving mediators or SPMs), and supporting evidence for this hypothesis is discussed.
Collapse
Affiliation(s)
- Kenneth T Bogen
- 9832 Darcy Forest Drive, Silver Spring, MD, 20910, United States.
| |
Collapse
|
20
|
Liu M, He H, Fan F, Qiu L, Zheng F, Guan Y, Yang G, Chen L. Maresin-1 protects against pulmonary arterial hypertension by improving mitochondrial homeostasis through ALXR/HSP90α axis. J Mol Cell Cardiol 2023; 181:15-30. [PMID: 37244057 DOI: 10.1016/j.yjmcc.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
AIMS Pulmonary arterial hypertension (PAH) is a progressive and lethal disease characterized by continuous proliferation of pulmonary arterial smooth muscle cell (PASMCs) and increased pulmonary vascular remodeling. Maresin-1 (MaR1) is a member of pro-resolving lipid mediators and exhibits protective effects on various inflammation-related diseases. Here we aimed to study the role of MaR1 in the development and progression of PAH and to explore the underlying mechanisms. METHODS AND RESULTS We evaluated the effect of MaR1 treatment on PAH in both monocrotaline (MCT)-induced rat and hypoxia+SU5416 (HySu)-induced mouse models of pulmonary hypertension (PH). Plasma samples were collected from patients with PAH and rodent PH models to examine MaR1 production. Specific shRNA adenovirus or inhibitors were used to block the function of MaR1 receptors. The data showed that MaR1 significantly prevented the development and blunted the progression of PH in rodents. Blockade of the function of MaR1 receptor ALXR, but not LGR6 or RORα, with BOC-2, abolished the protective effect of MaR1 against PAH development and reduced its therapeutic potential. Mechanistically, we demonstrated that the MaR1/ALXR axis suppressed hypoxia-induced PASMCs proliferation and alleviated pulmonary vascular remodeling by inhibiting mitochondrial accumulation of heat shock protein 90α (HSP90α) and restoring mitophagy. CONCLUSION MaR1 protects against PAH by improving mitochondrial homeostasis through ALXR/HSP90α axis and represents a promising target for PAH prevention and treatment.
Collapse
Affiliation(s)
- Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Huixiang He
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Fenling Fan
- Division of Pulmonary Vascular Disease, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lejia Qiu
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guangrui Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China; Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
21
|
Minas TZ, Lord BD, Zhang AL, Candia J, Dorsey TH, Baker FS, Tang W, Bailey-Whyte M, Smith CJ, Obadi OM, Ajao A, Jordan SV, Tettey Y, Biritwum RB, Adjei AA, Mensah JE, Hoover RN, Hsing AW, Liu J, Loffredo CA, Yates C, Cook MB, Ambs S. Circulating trans fatty acids are associated with prostate cancer in Ghanaian and American men. Nat Commun 2023; 14:4322. [PMID: 37468456 DOI: 10.1038/s41467-023-39865-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
The association between fatty acids and prostate cancer remains poorly explored in African-descent populations. Here, we analyze 24 circulating fatty acids in 2934 men, including 1431 prostate cancer cases and 1503 population controls from Ghana and the United States, using CLIA-certified mass spectrometry-based assays. We investigate their associations with population groups (Ghanaian, African American, European American men), lifestyle factors, the fatty acid desaturase (FADS) genetic locus, and prostate cancer. Blood levels of circulating fatty acids vary significantly between the three population groups, particularly trans, omega-3 and omega-6 fatty acids. FADS1/2 germline genetic variants and lifestyle factors explain some of the variation in fatty acid levels, with the FADS1/2 locus showing population-specific associations, suggesting differences in their control by germline genetic factors. All trans fatty acids, namely elaidic, palmitelaidic, and linoelaidic acids, associated with an increase in the odds of developing prostate cancer, independent of ancestry, geographic location, or potential confounders.
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa, Addis Ababa University, Addis Ababa, Ethiopia
| | - Brittany D Lord
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Amy L Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Tiffany H Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Francine S Baker
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Maeve Bailey-Whyte
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Cheryl J Smith
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Obadi M Obadi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Anuoluwapo Ajao
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Symone V Jordan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | - Yao Tettey
- University of Ghana Medical School, Accra, Ghana
| | | | | | | | - Robert N Hoover
- Division of Cancer Epidemiology & Genetics, NCI, Rockville, MD, USA
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Palo Alto, CA, USA
- Stanford Prevention Research Center, Stanford University, Palo Alto, CA, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, NCI, Rockville, MD, USA
| | | | - Clayton Yates
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael B Cook
- Division of Cancer Epidemiology & Genetics, NCI, Rockville, MD, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA.
| |
Collapse
|
22
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
23
|
Jeong SY, Lee HL, Wee S, Lee H, Hwang G, Hwang S, Yoon S, Yang YI, Han I, Kim KN. Co-Administration of Resolvin D1 and Peripheral Nerve-Derived Stem Cell Spheroids as a Therapeutic Strategy in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2023; 24:10971. [PMID: 37446149 DOI: 10.3390/ijms241310971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.
Collapse
Affiliation(s)
- Seung-Young Jeong
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - GwangYong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SolLip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Il Yang
- Paik Imje Memorial Institute for Clinical Research, InJe University College of Medicine, Busan 47392, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Maltais R, Sancéau JY, Poirier D, Marette A. A Concise, Gram-Scale Total Synthesis of Protectin DX and Related Labeled Versions via a Key Stereoselective Reduction of Enediyne. J Org Chem 2023. [PMID: 37172290 DOI: 10.1021/acs.joc.3c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We report a gram-scale total synthesis of protectin DX (PDX) following a convergent synthetic route (24 steps) from l-malic acid. This novel synthetic strategy is based on the assembly of three main building blocks using a Sonogashira coupling reaction (blocks A and B) and Wittig olefination (block C) to provide the 22-carbon backbone of PDX. A key stereoselective reduction of enediyne leads to a central E,Z,E-trienic system of PDX and also gives access to its labeled versions (D and T).
Collapse
Affiliation(s)
- René Maltais
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Jean-Yves Sancéau
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
| | - Donald Poirier
- Organic Synthesis Service, Medicinal Chemistry Platform, CHU de Québec Research Center-Université Laval, Québec, QC, Canada G1V 4G2
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada G1V 0A6
| | - André Marette
- Department of Medicine, Québec Heart and Lung Institute, Laval Hospital, Québec, QC, Canada G1V 4G5
| |
Collapse
|
25
|
Bouhadoun A, Manikpurage HD, Deschildre C, Zalghout S, Dubourdeau M, Urbach V, Ho-Tin-Noe B, Deschamps L, Michel JB, Longrois D, Norel X. DHA, RvD1, RvD5, and MaR1 reduce human coronary arteries contractions induced by PGE 2. Prostaglandins Other Lipid Mediat 2023; 165:106700. [PMID: 36528331 DOI: 10.1016/j.prostaglandins.2022.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
In patients with coronary artery disease (CAD), plasma levels of pro-inflammatory lipid mediators such as PGE2 and TxA2 are increased. They could increase vascular contraction while EPA and DHA could reduce it. Studies have been mostly conducted on animal vessels. Therefore, the aim of the study was to investigate if EPA, DHA, and DHA-derived metabolites: RvD1, RvD5 and MaR1 can modulate contraction of human coronary arteries (HCA) induced by PGE2 or TxA2 stable analogue (U46619). DHA and EPA relaxed HCA pre-contracted with PGE2. 18 h-incubation with DHA but not EPA reduced the PGE2-induced contractions. Pre-incubation with RvD1, RvD5 and MaR1 reduced the PGE2-induced contractions. Indomethacin did not significantly modify the PGE2 responses. L-NOARG (inhibitor of nitric oxide synthase), reduced only the PGE2-induced contractions in RvD1-treated rings. Finally, FPR2/ALX, GPR32 and LGR6 receptors are detected in HCA by immunofluorescence. Our results indicate that DHA and its metabolites could be beneficial for HCA blood flow and could be a therapeutic perspective for patients with CAD.
Collapse
Affiliation(s)
- Amel Bouhadoun
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Hasanga D Manikpurage
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Catherine Deschildre
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Sara Zalghout
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | | | | | - Benoît Ho-Tin-Noe
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Lydia Deschamps
- Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité Paris, France
| | - Jean-Baptiste Michel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France
| | - Dan Longrois
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France; Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Université Paris Cité Paris, France
| | - Xavier Norel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018 Paris, France.
| |
Collapse
|
26
|
Nakashima F, Giménez-Bastida JA, Luis PB, Presley SH, Boer RE, Chiusa M, Shibata T, Sulikowski GA, Pozzi A, Schneider C. The 5-lipoxygenase/cyclooxygenase-2 cross-over metabolite, hemiketal E 2, enhances VEGFR2 activation and promotes angiogenesis. J Biol Chem 2023; 299:103050. [PMID: 36813233 PMCID: PMC10040730 DOI: 10.1016/j.jbc.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
Consecutive oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2 yields the hemiketal eicosanoids, HKE2 and HKD2. Hemiketals stimulate angiogenesis by inducing endothelial cell tubulogenesis in culture; however, how this process is regulated has not been determined. Here, we identify vascular endothelial growth factor receptor 2 (VEGFR2) as a mediator of HKE2-induced angiogenesis in vitro and in vivo. We found that HKE2 treatment of human umbilical vein endothelial cells dose-dependently increased the phosphorylation of VEGFR2 and the downstream kinases ERK and Akt that mediated endothelial cell tubulogenesis. In vivo, HKE2 induced the growth of blood vessels into polyacetal sponges implanted in mice. HKE2-mediated effects in vitro and in vivo were blocked by the VEGFR2 inhibitor vatalanib, indicating that the pro-angiogenic effect of HKE2 was mediated by VEGFR2. HKE2 covalently bound and inhibited PTP1B, a protein tyrosine phosphatase that dephosphorylates VEGFR2, thereby providing a possible molecular mechanism for how HKE2 induced pro-angiogenic signaling. In summary, our studies indicate that biosynthetic cross-over of the 5-lipoxygenase and cyclooxygenase-2 pathways gives rise to a potent lipid autacoid that regulates endothelial cell function in vitro and in vivo. These findings suggest that common drugs targeting the arachidonic acid pathway could prove useful in antiangiogenic therapy.
Collapse
Affiliation(s)
- Fumie Nakashima
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Juan A Giménez-Bastida
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Paula B Luis
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sai H Presley
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Robert E Boer
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Manuel Chiusa
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
27
|
Deciphering Complex Interactions in Bioactive Lipid Signaling. Molecules 2023; 28:molecules28062622. [PMID: 36985594 PMCID: PMC10057854 DOI: 10.3390/molecules28062622] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipids are usually viewed as metabolic fuel and structural membrane components. Yet, in recent years, different families of lipids able to act as authentic messengers between cells and/or intracellularly have been discovered. Such lipid signals have been shown to exert their biological activity via specific receptors that, by triggering distinct signal transduction pathways, regulate manifold pathophysiological processes in our body. Here, endogenous bioactive lipids produced from arachidonic acid (AA) and other poly-unsaturated fatty acids will be presented, in order to put into better perspective the relevance of their mutual interactions for health and disease conditions. To this end, metabolism and signal transduction pathways of classical eicosanoids, endocannabinoids and specialized pro-resolving mediators will be described, and the intersections and commonalities of their metabolic enzymes and binding receptors will be discussed. Moreover, the interactions of AA-derived signals with other bioactive lipids such as shingosine-1-phosphate and steroid hormones will be addressed.
Collapse
|
28
|
Leiba J, Özbilgiç R, Hernández L, Demou M, Lutfalla G, Yatime L, Nguyen-Chi M. Molecular Actors of Inflammation and Their Signaling Pathways: Mechanistic Insights from Zebrafish. BIOLOGY 2023; 12:153. [PMID: 36829432 PMCID: PMC9952950 DOI: 10.3390/biology12020153] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Inflammation is a hallmark of the physiological response to aggressions. It is orchestrated by a plethora of molecules that detect the danger, signal intracellularly, and activate immune mechanisms to fight the threat. Understanding these processes at a level that allows to modulate their fate in a pathological context strongly relies on in vivo studies, as these can capture the complexity of the whole process and integrate the intricate interplay between the cellular and molecular actors of inflammation. Over the years, zebrafish has proven to be a well-recognized model to study immune responses linked to human physiopathology. We here provide a systematic review of the molecular effectors of inflammation known in this vertebrate and recapitulate their modes of action, as inferred from sterile or infection-based inflammatory models. We present a comprehensive analysis of their sequence, expression, and tissue distribution and summarize the tools that have been developed to study their function. We further highlight how these tools helped gain insights into the mechanisms of immune cell activation, induction, or resolution of inflammation, by uncovering downstream receptors and signaling pathways. These progresses pave the way for more refined models of inflammation, mimicking human diseases and enabling drug development using zebrafish models.
Collapse
|
29
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
30
|
Shichiri M, Suzuki H, Isegawa Y, Tamai H. Application of regulation of reactive oxygen species and lipid peroxidation to disease treatment. J Clin Biochem Nutr 2023; 72:13-22. [PMID: 36777080 PMCID: PMC9899923 DOI: 10.3164/jcbn.22-61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/02/2022] [Indexed: 11/05/2022] Open
Abstract
Although many diseases in which reactive oxygen species (ROS) and free radicals are involved in their pathogenesis are known, and antioxidants that effectively capture ROS have been identified and developed, there are only a few diseases for which antioxidants have been used for treatment. Here, we discuss on the following four concepts regarding the development of applications for disease treatment by regulating ROS, free radicals, and lipid oxidation with the findings of our research and previous reports. Concept 1) Utilization of antioxidants for disease treatment. In particular, the importance of the timing of starting antioxidant will be discussed. Concept 2) Therapeutic strategies using ROS and free radicals. Methods of inducing ferroptosis, which has been advocated as an iron-dependent cell death, are mentioned. Concept 3) Treatment with drugs that inhibit the synthesis of lipid mediators. In addition to the reduction of inflammatory lipid mediators by inhibiting cyclooxygenase and leukotriene synthesis, we will introduce the possibility of disease treatment with lipoxygenase inhibitors. Concept 4) Disease treatment by inducing the production of useful lipid mediators for disease control. We describe the treatment of inflammatory diseases utilizing pro-resolving mediators and propose potential compounds that activate lipoxygenase to produce these beneficial mediators.
Collapse
Affiliation(s)
- Mototada Shichiri
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, 6-46 Ikebiraki, Nishinomiya, Hyogo 663-8558, Japan
| | - Hiroshi Tamai
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
31
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Kokorina PI, Khlebnikov AI, Quinn MT. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3399. [PMID: 36501438 PMCID: PMC9739404 DOI: 10.3390/plants11233399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Propolis is a resinous mixture of substances collected and processed from various botanical sources by honeybees. Black poplar (Populus balsamifera L.) buds are one of the primary sources of propolis. Despite their reported therapeutic properties, little is known about the innate immunomodulatory activity of essential oils from P. balsamifera and propolis. In the present studies, essential oils were isolated from the buds of P. balsamifera and propolis collected in Montana. The main components of the essential oil from P. balsamifera were E-nerolidol (64.0%), 1,8-cineole (10.8%), benzyl benzoate (3.7%), α-terpinyl acetate (2.7%), α-pinene (1.8%), o-methyl anisol (1.8%), salicylaldehyde (1.8%), and benzyl salicylate (1.6%). Likewise, the essential oil from propolis was enriched with E-nerolidol (14.4%), cabreuva oxide-VI (7.9%), α-bisabolol (7.1%), benzyl benzoate (6.1%), β-eudesmol (3.6%), T-cadinol (3.1%), 2-methyl-3-buten-2-ol (3.1%), α-eudesmol (3.0%), fokienol (2.2%), nerolidol oxide derivative (1.9%), decanal (1.8%), 3-butenyl benzene (1.5%), 1,4-dihydronaphthalene (1.5%), selina-4,11-diene (1.5%), α-cadinol (1.5%), linalool (1.4%), γ-cadinene (1.4%), 2-phenylethyl-2-methyl butyrate (1.4%), 2-methyl-2-butenol (1.3%), octanal (1.1%), benzylacetone (1.1%), and eremoligenol (1.1%). A comparison between P. balsamifera and propolis essential oils demonstrated that 22 compounds were found in both essential oil samples. Both were enriched in E-nerolidol and its derivatives, including cabreuva oxide VI and nerolidol oxides. P. balsamifera and propolis essential oils and pure nerolidol activated Ca2+ influx in human neutrophils. Since these treatments activated neutrophils, the essential oil samples were also evaluated for their ability to down-regulate the neutrophil responses to subsequent agonist activation. Indeed, treatment with P. balsamifera and propolis essential oils inhibited subsequent activation of these cells by the N-formyl peptide receptor 1 (FPR1) agonist fMLF and the FPR2 agonist WKYMVM. Likewise, nerolidol inhibited human neutrophil activation induced by fMLF (IC50 = 4.0 μM) and WKYMVM (IC50 = 3.7 μM). Pretreatment with the essential oils and nerolidol also inhibited human neutrophil chemotaxis induced by fMLF, again suggesting that these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Finally, reverse pharmacophore mapping predicted several potential kinase targets for nerolidol. Thus, our studies have identified nerolidol as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Polina I. Kokorina
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk 634050, Russia
| | | | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
32
|
Storniolo CE, Pequera M, Vilariño A, Moreno JJ. Specialized pro-resolvin mediators induce cell growth and improve wound repair in intestinal epithelial Caco-2 cell cultures. Prostaglandins Leukot Essent Fatty Acids 2022; 187:102520. [PMID: 36427427 DOI: 10.1016/j.plefa.2022.102520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Specialized pro-resolvin mediators (SPMs) are a superfamily of bioactive molecules synthesized from polyunsaturated fatty acids (arachidonic, eicosapentaenoic and docosahexaenoic acids) that include resolvins, protectins and maresins. These metabolites are important to control the resolution phase of inflammation and the epithelial repair, which is essential in restoring the mucosal barriers. Unfortunately, the effects of SPMs on intestinal epithelial cell growth remain poorly understood. Caco-2 cell were used as intestinal epithelial cell model. Cell growth/DNA synthesis, cell signalling pathways, western blot and wound repair assay were performed. Our data demonstrated that SPMs such as lipoxin LxA4, resolvin (Rv) E1, RvD1, protectin D 1 and maresin 1 were able to enhance intestinal epithelial Caco-2 cell growth and DNA synthesis. Furthermore, our results provide evidence that these effects of RvE1 and RvD1 were associated with a pertussis toxin-sensitive G protein-coupled receptor, and that leukotriene B4 receptor 2 could be involved, at least in part, in these effects of RvE1/RvD1. Moreover, these mitogenic effects induced by SPMs were dependent on the ERK 1/2 and p38 MAPK pathways as well as phospholipase C and protein kinase C activation. Thus, these mitogenic effects of RvE1/RvD1 on intestinal epithelial cells could be involved in this signalling circuit involved in wounded epithelium and the catabasis process.
Collapse
Affiliation(s)
- C E Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain
| | - M Pequera
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain
| | - A Vilariño
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain
| | - J J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain; CIBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
33
|
Easwaran M, Martinez JD, Kim JB, Erickson-DiRenzo E. Modulation of mouse laryngeal inflammatory and immune cell responses by low and high doses of mainstream cigarette smoke. Sci Rep 2022; 12:18667. [PMID: 36333510 PMCID: PMC9636197 DOI: 10.1038/s41598-022-23359-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Cigarette smoking is a major risk factor for laryngeal diseases. Despite well-documented cigarette smoke (CS) induced laryngeal histopathological changes, the underlying immunopathological mechanisms remain largely unexplored. The goal of this study was to evaluate inflammatory and immune cell responses in a CS-exposed larynx. Specifically, we used a 4-week subacute whole-body CS inhalation mouse model to assess these responses in the laryngeal mucosa upon exposure to low (LD; 1 h/day) and high dose (HD; 4 h/day) CS. Laryngeal tissues were harvested and evaluated using a 254-plex NanoString inflammation panel and neutrophil/macrophage/T-cell immunohistochemistry (IHC). NanoString global and differential gene expression analysis revealed a unique expression profile only in the HD group, with 26 significant differentially expressed genes (DEGs). StringDB KEGG pathway enrichment analysis revealed the involvement of these DEGs with pro-inflammatory pathways including TNF/TNFα and IL-17. Furthermore, inflammatory responses remained inhibited in conjunction with predicted activated states of anti-inflammatory regulators like PPARγ and NFE2L2 upon Ingenuity Pathway Analysis (IPA). Subglottic T-cell levels remained significantly inhibited as corroborated by IPA predictions. Overall, our key findings are consistent with HD exposures being anti-inflammatory and immunosuppressive. Furthermore, the identification of important regulatory genes and enriched pathways may help improve clinical interventions for CS-induced laryngeal diseases.
Collapse
Affiliation(s)
- Meena Easwaran
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua D Martinez
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Juyong Brian Kim
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth Erickson-DiRenzo
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
34
|
Wolfarth B, Speed C, Raymuev K, Vanden Bossche L, Migliore A. Managing pain and inflammation associated with musculoskeletal disease: time for a change? Curr Med Res Opin 2022; 38:1695-1701. [PMID: 35916625 DOI: 10.1080/03007995.2022.2108618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Bernd Wolfarth
- Department of Sports Medicine, Charité University Hospital and Professor, Humboldt University, Berlin, Germany
| | - Cathy Speed
- Department of Rheumatology, Sport & Exercise Medicine, Spire Cambridge Lea Hospital, Cambridge, UK
| | - Kirill Raymuev
- Department of Rheumatology, North-Western State Medical University I.I. Mechnikov, St Petersburg, Russia
| | - Luc Vanden Bossche
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
| | - Alberto Migliore
- Department of Medicine, St Peter Fatebenefratelli Hospital, Rome, Italy
| |
Collapse
|
35
|
Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol 2022; 179:4617-4639. [PMID: 35797341 PMCID: PMC9545948 DOI: 10.1111/bph.15919] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022] Open
Abstract
We discuss the fascinating pharmacology of formylpeptide receptor 2 (FPR2; often referred to as FPR2/ALX since it binds lipoxin A4 ). Initially identified as a low-affinity 'relative' of FPR1, FPR2 presents complex and diverse biology. For instance, it is activated by several classes of agonists (from peptides to proteins and lipid mediators) and displays diverse expression patterns on myeloid cells as well as epithelial cells and endothelial cells, to name a few. Over the last decade, the pharmacology of FPR2 has progressed from being considered a weak chemotactic receptor to a master-regulator of the resolution of inflammation, the second phase of the acute inflammatory response. We propose that exploitation of the biology of FPR2 offers innovative ways to rectify chronic inflammatory states and represents a viable avenue to develop novel therapies. Recent elucidation of FPR2 structure will facilitate development of the anti-inflammatory and pro-resolving drugs of next decade.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Lucy V. Norling
- William Harvey Research Institute, Barts and the London School of MedicineQueen Mary University of LondonLondonUK
| | - Elizabeth A. Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Eoin P. Brennan
- Diabetes Complications Research Centre, Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of MedicineQueen Mary University of LondonLondonUK
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
36
|
Pulgar VM, Howlett AC, Eldeeb K. WIN55212-2 Modulates Intracellular Calcium via CB 1 Receptor-Dependent and Independent Mechanisms in Neuroblastoma Cells. Cells 2022; 11:2947. [PMID: 36230909 PMCID: PMC9563019 DOI: 10.3390/cells11192947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
The CB1 cannabinoid receptor (CB1R) and extracellular calcium (eCa2+)-stimulated Calcium Sensing receptor (CaSR) can exert cellular signaling by modulating levels of intracellular calcium ([Ca2+]i). We investigated the mechanisms involved in the ([Ca2+]i) increase in N18TG2 neuroblastoma cells, which endogenously express both receptors. Changes in [Ca2+]i were measured in cells exposed to 0.25 or 2.5 mM eCa2+ by a ratiometric method (Fura-2 fluorescence) and expressed as the difference between baseline and peak responses (ΔF340/380). The increased ([Ca2+]i) in cells exposed to 2.5 mM eCa2+ was blocked by the CaSR antagonist, NPS2143, this inhibition was abrogated upon stimulation with WIN55212-2. WIN55212-2 increased [Ca2+]i at 0.25 and 2.5 mM eCa2+ by 700% and 350%, respectively, but this increase was not replicated by CP55940 or methyl-anandamide. The store-operated calcium entry (SOCE) blocker, MRS1845, attenuated the WIN55212-2-stimulated increase in [Ca2+]i at both levels of eCa2+. Simultaneous perfusion with the CB1 antagonist, SR141716 or NPS2143 decreased the response to WIN55212-2 at 0.25 mM but not 2.5 mM eCa2+. Co-perfusion with the non-CB1/CB2 antagonist O-1918 attenuated the WIN55212-2-stimulated [Ca2+]i increase at both eCa2+ levels. These results are consistent with WIN55212-2-mediated intracellular Ca2+ mobilization from store-operated calcium channel-filled sources that could occur via either the CB1R or an O-1918-sensitive non-CB1R in coordination with the CaSR. Intracellular pathway crosstalk or signaling protein complexes may explain the observed effects.
Collapse
Affiliation(s)
- Victor M. Pulgar
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA
- Biomedical Research and Infrastructure Center, Winston-Salem State University, Winston-Salem, NC 27101, USA
- Department of Obstetrics & Gynecology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Allyn C. Howlett
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Khalil Eldeeb
- Department of Physiology & Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- AL Azhar Faculty of Medicine, New Damietta 34518, Egypt
| |
Collapse
|
37
|
Zhang Q, Li F, Ritchie RH, Woodman OL, Zhou X, Qin CX. Novel strategies to promote resolution of inflammation to treat lower extremity artery disease. Curr Opin Pharmacol 2022; 65:102263. [DOI: 10.1016/j.coph.2022.102263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
|
38
|
Livshits G, Kalinkovich A. Targeting chronic inflammation as a potential adjuvant therapy for osteoporosis. Life Sci 2022; 306:120847. [PMID: 35908619 DOI: 10.1016/j.lfs.2022.120847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Systemic, chronic, low-grade inflammation (SCLGI) underlies the pathogenesis of various widespread diseases. It is often associated with bone loss, thus connecting chronic inflammation to the pathogenesis of osteoporosis. In postmenopausal women, osteoporosis is accompanied by SCLGI development, likely owing to estrogen deficiency. We propose that SCGLI persistence in osteoporosis results from failed inflammation resolution, which is mainly mediated by specialized, pro-resolving mediators (SPMs). In corroboration, SPMs demonstrate encouraging therapeutic effects in various preclinical models of inflammatory disorders, including bone pathology. Since numerous data implicate gut dysbiosis in osteoporosis-associated chronic inflammation, restoring balanced microbiota by supplementing probiotics and prebiotics could contribute to the efficient resolution of SCGLI. In the present review, we provide evidence for this hypothesis and argue that efficient SCGLI resolution may serve as a novel approach for treating osteoporosis, complementary to traditional anti-osteoporotic medications.
Collapse
Affiliation(s)
- Gregory Livshits
- Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel.
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| |
Collapse
|
39
|
Resolvin D5 disrupts anxious- and depressive-like behaviors in a type 1 diabetes mellitus animal model. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1269-1282. [DOI: 10.1007/s00210-022-02274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
|
40
|
Liu M, He H, Chen L. Protective Potential of Maresins in Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:923413. [PMID: 35859590 PMCID: PMC9289265 DOI: 10.3389/fcvm.2022.923413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases are the leading causes of global mortality. Growing evidence suggests that unresolved inflammation contributes to the chronicity, progression and morbidity of many cardiovascular diseases, thus emphasizing the urgent need to illuminate the mechanisms controlling inflammation and its resolution, for the sake of new effective therapeutic options. Macrophage mediators in resolving inflammation (Maresins) are a family of specialized pro-resolving lipid mediators (SPMs) derived from the ω-3 fatty acid docosahexaenoic acid (DHA). Studies have indicated that Maresins play critical role in initiating the pro-resolving functions of phagocytes, decreasing the magnitude of the overall inflammatory response, and thereby protecting against inflammation-related disorders. In this review, we summarize the detailed actions and the therapeutic potential of Maresins, with a particular emphasis on Maresin-1 (MaR1), in cardiovascular diseases. We hope this review will lead to new avenues to Maresins-based therapies for inflammation-associated cardiovascular diseases.
Collapse
|
41
|
Kalinkovich A, Becker M, Livshits G. New Horizons in the Treatment of Age-Associated Obesity, Sarcopenia and Osteoporosis. Drugs Aging 2022; 39:673-683. [PMID: 35781216 DOI: 10.1007/s40266-022-00960-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2022] [Indexed: 11/03/2022]
Abstract
The rapid increase in both the lifespan and proportion of older adults in developed countries is accompanied by the dramatic growth of age-associated chronic diseases, including obesity, sarcopenia, and osteoporosis. Hence, prevention and treatment of age-associated chronic diseases has become increasingly urgent. The key to achieving this goal is a better understanding of the mechanisms underlying their pathophysiology, some aspects of which, despite extensive investigation, are still not fully understood. Aging, obesity, sarcopenia, and osteoporosis are characterized by the creation of a systemic, chronic, low-grade inflammation (SCLGI). The common mechanisms that govern the development of these chronic conditions include a failed resolution of inflammation. Physiologically, the process of inflammation resolution is provided mainly by specialized pro-resolving mediators (SPMs) acting via cognate G protein-coupled receptors (GPCRs). Noteworthy, SPM levels and the expression of their receptors are significantly reduced in aging and the associated chronic disorders. In preclinical studies, supplementation of SPMs or their stable, small-molecule SPM mimetics and receptor agonists reveals clear beneficial effects in inflammation-related obesity and sarcopenic and osteoporotic conditions, suggesting a translational potential. Age-associated chronic disorders are also characterized by gut dysbiosis and the accumulation of senescent cells in the adipose tissue, skeletal muscle, and bones. Based on these findings, we propose SCLGI resolution as a novel strategy for the prevention/treatment of age-associated obesity, sarcopenia, and osteoporosis. Our approach entails the enhancement of inflammation resolution by SPM mimetics and receptor agonists in concert with probiotics/prebiotics and compounds that eliminate senescent cells and their pro-inflammatory activity.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel
| | - Maria Becker
- Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 6905126, Tel-Aviv, Israel. .,Adelson School of Medicine, Ariel University, 4077625, Ariel, Israel.
| |
Collapse
|
42
|
Dubé L, Spahis S, Lachaîne K, Lemieux A, Monhem H, Poulin SM, Randoll C, Travaillaud E, Ould-Chikh NEH, Marcil V, Delvin E, Levy E. Specialized Pro-Resolving Mediators Derived from N-3 Polyunsaturated Fatty Acids: Role in Metabolic Syndrome and Related Complications. Antioxid Redox Signal 2022; 37:54-83. [PMID: 35072542 DOI: 10.1089/ars.2021.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.
Collapse
Affiliation(s)
- Laurent Dubé
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Karelle Lachaîne
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Hanine Monhem
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Carolane Randoll
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Eva Travaillaud
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Valérie Marcil
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Gastroenterology & Hepatology Unit, Université de Montréal, Montreal, Canada
| |
Collapse
|
43
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Khlebnikov AI, Klein RA, Quinn MT. Neutrophil Immunomodulatory Activity of Farnesene, a Component of Artemisia dracunculus Essential Oils. Pharmaceuticals (Basel) 2022; 15:642. [PMID: 35631467 PMCID: PMC9143003 DOI: 10.3390/ph15050642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Despite their reported therapeutic properties, not much is known about the immunomodulatory activity of essential oils present in Artemisia species. We isolated essential oils from the flowers and leaves of five Artemisia species: A. tridentata, A. ludoviciana, A. dracunculus, A. frigida, and A. cana. The chemical composition of the Artemisia essential oil samples had similarities and differences as compared to those previously reported in the literature. The main components of essential oils obtained from A. tridentata, A. ludoviciana, A. frigida, and A. cana were camphor (23.0-51.3%), 1,8-cineole (5.7-30.0%), camphene (1.6-7.7%), borneol (2.3-14.6%), artemisiole (1.2-7.5%), terpinen-4-ol (2.0-6.9%), α-pinene (0.8-3.9%), and santolinatriene (0.7-3.5%). Essential oils from A. dracunculus were enriched in methyl chavicol (38.8-42.9%), methyl eugenol (26.1-26.4%), terpinolene (5.5-8.8%), (E/Z)-β-ocimene (7.3-16.0%), β-phellandrene (1.3-2.2%), p-cymen-8-ol (0.9-2.3%), and xanthoxylin (1.2-2.2%). A comparison across species also demonstrated that some compounds were present in only one Artemisia species. Although Artemisia essential oils were weak activators of human neutrophils, they were relatively more potent in inhibiting subsequent neutrophil Ca2+ mobilization with N-formyl peptide receptor 1 (FPR1) agonist fMLF- and FPR2 agonist WKYMVM, with the most potent being essential oils from A. dracunculus. Further analysis of unique compounds found in A. dracunculus showed that farnesene, a compound with a similar hydrocarbon structure as lipoxin A4, inhibited Ca2+ influx induced in human neutrophils by fMLF (IC50 = 1.2 μM), WKYMVM (IC50 = 1.4 μM), or interleukin 8 (IC50 = 2.6 μM). Pretreatment with A. dracunculus essential oils and farnesene also inhibited human neutrophil chemotaxis induced by fMLF, suggesting these treatments down-regulated human neutrophil responses to inflammatory chemoattractants. Thus, our studies have identified farnesene as a potential anti-inflammatory modulator of human neutrophils.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (G.Ö.); (T.Ö.)
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | | | - Robyn A. Klein
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| |
Collapse
|
44
|
Gonçalves S, Gowler PR, Woodhams SG, Turnbull J, Hathway G, Chapman V. The challenges of treating osteoarthritis pain and opportunities for novel peripherally directed therapeutic strategies. Neuropharmacology 2022; 213:109075. [DOI: 10.1016/j.neuropharm.2022.109075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
45
|
Emre C, Arroyo-García LE, Do KV, Jun B, Ohshima M, Alcalde SG, Cothern ML, Maioli S, Nilsson P, Hjorth E, Fisahn A, Bazan NG, Schultzberg M. Intranasal delivery of pro-resolving lipid mediators rescues memory and gamma oscillation impairment in App NL-G-F/NL-G-F mice. Commun Biol 2022; 5:245. [PMID: 35314851 PMCID: PMC8938447 DOI: 10.1038/s42003-022-03169-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Sustained microglial activation and increased pro-inflammatory signalling cause chronic inflammation and neuronal damage in Alzheimer’s disease (AD). Resolution of inflammation follows neutralization of pathogens and is a response to limit damage and promote healing, mediated by pro-resolving lipid mediators (LMs). Since resolution is impaired in AD brains, we decided to test if intranasal administration of pro-resolving LMs in the AppNL-G-F/NL-G-F mouse model for AD could resolve inflammation and ameliorate pathology in the brain. A mixture of the pro-resolving LMs resolvin (Rv) E1, RvD1, RvD2, maresin 1 (MaR1) and neuroprotectin D1 (NPD1) was administered to stimulate their respective receptors. We examined amyloid load, cognition, neuronal network oscillations, glial activation and inflammatory factors. The treatment ameliorated memory deficits accompanied by a restoration of gamma oscillation deficits, together with a dramatic decrease in microglial activation. These findings open potential avenues for therapeutic exploration of pro-resolving LMs in AD, using a non-invasive route. Intranasal administration of pro-resolving lipid mediators improves memory deficits and reduce microglial activation in a mouse model for Alzheimer’s disease, suggesting a future therapy.
Collapse
Affiliation(s)
- Ceren Emre
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Luis E Arroyo-García
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA.,Faculty of Medicine, PHENIKAA University, Hanoi, 12116, Vietnam.,PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi, 11313, Vietnam
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Makiko Ohshima
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Gómez Alcalde
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Megan L Cothern
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Specialized Proresolving Lipid Mediators: A Potential Therapeutic Target for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063133. [PMID: 35328553 PMCID: PMC8955102 DOI: 10.3390/ijms23063133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a global public health issue due to its high morbidity, mortality, and economic impact. The implementation of innovative therapeutic alternatives for CVD is urgently required. Specialized proresolving lipid mediators (SPMs) are bioactive compounds derived from ω-3 and ω-6 fatty acids, integrated into four families: Lipoxins, Resolvins, Protectins, and Maresins. SPMs have generated interest in recent years due to their ability to promote the resolution of inflammation associated with the pathogeneses of numerous illnesses, particularly CVD. Several preclinical studies in animal models have evidenced their ability to decrease the progression of atherosclerosis, intimal hyperplasia, and reperfusion injury via diverse mechanisms. Large-scale clinical trials are required to determine the effects of SPMs in humans. This review integrates the currently available knowledge of the therapeutic impact of SPMs in CVD from preclinical and clinical studies, along with the implicated molecular pathways. In vitro results have been promising, and as such, SPMs could soon represent a new therapeutic alternative for CVD.
Collapse
|
47
|
Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022; 10:biomedicines10030594. [PMID: 35327396 PMCID: PMC8945769 DOI: 10.3390/biomedicines10030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations of ion channels and G-protein-coupled receptors (GPCRs) are not uncommon and can lead to cardiovascular diseases. Given previously reported multiple factors associated with high mutation rates, we sorted the relative mutability of multiple human genes by (i) proximity to telomeres and/or (ii) high adenine and thymine (A+T) content. We extracted genomic information using the genome data viewer and examined the mutability of 118 ion channel and 143 GPCR genes based on their association with factors (i) and (ii). We then assessed these two factors with 31 genes encoding ion channels or GPCRs that are targeted by the United States Food and Drug Administration (FDA)-approved drugs. Out of the 118 ion channel genes studied, 80 met either factor (i) or (ii), resulting in a 68% match. In contrast, a 78% match was found for the 143 GPCR genes. We also found that the GPCR genes (n = 20) targeted by FDA-approved drugs have a relatively lower mutability than those genes encoding ion channels (n = 11), where targeted genes encoding GPCRs were shorter in length. The result of this study suggests that the use of matching rate analysis on factor-druggable genome is feasible to systematically compare the relative mutability of GPCRs and ion channels. The analysis on chromosomes by two factors identified a unique characteristic of GPCRs, which have a significant relationship between their nucleotide sizes and proximity to telomeres, unlike most genetic loci susceptible to human diseases.
Collapse
|
48
|
Xu H, Rao NA. Grand Challenges in Ocular Inflammatory Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:756689. [PMID: 38983535 PMCID: PMC11182270 DOI: 10.3389/fopht.2022.756689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/27/2022] [Indexed: 07/11/2024]
Affiliation(s)
- Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Aier Institute of Optometry and Vision Science, Changsha, China
| | - Narsing A. Rao
- Department of Ophthalmology, USC-Roski Eye Institute, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
49
|
Merlin J, Park J, Vandekolk TH, Fabb SA, Allinne J, Summers RJ, Langmead CJ, Riddy DM. Multi-pathway in vitro pharmacological characterisation of specialised pro-resolving G protein-coupled receptors (SPM-GPCRs). Mol Pharmacol 2022; 101:246-256. [DOI: 10.1124/molpharm.121.000422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
|
50
|
Ansari J, Gavins FNE. Neutrophils and Platelets: Immune Soldiers Fighting Together in Stroke Pathophysiology. Biomedicines 2021; 9:biomedicines9121945. [PMID: 34944761 PMCID: PMC8698717 DOI: 10.3390/biomedicines9121945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils and platelets exhibit a diverse repertoire of functions in thromboinflammatory conditions such as stroke. Most cerebral ischemic events result from longstanding chronic inflammation secondary to underlying pathogenic conditions, e.g., hypertension, diabetes mellitus, obstructive sleep apnea, coronary artery disease, atrial fibrillation, morbid obesity, dyslipidemia, and sickle cell disease. Neutrophils can enable, as well as resolve, cerebrovascular inflammation via many effector functions including neutrophil extracellular traps, serine proteases and reactive oxygen species, and pro-resolving endogenous molecules such as Annexin A1. Like neutrophils, platelets also engage in pro- as well as anti-inflammatory roles in regulating cerebrovascular inflammation. These anucleated cells are at the core of stroke pathogenesis and can trigger an ischemic event via adherence to the hypoxic cerebral endothelial cells culminating in aggregation and clot formation. In this article, we review and highlight the evolving role of neutrophils and platelets in ischemic stroke and discuss ongoing preclinical and clinical strategies that may produce viable therapeutics for prevention and management of stroke.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Neurology, Louisiana State University Health Shreveport, Shreveport, LA 71130, USA
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| | - Felicity N. E. Gavins
- The Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| |
Collapse
|