1
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
2
|
Role of S100 proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118677. [PMID: 32057918 DOI: 10.1016/j.bbamcr.2020.118677] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022]
Abstract
The S100 family of proteins contains 25 known members that share a high degree of sequence and structural similarity. However, only a limited number of family members have been characterized in depth, and the roles of other members are likely undervalued. Their importance should not be underestimated however, as S100 family members function to regulate a diverse array of cellular processes including proliferation, differentiation, inflammation, migration and/or invasion, apoptosis, Ca2+ homeostasis, and energy metabolism. Here we detail S100 target protein interactions that underpin the mechanistic basis to their function, and discuss potential intervention strategies targeting S100 proteins in both preclinical and clinical situations.
Collapse
|
3
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
|
5
|
Seo JS, Zhong P, Liu A, Yan Z, Greengard P. Elevation of p11 in lateral habenula mediates depression-like behavior. Mol Psychiatry 2018; 23:1113-1119. [PMID: 28507317 PMCID: PMC5690885 DOI: 10.1038/mp.2017.96] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023]
Abstract
The lateral habenula (LHb) is a key brain region involved in the pathophysiology of depression. It is activated by stimuli associated with negative experiences and is involved in encoding aversive signals. Hyperactivity of LHb is found in both rodent models of depression and human patients with depression. However, little is known about the underlying molecular mechanisms. Here we show that in LHb neurons, p11, a multifunctional protein implicated in depression, is significantly upregulated by chronic restraint stress. Knockdown of p11 expression in LHb alleviates the stress-induced depression-like behaviors. Moreover, chronic restraint stress induces bursting action potentials in LHb neurons, which are abolished by p11 knockdown. Overexpression of p11 in dopamine D2 receptor-containing LHb neurons of control mice induces depression-like behaviors. These results have identified p11 in LHb as a key molecular determinant regulating negative emotions, which may help to understand the molecular and cellular basis of depression.
Collapse
Affiliation(s)
- J-S Seo
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY USA
| | - P Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY USA
| | - A Liu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY USA
| | - Z Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY USA
| | - P Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY USA
| |
Collapse
|
6
|
Cai D, Li Y, Zhou C, Jiang Y, Jiao J, Wu L. Comparative proteomics analysis of primary cutaneous amyloidosis. Exp Ther Med 2017; 14:3004-3012. [PMID: 28912854 PMCID: PMC5585729 DOI: 10.3892/etm.2017.4852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/25/2017] [Indexed: 01/02/2023] Open
Abstract
Primary cutaneous amyloidosis (PCA) is a localized skin disorder that is characterized by the abnormal deposition of amyloid in the extracellular matrix (ECM) of the dermis. The pathogenesis of PCA is poorly understood. The objective of the present study was to survey proteome changes in PCA lesions in order to gain insight into the molecular basis and pathogenesis of PCA. Total protein from PCA lesions and normal skin tissue samples were extracted and analyzed using the isobaric tags for relative and absolute quantitation technique. The function of differentially expressed proteins in PCA were analyzed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis. The proteins that were most upregulated in PCA lesions were further analyzed by immunohistochemistry. A total of 1,032 proteins were identified in PCA lesions and control skin samples, with 51 proteins differentially expressed in PCA lesions, of which 27 were upregulated. In PCA lesions, the upregulated proteins were primarily extracellulary located. In addition, GO analysis indicated that the upregulated proteins were significantly enriched in the biological processes of epidermal development, collagen fiber organization and response to wounding (adjusted P<0.001). KEGG analysis indicated that the upregulated proteins were significantly enriched in the signaling pathways of cell communication, ECM receptor interaction and focal adhesion (adjusted P<0.001). Furthermore, the upregulated proteins were enriched in the molecular function of calcium ion binding, and the calcium binding proteins calmodulin-like protein 5, S100 calcium-binding protein A7 (S100A7)/fatty-acid binding protein and S100A8/A9 exhibited the highest levels of upregulation in PCA. This analysis of differentially expressed proteins in PCA suggests that increased focal adhesion, differentiation and wound healing is associated with the pathogenesis of PCA.
Collapse
Affiliation(s)
- Daxing Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yang Li
- Beijing Protein Innovation Co. Ltd., Beijing 101318, P.R. China
| | - Chunlei Zhou
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yulin Jiang
- Beijing Protein Innovation Co. Ltd., Beijing 101318, P.R. China
| | - Jian Jiao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Wu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
7
|
Matthijs S, Hernalsteens JP, Roelants K. An orthologue of the host-defense protein psoriasin (S100A7) is expressed in frog skin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:395-403. [PMID: 27569988 DOI: 10.1016/j.dci.2016.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Host-defense peptides and proteins are vital for first line protection against bacteria. Most host-defense peptides and proteins common in vertebrates have been studied primarily in mammals, while their orthologues in non-mammalian vertebrates received less attention. We found that the European Common Frog Rana temporaria expresses a protein in its skin that is evolutionarily related to the host-defense protein S100A7. This prompted us to test if the encoded protein, which is an important microbicidal protein in human skin, shows similar activity in frogs. The R. temporaria protein lacks the zinc-binding sites that are key to the antimicrobial activity of human S100A7 at neutral pH. However, despite being less potent, the R. temporaria protein does compromise bacterial membranes at low pH, similar to its human counterpart. We postulate that, while amphibian S100A7 likely serves other functions, the capacity to compromise bacterial cell membranes evolved early in tetrapod evolution.
Collapse
Affiliation(s)
- Severine Matthijs
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
8
|
|
9
|
Son ED, Kim HJ, Kim KH, Bin BH, Bae IH, Lim KM, Yu SJ, Cho EG, Lee TR. S100A7 (psoriasin) inhibits human epidermal differentiation by enhanced IL-6 secretion through IκB/NF-κB signalling. Exp Dermatol 2016; 25:636-41. [PMID: 27060579 DOI: 10.1111/exd.13023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 12/11/2022]
Abstract
Psoriasin (S100A7), a member of the S100 protein family, is a well-known antimicrobial peptide and a signalling molecule which regulates cellular function and is highly expressed in hyperproliferative skin conditions such as atopic dermatitis (AD) and psoriasis with disrupted skin barrier function. However, its role in epidermal differentiation remains unknown. We examined the effect of S100A7 on epidermal differentiation in normal human keratinocytes (NHKs) and on a reconstituted human epidermis model. When NHKs were exposed to disruptive stimuli such as Staphylococcus aureus, ultraviolet irradiation and retinoic acid, the secretion of S100A7 into the culture medium increased and the expression of epidermal differentiation markers decreased. Treatment of NHKs with S100A7 significantly inhibited epidermal differentiation by reducing the expression of keratin 1, keratin 10, involucrin and loricrin and by increasing the expression of abnormal differentiation markers (keratin 6 and keratin 16). We verified that the MyD88-IκB/NF-κB signal cascade was activated via RAGE after S100A7 treatment, resulting in the upregulation of interleukin-6. Finally, we confirmed that S100A7 is a negative regulator of epidermal differentiation using a reconstituted human epidermis model. This study suggests that S100A7-related signalling molecules could be potent targets for recovering skin barrier function in AD and psoriasis where S100A7 is accumulated excessively.
Collapse
Affiliation(s)
- Eui Dong Son
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | | | - Kyu Han Kim
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Bum Ho Bin
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Il-Hong Bae
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Seok Jong Yu
- Korea Institute of Science and Technology Information, Dajeon, Korea
| | - Eun-Gyung Cho
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| | - Tae Ryong Lee
- AmorePacific Corp/R&D Center, Yongin-si, Gyeonggi-do, Korea
| |
Collapse
|
10
|
Metastasis-associated S100A4 is a specific amine donor and an activity-independent binding partner of transglutaminase-2. Biochem J 2015; 473:31-42. [DOI: 10.1042/bj20150843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 01/30/2023]
Abstract
S100A4 and transglutaminase-2 have a role in metastasis. S100A4 is an interaction partner and specific amine substrate of transglutaminase-2, promoting its open conformation and leading to enhanced cell adhesion. Study of their interaction could contribute to the better understanding of metastasis.
Collapse
|
11
|
Rorke EA, Adhikary G, Young CA, Rice RH, Elias PM, Crumrine D, Meyer J, Blumenberg M, Eckert RL. Structural and biochemical changes underlying a keratoderma-like phenotype in mice lacking suprabasal AP1 transcription factor function. Cell Death Dis 2015; 6:e1647. [PMID: 25695600 PMCID: PMC4669787 DOI: 10.1038/cddis.2015.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/06/2015] [Indexed: 01/07/2023]
Abstract
Epidermal keratinocyte differentiation on the body surface is a carefully choreographed process that leads to assembly of a barrier that is essential for life. Perturbation of keratinocyte differentiation leads to disease. Activator protein 1 (AP1) transcription factors are key controllers of this process. We have shown that inhibiting AP1 transcription factor activity in the suprabasal murine epidermis, by expression of dominant-negative c-jun (TAM67), produces a phenotype type that resembles human keratoderma. However, little is understood regarding the structural and molecular changes that drive this phenotype. In the present study we show that TAM67-positive epidermis displays altered cornified envelope, filaggrin-type keratohyalin granule, keratin filament, desmosome formation and lamellar body secretion leading to reduced barrier integrity. To understand the molecular changes underlying this process, we performed proteomic and RNA array analysis. Proteomic study of the corneocyte cross-linked proteome reveals a reduction in incorporation of cutaneous keratins, filaggrin, filaggrin2, late cornified envelope precursor proteins, hair keratins and hair keratin-associated proteins. This is coupled with increased incorporation of desmosome linker, small proline-rich, S100, transglutaminase and inflammation-associated proteins. Incorporation of most cutaneous keratins (Krt1, Krt5 and Krt10) is reduced, but incorporation of hyperproliferation-associated epidermal keratins (Krt6a, Krt6b and Krt16) is increased. RNA array analysis reveals reduced expression of mRNA encoding differentiation-associated cutaneous keratins, hair keratins and associated proteins, late cornified envelope precursors and filaggrin-related proteins; and increased expression of mRNA encoding small proline-rich proteins, protease inhibitors (serpins), S100 proteins, defensins and hyperproliferation-associated keratins. These findings suggest that AP1 factor inactivation in the suprabasal epidermal layers reduces expression of AP1 factor-responsive genes expressed in late differentiation and is associated with a compensatory increase in expression of early differentiation genes.
Collapse
Affiliation(s)
- E A Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - G Adhikary
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - C A Young
- Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - R H Rice
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - P M Elias
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, CA, USA
| | - D Crumrine
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, CA, USA
| | - J Meyer
- Dermatology Service, Veterans Affairs Medical Center, San Francisco and Department of Dermatology, University of California, San Francisco, CA, USA
| | - M Blumenberg
- The R.O. Perelman Department of Dermatology, Department of Biochemistry and Molecular Pharmacology, New York University Cancer Institute, New York City, NY, USA
| | - R L Eckert
- 1] Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA [2] Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA [3] Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, MD, USA [4] Greenebaum Cancer Center University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Chamcheu JC, Pal HC, Siddiqui IA, Adhami VM, Ayehunie S, Boylan BT, Noubissi FK, Khan N, Syed DN, Elmets CA, Wood GS, Afaq F, Mukhtar H. Prodifferentiation, anti-inflammatory and antiproliferative effects of delphinidin, a dietary anthocyanidin, in a full-thickness three-dimensional reconstituted human skin model of psoriasis. Skin Pharmacol Physiol 2015; 28:177-88. [PMID: 25620035 DOI: 10.1159/000368445] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Psoriasis is a chronic inflammatory disorder of skin and joints for which conventional treatments that are effective in clearing the moderate-to-severe disease are limited due to long-term safety issues. This necessitates exploring the usefulness of botanical agents for treating psoriasis. We previously showed that delphinidin, a diet-derived anthocyanidin endowed with antioxidant and anti-inflammatory properties, induces normal epidermal keratinocyte differentiation and suggested its possible usefulness for the treatment of psoriasis [1]. OBJECTIVES To investigate the effect of delphinidin (0-20 μM; 2-5 days) on psoriatic epidermal keratinocyte differentiation, proliferation and inflammation using a three-dimensional reconstructed human psoriatic skin equivalent (PSE) model. METHODS PSEs and normal skin equivalents (NSEs) established on fibroblast-contracted collagen gels with respective psoriatic and normal keratinocytes and treated with/without delphinidin were analyzed for histology, expression of markers of differentiation, proliferation and inflammation using histomorphometry, immunoblotting, immunochemistry, qPCR and cultured supernatants for cytokine with a Multi-Analyte ELISArray Kit. RESULTS Our data show that treatment of PSE with delphinidin induced (1) cornification without affecting apoptosis and (2) the mRNA and protein expression of markers of differentiation (caspase-14, filaggrin, loricrin, involucrin). It also decreased the expression of markers of proliferation (Ki67 and proliferating cell nuclear antigen) and inflammation (inducible nitric oxide synthase and antimicrobial peptides S100A7-psoriasin and S100A15-koebnerisin, which are often induced in psoriatic skin). ELISArray showed increased release of psoriasis-associated keratinocyte-derived proinflammatory cytokines in supernatants of the PSE cultures, and this increase was significantly suppressed by delphinidin. CONCLUSIONS These observations provide a rationale for developing delphinidin for the management of psoriasis.
Collapse
|
13
|
Afanador L, Roltsch EA, Holcomb L, Campbell KS, Keeling DA, Zhang Y, Zimmer DB. The Ca2+ sensor S100A1 modulates neuroinflammation, histopathology and Akt activity in the PSAPP Alzheimer's disease mouse model. Cell Calcium 2014; 56:68-80. [DOI: 10.1016/j.ceca.2014.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/25/2022]
|
14
|
Abstract
TRPV5 is one of the two channels in the TRPV family that exhibit high selectivity to Ca(2+) ions. TRPV5 mediates Ca(2+) influx into cells as the first step to transport Ca(2+) across epithelia. The specialized distribution in the distal tubule of the kidney positions TRPV5 as a key player in Ca(2+) reabsorption. The responsiveness in expression and/or activity of TRPV5 to hormones such as 1,25-dihydroxyvitamin D3, parathyroid hormone, estrogen, and testosterone makes TRPV5 suitable for its role in the fine-tuning of Ca(2+) reabsorption. This role is further optimized by the modulation of TRPV5 trafficking and activity via its binding partners; co-expressed proteins; tubular factors such as calbindin-D28k, calmodulin, klotho, uromodulin, and plasmin; extracellular and intracellular factors such as proton, Mg(2+), Ca(2+), and phosphatidylinositol-4,5-bisphosphate; and fluid flow. These regulations allow TRPV5 to adjust its overall activity in response to the body's demand for Ca(2+) and to prevent kidney stone formation. A point mutation in mouse Trpv5 gene leads to hypercalciuria similar to Trpv5 knockout mice, suggesting a possible role of TRPV5 in hypercalciuric disorders in humans. In addition, the single nucleotide polymorphisms in Trpv5 gene prevalently present in African descents may contribute to the efficient renal Ca(2+) reabsorption among African descendants. TRPV5 represents a potential therapeutic target for disorders with altered Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Tao Na
- Cell Collection and Research Center, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
| | | |
Collapse
|
15
|
Jiang WG, Ye L, Sanders AJ, Ruge F, Kynaston HG, Ablin RJ, Mason MD. Prostate transglutaminase (TGase-4, TGaseP) enhances the adhesion of prostate cancer cells to extracellular matrix, the potential role of TGase-core domain. J Transl Med 2013; 11:269. [PMID: 24161123 PMCID: PMC3874635 DOI: 10.1186/1479-5876-11-269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/09/2013] [Indexed: 11/29/2022] Open
Abstract
Background Transglutaminase-4 (TGase-4), also known as the Prostate Transglutaminase, is an enzyme found to be expressed predominately in the prostate gland. The protein has been recently reported to influence the migration and invasiveness of prostate cancer cells. The present study aimed to investigate the influence of TGase-4 on cell-matrix adhesion and search for the candidate active domain[s] within the protein. Methods Human prostate cancer cell lines and prostate tissues were used. Plasmids that encoded different domains and full length of TGase-4 were constructed and used to generate sublines that expressed different domains. The impact of TGase-4 on in vitro cell-matrix adhesion, cell migration, growth and in vivo growth were investigated. Interactions between TGase-4 and focal adhesion complex proteins were investigated using immunoprecipitation, immunofluorescence and phosphospecific antibodies. Results TGase-4 markedly increased cell-matrix adhesion and cellular migration, and resulted in a rapid growth of prostate tumours in vivo. This effect resided in the Core-domain of the TGase-4 protein. TGase-4 was found to co-precipitate and co-localise with focal adhesion kinase (FAK) and paxillin, in cells, human prostate tissues and tumour xenografts. FAK small inhibitor was able to block the action mediated by TGase-4 and TGase-4 core domain. Conclusion TGase-4 is an important regulator of cell-matrix adhesion of prostate cancer cells. This effect is predominately mediated by its core domain and requires the participation of focal adhesion complex proteins.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hattinger E, Zwicker S, Ruzicka T, Yuspa SH, Wolf R. Opposing functions of psoriasin (S100A7) and koebnerisin (S100A15) in epithelial carcinogenesis. Curr Opin Pharmacol 2013; 13:588-94. [PMID: 23664757 DOI: 10.1016/j.coph.2013.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/12/2013] [Indexed: 12/22/2022]
Abstract
The S100 protein family is involved in epithelial cell maturation and inflammation. Some S100 members are dysregulated during carcinogenesis and have been established as tumor markers. Psoriasin (S100A7) and koebnerisin (S100A15) are highly homologous proteins that have been first described in psoriasis, which is characterized by disturbed epidermal maturation and chronic inflammation. Despite their homology, both S100 proteins are distinct in expression and function through different receptors but synergize as chemoattractants and pro-inflammatory 'alarmins' to promote inflammation. Psoriasin and koebnerisin are further regulated with tumor progression in epithelial cancers. In tumor cells, high cytoplasmic expression of psoriasin and koebnerisin may prevent oncogenic activity, whereas their nuclear translocation and extracellular secretion are associated with tumor progression and poor prognosis. The present review outlines these opposing effects of psoriasin and koebnerisin in multifunctional pathways and mechanisms that are known to affect tumor cells ('seeds'), tumor environment ('soil') and tumor cell metastasis ('seeding') thereby influencing epithelial carcinogenesis.
Collapse
Affiliation(s)
- Eva Hattinger
- Department of Dermatology and Allergology, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | |
Collapse
|
17
|
Rinnerthaler M, Duschl J, Steinbacher P, Salzmann M, Bischof J, Schuller M, Wimmer H, Peer T, Bauer JW, Richter K. Age-related changes in the composition of the cornified envelope in human skin. Exp Dermatol 2013; 22:329-35. [DOI: 10.1111/exd.12135] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Jutta Duschl
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Peter Steinbacher
- Department of Organismic Biology; Division of Zoology; University of Salzburg; Salzburg Austria
| | - Manuel Salzmann
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Johannes Bischof
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Markus Schuller
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Herbert Wimmer
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| | - Thomas Peer
- Department of Organismic Biology; Division of Zoology; University of Salzburg; Salzburg Austria
| | - Johann W. Bauer
- Department of Dermatology; Division of Molecular Dermatology and EB House Austria; Paracelsus Medical University; Salzburg Austria
| | - Klaus Richter
- Department of Cell Biology; Division of Genetics; University of Salzburg; Salzburg Austria
| |
Collapse
|
18
|
Gillespie MJ, Crowley TM, Haring VR, Wilson SL, Harper JA, Payne JS, Green D, Monaghan P, Stanley D, Donald JA, Nicholas KR, Moore RJ. Transcriptome analysis of pigeon milk production - role of cornification and triglyceride synthesis genes. BMC Genomics 2013; 14:169. [PMID: 23497009 PMCID: PMC3610128 DOI: 10.1186/1471-2164-14-169] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022] Open
Abstract
Background The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. Results We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon ‘lactating’ crop-specific annexin cp35. Beta-keratins play an important role in ‘lactating’ crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. Conclusions This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.
Collapse
Affiliation(s)
- Meagan J Gillespie
- Australian Animal Health Laboratory, CSIRO Animal, Food and Health Sciences, 5 Portarlington Road, Geelong, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Z, Griffin M. The role of TG2 in regulating S100A4-mediated mammary tumour cell migration. PLoS One 2013; 8:e57017. [PMID: 23469180 PMCID: PMC3585722 DOI: 10.1371/journal.pone.0057017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 01/21/2013] [Indexed: 12/21/2022] Open
Abstract
The importance of S100A4, a Ca(2+)-binding protein, in mediating tumour cell migration, both intracellularly and extracellularly, is well documented. Tissue transglutaminase (TG2) a Ca(2+)-dependent protein crosslinking enzyme, has also been shown to enhance cell migration. Here by using the well characterised non-metastatic rat mammary R37 cells (transfected with empty vector) and highly metastatic KP1 cells (R37 cells transfected with S100A4), we demonstrate that inhibition of TG2 either by TG2 inhibitors or transfection of cells with TG2 shRNA block S100A4-accelerated cell migration in the KP1cells and in R37 cells treated with exogenous S100A4. Cell migration was also blocked by the treatment with the non-cell permeabilizing TG2 inhibitor R294, in the human breast cancer cell line MDA-MB-231 (Clone 16, which has a high level of TG2 expression). Inhibition was paralleled by a decrease in S100A4 polymer formation. In vitro co-immunoprecipitation and Far Western blotting assays and cross-linking assays showed not only the direct interaction between TG2 and S100A4, but also confirmed S100A4 as a substrate for TG2. Using specific functional blocking antibodies, a targeting peptide and a recombinant protein as a competitive treatment, we revealed the involvement of syndecan-4 and α5β1 integrin co-signalling pathways linked by activation of PKCα in this TG2 and S100A4-mediated cell migration. We propose a mechanism for TG2-regulated S100A4-related mediated cell migration, which is dependent on TG2 crosslinking.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Nuutila K, Siltanen A, Peura M, Bizik J, Kaartinen I, Kuokkanen H, Nieminen T, Harjula A, Aarnio P, Vuola J, Kankuri E. Human skin transcriptome during superficial cutaneous wound healing. Wound Repair Regen 2012; 20:830-9. [DOI: 10.1111/j.1524-475x.2012.00831.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 06/06/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Kristo Nuutila
- Institute of Biomedicine, Pharmacology, Biomedicum; University of Helsinki; Helsinki; Finland
| | - Antti Siltanen
- Institute of Biomedicine, Pharmacology, Biomedicum; University of Helsinki; Helsinki; Finland
| | - Matti Peura
- Institute of Biomedicine, Pharmacology, Biomedicum; University of Helsinki; Helsinki; Finland
| | | | - Ilkka Kaartinen
- Department of Plastic Surgery; Tampere University Hospital; Tampere; Finland
| | - Hannu Kuokkanen
- Department of Plastic Surgery; Tampere University Hospital; Tampere; Finland
| | - Tapio Nieminen
- Department of Surgery; Satakunta Central Hospital; Pori; Finland
| | | | - Pertti Aarnio
- Department of Surgery; Satakunta Central Hospital; Pori; Finland
| | - Jyrki Vuola
- Helsinki Burn Center; Töölö Hospital; Helsinki University Central Hospital; Helsinki; Finland
| | - Esko Kankuri
- Institute of Biomedicine, Pharmacology, Biomedicum; University of Helsinki; Helsinki; Finland
| |
Collapse
|
21
|
The biochemistry and regulation of S100A10: a multifunctional plasminogen receptor involved in oncogenesis. J Biomed Biotechnol 2012; 2012:353687. [PMID: 23118506 PMCID: PMC3479961 DOI: 10.1155/2012/353687] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/01/2012] [Indexed: 12/16/2022] Open
Abstract
The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.
Collapse
|
22
|
Edsberg LE, Wyffels JT, Brogan MS, Fries KM. Analysis of the proteomic profile of chronic pressure ulcers. Wound Repair Regen 2012; 20:378-401. [PMID: 22564231 DOI: 10.1111/j.1524-475x.2012.00791.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analysis of the proteomic profile of pressure ulcers over time is a critical step in the identification of biomarkers of healing or nonhealing in pressure ulcers. The wound fluid from 32 subjects with 42 pressure ulcers was evaluated over 6 weeks at 15 time points. Samples specific to both the interior and the periphery of the wound bed were collected. Antibody screening arrays, isobaric tags for relative and absolute quantitation with mass spectrometry and multiplexed microarrays were used to characterize wound fluid and results were correlated with clinical outcome. Twenty-one proteins were found to distinguish between healed and chronic wounds and 19 proteins were differentially expressed between the interior and periphery of wounds. Four proteins, pyruvate kinase isozymes M1/M2, profilin-1, Ig lambda-1 chain C regions, and Ig gamma-1 chain C region, were present in lower levels for periphery samples when compared to interior samples and six proteins, keratin, type II cytoskeletal 6A (KRT6A), keratin, type I cytoskeletal 14, S100 calcium binding proteins A7, alpha-1-antitrypsin precursor, hemoglobin subunit alpha, and hemoglobin subunit beta, were present in higher levels in periphery samples when compared with interior samples. S100 calcium binding protein A6, S100 calcium binding protein A7, and soluble receptor for advanced glycation end-products had higher levels in the periphery of chronic wounds vs. the interior in planar arrays. A significant temporal trend was noted for monokine induced by gamma interferon (MIG), synonomous with chemokine (C-X-C motif) ligand 9 (CXCL9), which increased as wounds healed and remained nearly constant for ulcers that were not approaching closure.
Collapse
Affiliation(s)
- Laura E Edsberg
- Natural and Health Sciences Research Center, Center for Wound Healing Research, Daemen College, Amherst, NY 14226-3592, USA.
| | | | | | | |
Collapse
|
23
|
Boros S, Xi Q, Dimke H, van der Kemp AW, Tudpor K, Verkaart S, Lee KP, Bindels RJ, Hoenderop JG. Tissue transglutaminase inhibits the TRPV5-dependent calcium transport in an N-glycosylation-dependent manner. Cell Mol Life Sci 2012; 69:981-92. [PMID: 21952826 PMCID: PMC11114635 DOI: 10.1007/s00018-011-0818-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/25/2011] [Accepted: 09/06/2011] [Indexed: 01/28/2023]
Abstract
Tissue transglutaminase (tTG) is a multifunctional Ca(2+)-dependent enzyme, catalyzing protein crosslinking. The transient receptor potential vanilloid (TRPV) family of cation channels was recently shown to contribute to the regulation of TG activities in keratinocytes and hence skin barrier formation. In kidney, where active transcellular Ca(2+) transport via TRPV5 predominates, the potential effect of tTG remains unknown. A multitude of factors regulate TRPV5, many secreted into the pro-urine and acting from the extracellular side. We detected tTG in mouse urine and in the apical medium of polarized cultures of rabbit connecting tubule and cortical collecting duct (CNT/CCD) cells. Extracellular application of tTG significantly reduced TRPV5 activity in human embryonic kidney cells transiently expressing the channel. Similarly, a strong inhibition of transepithelial Ca(2+) transport was observed after apical application of purified tTG to polarized rabbit CNT/CCD cells. Furthermore, tTG promoted the aggregation of the plasma membrane-associated fraction of TRPV5. Using patch clamp analysis, we observed a reduction in the pore diameter after tTG treatment, suggesting distinct structural changes in TRPV5 upon crosslinking by tTG. As N-linked glycosylation of TRPV5 is a key step in regulating channel function, we determined the effect of tTG in the N-glycosylation-deficient TRPV5 mutant. In the absence of N-linked glycosylation, TRPV5 was insensitive to tTG. Taken together, these observations imply that tTG is a novel extracellular enzyme inhibiting the activity of TRPV5. The inhibition of TRPV5 occurs in an N-glycosylation-dependent manner, signifying a common final pathway by which distinct extracellular factors regulate channel activity.
Collapse
Affiliation(s)
- Sandor Boros
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Qi Xi
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henrik Dimke
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Annemiete W. van der Kemp
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kukiat Tudpor
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sjoerd Verkaart
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Kyu Pil Lee
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - René J. Bindels
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Joost G. Hoenderop
- 286 Department of Physiology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
24
|
Yoneda K, Nakagawa T, Lawrence OT, Huard J, Demitsu T, Kubota Y, Presland RB. Interaction of the profilaggrin N-terminal domain with loricrin in human cultured keratinocytes and epidermis. J Invest Dermatol 2012; 132:1206-14. [PMID: 22277945 DOI: 10.1038/jid.2011.460] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The relationship between the two coexpressed differentiation markers, profilaggrin and loricrin, is not clear right now. In this study, we explored the interaction of profilaggrin N-terminal domain (PND) with loricrin in keratinocytes and epidermis. Confocal immunofluorescence microscopic analysis of human epidermis showed that PND colocalized with loricrin. Loricrin nucleofected into HaCaT cells colocalized with PND in the nucleus and cytoplasm. The PND localizes to both the nucleus and cytoplasm of epidermal granular layer cells. Nucleofected PND also colocalized with keratin 10 (K10) in the nucleus and cytoplasm. Immunoelectron microscopic analysis of human epidermis confirmed the findings in nucleofected keratinocytes. Yeast two-hybrid assays showed that the B domain of human and mouse PND interacted with loricrin. The glutathione S-transferase (GST) pull-down analysis using recombinant GST-PND revealed that PND interacted with loricrin and K10. Knockdown of PND in an organotypic skin culture model caused loss of filaggrin expression and a reduction in both the size and number of keratohyalin granules, as well as markedly reduced expression of loricrin. Considering that expression of PND is closely linked to keratinocyte terminal differentiation, we conclude that PND interacts with loricrin and K10 in vivo and that these interactions are likely to be relevant for cornified envelope assembly and subsequent epidermal barrier formation.
Collapse
Affiliation(s)
- Kozo Yoneda
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kizawa K, Takahara H, Unno M, Heizmann CW. S100 and S100 fused-type protein families in epidermal maturation with special focus on S100A3 in mammalian hair cuticles. Biochimie 2011; 93:2038-47. [DOI: 10.1016/j.biochi.2011.05.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 05/25/2011] [Indexed: 12/29/2022]
|
26
|
Hoffner G, Vanhoutteghem A, André W, Djian P. Transglutaminase in epidermis and neurological disease or what makes a good cross-linking substrate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:97-160. [PMID: 22220473 DOI: 10.1002/9781118105771.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guylaine Hoffner
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Régulation de la Transcription et Maladies Génétiques, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
27
|
Jiang WG, Ablin RJ. Prostate transglutaminase: a unique transglutaminase and its role in prostate cancer. Biomark Med 2011; 5:285-91. [DOI: 10.2217/bmm.11.36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prostate transglutaminase-4, also known as TGM4 or transglutaminase P, belongs to the prostate transglutaminase protein family, but is almost uniquely distributed in the prostate gland. Recent years have seen an expansion of interest in this enzyme, which is intriguingly expressed in prostate tissues and prostate cancer. In recent studies, the molecule has been found to have a diverse impact on prostate cancer cell growth, migration and invasiveness, and to be involved in the tumor–endothelial interaction and epithelial–mesenchymal transition, and has a wide interaction with other molecular complexes implicating it as a possible biomarker of aggressive versus nonaggressive cancer, as well as a therapeutic factor. This article reviews the recent progress and discusses the controversies and future directions in this exciting area of prostate cancer research.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Richard J Ablin
- Department of Pathology, Health Sciences Center, University of Arizona College of Medicine, Arizona Cancer Center & BIO5 Institute, 1501 North Campbell Avenue, PO Box 245043, Tucson, AZ 85724-5043, USA
| |
Collapse
|
28
|
Gläser R, Köten B, Wittersheim M, Harder J. Psoriasin: key molecule of the cutaneous barrier? J Dtsch Dermatol Ges 2011; 9:897-902. [PMID: 21501383 DOI: 10.1111/j.1610-0387.2011.07683.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Psoriasin (S100 A7) was discovered two decades ago as a protein abundantly expressed in psoriatic keratinocytes. Even though much scientific research has been carried out on the characterization of psoriasin, only recent studies point to an important role of psoriasin as an antimicrobial and immunomodulatory protein in skin and other epithelia. In this review, we provide an overview of the major findings in psoriasin research and discuss novel studies highlighting the role of psoriasin as an important effector molecule of the cutaneous barrier.
Collapse
Affiliation(s)
- Regine Gläser
- Department of Dermatology, Venereology and Allergy, University Clinic Schleswig-Holstein, Campus Kiel, Germany.
| | | | | | | |
Collapse
|
29
|
Henry J, Hsu CY, Haftek M, Nachat R, de Koning HD, Gardinal-Galera I, Hitomi K, Balica S, Jean-Decoster C, Schmitt AM, Paul C, Serre G, Simon M. Hornerin is a component of the epidermal cornified cell envelopes. FASEB J 2011; 25:1567-76. [PMID: 21282207 DOI: 10.1096/fj.10-168658] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A single-nucleotide polymorphism within the gene encoding hornerin (HRNR) has recently been linked with atopic dermatitis (AD) susceptibility. HRNR shares features with filaggrin, a key protein for keratinocyte differentiation, but conflicting reports have been published concerning its expression in the epidermis, and its role is still unknown. To analyze HRNR expression and function in the epidermis, anti-HRNR antibodies were produced and used in Western blot analysis and immunohistochemical, confocal, and immunoelectron microscopy analyses of human skin and of cornified cell envelopes purified from plantar stratum corneum. We also tested whether HRNR was a substrate of transglutaminases. In the epidermis, HRNR was detected at the periphery of keratohyalin granules in the upper granular layer and at the corneocyte periphery in the whole cornified layer. Detected in Western blot analysis as numerous bands, HRNR was relatively insoluble and only extracted from epidermis with urea and/or reducing agents. The presence of HRNR in the purified envelopes was confirmed by immunoelectron microscopy and by Western blot analysis after V8-protease digestion. HRNR was shown to be a substrate of transglutaminase 3. These data demonstrate that HRNR is a component of cornified cell envelopes of human epidermis. Its reduced expression in AD may contribute to the epidermal barrier defect observed in the disease.
Collapse
Affiliation(s)
- Julie Henry
- Centre National de Recherche Scientifique (CNRS)-Toulouse III University UMR5165, InstitutFédératif de Recherche 150 (INSERM-CNRS-Université Paul Sabatier-Centre HospitalierUniversitaire), Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
West NR, Farnell B, Murray JI, Hof F, Watson PH, Boulanger MJ. Structural and functional characterization of a triple mutant form of S100A7 defective for Jab1 binding. Protein Sci 2010; 18:2615-23. [PMID: 19844956 DOI: 10.1002/pro.274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
S100A7 (psoriasin) is a calcium- and zinc-binding protein implicated in breast cancer. We have shown previously that S100A7 enhances survival mechanisms in breast cells through an interaction with c-jun activation domain binding protein 1 (Jab1), and an engineered S100A7 triple mutant (Asp(56)Gly, Leu(78)Met, and Gln(88)Lys-S100A7(3)) ablates Jab1 binding. We extend these results to include defined breast cancer cell lines and demonstrate a disrupted S100A7(3)/Jab1 phenotype is maintained. To establish the basis for the abrogated Jab1 binding, we have recombinantly produced S100A7(3), demonstrated that it retains the ability to form an exceptionally thermostable dimer, and solved the three dimensional crystal structure to 1.6 A. Despite being positioned at the dimer interface, the Leu(78)Met mutation is easily accommodated and contributes to a methionine-rich pocket formed by Met(12), Met(15), and Met(34). In addition to altering the surface charge, the Gln(88)Lys mutation results in a nearby rotameric shift in Tyr(85), leading to a substantially reorganized surface cavity and may influence zinc binding. The final mutation of Asp(56) to Gly results in the largest structural perturbation shortening helix IV by one full turn. It is noteworthy that position 56 lies in one of two divergent clusters between S100A7 and the functionally distinct yet highly homologous S100A15. The structure of S100A7(3) provides a unique perspective from which to characterize the S100A7-Jab1 interaction and better understand the distinct functions between S100A7, and it is closely related paralog S100A15.
Collapse
Affiliation(s)
- Nathan R West
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
31
|
León R, Murray JI, Cragg G, Farnell B, West NR, Pace TCS, Watson PH, Bohne C, Boulanger MJ, Hof F. Identification and Characterization of Binding Sites on S100A7, a Participant in Cancer and Inflammation Pathways. Biochemistry 2009; 48:10591-600. [DOI: 10.1021/bi901330g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rafael León
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| | - Jill I. Murray
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| | - Gina Cragg
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| | - Benjamin Farnell
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| | - Nathan R. West
- Deeley Research Centre, BC Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia V8R 6V5, Canada
| | - Tamara C. S. Pace
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| | - Peter H. Watson
- Deeley Research Centre, BC Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia V8R 6V5, Canada
| | - Cornelia Bohne
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| | - Fraser Hof
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada
| |
Collapse
|
32
|
Abstract
S100 proteins are differentially expressed in tumours of epithelial origin. Little is known about their expression in melanocyte-derived tumours of neuroectodermal origin. We have analysed the expression of some S100 proteins in this line of lesions using SAGE Genie informatics, cell culture and human tumour tissue. The pattern of expression of six S100 proteins was investigated at both the mRNA and protein levels, using quantitative real-time PCR, western blotting and immunohistochemical analysis. No differential expression was observed with respect to S100A4, S100A7, S100A8, S100A9 and S100A11. In contrast, S100A10 was downregulated in three melanoma cell lines compared with normal melanocytes. Using SAGE informatics, two-dimensional displays of microarray expression data from the NCI60_Novartis cell lines displayed a positive correlation between the expression of S100A10 and the expression of the proliferation marker, Ki67. Our data suggest that S100A10, like its binding partners S100A7 and annexin A2, is an oxidant-sensitive protein. In addition, higher expression of S100A10 was detected in melanocyte cell lines with long projections compared with melanoma cell lines with small ripples. In a panel of 47 melanocyte-derived lesions comprising melanocytic naevi and melanomas, S100A10 was expressed to varying degrees in the melanocytic lesions. The antigen was primarily expressed in regions with a strong proliferating or differentiating capacity, especially in regions in or near the epidermis. We suggest that S100A10 may play a role in the regulation of the proliferation or early maturation sequence of melanocytic lesions, and that it merits further study as a potential biomarker of activity.
Collapse
|
33
|
Goyette J, Yan WX, Yamen E, Chung YM, Lim SY, Hsu K, Rahimi F, Di Girolamo N, Song C, Jessup W, Kockx M, Bobryshev YV, Freedman SB, Geczy CL. Pleiotropic roles of S100A12 in coronary atherosclerotic plaque formation and rupture. THE JOURNAL OF IMMUNOLOGY 2009; 183:593-603. [PMID: 19542470 DOI: 10.4049/jimmunol.0900373] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages, cytokines, and matrix metalloproteinases (MMP) play important roles in atherogenesis. The Ca(2+)-binding protein S100A12 regulates monocyte migration and may contribute to atherosclerosis by inducing proinflammatory cytokines in macrophages. We found significantly higher S100A12 levels in sera from patients with coronary artery disease than controls and levels correlated positively with C-reactive protein. S100A12 was released into the coronary circulation from ruptured plaque in acute coronary syndrome, and after mechanical disruption by percutaneous coronary intervention in stable coronary artery disease. In contrast to earlier studies, S100A12 did not stimulate proinflammatory cytokine production by human monocytes or macrophages. Similarly, no induction of MMP genes was found in macrophages stimulated with S100A12. Because S100A12 binds Zn(2+), we studied some functional aspects that could modulate atherogenesis. S100A12 formed a hexamer in the presence of Zn(2+); a novel Ab was generated that specifically recognized this complex. By chelating Zn(2+), S100A12 significantly inhibited MMP-2, MMP-9, and MMP-3, and the Zn(2+)-induced S100A12 complex colocalized with these in foam cells in human atheroma. S100A12 may represent a new marker of this disease and may protect advanced atherosclerotic lesions from rupture by inhibiting excessive MMP-2 and MMP-9 activities by sequestering Zn(2+).
Collapse
Affiliation(s)
- Jesse Goyette
- Centre for Infection and Inflammation Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
He H, Li J, Weng S, Li M, Yu Y. S100A11: diverse function and pathology corresponding to different target proteins. Cell Biochem Biophys 2009; 55:117-26. [PMID: 19649745 DOI: 10.1007/s12013-009-9061-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
S100A11, as a member of S100 protein family, while featuring the common identities as the other EF-hand Ca(2+)-binding family members, has its own individual characteristics. S100A11 is widely expressed in multiple tissues, and is located in cytoplasm, nucleus, and even cell periphery. S100A11 exists as a non-covalent homodimer with an antiparallel conformation. Ca(2+) binding to S100A11 would trigger conformational changes which would expose the hydrophobic cleft of S100A11 and facilitate its interaction with target proteins. Since S100A11 appears to lack enzymatic activity, in this article, corresponding to a variety of its target proteins, we systematically describe the biological roles of S100A11 and its possible mechanism in the processes of inflammation, regulation of enzyme activity, and cell growth regulation. As a dual cell growth mediator, S100A11 acts as either a tumor suppressor or promoter in many different types of tumors and would play respective roles in influencing the proliferation of the cancer cells. We intend to illustrate the biological function of the S100 protein, and shed light on the further research, which will provide us with a better understanding of it.
Collapse
Affiliation(s)
- Honglin He
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Michalek M, Gelhaus C, Hecht O, Podschun R, Schröder JM, Leippe M, Grötzinger J. The human antimicrobial protein psoriasin acts by permeabilization of bacterial membranes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:740-746. [PMID: 19162067 DOI: 10.1016/j.dci.2008.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/26/2008] [Accepted: 12/20/2008] [Indexed: 05/27/2023]
Abstract
Psoriasin, a member of the S100 family of calcium-binding proteins (S100A7) is highly upregulated in the skin of psoriasis patients. As it has recently been found to exhibit antimicrobial activity, an important role of psoriasin in surface defence has been suggested. The similarity of the three-dimensional structures of psoriasin and amoebapore A, an ancient antimicrobial, pore-forming peptide from Entamoeba histolytica, intrigued us to investigate whether the human psoriasin is also able to permeabilize bacterial membranes. Here, we demonstrate that psoriasin exerts pore-forming activity at pH values below 6 demonstrating that disruption of microbial membranes is the basis of its antimicrobial activity at low pH. Furthermore, the killing activity of psoriasin shows pH-dependent target specificity. At neutral pH, the Gram-negative bacterium E. coli is killed apparently without compromising its membrane, whereas at low pH exclusively the Gram-positive bacterium B. megaterium is killed by permeabilization of its cytoplasmic membrane.
Collapse
Affiliation(s)
- Matthias Michalek
- Institute of Biochemistry, University of Kiel, Olshausenstr. 40, 24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Eckert RL, Sturniolo MT, Jans R, Kraft CA, Jiang H, Rorke EA. TIG3: a regulator of type I transglutaminase activity in epidermis. Amino Acids 2009; 36:739-46. [PMID: 18612777 PMCID: PMC3124850 DOI: 10.1007/s00726-008-0123-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/15/2008] [Indexed: 12/23/2022]
Abstract
Keratinocytes undergo a process of terminal cell differentiation that results in the construction of a multilayered epithelium designed to produce a structure that functions to protect the body from dehydration, abrasion and infection. These protective properties are due to the production of a crosslinked layer of protein called the cornified envelope. Type I transglutaminase (TG1), an enzyme that catalyzes the formation of epsilon-(gamma-glutamyl)lysine bonds, is the key protein responsible for generation of the crosslinks. The mechanisms that lead to activation of transglutaminase during terminal differentiation are not well understood. We have identified a protein that interacts with TG1 and regulates its activity. This protein, tazarotene-induced gene 3 (TIG3), is expressed in the differentiated layers of the epidermis and its expression is associated with transglutaminase activation and cornified envelope formation. We describe a novel mechanism whereby TIG3 regulates TG1 activity.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Chen M, Sinha M, Luxon BA, Bresnick AR, O'Connor KL. Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem 2008; 284:1484-94. [PMID: 19011242 DOI: 10.1074/jbc.m803997200] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The integrin alpha6beta4 is associated with carcinoma progression by contributing to apoptosis resistance, invasion, and metastasis, due in part to the activation of select transcription factors. To identify genes regulated by the alpha6beta4 integrin, we compared gene expression profiles of MDA-MB-435 cells that stably express integrin alpha6beta4 (MDA/beta4) and vector-only-transfected cells (MDA/mock) using Affymetrix GeneChip analysis. Our results show that integrin alpha6beta4 altered the expression of 538 genes (p < 0.01). Of these genes, 36 are associated with pathways implicated in cell motility and metastasis, including S100A4/metastasin. S100A4 expression correlated well with integrin alpha6beta4 expression in established cell lines. Suppression of S100A4 by small interference RNA resulted in a reduced capacity of alpha6beta4-expressing cells to invade a reconstituted basement membrane in response to lysophosphatidic acid. Using small interference RNA, promoter analysis, and chromatin immunoprecipitation, we demonstrate that S100A4 is regulated by NFAT5, thus identifying the first target of NFAT5 in cancer. In addition, several genes that are known to be regulated by DNA methylation were up-regulated dramatically by integrin alpha6beta4 expression, including S100A4, FST, PDLIM4, CAPG, and Nkx2.2. Notably, inhibition of DNA methyltransferases stimulated expression of these genes in cells lacking the alpha6beta4 integrin, whereas demethylase inhibitors suppressed expression in alpha6beta4 integrin-expressing cells. Alterations in DNA methylation were confirmed by bisulfate sequencing, thus suggesting that integrin alpha6beta4 signaling can lead to the demethylation of select promoters. In summary, our data suggest that integrin alpha6beta4 confers a motile and invasive phenotype to breast carcinoma cells by regulating proinvasive and prometastatic gene expression.
Collapse
Affiliation(s)
- Min Chen
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
38
|
Jiang WG, Ablin RJ, Kynaston HG, Mason MD. The prostate transglutaminase (TGase-4, TGaseP) regulates the interaction of prostate cancer and vascular endothelial cells, a potential role for the ROCK pathway. Microvasc Res 2008; 77:150-7. [PMID: 18983858 DOI: 10.1016/j.mvr.2008.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/16/2008] [Accepted: 09/18/2008] [Indexed: 01/21/2023]
Abstract
Prostate transglutaminase (TGase-4 or TGaseP) is an enzyme that is uniquely expressed in prostate tissues. The function of the TGase, implicated in the cell-matrix, is yet to be fully established. In the present study, we investigated the role of TGase-4 in tumor-endothelial cell interactions, by creating a panel of prostate cancer cell lines that have different expression profiles of human TGase-4. Here, we report that prostate cancer cells PC-3, when over-expressing TGase-4 (PC-3(TGase4exp)) increased their ability to adhere to quiescent and activated (by hepatocyte growth factor) endothelial cells. In contrast, the prostate cancer cell CAHPV-10, which expressed high levels of TGase-4, reduced the adhesiveness to the endothelial cells after TGase-4 expression was knocked down. By using frequency based electric cell impedance sensing, we found that TGase-4 mediated adhesion resulted in a change in impedance at low frequency (400 Hz), indicating a paracellular pathway disruption. The study further showed that expression of TGase-4 rendered the cells to exert regulation of endothelial interaction by bypassing the ROCK pathway. It is therefore concluded, that TGase-4 plays a pivotal role in the interaction between endothelial cells and prostate cancer cells, an action which is independent of the ROCK pathway.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis & Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | |
Collapse
|
39
|
Cecil DL, Terkeltaub R. Transamidation by transglutaminase 2 transforms S100A11 calgranulin into a procatabolic cytokine for chondrocytes. THE JOURNAL OF IMMUNOLOGY 2008; 180:8378-85. [PMID: 18523305 DOI: 10.4049/jimmunol.180.12.8378] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In osteoarthritis (OA), low-grade joint inflammation promotes altered chondrocyte differentiation and cartilage catabolism. S100/calgranulins share conserved calcium-binding EF-hand domains, associate noncovalently as homodimers and heterodimers, and are secreted and bind receptor for advanced glycation end products (RAGE). Chondrocyte RAGE expression and S100A11 release are stimulated by IL-1beta in vitro and increase in OA cartilage in situ. Exogenous S100A11 stimulates chondrocyte hypertrophic differentiation. Moreover, S100A11 is covalently cross-linked by transamidation catalyzed by transglutaminase 2 (TG2), itself an inflammation-regulated and redox stress-inducible mediator of chondrocyte hypertrophic differentiation. In this study, we researched mouse femoral head articular cartilage explants and knee chondrocytes, and a soluble recombinant double point mutant (K3R/Q102N) of S100A11 TG2 transamidation substrate sites. Both TG2 and RAGE knockout cartilage explants retained IL-1beta responsiveness. The K3R/Q102N mutant of S100A11 retained the capacity to bind to RAGE and chondrocytes but lost the capacity to signal via the p38 MAPK pathway or induce chondrocyte hypertrophy and glycosaminoglycans release. S100A11 failed to induce hypertrophy, glycosaminoglycan release, and appearance of the aggrecanase neoepitope NITEGE in both RAGE and TG2 knockout cartilages. We conclude that transamidation by TG2 transforms S100A11 into a covalently bonded homodimer that acquires the capacity to signal through the p38 MAPK pathway, accelerate chondrocyte hypertrophy and matrix catabolism, and thereby couple inflammation with chondrocyte activation to potentially promote OA progression.
Collapse
Affiliation(s)
- Denise L Cecil
- Veterans Affairs Medical Center, University of California, San Diego, CA 92161, USA
| | | |
Collapse
|
40
|
Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 2008; 36:599-614. [DOI: 10.1007/s00726-008-0124-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/15/2008] [Indexed: 12/19/2022]
|
41
|
Kizawa K, Takahara H, Troxler H, Kleinert P, Mochida U, Heizmann CW. Specific Citrullination Causes Assembly of a Globular S100A3 Homotetramer. J Biol Chem 2008; 283:5004-13. [DOI: 10.1074/jbc.m709357200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
42
|
Dezitter X, Hammoudi F, Belverge N, Deloulme JC, Drobecq H, Masselot B, Formstecher P, Mendy D, Idziorek T. Proteomics unveil corticoid-induced S100A11 shuttling in keratinocyte differentiation. Biochem Biophys Res Commun 2007; 360:627-32. [PMID: 17624315 DOI: 10.1016/j.bbrc.2007.06.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 06/19/2007] [Indexed: 10/23/2022]
Abstract
Unlike classical protein extraction techniques, proteomic mapping using a selective subcellular extraction kit revealed S100A11 as a new member of the S100 protein family modulated by glucocorticoids in keratinocytes. Glucocorticoids (GC)-induced S100A11 redistribution in the "organelles and membranes" compartment. Microscopic examination indicated that glucocorticoids specifically routed cytoplasmic S100A11 toward perinuclear compartment. Calcium, a key component of skin terminal differentiation, directed S100A11 to the plasma membrane as previously reported. When calcium was added to glucocorticoids, minor change was observed at the proteomic level while confocal microscopy revealed a rapid and dramatic translocation of S100A11 toward plasma membrane. This effect was accompanied by strong nuclear condensation, loss of mitochondrial potential and DNA content, and increased high molecular weight S100A11 immunoreactivity, suggesting corticoids accelerate calcium-induced terminal differentiation. Finally, our results suggest GC-induced S100A11 relocalization could be a key step in both keratinocyte homeostasis and glucocorticoids side effects in human epidermis.
Collapse
|
43
|
Chang N, Sutherland C, Hesse E, Winkfein R, Wiehler WB, Pho M, Veillette C, Li S, Wilson DP, Kiss E, Walsh MP. Identification of a novel interaction between the Ca2+-binding protein S100A11 and the Ca2+- and phospholipid-binding protein annexin A6. Am J Physiol Cell Physiol 2007; 292:C1417-30. [PMID: 17192283 DOI: 10.1152/ajpcell.00439.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S100A11 is a member of the S100 family of EF-hand Ca2+-binding proteins, which is expressed in smooth muscle and other tissues. Ca2+binding to S100A11 induces a conformational change that exposes a hydrophobic surface for interaction with target proteins. Affinity chromatography with immobilized S100A11 was used to isolate a 70-kDa protein from smooth muscle that bound to S100A11 in a Ca2+-dependent manner and was identified by mass spectrometry as annexin A6. Direct Ca2+-dependent interaction between S100A11 and annexin A6 was confirmed by affinity chromatography of the purified bacterially expressed proteins, by gel overlay of annexin A6 with purified S100A11, by chemical cross-linking, and by coprecipitation of S100A11 with annexin A6 bound to liposomes. The expression of S100A11 and annexin A6 in the same cell type was verified by RT-PCR and immunocytochemistry of isolated vascular smooth muscle cells. The site of binding of S100A11 on annexin A6 was investigated by partial tryptic digestion and deletion mutagenesis. The unique NH2terminal head region of annexin A6 was not required for S100A11 binding, but binding sites were identified in both NH2- and COOH-terminal halves of the molecule. We hypothesize that an agonist-induced increase in cytosolic free [Ca2+] leads to formation of a complex of S100A11 and annexin A6, which forms a physical connection between the plasma membrane and the cytoskeleton, or plays a role in the formation of signaling complexes at the level of the sarcolemma.
Collapse
Affiliation(s)
- Ning Chang
- Department of Biochemistry and Molecular Biology, University of Calgary Faculty of Medicine, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
S100A7, also called psoriasin, is a member of the S100 multigene family that is encoded in the epidermal differentiation complex on chromosome 1q21. S100A7 is highly expressed in epidermal hyperproliferative disease; however, its function is not well understood. These studies show high levels of monomer and covalently crosslinked high molecular weight S100A7 in human wound exudate and granulation tissue. Immunohistological studies suggest that this S100A7 is produced by keratinocytes surrounding the wound and is released into the wound exudate. S100A7 is also detected in keratinocyte-conditioned cell culture medium. Studies using recombinant S100A7 indicate that it adheres to and reduces E. coli survival. Mutation of the conserved carboxyl-terminal EF-hand calcium-binding motif or heat denaturation slightly reduces S100A7 antibacterial activity; however, the antibacterial activity is destroyed by protease treatment. Mutation of the zinc-binding motif, located at the C-terminus, reduces antibacterial activity; however, this reduction can be reversed by simultaneous removal of the amino terminus. This indicates the surprising finding that the central region of S100A7, including only amino acids 35-80, is sufficient for full antibacterial activity. These studies also indicate that reduced S100A7 association with bacteria is associated with reduced antibacterial activity.
Collapse
Affiliation(s)
- Kathleen C Lee
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
45
|
Santamaria-Kisiel L, Rintala-Dempsey A, Shaw G. Calcium-dependent and -independent interactions of the S100 protein family. Biochem J 2006; 396:201-14. [PMID: 16683912 PMCID: PMC1462724 DOI: 10.1042/bj20060195] [Citation(s) in RCA: 460] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 12/12/2022]
Abstract
The S100 proteins comprise at least 25 members, forming the largest group of EF-hand signalling proteins in humans. Although the proteins are expressed in many tissues, each S100 protein has generally been shown to have a preference for expression in one particular tissue or cell type. Three-dimensional structures of several S100 family members have shown that the proteins assume a dimeric structure consisting of two EF-hand motifs per monomer. Calcium binding to these S100 proteins, with the exception of S100A10, results in an approx. 40 degrees alteration in the position of helix III, exposing a broad hydrophobic surface that enables the S100 proteins to interact with a variety of target proteins. More than 90 potential target proteins have been documented for the S100 proteins, including the cytoskeletal proteins tubulin, glial fibrillary acidic protein and F-actin, which have been identified mostly from in vitro experiments. In the last 5 years, efforts have concentrated on quantifying the protein interactions of the S100 proteins, identifying in vivo protein partners and understanding the molecular specificity for target protein interactions. Furthermore, the S100 proteins are the only EF-hand proteins that are known to form both homo- and hetero-dimers, and efforts are underway to determine the stabilities of these complexes and structural rationales for their formation and potential differences in their biological roles. This review highlights both the calcium-dependent and -independent interactions of the S100 proteins, with a focus on the structures of the complexes, differences and similarities in the strengths of the interactions, and preferences for homo- compared with hetero-dimeric S100 protein assembly.
Collapse
Affiliation(s)
| | - Anne C. Rintala-Dempsey
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Gary S. Shaw
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
46
|
Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. THE JOURNAL OF IMMUNOLOGY 2006; 175:8296-302. [PMID: 16339570 DOI: 10.4049/jimmunol.175.12.8296] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.
Collapse
Affiliation(s)
- Denise L Cecil
- Veterans Affairs Medical Center, Department of Medicine, University of California, San Diego, CA 92161, USA
| | | | | | | | | | | |
Collapse
|
47
|
Wolf R, Voscopoulos CJ, FitzGerald PC, Goldsmith P, Cataisson C, Gunsior M, Walz M, Ruzicka T, Yuspa SH. The mouse S100A15 ortholog parallels genomic organization, structure, gene expression, and protein-processing pattern of the human S100A7/A15 subfamily during epidermal maturation. J Invest Dermatol 2006; 126:1600-8. [PMID: 16528363 DOI: 10.1038/sj.jid.5700210] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The calcium-binding proteins of the human S100A7/A15 (hS100A7/A15) subfamily are differentially expressed in normal and pathological epidermis. The hS100A7 (psoriasin) and S100A15 reside in a chromosomal cluster of highly similar paralogs. To exploit the power of mouse models for determining functions of gene products, the corresponding S100A7/A15 ortholog was cloned and examined in murine skin. The single mouse S100A15 (mS100A15) gene encodes a protein of 104 amino acids with a predicted molecular weight of 12,870 Da and two EF-hand calcium binding sites. Using gene-specific primers and specific antibodies, expression of mS100A15 in both skin and isolated keratinocytes is confined to differentiating granular and cornified epidermal cells. Immunoblotting of epidermal extracts revealed a series of high molecular weight bands that are also recognized by an antibody for transglutaminase-mediated protein crosslinks. mS100A15 expression is upregulated in cultured keratinocytes induced to differentiate by calcium or phorbol esters. Maximal induction occurs concordantly with expression of late differentiation markers. Induction is enhanced in keratinocytes overexpressing protein kinase Calpha and is dependent on activator protein-1 transcription factors. The regulation, expression pattern and crosslinking of mS100A15 are consistent with the characteristics of the human orthologs, providing a valid surrogate model to study changes in these proteins associated with cutaneous pathologies.
Collapse
Affiliation(s)
- Ronald Wolf
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shepherd CE, Goyette J, Utter V, Rahimi F, Yang Z, Geczy CL, Halliday GM. Inflammatory S100A9 and S100A12 proteins in Alzheimer's disease. Neurobiol Aging 2005; 27:1554-63. [PMID: 16253391 DOI: 10.1016/j.neurobiolaging.2005.09.033] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2004] [Revised: 08/03/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Inflammation, insoluble protein deposition and neuronal cell loss are important features of the Alzheimer's disease (AD) brain. S100B is associated with the neuropathological hallmarks of AD where it is thought to play a role in neuritic pathology. S100A8, S100A9 and S100A12 comprise a new group of inflammation-associated proteins that are constitutively expressed by neutrophils and inducible in numerous inflammatory cells. We investigated expression of S100B, S100A8, S100A9 and S100A12 in brain samples from sporadic and familial (PS-1) AD cases and controls using immunohistochemistry and Western blot analysis. S100B, S100A9 and S100A12, but not S100A8, were consistently associated with the neuropathological hallmarks of AD. Western blot analysis confirmed significant increases in soluble S100A9 in PS-1 AD compared to controls. S100A9 complexes that were resistant to reduction were also evident in brain extracts. A reactive component of a size consistent with hexameric S100A12 was seen in all cases. This study indicates a potential role for pro-inflammatory S100A9 and S100A12 in pathogenesis caused by inflammation and protein complex formation in AD.
Collapse
Affiliation(s)
- C E Shepherd
- Prince of Wales Medical Research Institute, Barker Street, Randwick, Sydney 2031, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Emberley ED, Niu Y, Curtis L, Troup S, Mandal SK, Myers JN, Gibson SB, Murphy LC, Watson PH. The S100A7-c-Jun Activation Domain Binding Protein 1 Pathway Enhances Prosurvival Pathways in Breast Cancer. Cancer Res 2005; 65:5696-702. [PMID: 15994944 DOI: 10.1158/0008-5472.can-04-3927] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
S100A7 is among the most highly expressed genes in preinvasive breast cancer, is a marker of poor survival when expressed in invasive disease, and promotes breast tumor progression in experimental models. To explore the mechanism of action, we examined the role of S100A7 in cell survival and found that overexpression of S100A7 in MDA-MB-231 cell lines promotes survival under conditions of anchorage-independent growth. This effect is paralleled by increased activity of nuclear factor-κB (3-fold) and phospho-Akt (4-fold), which are known to mediate prosurvival pathways. S100A7 and phospho-Akt are also correlated in breast tumors examined by immunohistochemistry (n = 142; P < 0.0001; r = 0.34). To explore the underlying mechanism, we examined the role of a putative c-Jun activation domain-binding protein 1 (Jab1)–binding domain within S100A7 using a panel of MDA-MB-231 breast cell lines stably transfected with either S100A7 or S100A7 mutated at the Jab1 domain. Structural analysis by three-dimensional protein modeling, immunoprecipitation, and yeast two-hybrid assay and functional analysis using transfected reporter gene and Western blot assays revealed that the in vitro effects of S100A7 on phospho-Akt and the nuclear factor-κB pathway are dependent on the Jab1-binding site and the interaction with Jab1. Enhanced epidermal growth factor receptor signaling was also found to correlate with the increased phospho-Akt. Furthermore, the Jab1-binding domain is also necessary for the enhanced tumorigenicity conferred by S100A7 expression in murine xenograft tumors in vivo. We conclude that the S100A7-Jab1 pathway acts to enhance survival under conditions of cellular stress, such as anoikis, which may promote progression of breast cancer.
Collapse
Affiliation(s)
- Ethan D Emberley
- Department of Biochemistry and Medical Genetics, University of Manitoba, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Dermatological diseases range from minor cosmetic problems to life-threatening conditions, as seen in some severe disorders of keratinization and cornification. These disorders are commonly due to abnormal epidermal differentiation processes, which result in disturbed barrier function of human skin. Elucidation of the cellular differentiation programs that regulate the formation and homeostasis of the epidermis is therefore of great importance for the understanding and therapy of these disorders. Much of the barrier function of human epidermis against the environment is provided by the cornified cell envelope (CE), which is assembled by transglutaminase (TGase)-mediated cross-linking of several structural proteins and lipids during the terminal stages of normal keratinocyte differentiation. The major constituents of the stratum corneum and the current knowledge on the formation of the stratum corneum will be briefly reviewed here. The discovery of mutations that underlie several human diseases caused by genetic defects in the protein or lipid components of the CE, and recent analyses of mouse mutants with defects in the structural components of the CE, catalyzing enzymes, and lipid processing, have highlighted their essential function in establishing the epidermal barrier. In addition, recent findings have provided evidence that a disturbed protease-antiprotease balance could cause faulty differentiation processes in the epidermis and hair follicle. The importance of regulated proteolysis in epithelia is well demonstrated by the recent identification of the SPINK5 serine proteinase inhibitor as the defective gene in Netherton syndrome, cathepsin C mutations in Papillon-Lefevre syndrome, cathepsin L deficiency infurless mice, targeted ablation of the serine protease Matriptase/MTSP1, targeted ablation of the aspartate protease cathepsin D, and the phenotype of targeted epidermal overexpression of stratum corneum chymotryptic enzyme in mice. Notably, our recent findings on the role of cystatin M/E and legumain as a functional dyad in skin and hair follicle cornification, a paradigm example of the regulatory functions exerted by epidermal proteases, will be discussed.
Collapse
Affiliation(s)
- Patrick L J M Zeeuwen
- Laboratory of Skin Biology and Experimental Dermatology, Nijmegen Center for Molecular Life Sciences, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|