1
|
Imaging Biomarkers for Monitoring the Inflammatory Redox Landscape in the Brain. Antioxidants (Basel) 2021; 10:antiox10040528. [PMID: 33800685 PMCID: PMC8065574 DOI: 10.3390/antiox10040528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
Inflammation is one key process in driving cellular redox homeostasis toward oxidative stress, which perpetuates inflammation. In the brain, this interplay results in a vicious cycle of cell death, the loss of neurons, and leakage of the blood–brain barrier. Hence, the neuroinflammatory response fuels the development of acute and chronic inflammatory diseases. Interrogation of the interplay between inflammation, oxidative stress, and cell death in neurological tissue in vivo is very challenging. The complexity of the underlying biological process and the fragility of the brain limit our understanding of the cause and the adequate diagnostics of neuroinflammatory diseases. In recent years, advancements in the development of molecular imaging agents addressed this limitation and enabled imaging of biomarkers of neuroinflammation in the brain. Notable redox biomarkers for imaging with positron emission tomography (PET) tracers are the 18 kDa translocator protein (TSPO) and monoamine oxygenase B (MAO–B). These findings and achievements offer the opportunity for novel diagnostic applications and therapeutic strategies. This review summarizes experimental as well as established pharmaceutical and biotechnological tools for imaging the inflammatory redox landscape in the brain, and provides a glimpse into future applications.
Collapse
|
2
|
Serfaty X, Lefrançois P, Houée-Levin C, Arbault S, Baciou L, Bizouarn T. Impacts of vesicular environment on Nox2 activity measurements in vitro. Biochim Biophys Acta Gen Subj 2020; 1865:129767. [PMID: 33141062 DOI: 10.1016/j.bbagen.2020.129767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND The production of superoxide anions (O2•-) by the phagocyte NADPH oxidase complex has a crucial role in the destruction of pathogens in innate immunity. Majority of in vitro studies on the functioning of NADPH oxidase indirectly follows the enzymatic reaction by the superoxide reduction of cytochrome c (cyt c). Only few reports mention the alternative approach consisting in measuring the NADPH consumption rate. When using membrane vesicles of human neutrophils, the enzyme specific activity is generally found twice higher by monitoring the NADPH oxidation than by measuring the cyt c reduction. Up to now, the literature provides only little explanations about such discrepancy despite the critical importance to quantify the exact enzyme activity. METHODS We deciphered the reasons of this disparity in studying the role of key parameters, including. cyt c and arachidonic acid concentrations, in conjunction with an ionophore, a detergent and using Clark electrode to measure the O2 consumption rates. RESULTS Our results show that the O2•- low permeability of the vesicle membrane as well as secondary reactions (O2•- and H2O2 disproportionations) are strong clues to shed light on this inconsistency. CONCLUSION AND GENERAL SIGNIFICANCE These results altogether indicate that the cyt c reduction method underestimates the accurate Nox2 activity.
Collapse
Affiliation(s)
- Xavier Serfaty
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France
| | - Pauline Lefrançois
- Univ. Bordeaux, ISM, CNRS UMR 5255, NSysA group, ENSCBP, 33607 Pessac, France
| | - Chantal Houée-Levin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France
| | - Stéphane Arbault
- Univ. Bordeaux, ISM, CNRS UMR 5255, NSysA group, ENSCBP, 33607 Pessac, France
| | - Laura Baciou
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France
| | - Tania Bizouarn
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405, Orsay, France.
| |
Collapse
|
3
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|
4
|
Nakano Y, Nauseef WM. Spectroscopy of NOX Protein Family Members. Methods Mol Biol 2019; 1982:113-120. [PMID: 31172469 DOI: 10.1007/978-1-4939-9424-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
All members of the NOX protein family contain a unique b-type cytochrome that mediates the electron transport that characterizes the activity of the multicomponent oxidase complexes. Referred to as cytochrome b558, because of its signature spectral absorbance at 558 nm in reduced-minus-oxidized difference spectroscopy, or cytochrome b(-245), because of its very low midpoint potential of -245 mV at pH 7.0, the protein possesses two stacked inequivalent hemes ligated by pairs of histidine residues in membrane helices h3 and h5. In a flavin-dependent fashion, cytochrome b558 shuttles electrons from cytoplasmic NADPH across membranes to molecular oxygen and thereby generates superoxide anion. By performing reduced-minus-oxidized difference spectroscopy and using the millimolar extinction coefficient, E 559-540 nm = 21.6 cm-1 mM-1, one can calculate the amount of cytochrome b558 in intact cells or partially purified membrane preparations. Measurements in samples where cytochrome b558 is relatively high and the presence of unrelated heme-containing proteins low, as in neutrophils, are straightforward. However, low levels of cytochrome b558 expression combined with an abundance of mitochondria and other sources of heme proteins make spectral detection of cytochrome b558 in non-phagocytic cells extremely challenging.
Collapse
Affiliation(s)
- Yoko Nakano
- Department of Medicine, Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William M Nauseef
- Department of Medicine, Inflammation Program, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
5
|
Bizouarn T, Souabni H, Serfaty X, Bouraoui A, Masoud R, Karimi G, Houée-Levin C, Baciou L. A Close-Up View of the Impact of Arachidonic Acid on the Phagocyte NADPH Oxidase. Methods Mol Biol 2019; 1982:75-101. [PMID: 31172467 DOI: 10.1007/978-1-4939-9424-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The NADPH oxidase NOX2 complex consists of assembled cytosolic and redox membrane proteins. In mammalian cells, natural arachidonic acid (cis-AA), released by activated phospholipase-A2, plays an important role in the activation of the NADPH oxidase, but the mechanism of action of cis-AA is still a matter of debate. In cell-free systems, cis-AA is commonly used for activation although its structural effects are still unclear. Undoubtedly cis-AA participates in the synergistic multi-partner assembly that can be hardly studied at the molecular level in vivo due to cellular complexity. The capacity of this anionic amphiphilic fatty acid to activate the oxidase is mainly explained by its ability to disrupt intramolecular bonds, mimicking phosphorylation events in cell signaling and therefore allowing protein-protein interactions. Interestingly the geometric isomerism of the fatty acid and its purity are crucial for optimal superoxide production in cell-free assays. Indeed, optimal NADPH oxidase assembly was hampered by the substitution of the cis form by the trans forms of AA isomers (Souabni et al., BBA-Biomembranes 1818:2314-2324, 2012). Structural analysis of the changes induced by these two compounds, by circular dichroism and by biochemical methods, revealed differences in the interaction between subunits. We describe how the specific geometry of AA plays an important role in the activation of the NOX2 complex.
Collapse
Affiliation(s)
- Tania Bizouarn
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Hager Souabni
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Xavier Serfaty
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Aicha Bouraoui
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Rawand Masoud
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Gilda Karimi
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Chantal Houée-Levin
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Laura Baciou
- Laboratoire de Chimie Physique, UMR8000 CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
6
|
DeCoursey TE. The intimate and controversial relationship between voltage-gated proton channels and the phagocyte NADPH oxidase. Immunol Rev 2017; 273:194-218. [PMID: 27558336 DOI: 10.1111/imr.12437] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the most fascinating and exciting periods in my scientific career entailed dissecting the symbiotic relationship between two membrane transporters, the Nicotinamide adenine dinucleotide phosphate reduced form (NADPH) oxidase complex and voltage-gated proton channels (HV 1). By the time I entered this field, there had already been substantial progress toward understanding NADPH oxidase, but HV 1 were known only to a tiny handful of cognoscenti around the world. Having identified the first proton currents in mammalian cells in 1991, I needed to find a clear function for these molecules if the work was to become fundable. The then-recent discoveries of Henderson, Chappell, and colleagues in 1987-1988 that led them to hypothesize interactions of both molecules during the respiratory burst of phagocytes provided an excellent opportunity. In a nutshell, both transporters function by moving electrical charge across the membrane: NADPH oxidase moves electrons and HV 1 moves protons. The consequences of electrogenic NADPH oxidase activity on both membrane potential and pH strongly self-limit this enzyme. Fortunately, both consequences specifically activate HV 1, and HV 1 activity counteracts both consequences, a kind of yin-yang relationship. Notwithstanding a decade starting in 1995 when many believed the opposite, these are two separate molecules that function independently despite their being functionally interdependent in phagocytes. The relationship between NADPH oxidase and HV 1 has become a paradigm that somewhat surprisingly has now extended well beyond the phagocyte NADPH oxidase - an industrial strength producer of reactive oxygen species (ROS) - to myriad other cells that produce orders of magnitude less ROS for signaling purposes. These cells with their seven NADPH oxidase (NOX) isoforms provide a vast realm of mechanistic obscurity that will occupy future studies for years to come.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL, USA
| |
Collapse
|
7
|
Brault J, Vaganay G, Le Roy A, Lenormand JL, Cortes S, Stasia MJ. Therapeutic effects of proteoliposomes on X-linked chronic granulomatous disease: proof of concept using macrophages differentiated from patient-specific induced pluripotent stem cells. Int J Nanomedicine 2017; 12:2161-2177. [PMID: 28356734 PMCID: PMC5367562 DOI: 10.2147/ijn.s128611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency due to dysfunction of the phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex leading to severe and recurrent infections in early childhood. The main genetic form is the X-linked CGD leading to the absence of cytochrome b558 composed of NOX2 and p22phox, the membrane partners of the NADPH oxidase complex. The first cause of death of CGD patients is pulmonary infections. Recombinant proteoliposome-based therapy is an emerging and innovative approach for membrane protein delivery, which could be an alternative local, targeted treatment to fight lung infections in CGD patients. We developed an enzyme therapy using recombinant NOX2/p22phox liposomes to supply the NADPH oxidase activity in X0-linked CGD (X0-CGD) macrophages. Using an optimized prokaryotic cell-free protein synthesis system, a recombinant cytochrome b558 containing functional hemes was produced and directly inserted into the lipid bilayer of specific liposomes. The size of the NOX2/p22phox liposomes was estimated to be around 700 nm. These proteoliposomes were able to generate reactive oxygen species (ROS) in an activated reconstituted cell-free NADPH oxidase activation assay in the presence of recombinant p47phox, p67phox and Rac, the cytosolic components of the NADPH oxidase complex. Furthermore, using flow cytometry and fluorescence microscopy, we demonstrated that cytochrome b558 was successfully delivered to the plasma membrane of X0-CGD-induced pluripotent stem cell (iPSC)-derived macrophages. In addition, NADPH oxidase activity was restored in X0-CGD iPSC-derived macrophages treated with NOX2/p22phox liposomes for 8 h without any toxicity. In conclusion, we confirmed that proteoliposomes provide a new promising technology for the delivery of functional proteins to the membrane of targeted cells. This efficient liposomal enzyme replacement therapy will be useful for future treatment of pulmonary infections in CGD patients refractory to conventional anti-infectious treatments.
Collapse
Affiliation(s)
- Julie Brault
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| | | | - Aline Le Roy
- IBS, University of Grenoble Alpes, Grenoble, France; CNRS, IBS, University Grenoble Alpes, Grenoble, France; CEA, IBS, University of Grenoble Alpes, Grenoble, France
| | | | | | - Marie José Stasia
- UMR CNRS 5525, University of Grenoble Alpes, Grenoble, France; CGD Diagnosis and Research Centre, University Hospital Centre of Grenoble Alpes, Grenoble, France
| |
Collapse
|
8
|
Souabni H, Ezzine A, Bizouarn T, Baciou L. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex. Methods Mol Biol 2017; 1635:27-43. [PMID: 28755362 DOI: 10.1007/978-1-4939-7151-0_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558), constituted by the tight association of the gp91phox (also named Nox2) and p22phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47phox, p67phox, p40phox, Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.
Collapse
Affiliation(s)
- Hajer Souabni
- Laboratoire de Chimie Physique, UMR 8000 CNRS Université Paris Sud, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Aymen Ezzine
- Laboratoire de Chimie Physique, UMR 8000 CNRS Université Paris Sud, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique, UMR 8000 CNRS Université Paris Sud, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Laura Baciou
- Laboratoire de Chimie Physique, UMR 8000 CNRS Université Paris Sud, Université Paris Saclay, 91405, Orsay Cedex, France.
| |
Collapse
|
9
|
Ezzine A, Souabni H, Machillot P, Bizouarn T, Baciou L. Relationship between p22 phox expression, tag position and oxidase activity of the heterologous NADPH oxidase expressed in Pichia pastoris. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Souabni H, Wien F, Bizouarn T, Houée-Levin C, Réfrégiers M, Baciou L. The physicochemical properties of membranes correlate with the NADPH oxidase activity. Biochim Biophys Acta Gen Subj 2016; 1861:3520-3530. [PMID: 27378459 DOI: 10.1016/j.bbagen.2016.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/25/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Phagocytes kill ingested microbes by exposure to high concentrations of toxic reactive species generated by NADPH-oxidases. This membrane-bound electron-transferring enzyme is tightly regulated by cellular signaling cascades. So far, molecular and biophysical studies of the NADPH-oxidase were performed over limited temperature ranges, which weaken our understanding of immune response or inflammatory events. In this work, we have inspected the influence of temperature and lipid membrane properties on the NADPH-oxidase activity using a system free of cell complexity. METHODS We have extended the experimental conditions of the accepted model for NADPH-oxidase activity, the so-called cell-free assay, to a large temperature range (10-40°C) using different membrane compositions (subcellular compartments or liposomes). RESULTS A remarkable increase of superoxide production rate was observed with rising temperature. Synchrotron radiation circular dichroism data showed that this is not correlated with protein secondary structure changes. When lipid bilayers are in fluid phase, Arrhenius plots of the oxidase activity showed linear relationships with small activation energy (Ea), while when in solid phase, high Ea was found. The sterol content modulates kinetic and thermodynamic parameters. CONCLUSION High temperature promotes the rate of superoxide production. The key element of this enhancement is related to membrane properties such as thickness and viscosity and not to protein structural changes. Membrane viscosity that can be driven by sterols is a paramount parameter of Ea of NADPH oxidase activity. The membrane bilayer state modulated by its sterol content may be considered locally as an enzyme regulator. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Hager Souabni
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Frank Wien
- Synchrotron SOLEIL, Campus Paris-Saclay, 91192 Gif-sur-Yvette Cedex, France
| | - Tania Bizouarn
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | - Chantal Houée-Levin
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France
| | | | - Laura Baciou
- Laboratoire de Chimie Physique UMR 8000, Univ. Paris-Sud, CNRS, Université Paris Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
11
|
Souabni H, Machillot P, Baciou L. Contribution of lipid environment to NADPH oxidase activity: influence of sterol. Biochimie 2015; 107 Pt A:33-42. [PMID: 25448770 DOI: 10.1016/j.biochi.2014.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022]
Abstract
The NADPH-oxidase complex, which plays beneficial or detrimental role in the inflammatory and degenerative diseases, is a membrane multi-subunit complex tightly regulated in order to produce superoxide anions, precursor of oxygen reactive species (ROS), in cells. The flavocytochrome b(558) (Cytb(558)) is the catalytic core of the NADPH oxidase which consists of two membrane proteins gp91(phox) (highly glycosylated) and p22(phox). In this work we took advantage of heterologous yeast cells engineered to express wild-type bovine Cytb(558) to analyze the properties of the NADPH oxidase activity during the biosynthesis processing steps of gp91(phox) and p22(phox) within endoplasmic reticulum (ER) and plasma membrane (Pmb). Our data showed that, in yeast, the heterodimerization at the endoplasmic reticulum membranes was concomitant with high level glycosylation of gp91(phox) and the heme acquisition. This study also demonstrated that the phagocyte NADPH oxidase was active at ER membranes and that this activity was surprisingly higher at the ER compared to the Pmb membranes. We have correlated these findings with the presence of sterols in the plasma membranes and their absence in ER membranes. This correlation was confirmed by decreased superoxide anion production rates in proteoliposomes supplemented with ergosterol or cholesterol. Our data support the idea that membrane environment might be determinant for ROS regulation and that sterols could directly interact with the membrane proteins of the NADPH oxidase constraining its capacity to produce superoxide anions.
Collapse
|
12
|
Abstract
In phagocytes, gp91phox is the key membrane component of the NADPH oxidase complex. In contrast with what was known from studies in mammalian phagocytes, in Pichia pastoris we succeeded in producing an active catalytic subunit gp91phox in absence of its membrane partner.
Collapse
|
13
|
Abstract
The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
Affiliation(s)
- Edgar Pick
- The Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
A switching mechanism in doxorubicin bioactivation can be exploited to control doxorubicin toxicity. PLoS Comput Biol 2011; 7:e1002151. [PMID: 21935349 PMCID: PMC3174179 DOI: 10.1371/journal.pcbi.1002151] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023] Open
Abstract
Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation. In the United States, acute lymphoblastic leukemia (ALL) is the most common form of cancer among children. Although the survival rate of childhood leukemia is relatively high, those who do not respond to chemotherapy have very low prognostic outcome. Recent reports point to the critical role of metabolism in determining cell sensitivity to doxorubicin, a conventional drug used in leukemia treatment. Most of the molecular components involved in doxorubicin metabolism have been identified; however, how these components operate as a system and how adaptation of the doxorubicin metabolic network to patient-specific changes in protein components is much less understood. We have therefore chosen to investigate via computational modeling the variations in the distribution of proteins that metabolize doxorubicin can control a cell's ability to respond to doxorubicin treatment. This systems-level approach provides a framework for understanding how patient-specific variability leads to patient-sensitivity to doxorubicin treatment at different doses. With this knowledge, we were able to correctly predict complex behavior induced by pharmacological intervention strategies for manipulation of doxorubicin metabolism. When our interventions are used in combination with doxorubicin, cell viability was promoted or potentiated based on dominant control mechanisms within the metabolic network.
Collapse
|
15
|
Role of endothelial dysfunction in modulating the plasma redox homeostasis in visceral leishmaniasis. Biochim Biophys Acta Gen Subj 2011; 1810:652-65. [DOI: 10.1016/j.bbagen.2011.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/11/2011] [Accepted: 03/31/2011] [Indexed: 01/12/2023]
|
16
|
RoseFigura JM, Puehringer S, Schwarzenbacher R, Toyama H, Klinman JP. Characterization of a protein-generated O₂ binding pocket in PqqC, a cofactorless oxidase catalyzing the final step in PQQ production. Biochemistry 2011; 50:1556-66. [PMID: 21155540 DOI: 10.1021/bi1015474] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PQQ is an exogenous, tricyclic, quino-cofactor for a number of bacterial dehydrogenases. The final step of PQQ formation is catalyzed by PqqC, a cofactorless oxidase. This study focuses on the activation of molecular oxygen in an enzyme active site without metal or cofactor and has identified a specific oxygen binding and activating pocket in PqqC. The active site variants H154N, Y175F,S, and R179S were studied with the goal of defining the site of O(2) binding and activation. Using apo-glucose dehydrogenase to assay for PQQ production, none of the mutants in this "O(2) core" are capable of PQQ/PQQH(2) formation. Spectrophotometric assays give insight into the incomplete reactions being catalyzed by these mutants. Active site variants Y175F, H154N, and R179S form a quinoid intermediate (Figure 1) anaerobically. Y175S is capable of proceeding further from quinoid to quinol, whereas Y175F, H154N, and R179S require O(2) to produce the quinol species. None of the mutations precludes substrate/product binding or oxygen binding. Assays for the oxidation of PQQH(2) to PQQ show that these O(2) core mutants are incapable of catalyzing a rate increase over the reaction in buffer, whereas H154N can catalyze the oxidation of PQQH(2) to PQQ in the presence of H(2)O(2) as an electron acceptor. Taken together, these data indicate that none of the targeted mutants can react fully to form quinone even in the presence of bound O(2). The data indicate a successful separation of oxidative chemistry from O(2) binding. The residues H154, Y175, and R179 are proposed to form a core O(2) binding structure that is essential for efficient O(2) activation.
Collapse
Affiliation(s)
- Jordan M RoseFigura
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | | | | | | |
Collapse
|
17
|
Ostuni MA, Lamanuzzi LB, Bizouarn T, Dagher MC, Baciou L. Expression of functional mammal flavocytochrome b558 in yeast: Comparison with improved insect cell system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1179-88. [DOI: 10.1016/j.bbamem.2010.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/22/2010] [Accepted: 02/12/2010] [Indexed: 11/29/2022]
|
18
|
Lewis EM, Sergeant S, Ledford B, Stull N, Dinauer MC, McPhail LC. Phosphorylation of p22phox on threonine 147 enhances NADPH oxidase activity by promoting p47phox binding. J Biol Chem 2009; 285:2959-67. [PMID: 19948736 DOI: 10.1074/jbc.m109.030643] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NADPH oxidase comprises both cytosolic and membrane-bound subunits, which, when assembled and activated, initiate the transfer of electrons from NADPH to molecular oxygen to form superoxide. This activity, known as the respiratory burst, is extremely important in the innate immune response as indicated by the disorder chronic granulomatous disease. The regulation of this enzyme complex involves protein-protein and protein-lipid interactions as well as phosphorylation events. Previously, our laboratory demonstrated that the small membrane subunit of the oxidase complex, p22(phox), is phosphorylated in neutrophils and that its phosphorylation correlates with NADPH oxidase activity. In this study, we utilized site-directed mutagenesis in a Chinese hamster ovarian cell system to determine the phosphorylation sites within p22(phox). We also explored the mechanism by which p22(phox) phosphorylation affects NADPH oxidase activity. We found that mutation of threonine 147 to alanine inhibited superoxide production in vivo by more than 70%. This mutation also blocked phosphorylation of p22(phox) in vitro by both protein kinase C-alpha and -delta. Moreover, this mutation blocked the p22(phox)-p47(phox) interaction in intact cells. When phosphorylation was mimicked in vivo through mutation of Thr-147 to an aspartyl residue, NADPH oxidase activity was recovered, and the p22(phox)-p47(phox) interaction in the membrane was restored. Maturation of gp91(phox) was not affected by the alanine mutation, and phosphorylation of the cytosolic component p47(phox) still occurred. This study directly implicates threonine 147 of p22(phox) as a critical residue for efficient NADPH oxidase complex formation and resultant enzyme activity.
Collapse
Affiliation(s)
- Eric M Lewis
- From the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157 and
| | | | | | | | | | | |
Collapse
|
19
|
Reactive Oxygen-Generating NADPH Oxidases in Plants. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Abstract
In the plasma membrane fraction from Caco-2 human colon carcinoma cells, active Nox1 (NADPH oxidase 1) endogenously co-localizes with its regulatory components p22phox, NOXO1, NOXA1 and Rac1. NADPH-specific superoxide generating activity was reduced by 80% in the presence of either a flavoenzyme inhibitor DPI (diphenyleneiodonium) or NADP+. The plasma membranes from PMA-stimulated cells showed an increased amount of Rac1 (19.6 pmol/mg), as compared with the membranes from unstimulated Caco-2 cells (15.1 pmol/mg), but other components did not change before and after the stimulation by PMA. Spectrophotometric analysis found approx. 36 pmol of FAD and 43 pmol of haem per mg of membrane and the turnover of superoxide generation in a cell-free system consisting of the membrane and FAD was 10 mol/s per mol of haem. When the constitutively active form of Rac, Rac1(Q61L) or GTP-bound Rac1 was added exogenously to the membrane, O2−-producing activity was enhanced up to 1.5-fold above the basal level, but GDP-loaded Rac1 did not affect superoxide-generating kinetics. A fusion protein [NOXA1N–Rac1(Q61L)] between truncated NOXA1(1–211) and Rac1-(Q61L) exhibited a 6-fold increase of the basal Nox1 activity, but NOXO1N(1–292) [C-terminal truncated NOXO1(1–292)] alone showed little effect on the activity. The activated forms of Rac1 and NOXA1 are essentially involved in Nox1 activation and their interactions might be responsible for regulating the O2−-producing activity in Caco-2 cells.
Collapse
|
21
|
Rossi F, Bellavite P, Papini E. Respiratory response of phagocytes: terminal NADPH oxidase and the mechanisms of its activation. CIBA FOUNDATION SYMPOSIUM 2008; 118:172-95. [PMID: 3015513 DOI: 10.1002/9780470720998.ch12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The chemical composition, properties and activation mechanism of the O2(-)-forming NADPH oxidase of phagocytes were investigated, using partially purified enzyme preparations. Highly active NADPH oxidase was extracted as an aggregate of high Mr from the membranes of neutrophils and macrophages. The enzyme complex contained phospholipids and cytochrome b-245, very little FAD and almost no quinones or NAD(P)H-dye reductase activity. The purification of a polypeptide with a relative molecular mass of 31 500 strictly paralleled the purification of NADPH oxidase, suggesting that this polypeptide is a component of the enzyme. This protein was identified as cytochrome b -245 after dissociation of the proteolipid complex and purification of the cytochrome moiety. The 31 500 Mr protein was phosphorylated in enzyme preparations from activated but not from resting cells. The results indicate that: cytochrome b-245 is a major component of NADPH oxidase; the involvement of NAD(P)H dye reductases in the O2(-)-forming activity is questionable; the cytochrome b-245: FAD ratio in the enzyme complex is much higher than that indicated in crude preparations; the Mr of pig neutrophil cytochrome b-245 is 31 500; the activation of the O-2-forming system involves a process of phosphorylation of cytochrome b-245.
Collapse
|
22
|
Molshanski-Mor S, Mizrahi A, Ugolev Y, Dahan I, Berdichevsky Y, Pick E. Cell-free assays: the reductionist approach to the study of NADPH oxidase assembly, or "all you wanted to know about cell-free assays but did not dare to ask". Methods Mol Biol 2007; 412:385-428. [PMID: 18453125 DOI: 10.1007/978-1-59745-467-4_25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The superoxide (O2-)-generating enzyme complex of phagocytes, known as the NADPH oxidase, can be assayed in a number of in vitro cell-free (or broken cell) systems. These consist of a mixture of the individual components of the NADPH oxidase, derived from resting phagocytes or in the form of purified recombinant proteins, exposed to an activating agent (or situation), in the presence of NADPH and oxygen. O2- produced by the mixture is measured by being trapped immediately after its generation with an appropriate acceptor in a kinetic assay, which permits the calculation of the linear rate of O2- production over time. Cell-free assays are distinguished from whole-cell assays or assays performed on membranes derived from stimulated cells by the fact that all components in the reaction are derived from resting, nonstimulated cells and, thus, the steps of NADPH oxidase activation (precatalytic [assembly] and catalytic) occur in vitro. Cell-free assays played a paramount role in the identification of the components of the NADPH oxidase complex, the diagnosis of various forms of chronic granulomatous disease (CGD), and, more recently, the analysis of the domains present on the components of the NADPH oxidase participating in protein-protein interactions leading to the assembly of the active complex.
Collapse
Affiliation(s)
- Shahar Molshanski-Mor
- The Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
23
|
Babior BM. The respiratory burst oxidase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 65:49-95. [PMID: 1570769 DOI: 10.1002/9780470123119.ch2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sbarra and Karnovsky were the first to present evidence suggesting the presence in phagocytes of a special enzyme designed to generate reactive oxidants for purposes of host defense. In the years since their report appeared, a great deal has been learned about this enzyme, now known as the respiratory burst oxidase. It has been found to be a plasma membrane-bound heme- and flavin-containing enzyme, dormant in resting cells, that catalyzes the one-electron reduction of oxygen to O2- at the expense of NADPH: O2 + NADPH----O2- + NADP+ + H+ Its behavior in whole cells and its response to various activating stimuli have been described in detail, although important insights continue to emerge, as for example a very interesting new series of observations on differences in oxidase activation patterns between suspended and adherent cells. The enzyme has been shown by biochemical and genetic studies to consist of at least six components. In the resting cell, three of these components are in the cytosol and three in the plasma membrane, but when the cell passes from its resting to its activated state the cytosolic components are all transferred to the plasma membrane, presumably assembling the oxidase. Of the components initially bound to the membrane, two constitute cytochrome b558, a heme protein characteristic of the respiratory burst oxidase, and the third may represent an oxidase flavoprotein. With regard to the cytosolic components, one is a phosphoprotein and another is the NADPH-binding component, possibly a second oxidase flavoprotein. The nature of the third (p67phox) is a puzzle. Four of the six oxidase components have now been cloned and sequenced. These findings only scratch the surface, however, and many questions remain. How many oxidase components, for example, remain to be discovered, and how do they fit together to form the active enzyme? How is the route of activation of the oxidase integrated into the general signal transduction systems of the cell? How did the oxidase come to be? Could there be a widespread system that generates small amounts of O2- as an intercellular signaling molecule, as recent work is beginning to suggest, and did the ever-destructive respiratory burst oxidase arise from that innocuous system as the creation of some evolutionary Frankenstein--an oxidase from hell? Finally, will it be possible to develop drugs that specifically block the respiratory burst oxidase, and will such drugs prove to be clinically useful as anti-inflammatory agents?(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B M Babior
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
24
|
Sheppard FR, Kelher MR, Moore EE, McLaughlin NJD, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78:1025-42. [PMID: 16204621 DOI: 10.1189/jlb.0804442] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is part of the microbicidal arsenal used by human polymorphonuclear neutrophils (PMNs) to eradicate invading pathogens. The production of a superoxide anion (O2-) into the phagolysosome is the precursor for the generation of more potent products, such as hydrogen peroxide and hypochlorite. However, this production of O2- is dependent on translocation of the oxidase subunits, including gp91phox, p22phox, p47phox, p67phox, p40phox, and Rac2 from the cytosol or specific granules to the plasma membrane. In response to an external stimuli, PMNs change from a resting, nonadhesive state to a primed, adherent phenotype, which allows for margination from the vasculature into the tissue and chemotaxis to the site of infection upon activation. Depending on the stimuli, primed PMNs display altered structural organization of the NADPH oxidase, in that there is phosphorylation of the oxidase subunits and/or translocation from the cytosol to the plasma or granular membrane, but there is not the complete assembly required for O2- generation. Activation of PMNs is the complete assembly of the membrane-linked and cytosolic NADPH oxidase components on a PMN membrane, the plasma or granular membrane. This review will discuss the individual components associated with the NADPH oxidase complex and the function of each of these units in each physiologic stage of the PMN: rested, primed, and activated.
Collapse
|
25
|
Morgan D, Cherny VV, Murphy R, Katz BZ, DeCoursey TE. The pH dependence of NADPH oxidase in human eosinophils. J Physiol 2005; 569:419-31. [PMID: 16195320 PMCID: PMC1464255 DOI: 10.1113/jphysiol.2005.094748] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
NADPH oxidase generates reactive oxygen species that are essential to innate immunity against microbes. Like most enzymes, it is sensitive to pH, although the relative importance of pH(o) and pH(i) has not been clearly distinguished. We have taken advantage of the electrogenic nature of NADPH oxidase to determine its pH dependence in patch-clamped individual human eosinophils using the electron current to indicate enzyme activity. Electron current stimulated by PMA (phorbol myristate acetate) was recorded in both perforated-patch configuration, using an NH4+ gradient to control pH(i), and in excised, inside-out patches of membrane. No electron current was detected in cells or excised patches from eosinophils from a patient with chronic granulomatous disease. When the pH was varied symmetrically (pH(o) = pH(i)) in cells in perforated-patch configuration, NADPH oxidase-generated electron current was maximal at pH 7.5, decreasing drastically at higher or lower values. Varying pH(o) and pH(i) independently revealed that this pH dependence was entirely due to effects of pH(i) and that the oxidase is insensitive to pH(o). Surprisingly, the electron current in inside-out patches of membrane was only weakly sensitive to pH(i), indicating that the enzyme turnover rate per se is not strongly pH dependent. The most likely interpretation is that assembly or deactivation of the NADPH oxidase complex has one or more pH-sensitive steps, and that pH-dependent changes in electron current in intact cells mainly reflect different numbers of active complexes at different pH.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
26
|
Elsen S, Doussière J, Villiers CL, Faure M, Berthier R, Papaioannou A, Grandvaux N, Marche PN, Vignais PV. Cryptic O2- -generating NADPH oxidase in dendritic cells. J Cell Sci 2005; 117:2215-26. [PMID: 15126623 DOI: 10.1242/jcs.01085] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
All the components of the O(2)(-)-generating NADPH oxidase typically found in neutrophils, namely a membrane-bound low potential flavocytochrome b and oxidase activation factors of cytosolic origin, are immunodetectable in murine dendritic cells (DCs). However, in contrast to neutrophils, DCs challenged with phorbol myristate acetate (PMA) can barely mount a significant respiratory burst. Nevertheless, DCs generate a substantial amount of O(2)(-) in the presence of PMA following preincubation with pro-inflammatory ligands such as lipopolysaccharide and pansorbin, and to a lesser extent with anti-CD40 or polyinosinic polycytidylic acid. We found that the virtual lack of the oxidase response to PMA alone is specifically controlled in DCs. Through the use of homologous and heterologous cell-free systems of oxidase activation, we showed the following: (1) a NADPH oxidase inhibitory factor is located in DC membranes; it exerts its effect on oxidase activation and not on the activated oxidase. (2) The inhibition is relieved by pretreatment of DC membranes with beta-octylglucoside (beta-OG). (3) The beta-OG-extracted inhibitory factor prevents the activation of neutrophil oxidase. (4) The inhibitory activity is lost after treatment of DC membranes with proteinase K or heating, which points to the protein nature of the inhibitory factor. Overall, these data indicate that the O(2)(-)-generating oxidase in DCs is cryptic, owing to the presence of a membrane-bound inhibitor of protein nature that prevents oxidase activation. The inhibition is relieved under specific conditions, including a prolonged contact of DCs with pro-inflammatory ligands from microbial origin, allowing a substantial production of O(2)(-), which may contribute to the response of DCs to a microbial exposure.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), Département Réponse et Dynamique Cellulaires, CEA-Grenoble, Grenoble Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nishida S, Yoshida LS, Shimoyama T, Nunoi H, Kobayashi T, Tsunawaki S. Fungal metabolite gliotoxin targets flavocytochrome b558 in the activation of the human neutrophil NADPH oxidase. Infect Immun 2005; 73:235-44. [PMID: 15618159 PMCID: PMC538966 DOI: 10.1128/iai.73.1.235-244.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal gliotoxin (GT) is a potent inhibitor of the O(2)(-)-generating NADPH oxidase of neutrophils. We reported that GT-treated neutrophils fail to phosphorylate p47(phox), a step essential for the enzyme activation, because GT prevents the colocalization of protein kinase C betaII with p47(phox) on the membrane. However, it remains unanswered whether GT directly affects any of NADPH oxidase components. Here, we examine the effect of GT on the NADPH oxidase components in the cell-free activation assay. The O(2)(-)-generating ability of membranes obtained from GT-treated neutrophils is 40.0 and 30.6% lower, respectively, than the untreated counterparts when assayed with two distinct electron acceptors, suggesting that flavocytochrome b(558) is affected in cells by GT. In contrast, the corresponding cytosol remains competent for activation. Next, GT addition in vitro to the assay consisting of flavocytochrome b(558) and cytosolic components (native cytosol or recombinant p67(phox), p47(phox), and Rac2) causes a striking inhibition (50% inhibitory concentration = 3.3 microM) when done prior to the stimulation with myristic acid. NADPH consumption is also prevented by GT, but the in vitro assembly of p67(phox), p47(phox), and Rac2 with flavocytochrome b(558) is normal. Posterior addition of GT to the activated enzyme is ineffective. The separate treatment of membranes with GT also causes a marked loss of flavocytochrome b(558)'s ability to reconstitute O(2)(-) generation, supporting the conclusion at the cellular level. The flavocytochrome b(558) heme spectrum of the GT-treated membranes stays, however, unchanged, showing that hemes remain intact. These results suggest that GT directly harms site(s) crucial for electron transport in flavocytochrome b(558), which is accessible only before oxidase activation.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Infectious Diseases, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Poinas A, Gaillard J, Vignais P, Doussiere J. Exploration of the diaphorase activity of neutrophil NADPH oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1243-52. [PMID: 11856358 DOI: 10.1046/j.1432-1033.2002.02764.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the O2- generating flavocytochrome b, the membrane-bound component of the neutrophil NADPH oxidase, electrons are transported from NADPH to O2 in the following sequence: NADPH --> FAD --> heme b -->O2. Although p-iodonitrotetrazolium (INT) has frequently been used as a probe of the diaphorase activity of the neutrophil flavocytochrome b, the propensity of its radical to interact reversibly with O2 led us to question its specificity. This study was undertaken to reexamine the interaction of INT with the redox components of the neutrophil flavocytochrome b. Two series of inhibitors were used, namely the flavin analog 5-deaza FAD and the heme inhibitors bipyridyl and benzylimidazole. The following results indicate that INT reacts preferentially with the hemes rather than with the FAD redox center of flavocytochrome b and is not therefore a specific probe of the diaphorase activity of flavocytochrome b. First, in anaerobiosis, reduced heme b in activated membranes was reoxidized by INT as efficiently as by O2 even in the presence of concentrations of 5-deaza FAD which fully inhibited the NADPH oxidase activity. Second, the titration curve of dithionite-reduced heme b in neutrophil membranes obtained by oxidation with increasing amounts of INT was strictly superimposable on that of dithionite-reduced hemin. Third, INT competitively inhibited the O2 uptake by the activated NADPH oxidase in a cell-free system. Finally, the heme inhibitor bipyridyl competitively inhibited the reduction of INT in anaerobiosis, and the oxygen uptake in aerobiosis.
Collapse
Affiliation(s)
- Alexandra Poinas
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR 5092 CEA-CNRS, Département de Biologie Moléculaire et Structurale Grenoble, France
| | | | | | | |
Collapse
|
29
|
|
30
|
|
31
|
Components and organization of the nadph oxidase of phagocytic cells. PHAGOCYTOSIS: THE HOST 1999. [DOI: 10.1016/s1874-5172(99)80043-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Yoshida LS, Saruta F, Yoshikawa K, Tatsuzawa O, Tsunawaki S. Mutation at histidine 338 of gp91(phox) depletes FAD and affects expression of cytochrome b558 of the human NADPH oxidase. J Biol Chem 1998; 273:27879-86. [PMID: 9774399 DOI: 10.1074/jbc.273.43.27879] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defective NADPH oxidase components prevent superoxide (O-2) generation, causing chronic granulomatous disease (CGD). X-linked CGD patients have mutations in the gene encoding the gp91(phox) subunit of cytochrome b558 and usually lack gp91(phox) protein completely (X91(0)). gp91(phox) is considered to be a flavocytochrome that contains binding sites for NADPH, FAD, as well as heme. We here report a rare X-linked CGD patient whose neutrophils entirely failed to produce O-2, but presented a diminished expression of gp91(phox) containing about one-third of the heme present in normal individuals by Soret absorption. Translocation of cytosolic factors p67(phox) and p47(phox) was normal. However, the FAD content in his neutrophil membranes was as low as that of X91(0) patients, suggesting complete depletion of FAD in his gp91(phox). This was in agreement with the finding that a single base substitution (C1024 to T) changed His-338 to Tyr in gp91(phox) in a predicted FAD-binding domain of the flavocytochrome model. The loss of FAD could not be corrected even after addition of reagent FAD or a FAD-rich dehydrogenase fraction isolated from normal neutrophils to the patient's membranes, in a reconstitution in vitro with normal cytosol. These results indicate that His-338 is a very critical residue for FAD incorporation into the NADPH oxidase system. This is the first such mutation found in CGD.
Collapse
Affiliation(s)
- L S Yoshida
- National Children's Medical Research Center, Setagaya-ku, Tokyo, 154-8509, Japan
| | | | | | | | | |
Collapse
|
33
|
Der Mardirossian C, Krafft MP, Gulik-Krzywicki T, le Maire M, Lederer F. Perfluoroalkylphosphocholines are poor protein-solubilizing surfactants, as tested with neutrophil plasma membranes. Biochimie 1998; 80:531-41. [PMID: 9782391 DOI: 10.1016/s0300-9084(00)80018-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have tested the membrane-protein solubilizing properties of two perfluoroalkylphosphocholines. These compounds belong to a series of fluorinated amphiphiles which are being investigated as potential stabilizing agents for a variety of fluorocarbon-based systems. We are particularly interested in cytochrome b558 from phagocytes, the redox component of NADPH oxidase. Its heavy subunit is believed to carry binding sites for NADPH and FAD. Nevertheless, when the cytochrome is purified in the presence of classical detergents, it carries no FAD. This could be due to a delipidating, denaturing effect of these detergents (octyl glucoside, Triton, etc). The first perfluoroalkyphosphocholine, C8F17(CH2)2O-P(O2-)-O(CH2)2N+(CH3)3(F8C2PC), extracted about as much protein from neutrophil plasma membranes into a 100,000 g supernatant as octyl glucoside. The second compound, C8F17(CH2)11O-P(O2-)-O(CH2)2N+(CH3)3(F8C11PC), was less efficient. We found that flavin was still protein-bound in the crude F8C2PC extract at a FAD to heme ratio of about 1, and a good NADPH oxidase activity was obtained without addition of exogenous FAD, even after dialysis or gel filtration, whereas dialysis eliminated most of the FAD from the octyl glucoside extracts. These experiments appeared to make F8C2PC an interesting membrane-solubilizing agent. Nevertheless, no protein in the F8C2PC extract could be adsorbed on the chromatographic supports normally used for purification. After dilution of the extract and addition of 15 mM octyl glucoside, some of the proteins, such as myeloperoxidase, could be adsorbed (and eluted), but not cytochrome b558. Freeze-fracture electron microscopy showed that the F8C2PC extracts contained numerous vesicles and aggregates of small shapeless particles. Higher centrifugal forces sedimented most proteins of the 100,000 g supernatant. As a check, the effect of F8C2PC was tested on sarcoplasmic reticulum vesicles, the behavior of which with respect to the usual non-denaturating detergents has been well studied. There was little, if any, solubilization. We conclude that, although supernatants of F8C2PC extracts of neutrophil membranes are optically clear, proteins are not really solubilized. This result is in keeping with the absence of lytic effects of F8C2PC on erythrocyte membranes.
Collapse
Affiliation(s)
- C Der Mardirossian
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
34
|
Roubaud V, Sankarapandi S, Kuppusamy P, Tordo P, Zweier JL. Quantitative measurement of superoxide generation and oxygen consumption from leukocytes using electron paramagnetic resonance spectroscopy. Anal Biochem 1998; 257:210-7. [PMID: 9514781 DOI: 10.1006/abio.1997.2542] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In view of the important role of superoxide in cellular injury, there has been a great need for methods suitable for quantitation of superoxide production from cells. Previous methods have had limited sensitivity or specificity as well as problems with side reactions in cellular systems. Recently, we have shown that the new spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide has ideal properties for quantitative superoxide measurement in chemical/biochemical systems; however, its suitability and potential for measurements in cellular systems has not been determined. Therefore, we evaluated the use of DEPMPO for quantitative measurement of superoxide formed by polymorphonuclear leukocytes. After activation of these cells with the phorbol ester (PMA, 200 ng/ml) or opsonized zymosan (1 mg/ml) at 24 degrees C a strong signal of the superoxide adduct, DEPMPO-OOH, was observed. This technique was highly sensitive and enabled measurement of superoxide generation from as few as 2 x 10(3) cells. The kinetics of adduct formation and decay were measured which enabled quantitation of superoxide formation. Spin label electron paramagnetic resonance (EPR) oximetry was used to measure the oxygen consumption from these cells. With PMA activation rapid onset of superoxide generation occurred with a rate of 0.78 nmol/min/10(6) cells while with zymosan a slower gradual onset of activation was seen to a peak rate of 0.061 nmol/min/10(6) cells. With both stimulators the ratios of superoxide production to oxygen consumption were similar with values of approximately 50% obtained. Thus, EPR spin trapping with DEPMPO together with EPR oximetry methods can be used to provide sensitive and specific quantitation of cellular superoxide generation and oxygen consumption. These methods provide a promising new approach for the measurement of oxygen reduction and superoxide generation in cellular systems.
Collapse
Affiliation(s)
- V Roubaud
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
35
|
Koshkin V. Aerobic and anaerobic functioning of superoxide-producing cytochrome b-559 reconstituted with phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:225-9. [PMID: 8534675 DOI: 10.1016/0005-2728(95)00123-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytochrome b-559 reconstituted with phospholipids and FAD represents the simplest model of the respiratory burst NADPH oxidase and reproduces the main catalytic features of this system (Koshkin, V. and Pick, E. (1993) FEBS Lett. 327, 57-62; (1994) FEBS Lett. 338, 285-289). In the present report it is shown that activation by oxygen, characteristic of the NADPH oxidase complex, is an intrinsic property of flavocytochrome b-559, in principle independent of its complexation with the other components of NADPH oxidase. Facilitation of electron transfer from NADPH to FAD is found to be the reason for this phenomenon. Kinetic studies of anaerobic operation of flavocytochrome b-559 revealed the functional heterogeneity of two hemes, manifested as a dramatic difference in their reducibility under these conditions.
Collapse
Affiliation(s)
- V Koshkin
- Julius Friedrich Cohnheim Center for Phagocyte Research, Tel-Aviv University, Israel
| |
Collapse
|
36
|
Nisimoto Y, Otsuka-Murakami H, Lambeth DJ. Reconstitution of flavin-depleted neutrophil flavocytochrome b558 with 8-mercapto-FAD and characterization of the flavin-reconstituted enzyme. J Biol Chem 1995; 270:16428-34. [PMID: 7608214 DOI: 10.1074/jbc.270.27.16428] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytochrome b558 isolated from human neutrophils was inactive and contained no detectable FAD. However, high NADPH oxidase activity was seen upon reconstitution of the cytochrome with either native FAD or 8-mercapto-FAD in the presence of phospholipids (phosphatidylcholine/phosphatidylethanolamine/phosphatidylinositol/ sphingomyelin/cholesterol, 4:2:1:3:3 (w/w)). Their cell-free superoxide-generating activities were 40.5 and 35.5 mol/s/mol of heme, respectively, which corresponded to 70 and 61% of the original activity of the plasma membranes. Both flavins co-eluted with heme and protein on gel exclusion chromatography. The respective specific flavin content was 6.45 and 7.93 nmol/mg of protein and corresponded to a flavin:heme molar ratio of 0.41 and 0.51 consistent with a 2:1 ratio of heme to flavin. Mixing of 8-mercapto-FAD with flavin-depleted cytochrome b558 caused a red-shift of the flavin absorption maximum from 520 nm to around 560 nm, as has been seen when a variety of other apoflavoprotein dehydrogenases bind this analog. The 8-mercapto-FAD reconstituted into the cytochrome reacted readily with either iodoacetamide (k = 38.8 M-1.min-1) or iodoacetic acid (k = 12.1 M-1.min-1) to give a fluorescence spectrum characteristic of a 8-mercaptoflavin derivative, 8-SCH2CONH2 FAD or 8-SCH2COOH FAD. These results indicate that position 8 of FAD bound to the protein is freely accessible to solvent. These studies support the idea that cytochrome b558 is a flavocytochrome.
Collapse
Affiliation(s)
- Y Nisimoto
- Department of Biochemistry, Aichi Medical University, Japan
| | | | | |
Collapse
|
37
|
Koshkin V. Spatial and electrogenic properties of superoxide-producing cytochrome b-559 incorporated into liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1229:329-33. [PMID: 7748884 DOI: 10.1016/0005-2728(95)00009-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purified cytochrome b-559 reconstituted into liposomes, consisting of certain azolectin-based phospholipid mixtures, is capable of NADPH-supported FAD-dependent superoxide (O2-) production in the absence of cytosolic activators. This system, representing the simplest model of the respiratory burst NADPH oxidase, was used to study cytochrome b-559 enzymology and distinguish putative mechanisms of NADPH oxidase activation (Koshkin, V. and Pick, E. (1993) FEBS Lett. 327, 57-62; (1994) FEBS Lett. 338, 285-289). In the present report, representing an extension of our earlier investigations, two types of vesicle-incorporated and reflavinated cytochrome b-559 preparation were distinguished by their ability to catalyze vectorial electrogenic or scalar electron transport from NADPH to oxygen. This can be explained by the existence of two distinct membranal locations of cytochrome b-559, with NADPH-binding and O2-reducing sites exposed on different or on the same side of the membrane. The mode of cytochrome b-559 insertion into the membrane depended on the reconstitution method employed. Both states of the reconstituted cytochrome b-559 were functionally competent judging by their susceptibility to additional activation by cytosolic NADPH oxidase components. The capability of flavocytochrome b-559 to function as a transmembrane electrogenic electron carrier points to its crucial role in the respiratory burst not only in its catalytical but also in its vectorial aspect. The scalar mode of its action may be related to respiratory burst pathology.
Collapse
Affiliation(s)
- V Koshkin
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
38
|
Thrasher AJ, Keep NH, Wientjes F, Segal AW. Chronic granulomatous disease. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1227:1-24. [PMID: 7918677 DOI: 10.1016/0925-4439(94)90100-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A J Thrasher
- Division of Molecular Medicine, University College London, Medical School, UK
| | | | | | | |
Collapse
|
39
|
Escriou V, Laporte F, Garin J, Brandolin G, Vignais P. Purification and physical properties of a novel type of cytochrome b from rabbit peritoneal neutrophils. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36747-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Levy R, Dana R, Leto TL, Malech HL. The requirement of p47 phosphorylation for activation of NADPH oxidase by opsonized zymosan in human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1220:253-60. [PMID: 8305497 DOI: 10.1016/0167-4889(94)90146-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein kinase C (PKC) inhibitors, staurosporine or 1,5-isoquinolinesulfonyl)-2-methylpiperazine (H7), inhibited NADPH oxidase activity and phosphorylation of 47 kDa protein (p47) in PMA-stimulated neutrophils in a dose-dependent manner. These PKC inhibitors, at the same doses, did not affect oxidase activity and caused only partial inhibition of p47 phosphorylation in OZ-stimulated neutrophils. There was residual (20%) phosphorylated p47 in the membranes of OZ-stimulated cells in the presence of PKC inhibitors, at concentrations which caused total inhibition of oxidase activity and p47 phosphorylation in PMA-stimulated neutrophils. In the presence of ionomycin, which increased intracellular calcium ion concentrations, staurosporine was less effective in inhibiting both superoxide generation and p47 phosphorylation stimulated by PMA, similar to its effect in OZ-stimulated cells. The results indicate that some phosphorylation of p47 always accompanied oxidase activation induced by PMA or OZ, though the degree of phosphorylation of membrane-bound p47 does not directly correlate with rates of superoxide production.
Collapse
Affiliation(s)
- R Levy
- Infectious Diseases Laboratory, Faculty of Health Sciences, Soroka Medical Center of Kupat-Holim, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
41
|
Koshkin V, Pick E. Superoxide production by cytochrome b559. Mechanism of cytosol-independent activation. FEBS Lett 1994; 338:285-9. [PMID: 8307196 DOI: 10.1016/0014-5793(94)80285-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Purified cytochrome b559 relipidated with either a mixture of phosphatidylcholine and phosphatidic acid or with phosphatidylcholine only exhibits high and low superoxide (O2-) producing ability, respectively, in the absence of cytosolic activators [Koshkin, V. and Pick, E. (1993) FEBS Lett. 327, 57-62]. This system was used as a model for the study of the mechanism of NADPH oxidase activation. It is shown that, depending on the composition of the phospholipid environment, cytochrome b599 binds FAD with high or low affinity, this being accompanied by changes in flavin absorbance and fluorescence. High affinity binding of FAD to cytochrome b559 relipidated with phosphatidylcholine combined with phosphatidic acid is associated with an enhanced NADPH-driven O2- producing capacity. A kinetic study of O2- production by cytochrome b559 reflavinated under stoichiometric FAD binding conditions revealed an FAD/heme ratio of 1:2. A further kinetic study of O2- production by high- and low-activity relipidated and reflavinated cytochrome b559, at varying substrate concentrations, and the determination of steady-state difference spectra of such preparations, reduced by NADPH, indicated that O2- production is activated by facilitation of electron transfer from NADPH to FAD rather than by an enhancement of NADPH binding.
Collapse
Affiliation(s)
- V Koshkin
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Israel
| | | |
Collapse
|
42
|
Taylor WR, Jones DT, Segal AW. A structural model for the nucleotide binding domains of the flavocytochrome b-245 beta-chain. Protein Sci 1993; 2:1675-85. [PMID: 8251942 PMCID: PMC2142254 DOI: 10.1002/pro.5560021013] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NADPH is a system in phagocytic cells that generates O2- and hydrogen peroxide in the endocytic vacuole, both of which are important for killing of the engulfed microbe. Dysfunction of this oxidase results in the syndrome of chronic granulomatous disease, characterized by a profound predisposition to bacterial and fungal infections. A flavocytochrome b is the site of most of the mutations causing this syndrome. The FAD and NADPH binding sites have been located on the beta subunit of this molecule, the C-terminal half of which showed weak sequence similarity to other reductases, including the ferredoxin-NADP reductase (FNR) of known structure. This enabled us to build a model of the nucleotide binding domains of the flavocytochrome using this structure as a template. The model was built initially using a novel automatic modeling method based on distance-matrix projection and then refined using energy minimization with appropriate side-chain torsional constraints. The resulting model rationalized much of the observed sequence conservation and identified a large insertion as a potential regulatory domain. It confirms the inclusion of the neutrophil flavocytochrome b-245 (Cb-245) as a member of the FNR family of reductases and strongly supports its function as the proximal electron transporting component of the NADPH oxidase.
Collapse
Affiliation(s)
- W R Taylor
- Laboratory of Mathematical Biology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
43
|
Koshkin V, Pick E. Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators. FEBS Lett 1993; 327:57-62. [PMID: 8392946 DOI: 10.1016/0014-5793(93)81039-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Purified cytochrome b559 from guinea pig macrophages was relipidated with several phospholipid mixtures. Relipidated cytochrome b559 was found capable of NADPH-dependent superoxide (O2-) production in the absence of the cytosolic components of the NADPH oxidase complex. The rate of O2- generation by cytochrome b559 varied with the type of phospholipid utilized for relipidation, was absolutely dependent on exogenous FAD, and was enhanced by a critical concentration of anionic amphiphile. It is demonstrated that exogenous FAD acts by binding to cytochrome b559. These results provide firm experimental evidence for the proposal that cytochrome b559 comprises the complete electron transporting apparatus of the O2- forming NADPH oxidase and that the cytosolic components function merely as activators.
Collapse
Affiliation(s)
- V Koshkin
- Department of Human Microbiology, Sackler School of Medicine, Tel-Aviv University, Israel
| | | |
Collapse
|
44
|
Baldassano RN, Schreiber S, Johnston RB, Fu RD, Muraki T, MacDermott RP. Crohn's disease monocytes are primed for accentuated release of toxic oxygen metabolites. Gastroenterology 1993; 105:60-6. [PMID: 8390381 DOI: 10.1016/0016-5085(93)90010-a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Inflammatory bowel disease occurs in regions of the intestine characterized by a bowel content high in bacteria. Intestinal bacteria synthesize cell wall products such as lipopolysaccharide; when normal monocytes or macrophages come in contact with these products, they can be primed to release a number of inflammatory mediators. Mediators such as toxic oxygen metabolites released as part of the respiratory burst may contribute to inflammatory tissue damage. The aim of this study was to determine if monocytes from patients with Crohn's disease are primed by lipopolysaccharide for a greater respiratory burst. METHODS The generation of superoxide anion was measured by superoxide dismutase inhibitable reduction of ferricytochrome c. RESULTS Freshly isolated monocytes from active untreated Crohn's disease patients (n = 8) showed enhanced stimulated release of superoxide anion when compared with normal monocytes (n = 15; 3.80 +/- 0.12 vs. 1.02 +/- 0.06 nmol/5 min; P < 0.001). We tested the hypothesis that the monocyte priming factor in Crohn's disease serum may be lipopolysaccharide by showing that Crohn's disease serum lost its ability to prime normal monocytes after lipopolysaccharide was removed (0.25 +/- 0.25 nmol/5 min, P < 0.001). CONCLUSIONS These studies indicate that bacterial cell wall products may be important proinflammatory molecules involved in the initiation and/or perpetuation of Crohn's disease.
Collapse
Affiliation(s)
- R N Baldassano
- Division of Gastroenterology, Children's Hospital of Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
45
|
Jones OT. The mechanism of the production of superoxide by phagocytes. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 19:177-84. [PMID: 8395850 DOI: 10.1007/bf03160177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Superoxide is produced by phagocytic cells at rates sufficient to have cytocidal effects. A wide variety of receptor-dependent and -independent agonists triggers this respiratory burst, including immunoglobin aggregates, complement fragments, and leukotriene B4. Lower rates of O2-. production are triggered by addition of specific cytokines into B-lymphocytes, endothelial cells, fibroblasts, and kidney mesangial cells; low concentration of radicals may act as signals for proliferation or other changes. The NADPH oxidase of phagocytes, characterized by the presence of FAD and a low potential cytochrome b, is organized to transfer electrons electrogenically across the plasma membrane from NADPH to O2. A proton channel permits movement of compensating H+.
Collapse
Affiliation(s)
- O T Jones
- Biochemistry Department, Bristol University, UK
| |
Collapse
|
46
|
The reduction of cytochrome b558 and the activity of the respiratory burst oxidase from human neutrophils. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35780-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
47
|
Glaser CB, Morser J, Clarke JH, Blasko E, McLean K, Kuhn I, Chang RJ, Lin JH, Vilander L, Andrews WH, Light DR. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest 1992; 90:2565-73. [PMID: 1334978 PMCID: PMC443416 DOI: 10.1172/jci116151] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Endothelial thrombomodulin (TM) plays a critical role in hemostasis as a cofactor for thrombin-dependent formation of activated protein C, a potent anticoagulant. Chloramine T, H2O2, or hypochlorous acid generated from H2O2 by myeloperoxidase rapidly destroy 75-90% of TM cofactor activity. Activated PMN, the primary in vivo source of biological oxidants, also rapidly inactivate TM. Oxidation of TM by PMN is inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. Both Met291 and Met388 in the six epidermal growth factor-like repeat domain are oxidized; however, only substitutions of Met388 lead to TM analogues that resist oxidative inactivation. We suggest that in inflamed tissues activated PMN may inactivate TM and demonstrate further evidence of the interaction between the inflammatory process and induction of thrombotic potential.
Collapse
Affiliation(s)
- C B Glaser
- Department of Protein Chemistry, Berlex Biosciences, South San Francisco, California 94080
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Uhlinger DJ, Inge KL, Kreck ML, Tyagi SR, Neckelmann N, Lambeth JD. Reconstitution and characterization of the human neutrophil respiratory burst oxidase using recombinant p47-phox, p67-phox and plasma membrane. Biochem Biophys Res Commun 1992; 186:509-16. [PMID: 1321612 DOI: 10.1016/s0006-291x(05)80837-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human neutrophil respiratory burst oxidase (NADPH-oxidase) activity can be reconstituted in a cell-free system consisting of plasma membrane, cytosol and an anionic amphiphile [e.g., sodium dodecyl sulfate (SDS) or arachidonate]. Herein, we report reconstitution of oxidase activity using isolated neutrophil plasma membrane together with purified recombinant p47-phox and p67-phox which had been produced using a baculovirus expression system. Activity required an anionic amphiphile (SDS or arachidonate) and was potentiated by diacylglycerol and GTP gamma S. Serial washes of the plasma membrane failed to affect its ability to reconstitute activity, indicating that a dissociable membrane component was not present. The Km for NADPH, 43 microM, was the same as that determined using cytosol in place of recombinant factors. The EC50 values for p47-phox and p67-phox under optimal activation conditions were 220 nM and 80 nM, respectively, indicating a relatively high affinity of these components in an activation complex. Since neither cytosolic component contains a nucleotide binding consensus sequence, these data indicate that the NADPH binding component of the oxidase resides in the plasma membrane.
Collapse
Affiliation(s)
- D J Uhlinger
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | | | |
Collapse
|
49
|
Yoshida LS, Chiba T, Kakinuma K. Determination of flavin contents in neutrophils by a sensitive chemiluminescence assay: evidence for no translocation of flavoproteins from the cytosol to the membrane upon cell stimulation. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1135:245-52. [PMID: 1320407 DOI: 10.1016/0167-4889(92)90227-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A sensitive and specific chemiluminescence (CL) method with bacterial luciferase was adapted for accurate measurement of the flavins FAD and FMN in the membrane and cytosolic fractions of neutrophils prepared from pig and human blood. The FAD and FMN contents (FAD/FMN = 100:2) in the membranes were essentially the same in resting (R) and myristate-stimulated (S) cells, although O2(-)-generation was markedly enhanced exclusively in S membranes. The O2(-)-forming activity of S samples remained unchanged or even increased after washing the membranes with buffer, although one-third of the FAD was lost during washing (a decrease from 140 to 95 pmol/10(8) cell-equivalent (CE) during washing). The cytosol is known to contain at least three components that are essential for O2- production (p47-phox, p67-phox, and a G-protein), and that are translocated to membranes upon activation, but its flavin content was one tenth of that of the membranes. The cytosol was treated with fatty acids in the absence of membranes to induce substantial precipitation of p47-phox, p67-phox and a protein of 32 kDa. No difference relative to a solvent-control was noted in the low flavin content of the precipitate indicating that these cytosolic components are not flavoproteins. These results do not support the possibility of translocation of a cytosolic flavoprotein to the membrane upon activation of the respiratory burst.
Collapse
Affiliation(s)
- L S Yoshida
- Department of Inflammation Research, Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | |
Collapse
|
50
|
Segal AW, West I, Wientjes F, Nugent JH, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G. Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 1992; 284 ( Pt 3):781-8. [PMID: 1320378 PMCID: PMC1132607 DOI: 10.1042/bj2840781] [Citation(s) in RCA: 269] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The NADPH oxidase of phagocytic cells is important for the efficient killing and digestion of ingested microbes. A very unusual low-potential cytochrome b (b-245) is the only redox molecule to have been identified in this system. The FAD-containing flavoprotein that binds NADPH and transfers electrons to the cytochrome has eluded identification for three decades. We show here that the haem/FAD ratio in the membranes does not change significantly on activation of this oxidase, indicating that the FAD is present in the membranes from the outset and not recruited from the cytosol. The FAD content of membranes from cells of patients with X-linked chronic granulomatous disease (CGD) lacking the cytochrome b was roughly one-quarter of that in normal subjects and in autosomal recessive CGD patients lacking the cytosolic protein p47-phox. Similar low amounts of FAD were present in uninduced promyelocytic (HL60) cells, suggesting that the low amount of FAD in cells from X-CGD patients was probably unrelated to this oxidase system. Cytochrome b-245 appears to bind both the haem and FAD, in a molar ratio of 2:1. The e.p.r. signal of the purified cytochrome was weak and had an asymmetric g(z) peak at g = 3.31. The purified cytochrome could be partially reflavinated (about 20%) in the presence of lipid. Amino acid sequence homology was detected between the beta-subunit of this cytochrome b and the ferredoxin-NADP+ reductase (FNR) family of reductases in the putative NADPH- and FAD-binding sites. 32P-labelled 2-azido-NADP was used as a photoaffinity label for the NADPH-binding site. Labelling that was competed off with NADP was observed in the region of the beta-subunit of the cytochrome. No labelling was seen in this region in X-CGD in three subjects in whom this cytochrome was missing and in a third in whom it was present but bore a Pro-His transposition in the putative NADPH-binding site. These studies indicate that cytochrome b-245 is a flavocytochrome, the first described in higher eukaryotic cells, bearing the complete electron-transporting apparatus of the NADPH oxidase.
Collapse
Affiliation(s)
- A W Segal
- Department of Medicine, University College London, Rayne Institute, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|