1
|
Qiu R, Cai Y, Su Y, Fan K, Sun Z, Zhang Y. Emerging insights into Lipocalin-2: Unraveling its role in Parkinson's Disease. Biomed Pharmacother 2024; 177:116947. [PMID: 38901198 DOI: 10.1016/j.biopha.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, marked by a complex pathogenesis. Lipocalin-2 (LCN2) emerges as a crucial factor during the progression of PD. Belonging to the lipocalin family, LCN2 is integral to several biological functions, including glial cell activation, iron homeostasis regulation, immune response, inflammatory reactions, and oxidative stress mitigation. Substantial research has highlighted marked increases in LCN2 expression within the substantia nigra (SN), cerebrospinal fluid (CSF), and blood of individuals with PD. This review focuses on the pathological roles of LCN2 in neuroinflammation, aging, neuronal damage, and iron dysregulation in PD. It aims to explore the underlying mechanisms of LCN2 in the disease and potential therapeutic targets that could inform future treatment strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Wachter S, Angevin T, Bubna N, Tan A, Cichy A, Brown D, Wolfe LS, Sappington R, Lilla E, Berry L, Grismer D, Orth C, Blanusa M, Mostafa S, Kaufmann H, Felderer K. Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics. J Biotechnol 2023; 377:13-22. [PMID: 37820750 DOI: 10.1016/j.jbiotec.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Bispecific biotherapeutics offer potent and highly specific treatment options in oncology and immuno-oncology. However, many bispecific formats are prone to high levels of aggregation and instability, leading to prolonged development timelines, inefficient manufacturing, and high costs. The novel class of Mabcalin™ molecules consist of Anticalin® proteins fused to an IgG and are currently being evaluated in pre-clinical and clinical studies. Here, we describe a robust high-yield manufacturing platform for these therapeutic fusion proteins providing data up to commercially relevant scales. A platform upstream process was established for one of the Mabcalin bispecifics and then applied to other clinically relevant drug candidates with different IgG target specificities. Process performance was compared in 3 L bioreactors and production was scaled-up to up to 1000 L for confirmation. The Mabcalin proteins' structural and biophysical similarities enabled a downstream platform approach consisting of initial protein A capture, viral inactivation, mixed-mode anion exchange polishing, second polishing by cation exchange or hydrophobic interaction chromatography, viral filtration, buffer exchange and concentration by ultrafiltration/diafiltration. All three processes met their target specifications and achieved comparable clearance of impurities and product yields across scales. The described platform approach provides a fast and economic path to process confirmation and is well comparable to classical monoclonal antibody approaches in terms of costs and time to clinic.
Collapse
Affiliation(s)
- Stefanie Wachter
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany.
| | - Thibaut Angevin
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Niket Bubna
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Adelene Tan
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Adam Cichy
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - David Brown
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Leslie S Wolfe
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Ryan Sappington
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Edward Lilla
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Luke Berry
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Dane Grismer
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Christian Orth
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Milan Blanusa
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Sigma Mostafa
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Hitto Kaufmann
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Karin Felderer
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| |
Collapse
|
3
|
Bonarek P, Mularczyk D, Loch JI, Kurpiewska K, Dziedzicka-Wasylewska M. β-Lactoglobulin variants as potential carriers of pramoxine: Comprehensive structural and biophysical studies. J Mol Recognit 2023; 36:e3052. [PMID: 37610054 DOI: 10.1002/jmr.3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
β-Lactoglobulin (BLG) is a member of the lipocalin family. As other proteins from this group, BLG can be modified to bind specifically compounds of medical interests. The aim of this study was to evaluate the role of two mutations, L39Y and L58F, in the binding of topical anesthetic pramoxine (PRM) to β-lactoglobulin. Circular dichroism spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography were used to understand the mechanisms of BLG-PRM interactions. Studies were performed for three new BLG mutants: L39Y, L58F, and L39Y/L58F. ITC measurements indicated a significant increase in the affinity to the PRM of variants L58F and L39Y. Measurements taken for the double mutant L39Y/L58F showed the additivity of two mutations leading to about 80-fold increase in the affinity to PRM in comparison to natural protein BLG from bovine milk. The determined crystal structures revealed that pramoxine is accommodated in the β-barrel interior of BLG mutants and stabilized by hydrophobic interactions. The observed additive effect of two mutations on drug binding opens the possibility for further designing of new BLG variants with high affinity to selected drugs.
Collapse
Affiliation(s)
- Piotr Bonarek
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Kraków, Poland
| | - Dorota Mularczyk
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Kraków, Poland
| | - Joanna I Loch
- Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Jagiellonian University, Kraków, Poland
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Jagiellonian University, Kraków, Poland
| | - Marta Dziedzicka-Wasylewska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Physical Biochemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
4
|
Jerschke E, Eichinger A, Skerra A. Drastic alterations in the loop structure around colchicine upon complex formation with an engineered lipocalin indicate a conformational selection mechanism. Acta Crystallogr F Struct Biol Commun 2023; 79:231-239. [PMID: 37584182 PMCID: PMC10478763 DOI: 10.1107/s2053230x23006817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Using Anticalin technology, a lipocalin protein dubbed Colchicalin, with the ability to bind the toxic plant alkaloid colchicine with picomolar affinity, has previously been engineered, thus offering a potential antidote in vivo and also allowing its sensitive detection in biological samples. To further analyze the mode of ligand recognition, the crystal structure of Colchicalin is now reported in its unliganded form and is compared with the colchicine complex. A superposition of the protein structures revealed major rearrangements in the four structurally variable loops of the engineered lipocalin. Notably, the binding pocket in the unbound protein is largely occupied by the inward-bent loop #3, in particular Ile97, as well as by the phenylalanine side chain at position 71 in loop #2. Upon binding of colchicine, a dramatic shift of loop #3 by up to 11.1 Å occurs, in combination with a side-chain flip of Phe71, thus liberating the necessary space within the ligand pocket. Interestingly, the proline residue at the neighboring position 72, which arose during the combinatorial engineering of Colchicalin, remained in a cis configuration in both structures. These findings provide a striking example of a conformational adaptation mechanism, which is a long-known phenomenon for antibodies in immunochemistry, during the recognition of a small ligand by an engineered lipocalin, thus illustrating the general similarity between the mode of antigen/ligand binding by immunoglobulins and lipocalins.
Collapse
Affiliation(s)
- Elena Jerschke
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
5
|
Yang HH, Wang X, Li S, Liu Y, Akbar R, Fan GC. Lipocalin family proteins and their diverse roles in cardiovascular disease. Pharmacol Ther 2023; 244:108385. [PMID: 36966973 PMCID: PMC10079643 DOI: 10.1016/j.pharmthera.2023.108385] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel β-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Siru Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yueying Liu
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rubab Akbar
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Zhou YY, Jin Y, Liu SQ, Xu SL, Huang YX, Xu YS, Shi LG, Wang HB. Genome-wide identification and comparative analysis of lipocalin families in Lepidoptera with an emphasis on Bombyx mori. INSECT SCIENCE 2023; 30:15-30. [PMID: 35343650 DOI: 10.1111/1744-7917.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Lipocalins exhibit functional diversity, including roles in retinol transport, invertebrate cryptic coloration, and stress response. However, genome-wide identification and characterization of lipocalin in the insect lineage have not been thoroughly explored. Here, we found that a lineage-specific expansion of the lipocalin genes in Lepidoptera occurred in large part due to tandem duplication events and several lipocalin genes involving insect coloration were expanded more via tandem duplication in butterflies. A comparative analysis of conserved motifs showed both conservation and divergence of lepidopteran lipocalin family protein structures during evolution. We observe dynamic changes in tissue expression preference of paralogs in Bombyx mori, suggesting differential contribution of paralogs to specific organ functions during evolution. Subcellular localization experiments revealed that lipocalins localize to the cytoplasm, nuclear membrane, or nucleus in BmN cells. Moreover, several lipocalin genes exhibited divergent responses to abiotic and biotic stresses, and 1 lipocalin gene was upregulated by 300 fold in B. mori. These results suggest that lipocalins act as signaling components in defense responses by mediating crosstalk between abiotic and biotic stress responses. This study deepens our understanding of the comprehensive characteristics of lipocalins in insects.
Collapse
Affiliation(s)
- Yan-Yan Zhou
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yue Jin
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai-Qi Liu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shi-Liang Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Xin Huang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lian-Gen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Bing Wang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Zhang J, Wang Z, Zhang H, Li S, Li J, Liu H, Cheng Q. The role of lipocalin 2 in brain injury and recovery after ischemic and hemorrhagic stroke. Front Mol Neurosci 2022; 15:930526. [PMID: 36187347 PMCID: PMC9520288 DOI: 10.3389/fnmol.2022.930526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Ischemic and hemorrhagic stroke (including intracerebral hemorrhage, intraventricular hemorrhage, and subarachnoid hemorrhage) is the dominating cause of disability and death worldwide. Neuroinflammation, blood–brain barrier (BBB) disruption, neuronal death are the main pathological progress, which eventually causes brain injury. Increasing evidence indicated that lipocalin 2 (LCN2), a 25k-Da acute phase protein from the lipocalin superfamily, significantly increased immediately after the stroke and played a vital role in these events. Meanwhile, there exists a close relationship between LCN2 levels and the worse clinical outcome of patients with stroke. Further research revealed that LCN2 elimination is associated with reduced immune infiltrates, infarct volume, brain edema, BBB leakage, neuronal death, and neurological deficits. However, some studies revealed that LCN2 might also act as a beneficial factor in ischemic stroke. Nevertheless, the specific mechanism of LCN2 and its primary receptors (24p3R and megalin) involving in brain injury remains unclear. Therefore, it is necessary to investigate the mechanism of LCN2 induced brain damage after stroke. This review focuses on the role of LCN2 and its receptors in brain injury and aiming to find out possible therapeutic targets to reduce brain damage following stroke.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Shuwang Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Hongwei Liu,
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Changsha, China
- Clinical Diagnosis and Therapy Center for Glioma of Xiangya Hospital, Central South University, Changsha, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Cheng,
| |
Collapse
|
8
|
Poitras T, Singh V, Piragasam RS, Wang X, Mannaa AM, Chandrasekhar A, Martinez J, Fahlman R, Zochodne DW. Repurposed major urinary protein pheromones and adult sensory neurons: roles in neuron plasticity and experimental diabetes. Am J Physiol Endocrinol Metab 2022; 323:E53-E68. [PMID: 35635311 DOI: 10.1152/ajpendo.00001.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Major urinary proteins (MUPs), members of the broader lipocalin protein family, are classified as pheromones that are excreted in male rodent urine to define conspecific territoriality. In screening for differentially regulated mRNA transcripts in a mouse model of type 1 experimental diabetes mellitus (DM), we identified an unexpected upregulation of several closely related MUP transcripts within diabetic sensory dorsal root ganglia (DRG). Both sexes expressed overall MUP protein content as identified by an antibody widely targeting these upregulated family members, and immunohistochemistry identified expression within neurons, satellite glial cells, and Schwann cells. In dissociated adult sensory neurons, knockdown by an siRNA targeting upregulated MUP mRNAs, enhanced neurite outgrowth, indicating a growth-suppressive role, an impact that was synergistic with subnanomolar insulin neuronal signaling. While MUP knockdown did not generate rises in insulin signaling transcripts, the protein did bind to several mitochondrial and glial targets in DRG lysates. Analysis of a protein closely related to MUPs but that is expressed in humans, lipocalin-2, also suppressed growth, but its impact was unrelated to insulin. In a model of chronic type 1 DM, MUP siRNA knockdown improved electrophysiological and behavioral abnormalities of experimental neuropathy. MUPs have actions beyond pheromone signaling in rodents that involve suppression of growth plasticity of sensory neurons. Its hitherto unanticipated actions overlap with those of lipocalin-2 and may identify a common and widely mediated impact on neuron growth properties by members of the lipocalin family. Knockdown of MUP supports the trophic actions of insulin as a strategy that may improve features of type 1 experimental diabetic neuropathy.NEW & NOTEWORTHY New molecular mechanisms are important to unravel and understand diabetic polyneuropathy, a disorder prevalent in over half of persons with diabetes mellitus (DM). MUPs, members of the lipocalin family of molecules, have an unexpected impact on the plasticity of sensory neurons that are targeted in type 1 experimental diabetic neuropathy. This work explores this potential target in neuropathy in the context of the lipocalin family of molecules.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vandana Singh
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Xiuling Wang
- Southern Alberta Microarray Facility, Department Biochemistry and Molecular. Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atef M Mannaa
- INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
- Higher Institute of Engineering and Technology, New Borg El-Arab City, Egypt
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jose Martinez
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Morales-Kastresana A, Siegemund M, Haak S, Peper-Gabriel J, Neiens V, Rothe C. Anticalin®-based therapeutics: Expanding new frontiers in drug development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:89-106. [PMID: 35777866 DOI: 10.1016/bs.ircmb.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anticalin proteins are a novel class of clinical-stage biopharmaceuticals with high potential in various disease areas. Anticalin proteins, derived from extracellular human lipocalins are single-chain proteins, with a highly stable structure that can be engineered to bind with high specificity and potency to targets of therapeutic relevance. The small size and stable structure support their development as inhalable biologics in the field of respiratory diseases as already demonstrated for PRS-060/AZD1402, an Anticalin protein currently undergoing clinical development for the treatment of asthma. Anticalin proteins provide formatting flexibility which allows fusion with the same or other Anticalin proteins, or with other biologics to generate multivalent, multiparatopic or multispecific fusion proteins. The fusion of Anticalin proteins to antibodies allows the generation of potent therapeutic proteins with new modes of action, such as antibody-Anticalin bispecific proteins with tumor-localized activity. Cinrebafusp alfa and PRS-344/S095012 antibody-Anticalin bispecific proteins were designed to reduce potential systemic toxicity by localizing the activity to the tumor, and are currently in clinical development in immuno-oncology. Furthermore, the ease in generating bi- and multispecifics as well as the small and stable structure prompted the investigation of Anticalin proteins for the CAR T space, opening additional potential treatment options based on Anticalin protein therapies.
Collapse
Affiliation(s)
| | | | - Stefan Haak
- Pieris Pharmaceuticals GmbH, Hallbergmoos, Germany
| | | | | | | |
Collapse
|
10
|
Eichinger A, Rauth S, Hinz D, Feuerbach A, Skerra A. Structural basis of Alzheimer β-amyloid peptide recognition by engineered lipocalin proteins with aggregation-blocking activity. Biol Chem 2022; 403:557-571. [PMID: 35355502 DOI: 10.1515/hsz-2021-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/09/2022] [Indexed: 11/15/2022]
Abstract
We describe the structural analysis of two Anticalin® proteins that tightly bind Aβ 40, a peptide involved in the pathophysiology of Alzheimer's disease. These anticalins, US7 and H1GA, were engineered on the basis of the human lipocalin 2, thus yielding compact single-domain binding proteins as an alternative to antibodies. Albeit selected under different conditions and mutually deviating in 13 amino acid positions within the binding pocket (of 17 mutated residues in total), both crystallised anticalins recognize the same epitope in the middle of the β-amyloid peptide. In the two complexes with the Aβ 40 peptide, its central part comprising residues LysP16 to LysP28 shows well defined electron density whereas the flanking regions appear structurally disordered. The compact zigzag-bend conformation which is seen in both structures may indicate a role during conversion of the soluble monomeric form into pathogenic Aβ state(s) and, thus, explain the aggregation-inhibiting effect of the anticalins. In contrast to solanezumab, which targets the same Aβ region in a different conformation, the anticalin H1GA does not show cross-reactivity with sequence-related human plasma proteins. Consequently, anticalins offer promising reagents to prevent oligomerization of Aβ peptides to neurotoxic species in vivo and their small size may enable new routes for brain delivery.
Collapse
Affiliation(s)
- Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Sabine Rauth
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Dominik Hinz
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Anna Feuerbach
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, D-85354 Freising, Germany
| |
Collapse
|
11
|
KanagaVijayan D, Subramanian R, Santhakumari PR, Chavas LMG, Subramanian R, Banerjee S. Structure of recombinantly expressed cockroach Lili-Mip protein in glycosylated and deglycosylated forms. Biochim Biophys Acta Gen Subj 2022; 1866:130064. [PMID: 34958847 DOI: 10.1016/j.bbagen.2021.130064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND The Pacific Beetle Cockroach is the only known viviparous cockroach. The pregnant females provide nutrition to the embryos by secreting milk proteins (Lili-Mips), which crystallize in vivo. The crystals that grow in the embryo are heterogeneous in their protein sequence. It is not apparent from the structure determined what role heterogeneity and glycosylation played in crystallization. Lili-Mips are very nutritious. METHODS Here, we report the cloning of synthesized Lili-Mip genes, their expression in Saccharomyces cerevisiae as secreted proteins, purification, crystallization, and the determination of a three-dimensional structure of one glycosylated and one deglycosylated form. RESULTS A 2.35 Å structure of the glycosylated form is bound to palmitoleic acid and has several Zn atom mediated interactions. A 1.45 Å structure of the deglycosylated protein reveals a binding pocket that has both oleic and palmitoleic acid bound. Mass-spectrometry shows that oleic acid and palmitoleic acid are bound to the protein. Docking studies suggest that aliphatic chains of lengths 15, 16, and 18 carbons bind well in the pocket. CONCLUSIONS The recombinantly expressed and secreted protein is glycosylated, has a bound fatty acid, is homogenous in its protein sequences, and readily forms crystals. The deglycosylated protein also crystallizes readily, suggesting that the high crystallizability of this protein is independent of glycosylation. GENERAL SIGNIFICANCE Lili-Mips belong to the ubiquitous lipocalin family of proteins that bind to a large variety of ligands. While the residues lining the barrel are essential for the affinity of the ligand, our results show the role of side-chain orientations to ligand selectivity.
Collapse
Affiliation(s)
- Dhanabalan KanagaVijayan
- Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka 560065, India
| | - Rudra Subramanian
- Bindley Biosciences Centre, Purdue University, West Lafayette, IN 47906, USA
| | - Partha Radhakrishnan Santhakumari
- Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka 560065, India; Manipal Academy of Higher Education, Tiger Circle Road, Manipal, Karnataka 576104, India
| | - Leonard M G Chavas
- Synchrotron Radiation Research Center, Nagoya University, Nagoya 4648603, Japan
| | - Ramaswamy Subramanian
- Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Bindley Biosciences Centre, Purdue University, West Lafayette, IN 47906, USA; Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka 560065, India.
| | - Sanchari Banerjee
- Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka 560065, India; Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| |
Collapse
|
12
|
Chen J, Gong M, Huang Z, Wang F, Wang Y, Hu Z, Zeng Z, Wang Y. Alleviating Aspirin-Induced Gastric Injury by Binding Aspirin to β-Lactoglobulin. Drug Des Devel Ther 2022; 16:571-586. [PMID: 35256843 PMCID: PMC8898184 DOI: 10.2147/dddt.s351100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Gastric injury is a major issue for long-term administration of aspirin. In this work, we tried to explore the possibility of using BLG to alleviate aspirin-induced gastric injury, because of excellent abilities of BLG in loading drug molecules. Methods Various spectroscopic techniques and molecular docking methods were applied to investigate the interaction mechanism between BLG and aspirin. Animal experiments were performed to figure out the effects of taking aspirin-BLG on the stomach. Results Our results demonstrate that aspirin could bind with BLG to form stable aspirin-BLG complex (the binding constant Kb= 2.051 × 103 M−1). The formation process is endothermic (∆H>0) and the main acting force is hydrophobic force. Our data also show that the aspirin-BLG complex is formed with a higher affinity in simulated gastric fluid and could remain stable for several hours, which might arise from its special binding mode under acidic condition and the resistance of BLG to gastric digestion. Furthermore, animal models (rats with aspirin-induced gastric damage) were built. The results of animal experiments reveal that the oral administration of aspirin-BLG could cause less damage to gastric tissue, and it also hardly triggers obvious inflammatory responses. Conclusion This study would contribute to an in-depth understanding of the interaction mechanism between BLG and aspirin. It is reasonable to believe that using BLG to bind with aspirin would be a potential way to alleviate the aspirin-induced gastric injury.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Min Gong
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zhuo Huang
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Yajing Wang
- The Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Correspondence: Zhu Zeng, Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China, Email
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Yun Wang, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, People’s Republic of China, Tel/Fax +86851-88174044, Email
| |
Collapse
|
13
|
Virtanen T. Inhalant Mammal-Derived Lipocalin Allergens and the Innate Immunity. FRONTIERS IN ALLERGY 2022; 2:824736. [PMID: 35387007 PMCID: PMC8974866 DOI: 10.3389/falgy.2021.824736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 12/03/2022] Open
Abstract
A major part of important mammalian respiratory allergens belongs to the lipocalin family of proteins. By this time, 19 respiratory mammalian lipocalin allergens have been registered in the WHO/IUIS Allergen Nomenclature Database. Originally, lipocalins, small extracellular proteins (molecular mass ca. 20 kDa), were characterized as transport proteins but they are currently known to exert a variety of biological functions. The three-dimensional structure of lipocalins is well-preserved, and lipocalin allergens can exhibit high amino acid identities, in several cases more than 50%. Lipocalins contain an internal ligand-binding site where they can harbor small principally hydrophobic molecules. Another characteristic feature is their capacity to bind to specific cell-surface receptors. In all, the physicochemical properties of lipocalin allergens do not offer any straightforward explanations for their allergenicity. Allergic sensitization begins at epithelial barriers where diverse insults through pattern recognition receptors awaken innate immunity. This front-line response is manifested by epithelial barrier-associated cytokines which together with other components of immunity can initiate the sensitization process. In the following, the crucial factor in allergic sensitization is interleukin (IL)-4 which is needed for stabilizing and promoting the type 2 immune response. The source for IL-4 has been searched widely. Candidates for it may be non-professional antigen-presenting cells, such as basophils or mast cells, as well as CD4+ T cells. The synthesis of IL-4 by CD4+ T cells requires T cell receptor engagement, i.e., the recognition of allergen peptides, which also provides the specificity for sensitization. Lipocalin and innate immunity-associated cell-surface receptors are implicated in facilitating the access of lipocalin allergens into the immune system. However, the significance of this for allergic sensitization is unclear, as the recognition by these receptors has been found to produce conflicting results. As to potential adjuvants associated with mammalian lipocalin allergens, the hydrophobic ligands transported by lipocalins have not been reported to enhance sensitization while it is justified to suppose that lipopolysaccharide plays a role in it. Taken together, type 2 immunity to lipocalin allergens appears to be a harmful immune response resulting from a combination of signals involving both the innate and adaptive immunities.
Collapse
Affiliation(s)
- Tuomas Virtanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
14
|
Achatz S, Jarasch A, Skerra A. Structural plasticity in the loop region of engineered lipocalins with novel ligand specificities, so-called Anticalins. J Struct Biol X 2022; 6:100054. [PMID: 34988429 PMCID: PMC8693463 DOI: 10.1016/j.yjsbx.2021.100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/30/2022] Open
Abstract
The lipocalins exhibit four structurally variable loops at one end of a β-barrel. Binding sites for diverse ligands occur in the natural lipocalin family members. Loop reshaping via combinatorial protein design leads to novel ligand specificities. Many crystal structures of Anticalins derived from the Lcn2 scaffold are available. Graphical analysis reveals high structural plasticity of the lipocalin loop region.
Anticalins are generated via combinatorial protein design on the basis of the lipocalin protein scaffold and constitute a novel class of small and robust engineered binding proteins that offer prospects for applications in medical therapy as well as in vivo diagnostics as an alternative to antibodies. The lipocalins are natural binding proteins with diverse ligand specificities which share a simple architecture with a central eight-stranded antiparallel β-barrel and an α-helix attached to its side. At the open end of the β-barrel, four structurally variable loops connect the β-strands in a pair-wise manner and, together, shape the ligand pocket. Using targeted random mutagenesis in combination with molecular selection techniques, this loop region can be reshaped to generate pockets for the tight binding of various ligands ranging from small molecules over peptides to proteins. While such Anticalin proteins can be derived from different natural lipocalins, the human lipocalin 2 (Lcn2) scaffold proved particularly successful for the design of binding proteins with novel specificities and, over the years, more than 20 crystal structures of Lcn2-based Anticalins have been elucidated. In this graphical structural biology review we illustrate the conformational variability that emerged in the loop region of these functionally diverse artificial binding proteins in comparison with the natural scaffold. Our present analysis provides picturesque evidence of the high structural plasticity around the binding site of the lipocalins which explains the proven tolerance toward excessive mutagenesis, thus demonstrating remarkable resemblance to the complementarity-determining region of antibodies (immunoglobulins).
Collapse
Affiliation(s)
- S Achatz
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - A Jarasch
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| | - A Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany
| |
Collapse
|
15
|
Shi F, Mendrola JM, Sheetz JB, Wu N, Sommer A, Speer KF, Noordermeer JN, Kan ZY, Perry K, Englander SW, Stayrook SE, Fradkin LG, Lemmon MA. ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Rep 2021; 37:109834. [PMID: 34686333 PMCID: PMC8650758 DOI: 10.1016/j.celrep.2021.109834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/06/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
WNTs play key roles in development and disease, signaling through Frizzled (FZD) seven-pass transmembrane receptors and numerous co-receptors including ROR and RYK family receptor tyrosine kinases (RTKs). We describe crystal structures and WNT-binding characteristics of extracellular regions from the Drosophila ROR and RYK orthologs Nrk (neurospecific receptor tyrosine kinase) and Derailed-2 (Drl-2), which bind WNTs though a FZD-related cysteine-rich domain (CRD) and WNT-inhibitory factor (WIF) domain respectively. Our crystal structures suggest that neither Nrk nor Drl-2 can accommodate the acyl chain typically attached to WNTs. The Nrk CRD contains a deeply buried bound fatty acid, unlikely to be exchangeable. The Drl-2 WIF domain lacks the lipid-binding site seen in WIF-1. We also find that recombinant DWnt-5 can bind Drosophila ROR and RYK orthologs despite lacking an acyl chain. Alongside analyses of WNT/receptor interaction sites, our structures provide further insight into how WNTs may recruit RTK co-receptors into signaling complexes.
Collapse
Affiliation(s)
- Fumin Shi
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jeannine M Mendrola
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua B Sheetz
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Neo Wu
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anselm Sommer
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Kelsey F Speer
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jasprina N Noordermeer
- Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Zhong-Yuan Kan
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kay Perry
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - S Walter Englander
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Steven E Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Lee G Fradkin
- Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands; Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT 06516, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Jia Z, Liu Y, Ji X, Zheng Y, Li Z, Jiang S, Li H, Kong Y. DAKS1, a Kunitz Scaffold Peptide from the Venom Gland of Deinagkistrodon acutus Prevents Carotid-Artery and Middle-Cerebral-Artery Thrombosis via Targeting Factor XIa. Pharmaceuticals (Basel) 2021; 14:ph14100966. [PMID: 34681191 PMCID: PMC8539665 DOI: 10.3390/ph14100966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Scaffold-based peptides (SBPs) are fragments of large proteins that are characterized by potent bioactivity, high thermostability, and low immunogenicity. Some SBPs have been approved by the FDA for human use. In the present study, we developed SBPs from the venom gland of Deinagkistrodon acutus (D. acutus) by combining transcriptome sequencing and Pfam annotation. To that end, 10 Kunitz peptides were discovered from the venom gland of D. acutus, and most of which peptides exhibited Factor XIa (FXIa) inhibitory activity. One of those, DAKS1, exhibiting strongest inhibitory activity against FXIa, was further evaluated for its anticoagulant and antithrombotic activity. DAKS1 prolonged twofold APTT at a concentration of 15 μM in vitro. DAKS1 potently inhibited thrombosis in a ferric chloride-induced carotid-artery injury model in mice at a dose of 1.3 mg/kg. Furthermore, DAKS1 prevented stroke in a transient middle cerebral-artery occlusion (tMCAO) model in mice at a dose of 2.6 mg/kg. Additionally, DAKS1 did not show significant bleeding risk at a dose of 6.5 mg/kg. Together, our results indicated that DAKS1 is a promising candidate for drug development for the treatment of thrombosis and stroke disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Kong
- Correspondence: ; Tel.: +86-025-832-712-82
| |
Collapse
|
17
|
Diez-Hermano S, Ganfornina MD, Skerra A, Gutiérrez G, Sanchez D. An Evolutionary Perspective of the Lipocalin Protein Family. Front Physiol 2021; 12:718983. [PMID: 34497539 PMCID: PMC8420045 DOI: 10.3389/fphys.2021.718983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
The protein family of Lipocalins is ubiquitously present throughout the tree of life, with the exception of the phylum Archaea. Phylogenetic relationships of chordate Lipocalins have been proposed in the past based on protein sequence similarities, but their highly divergent primary structures and a shortage of experimental annotations in genome projects have precluded a well-supported hypothesis for their evolution. In this work we propose a novel topology for the phylogenetic tree of chordate Lipocalins, inferred from multiple amino acid sequence alignments. Sixteen jawed vertebrates with fair coverage by genomic sequencing were compared. The selected species span an evolutionary range of ∼400 million years, allowing for a balanced representation of all major vertebrate clades. A consensus phylogenetic tree is proposed following a comparison of sequence-based maximum-likelihood trees and protein structure dendrograms. This new phylogeny suggests an APOD-like common ancestor in early chordates, which gave rise, via whole-genome or tandem duplications, to the six Lipocalins currently present in fish (APOD, RBP4, PTGDS, AMBP, C8G, and APOM). Further gene duplications of APOM and PTGDS resulted in the altogether 15 Lipocalins found in contemporary mammals. Insights into the functional impact of relevant amino acid residues in early diverging Lipocalins are also discussed. These results should foster the experimental exploration of novel functions alongside the identification of new members of the Lipocalin family.
Collapse
Affiliation(s)
- Sergio Diez-Hermano
- Departamento de Bioquimica y Biologia Moleculary Fisiologia, Instituto de Biologia y Genetica Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquimica y Biologia Moleculary Fisiologia, Instituto de Biologia y Genetica Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| | | | - Diego Sanchez
- Departamento de Bioquimica y Biologia Moleculary Fisiologia, Instituto de Biologia y Genetica Molecular, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas (CSIC), Valladolid, Spain
| |
Collapse
|
18
|
Poitras T, Piragasam RS, Joy T, Jackson J, Chandrasekhar A, Fahlman R, Zochodne DW. Major urinary protein excreted in rodent hindpaw sweat. J Anat 2021; 239:529-535. [PMID: 33686663 PMCID: PMC8273588 DOI: 10.1111/joa.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Alternative roles for sweat production beyond thermoregulation, considered less frequently, include chemical signaling. We identified the presence of a well-established rodent urinary pheromone, major urinary protein (MUP) in sweat ductules of the footpad dermal skin of mice. A hindpaw sweat proteomic analysis in hindpaw sweat samples collected in rats and generated by unmyelinated axon activation, identified seven lipocalin family members including MUP and 19 additional unique proteins. Behavioural responses to sniffing male mouse foot protein lysates suggested avoidance in a subset of male mice, but were not definitive. Rodent hindpaw sweat glands secrete a repertoire of proteins that include MUPs known to have roles in olfactory communication.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | | | - Twinkle Joy
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Jesse Jackson
- Department of Physiology and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Ambika Chandrasekhar
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada
| | - Douglas W. Zochodne
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
19
|
Ruiz M. Into the Labyrinth of the Lipocalin α1-Acid Glycoprotein. Front Physiol 2021; 12:686251. [PMID: 34168570 PMCID: PMC8217824 DOI: 10.3389/fphys.2021.686251] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
α1-acid glycoprotein (AGP), also known as Orosomucoid (ORM), belongs to the Lipocalin protein family and it is well-known for being a positive acute-phase protein. AGP is mostly found in plasma, with the liver as main contributor, but it is also expressed in other tissues such as the brain or the adipose tissue. Despite the vast literature on AGP, the physiological functions of the protein remain to be elucidated. A large number of activities mostly related to protection and immune system modulation have been described. Recently created AGP-knockout models have suggested novel physiological roles of AGP, including regulation of metabolism. AGP has an outstanding ability to efficiently bind endogenous and exogenous small molecules that together with the complex and variable glycosylation patterns, determine AGP functions. This review summarizes and discusses the recent findings on AGP structure (including glycans), ligand-binding ability, regulation, and physiological functions of AGP. Moreover, this review explores possible molecular and functional connections between AGP and other members of the Lipocalin protein family.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Bergwik J, Kristiansson A, Allhorn M, Gram M, Åkerström B. Structure, Functions, and Physiological Roles of the Lipocalin α 1-Microglobulin (A1M). Front Physiol 2021; 12:645650. [PMID: 33746781 PMCID: PMC7965949 DOI: 10.3389/fphys.2021.645650] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
α1-microglobulin (A1M) is found in all vertebrates including humans. A1M was, together with retinol-binding protein and β-lactoglobulin, one of the three original lipocalins when the family first was proposed in 1985. A1M is described as an antioxidant and tissue cleaning protein with reductase, heme- and radical-binding activities. These biochemical properties are driven by a strongly electronegative surface-exposed thiol group, C34, on loop 1 of the open end of the lipocalin barrel. A1M has been shown to have protective effects in vitro and in vivo in cell-, organ-, and animal models of oxidative stress-related medical conditions. The gene coding for A1M is unique among lipocalins since it is flanked downstream by four exons coding for another non-lipocalin protein, bikunin, and is consequently named α1-microglobulin-bikunin precursor gene (AMBP). The precursor is cleaved in the Golgi, and A1M and bikunin are secreted from the cell separately. Recent publications have suggested novel physiological roles of A1M in regulation of endoplasmic reticulum activities and erythrocyte homeostasis. This review summarizes the present knowledge of the structure and functions of the lipocalin A1M and presents a current model of its biological role(s).
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Amanda Kristiansson
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden.,Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Allhorn
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| | - Magnus Gram
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences, Section for Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Xu X, Lu Y, Wu Y, Wang M, Wang X, Wang H, Chen B, Li Y. A signature of seven immune-related genes predicts overall survival in male gastric cancer patients. Cancer Cell Int 2021; 21:117. [PMID: 33602220 PMCID: PMC7891008 DOI: 10.1186/s12935-021-01823-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) has a high mortality rate and is one of the most fatal malignant tumours. Male sex has been proven as an independent risk factor for GC. This study aimed to identify immune-related genes (IRGs) associated with the prognosis of male GC. Methods RNA sequencing and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed IRGs between male GC and normal tissues were identified by integrated bioinformatics analysis. Univariate and multivariate Cox regression analyses were applied to screen survival-associated IRGs. Then, GC patients were separated into high- and low-risk groups based on the median risk score. Furthermore, a nomogram was constructed based on the TCGA dataset. The prognostic value of the risk signature model was evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell’s concordance index and calibration curves. In addition, the gene expression dataset from the Gene Expression Omnibus (GEO) was also downloaded for external validation. The relative proportions of 22 types of infiltrating immune cells in each male GC sample were evaluated using CIBERSORT. Results
A total of 276 differentially expressed IRGs were screened, including 189 up-regulated and 87 down-regulated genes. Subsequently, a seven-IRGs signature (LCN12, CCL21, RNASE2, CGB5, NRG4, AGTR1 and NPR3) was identified to be significantly associated with the overall survival (OS) of male GC patients. Survival analysis indicated that patients in the high-risk group exhibited a poor clinical outcome. The results of multivariate analysis revealed that the risk score was an independent prognostic factor. The established nomogram could be used to evaluate the prognosis of individual male GC patients. Further analysis showed that the prognostic model had excellent predictive performance in both TCGA and validated cohorts. Besides, the results of tumour-infiltrating immune cell analysis indicated that the seven-IRGs signature could reflect the status of the tumour immune microenvironment. Conclusions Our study developed a novel seven-IRGs risk signature for individualized survival prediction of male GC patients.
Collapse
Affiliation(s)
- Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.,Anhui Medical University, Hefei, 230022, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.,Anhui Medical University, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.,Anhui Medical University, Hefei, 230022, China
| | - Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.,Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.,Anhui Medical University, Hefei, 230022, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, China.
| |
Collapse
|
22
|
Samsonov SA, Zsila F, Maszota-Zieleniak M. Acute phase α 1-acid glycoprotein as a siderophore-capturing component of the human plasma: A molecular modeling study. J Mol Graph Model 2021; 105:107861. [PMID: 33640788 DOI: 10.1016/j.jmgm.2021.107861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Siderophores are ferric ion-specific organic compounds that are used by bacteria and fungi to secure their iron supply when infecting target organisms. There are a few proteins in the human body, named siderocalins, which bind these important virulence factors and so starve microorganisms of iron. In this study, we analyzed in silico if serum α1-acid glycoprotein (AAG), the major acute phase lipocalin component of the human plasma, could functionally belong to this group. The real biological function of AAG is elusive and its concentration substantially increases in response to pathological stimuli, including bacterial infections. We computationally evaluated the potential binding of nine microbial siderophores into the β-barrel cavity of AAG and compared the results with the corresponding experimental data reported for siderophore-neutrophil gelatinase-associated lipocalin complexes. According to the results, petrobactin and Fe-BisHaCam are putative candidates to be recognized by this protein. It is proposed that AAG may function as a siderophore capturing component of the innate immune system being able to neutralize bacterial iron chelators not recognized by other siderocalins.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Magyar tudósok körútja 2, Hungary.
| | | |
Collapse
|
23
|
Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat Chem Biol 2021; 17:509-518. [PMID: 33558715 DOI: 10.1038/s41589-020-00718-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Intensiometric genetically encoded biosensors, based on allosteric modulation of the fluorescence of a single fluorescent protein, are powerful tools for enabling imaging of neural activities and other cellular biochemical events. The archetypical example of such biosensors is the GCaMP series of Ca2+ biosensors, which have been steadily improved over the past two decades and are now indispensable tools for neuroscience. However, no other biosensors have reached levels of performance, or had revolutionary impacts within specific disciplines, comparable to that of the Ca2+ biosensors. Of the many reasons why this has been the case, a critical one has been a general black-box view of biosensor structure and mechanism. With this Perspective, we aim to summarize what is known about biosensor structure and mechanisms and, based on this foundation, provide guidelines to accelerate the development of a broader range of biosensors with performance comparable to that of the GCaMP series.
Collapse
|
24
|
Henri P, Rumeau D. Ectopic expression of human apolipoprotein D in Arabidopsis plants lacking chloroplastic lipocalin partially rescues sensitivity to drought and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:265-274. [PMID: 33262014 DOI: 10.1016/j.plaphy.2020.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
The chloroplastic lipocalin (LCNP) is induced in response to various abiotic stresses including high light, dehydration and low temperature. It contributes to protection against oxidative damage promoted by adverse conditions by preventing accumulation of fatty acid hydroperoxides and lipid peroxidation. In contrast to animal lipocalins, LCNP is poorly characterized and the molecular mechanism by which it exerts protective effects during oxidative stress is largely unknown. LCNP is considered the ortholog of human apolipoprotein D (APOD), a protein whose lipid antioxidant function has been characterized. Here, we investigated whether APOD could functionally replace LCNP in Arabidopsis thaliana. We introduced APOD cDNA fused to a chloroplast transit peptide encoding sequence in an Arabidopsis LCNP KO mutant line and challenged the transgenic plants with different abiotic stresses. We demonstrated that expression of human APOD in Arabidopsis can partially compensate for the lack of the plastid lipocalin. The results are consistent with a conserved function of APOD and LCNP under stressful conditions. However, if the results obtained with the drought and oxidative stresses point to the protective effect of constitutive expression of APOD in plants lacking LCNP, this effect is not as effective as that conferred by LCNP overexpression. Moreover, when investigating APOD function in thylakoids after high light stress at low temperature, it appeared that APOD could not contribute to qH, a slowly reversible form of non-photochemical chlorophyll fluorescence quenching, as described for LCNP. This work provides a base of understanding the molecular mechanism underlying LCNP protective function.
Collapse
Affiliation(s)
- Patricia Henri
- Aix-Marseille Université, CEA, CNRS, UMR 7265, Institut Biosciences et Biotechnologies d'Aix-Marseille, Plant Protein Protection Laboratory, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France
| | - Dominique Rumeau
- Aix-Marseille Université, CEA, CNRS, UMR 7265, Institut Biosciences et Biotechnologies d'Aix-Marseille, Plant Protein Protection Laboratory, CEA/Cadarache, F-13108, Saint-Paul-lez-Durance, France.
| |
Collapse
|
25
|
Abstract
The concept of engineering robust protein scaffolds for novel binding functions emerged 20 years ago, one decade after the advent of recombinant antibody technology. Early examples were the Affibody, Monobody (Adnectin), and Anticalin proteins, which were derived from fragments of streptococcal protein A, from the tenth type III domain of human fibronectin, and from natural lipocalin proteins, respectively. Since then, this concept has expanded considerably, including many other protein templates. In fact, engineered protein scaffolds with useful binding specificities, mostly directed against targets of biomedical relevance, constitute an area of active research today, which has yielded versatile reagents as laboratory tools. However, despite strong interest from basic science, only a handful of those protein scaffolds have undergone biopharmaceutical development up to the clinical stage. This includes the abovementioned pioneering examples as well as designed ankyrin repeat proteins (DARPins). Here we review the current state and clinical validation of these next-generation therapeutics.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354 Freising, Germany;
| |
Collapse
|
26
|
Abstract
INTRODUCTION Anticalin proteins are engineered versions of lipocalins that constitute a novel class of clinical-stage biopharmaceuticals. The lipocalins exhibit a central β-barrel with eight antiparallel β-strands and an α-helix attached to its side. Four structurally variable loops at the open end of the β-barrel form a pronounced binding pocket, which can be reshaped to generate specificities toward diverse disease-relevant molecular targets. AREAS COVERED This article reviews the current status of Anticalin engineering, from the basic principles to the development of Anticalins with high target affinity and specificity via combinatorial protein design and directed evolution, including examples of Anticalin-based drug candidates under preclinical and clinical development. EXPERT OPINION Combinatorial gene libraries together with powerful molecular selection techniques have enabled the expansion of the natural ligand specificities of lipocalins from small molecules to peptides and proteins. This biomolecular concept has been validated by structural analyses of a series of Anticalin•target complexes. Promising Anticalin lead candidates have reached different preclinical and clinical development stages in the areas of (immuno)oncology, metabolic, and respiratory diseases, as antidotes to treat intoxications and as novel antibiotics. Thus, Anticalins offer an alternative to antibodies with promising and potentially superior features as next-generation biologics.
Collapse
Affiliation(s)
| | - Elena Ilyukhina
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
27
|
Crowther JM, Broadhurst M, Laue TM, Jameson GB, Hodgkinson AJ, Dobson RCJ. On the utility of fluorescence-detection analytical ultracentrifugation in probing biomolecular interactions in complex solutions: a case study in milk. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:677-685. [PMID: 33052462 DOI: 10.1007/s00249-020-01468-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
β-Lactoglobulin is the most abundant protein in the whey fraction of ruminant milks, yet is absent in human milk. It has been studied intensively due to its impact on the processing and allergenic properties of ruminant milk products. However, the physiological function of β-lactoglobulin remains unclear. Using the fluorescence-detection system within the analytical ultracentrifuge, we observed an interaction involving fluorescently labelled β-lactoglobulin in its native environment, i.e. cow and goat milk, for the first time. Co-elution experiments support that these β-lactoglobulin interactions occur naturally in milk and provide evidence that the interacting partners are immunoglobulins, while further sedimentation velocity experiments confirm that an interaction occurs between these molecules. The identification of these interactions, made possible through the use of fluorescence-detected analytical ultracentrifugation, provides possible clues to the long debated physiological function of this abundant milk protein.
Collapse
Affiliation(s)
- Jennifer M Crowther
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Marita Broadhurst
- Food and Bio-Based Products, AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand
| | - Thomas M Laue
- Center To Advance Molecular Interaction Science, University of New Hampshire, Durham, NH, USA
| | - Geoffrey B Jameson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Alison J Hodgkinson
- Food and Bio-Based Products, AgResearch Limited, Ruakura Research Centre, Hamilton, New Zealand.
- On-Farm R&D, Farm Source, Fonterra Co-Operative Group, Hamilton, 3200, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Yamamoto K, Hiromori Y, Matsumaru D, Ishii Y, Takeshita Y, Tsubakihara I, Kimura T, Nagase H, Nakanishi T. Tri-substituted organotin compounds, but not retinoic acid, are potent ligands of complement component 8 γ. J Toxicol Sci 2020; 45:581-587. [PMID: 32879257 DOI: 10.2131/jts.45.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Complement component 8 γ (C8γ) is a subunit of complement protein 8 (C8), which itself is a subunit of the complement cytolytic membrane attack complex. However, C8γ is also suggested to be a carrier protein for the general clearance of endogenous and exogenous compounds because it belongs to the lipocalin family of small secreted proteins that have the common ability to bind small hydrophobic ligands. Although retinoic acid, a metabolite of vitamin A, has been suggested as a potential ligand of C8γ, it remains unclear which other substances are able to bind to C8γ as ligands. Here, we evaluated the binding affinity of several organotin compounds that are ligands of a receptor of retinoic acid, retinoid X receptor, by using radioligand binding assays. The amount of [14C]triphenyltin (TPT), a tri-substituted organotin, that bound to purified recombinant C8γ was increased with increasing protein concentration, whereas that of [3H]all-trans retinoic acid and [3H]9-cis retinoic acid was unchanged. Scatchard analysis revealed that [14C]TPT bound to C8γ with an equilibrium dissociation constant (Kd) of 56.2 ± 16.2 nM. Non-radiolabeled tributyltin (TBT), another tri-substituted organotin, blocked the binding of [14C]TPT to C8γ in a competitive manner, but non-radiolabeled mono- or di-substituted organotin compounds did not. Together, our present observations indicate that TBT and TPT, but not retinoic acid or mono- or di-substituted organotin compounds, are potent ligands of C8γ, suggesting that C8γ may be involved in the toxicities of these organotin compounds.
Collapse
Affiliation(s)
- Katsuya Yamamoto
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University.,Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Yoichiro Ishii
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Yuki Takeshita
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Iori Tsubakihara
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University.,Faculty of Pharmaceutical Sciences, Gifu University of Medical Science
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University
| |
Collapse
|
29
|
Luthra A, Montezuma-Rusca JM, La Vake CJ, LeDoyt M, Delgado KN, Davenport TC, Fiel-Gan M, Caimano MJ, Radolf JD, Hawley KL. Evidence that immunization with TP0751, a bipartite Treponema pallidum lipoprotein with an intrinsically disordered region and lipocalin fold, fails to protect in the rabbit model of experimental syphilis. PLoS Pathog 2020; 16:e1008871. [PMID: 32936831 PMCID: PMC7521688 DOI: 10.1371/journal.ppat.1008871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/28/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Deconvolution of syphilis pathogenesis and selection of candidate syphilis vaccinogens requires detailed knowledge of the molecular architecture of the Treponema pallidum outer membrane (OM). The T. pallidum OM contains a low density of integral OM proteins, while the spirochete's many lipoprotein immunogens are periplasmic. TP0751, a lipoprotein with a lipocalin fold, is reportedly a surface-exposed protease/adhesin and protective antigen. The rapid expansion of calycin/lipocalin structures in the RCSB PDB database prompted a comprehensive reassessment of TP0751. Small angle X-ray scattering analysis of full-length protein revealed a bipartite topology consisting of an N-terminal, intrinsically disordered region (IDR) and the previously characterized C-terminal lipocalin domain. A DALI server query using the lipocalin domain yielded 97 hits, 52 belonging to the calycin superfamily, including 15 bacterial lipocalins, but no Gram-negative surface proteins. Surprisingly, Tpp17 (TP0435) was identified as a structural ortholog of TP0751. In silico docking predicted that TP0751 can bind diverse ligands along the rim of its eight-stranded β-barrel; high affinity binding of one predicted ligand, heme, to the lipocalin domain was demonstrated. qRT-PCR and immunoblotting revealed very low expression of TP0751 compared to other T. pallidum lipoproteins. Immunoblot analysis of immune rabbit serum failed to detect TP0751 antibodies, while only one of five patients with secondary syphilis mounted a discernible TP0751-specific antibody response. In opsonophagocytosis assays, neither TP0751 nor Tpp17 antibodies promoted uptake of T. pallidum by rabbit peritoneal macrophages. Rabbits immunized with intact, full-length TP0751 showed no protection against local or disseminated infection following intradermal challenge with T. pallidum. Our data argue that, like other lipoprotein lipocalins in dual-membrane bacteria, TP0751 is periplasmic and binds small molecules, and we propose that its IDR facilitates ligand binding by and offloading from the lipocalin domain. The inability of TP0751 to elicit opsonic or protective antibodies is consistent with a subsurface location.
Collapse
Affiliation(s)
- Amit Luthra
- Department of Medicine, UConn Health, Farmington, United States of America
| | - Jairo M. Montezuma-Rusca
- Department of Medicine, UConn Health, Farmington, United States of America
- Division of Infectious Diseases, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Carson J. La Vake
- Department of Pediatrics, UConn Health, Farmington, United States of America
| | - Morgan LeDoyt
- Department of Medicine, UConn Health, Farmington, United States of America
| | | | | | - Mary Fiel-Gan
- Department of Pathology, Hartford Hospital, Hartford, United States of America
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, United States of America
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, United States of America
- Department of Genetics and Genome Sciences, UConn Health, Farmington, United States of America
- Department of Immunology, UConn Health, Farmington, United States of America
| | - Kelly L. Hawley
- Department of Pediatrics, UConn Health, Farmington, United States of America
- Division of Infectious Diseases and Immunology, Connecticut Children’s, Hartford, United States of America
| |
Collapse
|
30
|
Zajc CU, Salzer B, Taft JM, Reddy ST, Lehner M, Traxlmayr MW. Driving CARs with alternative navigation tools - the potential of engineered binding scaffolds. FEBS J 2020; 288:2103-2118. [PMID: 32794303 PMCID: PMC8048499 DOI: 10.1111/febs.15523] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
T cells that are genetically engineered to express chimeric antigen receptors (CAR T cells) have shown impressive clinical efficacy against B‐cell malignancies. In contrast to these highly potent CD19‐targeting CAR T cells, many of those directed against other tumor entities and antigens currently suffer from several limitations. For example, it has been demonstrated that many scFvs used as antigen‐binding domains in CARs show some degree of oligomerization, which leads to tonic signaling, T cell exhaustion, and poor performance in vivo. Therefore, in many cases alternatives to scFvs would be beneficial. Fortunately, due to the development of powerful protein engineering technologies, also non‐immunoglobulin‐based scaffolds can be engineered to specifically recognize antigens, thus eliminating the historical dependence on antibody‐based binding domains. Here, we discuss the advantages and disadvantages of such engineered binding scaffolds, in particular with respect to their application in CARs. We review recent studies, collectively showing that there is no functional or biochemical aspect that necessitates the use of scFvs in CARs. Instead, antigen recognition can also be mediated efficiently by engineered binding scaffolds, as well as natural ligands or receptors fused to the CAR backbone. Finally, we critically discuss the risk of immunogenicity and show that the extent of nonhuman amino acid stretches in engineered scaffolds—even in those based on nonhuman proteins—is more similar to humanized scFvs than might be anticipated. Together, we expect that engineered binding scaffolds and natural ligands and receptors will be increasingly used for the design of CAR T cells.
Collapse
Affiliation(s)
- Charlotte U Zajc
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Salzer
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Joseph M Taft
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Manfred Lehner
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria.,Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
31
|
A conformation-specific ON-switch for controlling CAR T cells with an orally available drug. Proc Natl Acad Sci U S A 2020; 117:14926-14935. [PMID: 32554495 PMCID: PMC7334647 DOI: 10.1073/pnas.1911154117] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.
Collapse
|
32
|
Blaner WS, Brun PJ, Calderon RM, Golczak M. Retinol-binding protein 2 (RBP2): biology and pathobiology. Crit Rev Biochem Mol Biol 2020; 55:197-218. [PMID: 32466661 DOI: 10.1080/10409238.2020.1768207] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinol-binding protein 2 (RBP2; originally cellular retinol-binding protein, type II (CRBPII)) is a 16 kDa cytosolic protein that in the adult is localized predominantly to absorptive cells of the proximal small intestine. It is well established that RBP2 plays a central role in facilitating uptake of dietary retinoid, retinoid metabolism in enterocytes, and retinoid actions locally within the intestine. Studies of mice lacking Rbp2 establish that Rbp2 is not required in times of dietary retinoid-sufficiency. However, in times of dietary retinoid-insufficiency, the complete lack of Rbp2 gives rise to perinatal lethality owing to RBP2 absence in both placental (maternal) and neonatal tissues. Moreover, when maintained on a high-fat diet, Rbp2-knockout mice develop obesity, glucose intolerance and a fatty liver. Unexpectedly, recent investigations have demonstrated that RBP2 binds long-chain 2-monoacylglycerols (2-MAGs), including the canonical endocannabinoid 2-arachidonoylglycerol, with very high affinity, equivalent to that of retinol binding. Crystallographic studies establish that 2-MAGs bind to a site within RBP2 that fully overlaps with the retinol binding site. When challenged orally with fat, mucosal levels of 2-MAGs in Rbp2 null mice are significantly greater than those of matched controls establishing that RBP2 is a physiologically relevant MAG-binding protein. The rise in MAG levels is accompanied by elevations in circulating levels of the hormone glucose-dependent insulinotropic polypeptide (GIP). It is not understood how retinoid and/or MAG binding to RBP2 affects the functions of this protein, nor is it presently understood how these contribute to the metabolic and hormonal phenotypes observed for Rbp2-deficient mice.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pierre-Jacques Brun
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Rossana M Calderon
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Marcin Golczak
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
34
|
Dauner M, Skerra A. Scavenging Bacterial Siderophores with Engineered Lipocalin Proteins as an Alternative Antimicrobial Strategy. Chembiochem 2019; 21:601-606. [PMID: 31613035 PMCID: PMC7079049 DOI: 10.1002/cbic.201900564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/30/2022]
Abstract
Iron acquisition mediated by siderophores, high-affinity chelators for which bacteria have evolved specific synthesis and uptake mechanisms, plays a crucial role in microbiology and in host-pathogen interactions. In the ongoing fight against bacterial infections, this area has attracted biomedical interest. Beyond several approaches to interfere with siderophore-mediated iron uptake from medicinal and immunochemistry, the development of high-affinity protein scavengers that tightly complex the siderophores produced by pathogenic bacteria has appeared as a novel strategy. Such binding proteins have been engineered based on siderocalin-also known as lipocalin 2-an endogenous human scavenger of enterobactin and bacillibactin that controls the systemic spreading of commensal bacteria such as Escherichia coli. By using combinatorial protein design, siderocalin was reshaped to bind several siderophores from Pseudomonas aeruginosa and, in particular, petrobactin from Bacillus anthracis, none of which is recognized by the natural protein. Such engineered versions of siderocalin effectively suppress the growth of corresponding pathogenic bacteria by depriving them of their iron supply and offer the potential to complement antibiotic therapy in situations of acute or persistent infection.
Collapse
Affiliation(s)
- Martin Dauner
- Institut für Biochemie und Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 3a, 06120, Halle/Saale, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising, Germany
| |
Collapse
|
35
|
Ahn J, Suh Y, Lee K. Adipose-Specific Expression, Developmental and Nutritional Regulation of the Gene-Encoding Retinol-Binding Protein 7 in Pigs. Lipids 2019; 54:359-367. [PMID: 31218688 DOI: 10.1002/lipd.12170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 11/09/2022]
Abstract
Modulation of expression of adipose tissue-specific transcripts has been known to regulate adipogenesis and lipid metabolism. Recently, adipose-specific expression patterns and developmental regulation of the gene-encoding retinol-binding protein 7 (RBP7) was identified. However, its expression in adipose tissue of the porcine species has yet to be explored. In this study, adipose tissue-specific expression of porcine RBP7 was identified and conservation of the fatty acid-binding domains and evolutionary relationship of the RBP7 gene were verified comparatively across mammalian species. Our in vitro and in vivo analysis of gene expression revealed that RBP7 expression was significantly high in fat cell fraction compared to stromal vascular cells (p < 0.05) and increased during development (p < 0.05). The level of RBP7 expression was upregulated during a 24-h short-term fasting intervention and restored 6 h after refeeding (p < 0.05). Taken together, these studies provide insights into the role of RBP7 in adipose tissue of pigs during development and nutritional intervention and pave the way for future studies on the regulation of retinol homeostasis in porcine adipose tissue.
Collapse
Affiliation(s)
- Jinsoo Ahn
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
36
|
Wang C, Zhou X, Wang H, Sun X, Guo M. Interactions between β-Lactoglobulin and 3,3'-Diindolylmethane in Model System. Molecules 2019; 24:molecules24112151. [PMID: 31181617 PMCID: PMC6600512 DOI: 10.3390/molecules24112151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/13/2023] Open
Abstract
The compound 3,3′-diindolylmethane (DIM) has a broad spectrum of anticancer activities. However, low stability and bioavailability limit its application. Elucidating interactions between DIM and β-lactoglobulin (β-LG) may be useful for fabricating whey protein-based protecting systems. Interaction with DIM increased the diameter and absolute zeta potential value of β-LG. UV-absorption spectra suggested that there was a complex of DIM and β-LG. β-LG showed enhanced fluorescence intensity by complexing with DIM with a binding constant of 6.7 × 105 M−1. Upon interaction with DIM, β-LG was decreased in secondary structure content of helix and turn while increased in β-sheet and unordered. FT-IR spectra and molecular docking results indicated the roles of hydrophobic interaction and hydrogen bond for the formation of DIM and β-LG nanocomplexes. Data suggested that β-LG may be a good vehicle for making a protein-based DIM protection and delivery system due to the tight binding of DIM to β-LG.
Collapse
Affiliation(s)
- Cuina Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, Jilin, China.
| | - Xinhui Zhou
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Hao Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xiaomeng Sun
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Mingruo Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
37
|
Charkoftaki G, Wang Y, McAndrews M, Bruford EA, Thompson DC, Vasiliou V, Nebert DW. Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an "evolutionary bloom". Hum Genomics 2019; 13:11. [PMID: 30782214 PMCID: PMC6381713 DOI: 10.1186/s40246-019-0191-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Lipocalins (LCNs) are members of a family of evolutionarily conserved genes present in all kingdoms of life. There are 19 LCN-like genes in the human genome, and 45 Lcn-like genes in the mouse genome, which include 22 major urinary protein (Mup) genes. The Mup genes, plus 29 of 30 Mup-ps pseudogenes, are all located together on chromosome (Chr) 4; evidence points to an “evolutionary bloom” that resulted in this Mup cluster in mouse, syntenic to the human Chr 9q32 locus at which a single MUPP pseudogene is located. LCNs play important roles in physiological processes by binding and transporting small hydrophobic molecules —such as steroid hormones, odorants, retinoids, and lipids—in plasma and other body fluids. LCNs are extensively used in clinical practice as biochemical markers. LCN-like proteins (18–40 kDa) have the characteristic eight β-strands creating a barrel structure that houses the binding-site; LCNs are synthesized in the liver as well as various secretory tissues. In rodents, MUPs are involved in communication of information in urine-derived scent marks, serving as signatures of individual identity, or as kairomones (to elicit fear behavior). MUPs also participate in regulation of glucose and lipid metabolism via a mechanism not well understood. Although much has been learned about LCNs and MUPs in recent years, more research is necessary to allow better understanding of their physiological functions, as well as their involvement in clinical disorders.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520-8034, USA
| | - Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520-8034, USA
| | - Monica McAndrews
- Mouse Genome Informatics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, 06520-8034, USA.
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics; Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| |
Collapse
|
38
|
Toxin Neutralization Using Alternative Binding Proteins. Toxins (Basel) 2019; 11:toxins11010053. [PMID: 30658491 PMCID: PMC6356946 DOI: 10.3390/toxins11010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms.
Collapse
|
39
|
An engineered lipocalin that tightly complexes the plant poison colchicine for use as antidote and in bioanalytical applications. Biol Chem 2018; 400:351-366. [DOI: 10.1515/hsz-2018-0342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Colchicine is a toxic alkaloid prevalent in autumn crocus (Colchicum autumnale) that binds to tubulin and inhibits polymerization of microtubules. Using combinatorial and rational protein design, we have developed an artificial binding protein based on the human lipocalin 2 that binds colchicine with a dissociation constant of 120 pm, i.e. 10000-fold stronger than tubulin. Crystallographic analysis of the engineered lipocalin, dubbed Colchicalin, revealed major structural changes in the flexible loop region that forms the ligand pocket at the open end of the eight-stranded β-barrel, resulting in a lid-like structure over the deeply buried colchicine. A cis-peptide bond between residues Phe71 and Pro72 in loop #2 constitutes a peculiar feature and allows intimate contact with the tricyclic ligand. Using directed evolution, we achieved an extraordinary dissociation half-life of more than 9 h for the Colchicalin-colchicine complex. Together with the chemical robustness of colchicine and availability of activated derivatives, this also opens applications as a general-purpose affinity reagent, including facile quantification of colchicine in biological samples. Given that engineered lipocalins, also known as Anticalin® proteins, represent a class of clinically validated biopharmaceuticals, Colchicalin may offer a therapeutic antidote to scavenge colchicine and reverse its poisoning effect in situations of acute intoxication.
Collapse
|
40
|
Kielkopf CS, Ghosh M, Anand GS, Brown SHJ. HDX-MS reveals orthosteric and allosteric changes in apolipoprotein-D structural dynamics upon binding of progesterone. Protein Sci 2018; 28:365-374. [PMID: 30353968 DOI: 10.1002/pro.3534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Apolipoprotein-D is a glycosylated tetrameric lipocalin that binds and transports small hydrophobic molecules such as progesterone and arachidonic acid. Like other lipocalins, apolipoprotein-D adopts an eight-stranded β-barrel fold stabilized by two intramolecular disulphide bonds, with an adjacent α-helix. Crystallography studies of recombinant apolipoprotein-D demonstrated no major conformational changes upon progesterone binding. Amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) reports structural changes of proteins in solution by monitoring exchange of amide hydrogens in the protein backbone with deuterium. HDX-MS detects changes in conformation and structural dynamics in response to protein function such as ligand binding that may go undetected in X-ray crystallography, making HDX-MS an invaluable orthogonal technique. Here, we report an HDX-MS protocol for apolipoprotein-D that solved challenges of high protein rigidity and low pepsin cleavage using rigorous quenching conditions and longer deuteration times, yielding 85% sequence coverage and 50% deuterium exchange. The relative fractional deuterium exchange of ligand-free apolipoprotein-D revealed apolipoprotein-D to be a highly structured protein. Progesterone binding was detected by significant reduction in deuterium exchange in eight peptides. Stabilization of apolipoprotein-D dynamics can be interpreted as a combined orthosteric effect in the ligand binding pocket and allosteric effect at the N-terminus and C-terminus. Together, our experiments provide insight into apolipoprotein-D structural dynamics and map the effects of progesterone binding that are relayed to distal parts of the protein. The observed stabilization of apolipoprotein-D dynamics upon progesterone binding demonstrates a common behaviour in the lipocalin family and may have implications for interactions of apolipoprotein-D with receptors or lipoprotein particles. Statement: We reveal for the first time how apolipoprotein-D, which is protective in Alzheimer's disease, becomes more ordered when bound to a molecule of steroid hormone. These results significantly extend the understanding of apolipoprotein-D structure from X-ray crystallography studies by incorporating information on how protein motion changes over time. To achieve these results an improved protocol was developed, suitable for proteins similar to apolipoprotein-D, to elucidate how proteins change flexibility when binding to small molecules.
Collapse
Affiliation(s)
- Claudia S Kielkopf
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Madhubrata Ghosh
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Simon H J Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.,Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
41
|
Dauner M, Eichinger A, Lücking G, Scherer S, Skerra A. Neuprogrammierung von humanem Siderocalin zur Neutralisierung von Petrobactin, dem essenziellen Eisenfänger des Milzbrand-Bazillus. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Martin Dauner
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| | - Genia Lücking
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Deutschland
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Deutschland
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Deutschland
| |
Collapse
|
42
|
Dauner M, Eichinger A, Lücking G, Scherer S, Skerra A. Reprogramming Human Siderocalin To Neutralize Petrobactin, the Essential Iron Scavenger of Anthrax Bacillus. Angew Chem Int Ed Engl 2018; 57:14619-14623. [DOI: 10.1002/anie.201807442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Dauner
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| | - Genia Lücking
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie; Technische Universität München; Weihenstephaner Berg 3 85354 Freising Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie; Technische Universität München; Emil-Erlenmeyer-Forum 5 85354 Freising Germany
| |
Collapse
|
43
|
Guiding recombinant antivenom development by omics technologies. N Biotechnol 2018; 45:19-27. [DOI: 10.1016/j.nbt.2017.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
|
44
|
Diagnosis of cardiac surgery-associated acute kidney injury from functional to damage biomarkers. Curr Opin Anaesthesiol 2018; 30:66-75. [PMID: 27906719 DOI: 10.1097/aco.0000000000000419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) occurs in up to 30% after cardiac surgery and is associated with adverse outcome. Currently, cardiac surgery-associated acute kidney injury (CSA-AKI) is diagnosed by Kidney Disease: Improving Global Outcomes criteria based on creatinine and urine output. To detect and treat AKI earlier, various biomarkers have been evaluated. This review addresses the current position of the two damage biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and [TIMP-2] [IGFBP7] in clinical practice. RECENT FINDINGS We present an updated review on the use of blood and urinary NGAL in CSA-AKI. NGAL is a good predictor, and performs better in children than adults. There is a large variation in predictive ability, possibly caused by diversity of AKI definitions used, different time of measurement of NGAL, and lack of specificity of NGAL assays.Similarly, there are conflicting data on the predictive ability of urinary [TIMP-2] [IGFBP7] for CSA-AKI.Recently, both for NGAL and for urinary [TIMP-2] [IGFBP7], a set of actions, based on pretest assessment of risk for CSA-AKI and biomarker test results, was developed. These scores should be evaluated in prospective trials. SUMMARY NGAL and urinary [TIMP-2] [IGFBP7], in combination with pretest assessment, are promising tools for early detection and treatment in CSA-AKI.
Collapse
|
45
|
Abstract
Anticalin proteins are an emerging class of clinical-stage biopharmaceuticals with high potential as an alternative to antibodies. Anticalin molecules are generated by combinatorial design from natural lipocalins, which are abundant plasma proteins in humans, and reveal a simple, compact fold dominated by a central β-barrel, supporting four structurally variable loops that form a binding site. Reshaping of this loop region results in Anticalin proteins that can recognize and tightly bind a wide range of medically relevant targets, from small molecules to peptides and proteins, as validated by X-ray structural analysis. Their robust format allows for modification in several ways, both as fusion proteins and by chemical conjugation, for example, to tune plasma half-life. Antagonistic Anticalin therapeutics have been developed for systemic administration (e.g., PRS-080: anti-hepcidin) or pulmonary delivery (e.g. PRS-060/AZD1402: anti-interleukin [IL]-4-Rα). Moreover, Anticalin proteins allow molecular formatting as bi- and even multispecific fusion proteins, especially in combination with antibodies that provide a second specificity. For example, PRS-343, which has recently entered clinical-stage development, combines an agonistic Anticalin targeting the costimulatory receptor 4-1BB with an antibody directed against the cancer antigen human epidermal growth factor receptor 2 (HER2), thus offering a novel treatment option in immuno-oncology.
Collapse
Affiliation(s)
- Christine Rothe
- Pieris Pharmaceuticals GmbH, Lise-Meitner-Straße 30, 85354, Freising, Germany.
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354, Freising (Weihenstephan), Germany.
| |
Collapse
|
46
|
Seldin MM, Koplev S, Rajbhandari P, Vergnes L, Rosenberg GM, Meng Y, Pan C, Phuong TMN, Gharakhanian R, Che N, Mäkinen S, Shih DM, Civelek M, Parks BW, Kim ED, Norheim F, Chella Krishnan K, Hasin-Brumshtein Y, Mehrabian M, Laakso M, Drevon CA, Koistinen HA, Tontonoz P, Reue K, Cantor RM, Björkegren JLM, Lusis AJ. A Strategy for Discovery of Endocrine Interactions with Application to Whole-Body Metabolism. Cell Metab 2018; 27:1138-1155.e6. [PMID: 29719227 PMCID: PMC5935137 DOI: 10.1016/j.cmet.2018.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/14/2017] [Accepted: 03/24/2018] [Indexed: 12/16/2022]
Abstract
Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues. We further show the utility of this approach by identification and mechanistic characterization of two new endocrine factors. Adipose-derived Lipocalin-5 is shown to enhance skeletal muscle mitochondrial function, and liver-secreted Notum promotes browning of white adipose tissue, also known as "beiging." We demonstrate the general applicability of the method by providing in vivo evidence for three additional novel molecules mediating tissue-tissue interactions.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gregory M Rosenberg
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonghong Meng
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thuy M N Phuong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raffi Gharakhanian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nam Che
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Selina Mäkinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Diana M Shih
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | - Eric D Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Margarete Mehrabian
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rita M Cantor
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Aldons J Lusis
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.
| |
Collapse
|
47
|
|
48
|
Perduca M, Nicolis S, Mannucci B, Galliano M, Monaco HL. Human plasma retinol-binding protein (RBP4) is also a fatty acid-binding protein. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:458-466. [DOI: 10.1016/j.bbalip.2018.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 01/08/2023]
|
49
|
Schiefner A, Gebauer M, Richter A, Skerra A. Anticalins Reveal High Plasticity in the Mode of Complex Formation with a Common Tumor Antigen. Structure 2018. [DOI: 10.1016/j.str.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
50
|
Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope. Sci Rep 2018; 8:1598. [PMID: 29371615 PMCID: PMC5785490 DOI: 10.1038/s41598-018-19883-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 01/04/2018] [Indexed: 02/08/2023] Open
Abstract
The major cow’s milk allergen Bos d 5 belongs to the lipocalin protein family, with an intramolecular pocket for hydrophobic ligands. We investigated whether Bos d 5 when loaded with the active vitamin A metabolite retinoic acid (RA), would elicit differential immune responses compared to the unloaded state. By in silico docking an affinity energy of −7.8 kcal/mol was calculated for RA into Bos d 5. Loading of RA to Bos d 5 could be achieved in vitro, as demonstrated by ANS displacement assay, but had no effect on serum IgE binding in tolerant or challenge-positive milk allergic children. Bioinformatic analysis revealed that RA binds to the immunodominant T-cell epitope region of Bos d 5. In accordance, Bos d 5 significantly suppressed the CD3+ CD4+ cell numbers, proliferative response and IL-10, IL-13 and IFN-γ secretion from stimulated human PBMCs only when complexed with RA. This phenomenon was neither associated with apoptosis of T-cells nor with the activation of Foxp3+ T-cells, but correlated likely with enhanced stability to lysosomal digestion due to a predicted overlap of Cathepsin S cleavage sites with the RA binding site. Taken together, proper loading of Bos d 5 with RA may suppress its immunogenicity and prevent its allergenicity.
Collapse
|