1
|
Reijnders E, van der Laarse A, Ruhaak LR, Cobbaert CM. Closing the gaps in patient management of dyslipidemia: stepping into cardiovascular precision diagnostics with apolipoprotein profiling. Clin Proteomics 2024; 21:19. [PMID: 38429638 PMCID: PMC10908091 DOI: 10.1186/s12014-024-09465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024] Open
Abstract
In persons with dyslipidemia, a high residual risk of cardiovascular disease remains despite lipid lowering therapy. Current cardiovascular risk prediction mainly focuses on low-density lipoprotein cholesterol (LDL-c) levels, neglecting other contributing risk factors. Moreover, the efficacy of LDL-c lowering by statins resulting in reduced cardiovascular risk is only partially effective. Secondly, from a metrological viewpoint LDL-c falls short as a reliable measurand. Both direct and calculated LDL-c tests produce inaccurate test results at the low end under aggressive lipid lowering therapy. As LDL-c tests underperform both clinically and metrologically, there is an urging need for molecularly defined biomarkers. Over the years, apolipoproteins have emerged as promising biomarkers in the context of cardiovascular disease as they are the functional workhorses in lipid metabolism. Among these, apolipoprotein B (ApoB), present on all atherogenic lipoprotein particles, has demonstrated to clinically outperform LDL-c. Other apolipoproteins, such as Apo(a) - the characteristic apolipoprotein of the emerging risk factor lipoprotein(a) -, and ApoC-III - an inhibitor of triglyceride-rich lipoprotein clearance -, have attracted attention as well. To support personalized medicine, we need to move to molecularly defined risk markers, like the apolipoproteins. Molecularly defined diagnosis and molecularly targeted therapy require molecularly measured biomarkers. This review provides a summary of the scientific validity and (patho)physiological role of nine serum apolipoproteins, Apo(a), ApoB, ApoC-I, ApoC-II, ApoC-III, ApoE and its phenotypes, ApoA-I, ApoA-II, and ApoA-IV, in lipid metabolism, their association with cardiovascular disease, and their potential as cardiovascular risk markers when measured in a multiplex apolipoprotein panel.
Collapse
Affiliation(s)
- Esther Reijnders
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands.
| | - Arnoud van der Laarse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Knetsch TGJ, Ubbink M. The effect of lipid composition on the thermal stability of nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184239. [PMID: 37866687 DOI: 10.1016/j.bbamem.2023.184239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Discoidal lipid nanoparticles (LNPs) called Nanodiscs (NDs) are derived from human high-density lipoprotein (HDL). Such biomimetics are ideally suited for the stabilization and delivery of pharmaceuticals, including chemicals, bio-active proteins and vaccines. The stability and circulation lifetimes of reconstituted HDL nanoparticles, including NDs, are variable. Lipids found in thermophilic archaea and bacteria are prime candidates for the stabilization of LNPs. We report the thermal stability of NDs prepared with lipids that differ in saturation, have either ether- or ester linkages between the fatty acid and glycerol backbone or contain isoprenoid fatty acid tails (phytanyl lipids). NDs with two saturated fatty acids show a much greater long-term thermostability than NDs with an unsaturated fatty acid. Ether fatty acid linkages, commonly found in thermophiles, did not improve stability of NDs compared to ester fatty acid linkages when using saturated lipids. NDs containing phytanyl and saturated alkyl fatty acids show similar stability at 37 °C. NDs assembled with phytanyl lipids contain three copies of the membrane scaffolding protein as opposed to the canonical dimer found in conventional NDs. The findings present a strong basis for the production of thermostable NDs through the selection of appropriate lipids and are likely broadly applicable to LNP development.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
3
|
Huang Y, Feng J, Li Q, Zhang Z, Jiang B, Amoah K, Huang Y, Jian J. Apolipoprotein A-I (ApoA-I) protects Nile tilapia (Oreochromis niloticus) against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2023:108925. [PMID: 37414306 DOI: 10.1016/j.fsi.2023.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Apolipoprotein A-I (ApoA-I) is a lipoprotein involved in a variety of physiological and pathological processes. However, the immunomodulatory functions of ApoA-I in fish are not well understood. In this study, ApoA-I from Nile tilapia (Oreochromis niloticus) (On-ApoA-I) was identified, and its function in bacterial infection was investigated. The open reading frame of On-ApoA-I is 792 bp, which codes for a protein containing 263 amino acids. On-ApoA-I shared over 60% sequence similarity with other teleost fish and more than 20% with mammalian ApoA-I. On-ApoA-I was found to be highly expressed in the liver and significantly induced during Streptococcus agalactiae infection by qRT‒PCR analysis. Furthermore, in vivo studies revealed that recombinant On-ApoA-I protein could suppress inflammation and apoptosis and improve the likelihood of surviving bacterial infection. Additionally, On-ApoA-I showed in vitro antimicrobial properties against Gram-positive and Gram-negative bacteria. These findings offer a theoretical basis for further investigations into the role of ApoA-I in fish immunology.
Collapse
Affiliation(s)
- Yongxiong Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Jiamin Feng
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Qi Li
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Zhiqiang Zhang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Baijian Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Kwaku Amoah
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China
| | - Yu Huang
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| | - Jichang Jian
- Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China.
| |
Collapse
|
4
|
Hsu CC, Kanter JE, Kothari V, Bornfeldt KE. Quartet of APOCs and the Different Roles They Play in Diabetes. Arterioscler Thromb Vasc Biol 2023; 43:1124-1133. [PMID: 37226733 PMCID: PMC10330679 DOI: 10.1161/atvbaha.122.318290] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
APOA1 and APOB are the structural proteins of high-density lipoprotein and APOB-containing lipoproteins, such as low-density lipoprotein and very low-density lipoprotein, respectively. The 4 smaller APOCs (APOC1, APOC2, APOC3, and APOC4) are exchangeable apolipoproteins; they are readily transferred among high-density lipoproteins and APOB-containing lipoproteins. The APOCs regulate plasma triglyceride and cholesterol levels by modulating substrate availability and activities of enzymes interacting with lipoproteins and by interfering with APOB-containing lipoprotein uptake through hepatic receptors. Of the 4 APOCs, APOC3 has been best studied in relation to diabetes. Elevated serum APOC3 levels predict incident cardiovascular disease and progression of kidney disease in people with type 1 diabetes. Insulin suppresses APOC3 levels, and accordingly, elevated APOC3 levels associate with insulin deficiency and insulin resistance. Mechanistic studies in a mouse model of type 1 diabetes have demonstrated that APOC3 acts in the causal pathway of diabetes-accelerated atherosclerosis. The mechanism is likely due to the ability of APOC3 to slow the clearance of triglyceride-rich lipoproteins and their remnants, thereby causing an increased accumulation of atherogenic lipoprotein remnants in lesions of atherosclerosis. Less is known about the roles of APOC1, APOC2, and APOC4 in diabetes.
Collapse
Affiliation(s)
- Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jenny E. Kanter
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Karin E. Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Lipoprotein Metabolism, Protein Aggregation, and Alzheimer's Disease: A Literature Review. Int J Mol Sci 2023; 24:ijms24032944. [PMID: 36769268 PMCID: PMC9918279 DOI: 10.3390/ijms24032944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. The physiopathology of AD is well described by the presence of two neuropathological features: amyloid plaques and tau neurofibrillary tangles. In the last decade, neuroinflammation and cellular stress have gained importance as key factors in the development and pathology of AD. Chronic cellular stress occurs in degenerating neurons. Stress Granules (SGs) are nonmembranous organelles formed as a response to stress, with a protective role; however, SGs have been noted to turn into pathological and neurotoxic features when stress is chronic, and they are related to an increased tau aggregation. On the other hand, correct lipid metabolism is essential to good function of the brain; apolipoproteins are highly associated with risk of AD, and impaired cholesterol efflux and lipid transport are associated with an increased risk of AD. In this review, we provide an insight into the relationship between cellular stress, SGs, protein aggregation, and lipid metabolism in AD.
Collapse
|
6
|
Rouland A, Masson D, Lagrost L, Vergès B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol 2022; 21:272. [PMID: 36471375 PMCID: PMC9724408 DOI: 10.1186/s12933-022-01703-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein C1 (apoC1) is a small size apolipoprotein whose exact role is not totally clarified but which seems to modulate significantly the metabolism of lipoproteins. ApoC1 is involved in the metabolism of triglyceride-rich lipoproteins by inhibiting the binding of very low density lipoproteins (VLDL) to VLDL-receptor (VLDL-R), to low density lipoprotein receptor (LDL-R) and to LDL receptor related protein (LRP), by reducing the activity of lipoprotein lipase (LPL) and by stimulating VLDL production, all these effects leading to increase plasma triglycerides. ApoC1 takes also part in the metabolism of high density lipoproteins (HDL) by inhibiting Cholesterol Ester Transfer Protein (CETP). The functionality of apoC1 on CETP activity is impaired in diabetes that might account, at least in part, for the increased plasma CETP activity observed in patients with diabetes. Its different effects on lipoprotein metabolism with a possible role in the modulation of inflammation makes the net impact of apoC1 on cardiometabolic risk difficult to figure out and apoC1 might be considered as pro-atherogenic or anti-atherogenic depending on the overall metabolic context. Making the link between total plasma apoC1 levels and the risk of cardio-metabolic diseases is difficult due to the high exchangeability of this small protein whose biological effects might depend essentially on its association with VLDL or HDL. The role of apoC1 in humans is not entirely elucidated and further studies are needed to determine its precise role in lipid metabolism and its possible pleiotropic effects on inflammation and vascular wall biology. In this review, we will present data on apoC1 structure and distribution among lipoproteins, on the effects of apoC1 on VLDL metabolism and HDL metabolism and we will discuss the possible links between apoC1, atherosclerosis and diabetes.
Collapse
Affiliation(s)
- Alexia Rouland
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - David Masson
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Laurent Lagrost
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Bruno Vergès
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France
| | - Thomas Gautier
- grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Benjamin Bouillet
- grid.31151.37Endocrinology and Diabetology Unit, University Hospital, Dijon, France ,grid.493090.70000 0004 4910 6615INSERM/University of Bourgogne Franche-Comté, LNC UMR1231, Dijon, France ,grid.31151.37Service Endocrinologie, Diabétologie et Maladies Métaboliques, Hôpital François Mitterrand, CHU Dijon, BP 77908, 21079 Dijon, France
| |
Collapse
|
7
|
Liu B, Chen F. Neuropeptide Y promotes hepatic apolipoprotein A1 synthesis and secretion through neuropeptide Y Y5 receptor. Peptides 2022; 154:170824. [PMID: 35660638 DOI: 10.1016/j.peptides.2022.170824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Apolipoprotein A1 (ApoA1), a major component of high-density lipoprotein (HDL), is a protective factor against cardiovascular disease (CVD). A recent epidemiological study found an association between neuropeptide Y (NPY) gene polymorphism and serum HDL levels. However, the direct effect of NPY on ApoA1 expression remains unknown. This study was designed to investigate the molecular mechanisms underlying the NPY-mediated regulation of hepatic ApoA1. METHODS Serum ApoA1, total cholesterol, and HDL-c and hepatic ApoA1 levels were measured after intraperitoneal administration of NPY or an NPY Y5 receptor (NPY5R) agonist in vivo. HepG2 and BRL-3A hepatocytes were treated in vitro with NPY in the presence or absence of NPY receptor antagonists, agonists, or signal transduction pathway inhibitors. Subsequently, the protein and mRNA expression of cellular and secreted ApoA1 were determined. RESULTS NPY considerably upregulated hepatic ApoA1 expression and stimulated ApoA1 secretion, both in vivo and in vitro. NPY5R inhibition blocked NPY-induced upregulation of ApoA1 expression, and NPY5R activation stimulated ApoA1 expression and secretion in hepatocytes. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and protein kinase A (PKA) inhibition almost completely blocked the upregulation of ApoA1 expression and secretion induced by NPY5R. CONCLUSIONS For the first time, we demonstrated that NPY5R activation promotes hepatic ApoA1 synthesis and secretion through the ERK1/2 and PKA signal transduction pathways. Thus, NPY5R may be a potential therapeutic target for treating CVD by promoting cholesterol reverse transport.
Collapse
Affiliation(s)
- Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
8
|
Chen D, Wu H, Wang X, Huang T, Jia J. Shared Genetic Basis and Causal Relationship Between Television Watching, Breakfast Skipping and Type 2 Diabetes: Evidence From a Comprehensive Genetic Analysis. Front Endocrinol (Lausanne) 2022; 13:836023. [PMID: 35399945 PMCID: PMC8988136 DOI: 10.3389/fendo.2022.836023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Epidemiological investigations have established unhealthy lifestyles, such as excessive leisurely sedentary behavior (especially TV/television watching) and breakfast skipping, increase the risk of type 2 diabetes (T2D), but the causal relationship is unclear. We aimed to understand how single nucleotide variants contribute to the co-occurrence of unhealthy lifestyles and T2D, thereby providing meaningful insights into disease mechanisms. Methods Combining summary statistics from genome-wide association studies (GWAS) on TV watching (N = 422218), breakfast skipping (N = 193860) and T2D (N = 159208) in European pedigrees, we conducted comprehensive pairwise genetic analysis, including high-definition likelihood (HDL-method), cross-phenotype association studies (CPASSOC), GWAS-eQTL colocalization analysis and transcriptome-wide association studies (TWAS), to understand the genetic overlap between them. We also performed bidirectional two-sample Mendelian randomization (MR) analysis for causal inference using genetic instrumental variables, and two-step MR mediation analysis was used to assess any effects explained by body mass index, lipid traits and glycemic traits. Results HDL-method showed that T2D shared a strong genetic correlation with TV watching (rg = 0.26; P = 1.63×10-29) and skipping breakfast (rg = 0.15; P =2.02×10-6). CPASSOC identifies eight independent SNPs shared between T2D and TV watching, including one novel shared locus. TWAS and CPASSOC showed that shared genes were enriched in lung, esophageal, adipose, and thyroid tissues and highlighted potential shared regulatory pathways for lipoprotein metabolism, pancreatic β-cell function, cellular senescence and multi-mediator factors. MR showed TV watching had a causal effect on T2D (βIVW = 0.629, PIVW = 1.80×10-10), but no significant results were observed between breakfast skipping and T2D. Mediation analysis provided evidence that body mass index, fasting glucose, hemoglobin A1c and high-density lipoprotein are potential factors that mediate the causal relationship between TV and T2D. Conclusions Our findings provide strong evidence of shared genetics and causation between TV watching and T2D and facilitate our identification of common genetic architectures shared between them.
Collapse
Affiliation(s)
- Dongze Chen
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hanyu Wu
- Department of Bioinformatics, School of Life Science, Peking University, Beijing, China
| | - Xinpei Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Statistical Science, Peking University, Beijing, China
| |
Collapse
|
9
|
Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Collapse
|
10
|
Furtado JD, Ruotolo G, Nicholls SJ, Dullea R, Carvajal-Gonzalez S, Sacks FM. Pharmacological Inhibition of CETP (Cholesteryl Ester Transfer Protein) Increases HDL (High-Density Lipoprotein) That Contains ApoC3 and Other HDL Subspecies Associated With Higher Risk of Coronary Heart Disease. Arterioscler Thromb Vasc Biol 2021; 42:227-237. [PMID: 34937388 PMCID: PMC8785774 DOI: 10.1161/atvbaha.121.317181] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Supplemental Digital Content is available in the text. Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease risk, in part, because it increased dysfunctional subspecies associated with higher risk such as HDL that contains apoC3.
Collapse
Affiliation(s)
- Jeremy D. Furtado
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston MA (J.D.F., F.M.S.)
| | | | | | | | | | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston MA (J.D.F., F.M.S.)
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (F.M.S.)
| |
Collapse
|
11
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. APOA1: a Protein with Multiple Therapeutic Functions. Curr Atheroscler Rep 2021; 23:11. [PMID: 33591433 DOI: 10.1007/s11883-021-00906-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE OF THE REVIEW Apolipoprotein (APO) A1, the main apolipoprotein of plasma high-density lipoproteins (HDLs), has several well documented cardioprotective functions. A number of additional potentially beneficial functions of APOA1 have recently been identified. This review is concerned with the therapeutic potential of all of these functions in multiple disease states. RECENT FINDINGS Knowledge of the beneficial functions of APOA1 in atherosclerosis, thrombosis, diabetes, cancer, and neurological disorders is increasing exponentially. These insights have led to the development of clinically relevant peptides and APOA1-containing, synthetic reconstituted HDL (rHDL) preparations that mimic the functions of full-length APOA1. APOA1 is a multifunctional apolipoprotein that has therapeutic potential in several diseases. Translation of this knowledge into the clinic is likely to be dependent on the efficacy and bioavailability of small peptides and synthetic rHDL preparations that are currently under investigation, or in development.
Collapse
Affiliation(s)
- Blake J Cochran
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Bikash Manandhar
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales Sydney, Level 4E Wallace Wurth Building, Kensington, New South Wales, 2052, Australia.
| |
Collapse
|
12
|
Gautier T, Deckert V, Aires V, Le Guern N, Proukhnitzky L, Patoli D, Lemaire S, Maquart G, Bataille A, Xolin M, Magnani C, Masson D, Harscoët E, Da Silva B, Houdebine LM, Jolivet G, Lagrost L. Human apolipoprotein C1 transgenesis reduces atherogenesis in hypercholesterolemic rabbits. Atherosclerosis 2021; 320:10-18. [PMID: 33497863 DOI: 10.1016/j.atherosclerosis.2021.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/03/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Apolipoprotein (apo) C1 is a 6.6 kDa protein associated with HDL and VLDL. ApoC1 alters triglyceride clearance, and it also favors cholesterol accumulation in HDL, especially by inhibiting CETP in human plasma. Apart from studies in mice, which lack CETP, the impact of apoC1 on atherosclerosis in animal models expressing CETP, like in humans, is not known. This study aimed at determining the net effect of human apoC1 on atherosclerosis in rabbits, a species with naturally high CETP activity but with endogenous apoC1 without CETP inhibitory potential. METHODS Rabbits expressing a human apoC1 transgene (HuApoC1Tg) were generated and displayed significant amounts of human apoC1 in plasma. RESULTS After cholesterol feeding, atherosclerosis lesions were significantly less extensive (-22%, p < 0.05) and HDL displayed a reduced ability to serve as CETP substrates (-25%, p < 0.05) in HuApoC1Tg rabbits than in WT littermates. It was associated with rises in plasma HDL cholesterol level and PON-1 activity, and a decrease in the plasma level of the lipid oxidation markers 12(S)-HODE and 8(S)HETE. In chow-fed animals, the level of HDL-cholesterol was also significantly higher in HuApoC1Tg than in WT animals (0.83 ± 0.11 versus 0.73 ± 0.11 mmol/L, respectively, p < 0.05), and it was associated with significantly lower CETP activity (cholesteryl ester transfer rate, -10%, p < 0.05; specific CETP activity, -14%, p < 0.05). CONCLUSIONS Constitutive expression of fully functional human apoC1 in transgenic rabbit attenuates atherosclerosis. It was found to relate, at least in part, to the inhibition of plasma CETP activity and to alterations in plasma HDL.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France.
| | - Valérie Deckert
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Virginie Aires
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Naig Le Guern
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Lil Proukhnitzky
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Danish Patoli
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Stéphanie Lemaire
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Guillaume Maquart
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Amandine Bataille
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Marion Xolin
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - Charlène Magnani
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France
| | - David Masson
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France; University Hospital of Dijon, Dijon, France
| | - Erwana Harscoët
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Bruno Da Silva
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France; Laboratory of Developmental Biology, CNRS UMR7622, Université Pierre et Marie Curie, Paris, France
| | | | - Geneviève Jolivet
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Laurent Lagrost
- INSERM / University of Bourgogne Franche-Comté LNC UMR1231 and LipSTIC LabEx, UFR Sciences de Santé, Dijon, France; University Hospital of Dijon, Dijon, France
| |
Collapse
|
13
|
Sacks FM, Liang L, Furtado JD, Cai T, Davidson WS, He Z, McClelland RL, Rimm EB, Jensen MK. Protein-Defined Subspecies of HDLs (High-Density Lipoproteins) and Differential Risk of Coronary Heart Disease in 4 Prospective Studies. Arterioscler Thromb Vasc Biol 2020; 40:2714-2727. [PMID: 32907368 PMCID: PMC7577984 DOI: 10.1161/atvbaha.120.314609] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE HDL (high-density lipoprotein) contains functional proteins that define single subspecies, each comprising 1% to 12% of the total HDL. We studied the differential association with coronary heart disease (CHD) of 15 such subspecies. Approach and Results: We measured plasma apoA1 (apolipoprotein A1) concentrations of 15 protein-defined HDL subspecies in 4 US-based prospective studies. Among participants without CVD at baseline, 932 developed CHD during 10 to 25 years. They were matched 1:1 to controls who did not experience CHD. In each cohort, hazard ratios for each subspecies were computed by conditional logistic regression and combined by meta-analysis. Higher levels of HDL subspecies containing alpha-2 macroglobulin, CoC3 (complement C3), HP (haptoglobin), or PLMG (plasminogen) were associated with higher relative risk compared with the HDL counterpart lacking the defining protein (hazard ratio range, 0.96-1.11 per 1 SD increase versus 0.73-0.81, respectively; P for heterogeneity <0.05). In contrast, HDL containing apoC1 or apoE were associated with lower relative risk compared with the counterpart (hazard ratio, 0.74; P=0.002 and 0.77, P=0.001, respectively). CONCLUSIONS Several subspecies of HDL defined by single proteins that are involved in thrombosis, inflammation, immunity, and lipid metabolism are found in small fractions of total HDL and are associated with higher relative risk of CHD compared with HDL that lacks the defining protein. In contrast, HDL containing apoC1 or apoE are robustly associated with lower risk. The balance between beneficial and harmful subspecies in a person's HDL sample may determine the risk of CHD pertaining to HDL and paths to treatment.
Collapse
Affiliation(s)
- Frank M. Sacks
- Corresponding author: Frank M. Sacks, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115; ; 617-432-1420
| | | | | | - Tianxi Cai
- Departments of Nutrition (FMS, JFD, MKJ, EBR), Epidemiology (MKJ and EBR) and Biostatistics (ZH, TC, LL), Harvard T.H. Chan School of Public Health; Department of Pathology and Laboratory Medicine, University of Cincinnati (WSD); Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA (EBR, FMS); and University of Washington, Seattle, WA (RLM)
| | - W. Sean Davidson
- Departments of Nutrition (FMS, JFD, MKJ, EBR), Epidemiology (MKJ and EBR) and Biostatistics (ZH, TC, LL), Harvard T.H. Chan School of Public Health; Department of Pathology and Laboratory Medicine, University of Cincinnati (WSD); Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA (EBR, FMS); and University of Washington, Seattle, WA (RLM)
| | - Zeling He
- Departments of Nutrition (FMS, JFD, MKJ, EBR), Epidemiology (MKJ and EBR) and Biostatistics (ZH, TC, LL), Harvard T.H. Chan School of Public Health; Department of Pathology and Laboratory Medicine, University of Cincinnati (WSD); Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA (EBR, FMS); and University of Washington, Seattle, WA (RLM)
| | - Robyn L. McClelland
- Departments of Nutrition (FMS, JFD, MKJ, EBR), Epidemiology (MKJ and EBR) and Biostatistics (ZH, TC, LL), Harvard T.H. Chan School of Public Health; Department of Pathology and Laboratory Medicine, University of Cincinnati (WSD); Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA (EBR, FMS); and University of Washington, Seattle, WA (RLM)
| | - Eric B. Rimm
- Departments of Nutrition (FMS, JFD, MKJ, EBR), Epidemiology (MKJ and EBR) and Biostatistics (ZH, TC, LL), Harvard T.H. Chan School of Public Health; Department of Pathology and Laboratory Medicine, University of Cincinnati (WSD); Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA (EBR, FMS); and University of Washington, Seattle, WA (RLM)
| | - Majken K. Jensen
- Departments of Nutrition (FMS, JFD, MKJ, EBR), Epidemiology (MKJ and EBR) and Biostatistics (ZH, TC, LL), Harvard T.H. Chan School of Public Health; Department of Pathology and Laboratory Medicine, University of Cincinnati (WSD); Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA (EBR, FMS); and University of Washington, Seattle, WA (RLM)
| |
Collapse
|
14
|
Fawaz MV, Kim SY, Li D, Ming R, Xia Z, Olsen K, Pogozheva ID, Tesmer JJG, Schwendeman A. Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of Synthetic High-Density Lipoproteins. J Pharmacol Exp Ther 2019; 372:193-204. [PMID: 31776208 DOI: 10.1124/jpet.119.257568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENT: The phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.
Collapse
Affiliation(s)
- Maria V Fawaz
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sang Yeop Kim
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Dan Li
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ran Ming
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ziyun Xia
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Karl Olsen
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Irina D Pogozheva
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Anna Schwendeman
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
15
|
LCAT, ApoD, and ApoA1 Expression and Review of Cholesterol Deposition in the Cornea. Biomolecules 2019; 9:biom9120785. [PMID: 31779197 PMCID: PMC6995527 DOI: 10.3390/biom9120785] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Lecithin:cholesterol acyltransferase (LCAT) is an enzyme secreted by the liver and circulates with high-density lipoprotein (HDL) in the blood. The enzyme esterifies plasma cholesterol and increases the capacity of HDL to carry and potentially remove cholesterol from tissues. Cholesterol accumulates within the extracellular connective tissue matrix of the cornea stroma in individuals with genetic deficiency of LCAT. LCAT can be activated by apolipoproteins (Apo) including ApoD and ApoA1. ApoA1 also mediates cellular synthesis of HDL. This study examined the expression of LCAT by epithelial cells, keratocytes, and endothelial cells, the cell types that comprise from anterior to posterior the three layers of the cornea. LCAT and ApoD were immunolocalized to all three cell types within the cornea, while ApoA1 was immunolocalized to keratocytes and endothelium but not epithelium. In situ hybridization was used to detect LCAT, ApoD, and ApoA1 mRNA to learn what cell types within the cornea synthesize these proteins. No corneal cells showed mRNA for ApoA1. Keratocytes and endothelium both showed ApoD mRNA, but epithelium did not. Epithelium and endothelium both showed LCAT mRNA, but despite the presence of LCAT protein in keratocytes, keratocytes did not show LCAT mRNA. RNA sequencing analysis of serum-cultured dedifferentiated keratocytes (commonly referred to as corneal stromal fibroblasts) revealed the presence of both LCAT and ApoD (but not ApoA1) mRNA, which was accompanied by their respective proteins detected by immunolabeling of the cultured keratocytes and Western blot analysis of keratocyte lysates. The results indicate that keratocytes in vivo show both ApoA1 and LCAT proteins, but do not synthesize these proteins. Rather, keratocytes in vivo must take up ApoA1 and LCAT from the corneal interstitial tissue fluid.
Collapse
|
16
|
Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci 2019; 20:ijms20235939. [PMID: 31779116 PMCID: PMC6928722 DOI: 10.3390/ijms20235939] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.
Collapse
Affiliation(s)
- Elena V. Fuior
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
17
|
Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE. Τhe Antioxidant Function of HDL in Atherosclerosis. Angiology 2019; 71:112-121. [PMID: 31185723 DOI: 10.1177/0003319719854609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a multistep process that progresses over a long period of time and displays a broad range of severity. In its final form, it manifests as a lesion of the intimal layer of the arterial wall. There is strong evidence supporting that oxidative stress contributes to coronary heart disease morbidity and mortality and antioxidant high-density lipoprotein (HDL) could have a beneficial role in the prevention and prognosis of the disease. Indeed, certain subspecies of HDL may act as natural antioxidants preventing oxidation of lipids on low-density lipoprotein (LDL) and biological membranes. The antioxidant function may be attributed to inhibition of synthesis or neutralization of free radicals and reactive oxygen species by HDL lipids and associated enzymes or transfer of oxidation prone lipids from LDL and biological membranes to HDL for catabolism. A limited number of clinical trials suggest that the increased antioxidant potential of HDL correlates with decreased risk for atherosclerosis. Some nutritional interventions to increase HDL antioxidant activity have been proposed with limited success so far. The limitations in measuring and understanding HDL antioxidant function in vivo are also discussed.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| |
Collapse
|
18
|
Xepapadaki E, Maulucci G, Constantinou C, Karavia EA, Zvintzou E, Daniel B, Sasson S, Kypreos KE. Impact of apolipoprotein A1- or lecithin:cholesterol acyltransferase-deficiency on white adipose tissue metabolic activity and glucose homeostasis in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1351-1360. [DOI: 10.1016/j.bbadis.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
19
|
He Y, Song HD, Anantharamaiah GM, Palgunachari MN, Bornfeldt KE, Segrest JP, Heinecke JW. Apolipoprotein A1 Forms 5/5 and 5/4 Antiparallel Dimers in Human High-density Lipoprotein. Mol Cell Proteomics 2019; 18:854-864. [PMID: 30659061 DOI: 10.1074/mcp.ra118.000878] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein A1 (APOA1), the major protein of high-density lipoprotein (HDL), contains 10 helical repeats that play key roles in protein-protein and protein-lipid interactions. The current structural model for HDL proposes that APOA1 forms an antiparallel dimer in which helix 5 in monomer 1 associates with helix 5 in monomer 2 along a left-left (LL5/5) interface, forming a protein complex with a 2-fold axis of symmetry centered on helix 5. However, computational studies suggest that other orientations are possible. To test this idea, we used a zero-length chemical cross-linking reagent that forms covalent bonds between closely apposed basic and acidic residues. Using proteolytic digestion and tandem mass spectrometry, we identified amino acids in the central region of the antiparallel APOA1 dimer of HDL that were in close contact. As predicted by the current model, we found six intermolecular cross-links that were consistent with the antiparallel LL5/5 registry. However, we also identified three intermolecular cross-links that were consistent with the antiparallel LL5/4 registry. The LL5/5 is the major structural conformation of the two complexes in both reconstituted discoidal HDL particles and in spherical HDL from human plasma. Molecular dynamic simulations suggest that that LL5/5 and LL5/4 APOA1 dimers possess similar free energies of dimerization, with LL5/5 having the lowest free energy. Our observations indicate that phospholipidated APOA1 in HDL forms different antiparallel dimers that could play distinct roles in enzyme regulation, assembly of specific protein complexes, and the functional properties of HDL in humans.
Collapse
Affiliation(s)
- Yi He
- From the Departments of ‡Medicine and
| | - Hyun D Song
- ‖Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37240
| | - G M Anantharamaiah
- ¶Department of Medicine, University of Alabama at Birmingham, Alabama 35233
| | - M N Palgunachari
- ¶Department of Medicine, University of Alabama at Birmingham, Alabama 35233
| | - Karin E Bornfeldt
- From the Departments of ‡Medicine and; §Pathology, University of Washington, Seattle, Washington, 98109
| | - Jere P Segrest
- ‖Department of Medicine, Vanderbilt University, Nashville, Tennessee, 37240
| | | |
Collapse
|
20
|
Kypreos KE, Bitzur R, Karavia EA, Xepapadaki E, Panayiotakopoulos G, Constantinou C. Pharmacological Management of Dyslipidemia in Atherosclerosis: Limitations, Challenges, and New Therapeutic Opportunities. Angiology 2018; 70:197-209. [PMID: 29862840 DOI: 10.1177/0003319718779533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical and epidemiological studies during the last 7 decades indicated that elevated low-density lipoprotein cholesterol (LDL-C) levels and reduced high-density lipoprotein cholesterol (HDL-C) levels correlate with the pathogenesis and progression of atherosclerotic lesions in the arterial wall. This observation led to the development of LDL-C-lowering drugs for the prevention and treatment of atherosclerosis, some with greater success than others. However, a body of recent clinical evidence shows that a substantial residual cardiovascular risk exists even at very low levels of LDL-C, suggesting that new therapeutic modalities are still needed for reduction of atherosclerosis morbidity and mortality. Unfortunately, HDL-C-raising drugs developed toward this goal had disappointing results thus far. Here, we critically review the literature presenting available evidence and challenges that need to be met and discuss possible new avenues for the development of novel lipid pharmacotherapeutics to reduce the burden of atherosclerosis.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Rafael Bitzur
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | | | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
21
|
Cooke AL, Morris J, Melchior JT, Street SE, Jerome WG, Huang R, Herr AB, Smith LE, Segrest JP, Remaley AT, Shah AS, Thompson TB, Davidson WS. A thumbwheel mechanism for APOA1 activation of LCAT activity in HDL. J Lipid Res 2018; 59:1244-1255. [PMID: 29773713 DOI: 10.1194/jlr.m085332] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/08/2018] [Indexed: 01/28/2023] Open
Abstract
APOA1 is the most abundant protein in HDL. It modulates interactions that affect HDL's cardioprotective functions, in part via its activation of the enzyme, LCAT. On nascent discoidal HDL, APOA1 comprises 10 α-helical repeats arranged in an anti-parallel stacked-ring structure that encapsulates a lipid bilayer. Previous chemical cross-linking studies suggested that these APOA1 rings can adopt at least two different orientations, or registries, with respect to each other; however, the functional impact of these structural changes is unknown. Here, we placed cysteine residues at locations predicted to form disulfide bonds in each orientation and then measured APOA1's ability to adopt the two registries during HDL particle formation. We found that most APOA1 oriented with the fifth helix of one molecule across from fifth helix of the other (5/5 helical registry), but a fraction adopted a 5/2 registry. Engineered HDLs that were locked in 5/5 or 5/2 registries by disulfide bonds equally promoted cholesterol efflux from macrophages, indicating functional particles. However, unlike the 5/5 registry or the WT, the 5/2 registry impaired LCAT cholesteryl esterification activity (P < 0.001), despite LCAT binding equally to all particles. Chemical cross-linking studies suggest that full LCAT activity requires a hybrid epitope composed of helices 5-7 on one APOA1 molecule and helices 3-4 on the other. Thus, APOA1 may use a reciprocating thumbwheel-like mechanism to activate HDL-remodeling proteins.
Collapse
Affiliation(s)
- Allison L Cooke
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Jamie Morris
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - John T Melchior
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Scott E Street
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - W Gray Jerome
- Departments of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Rong Huang
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| | - Andrew B Herr
- Division of Immunobiology and Center for Systems Immunology Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Loren E Smith
- Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jere P Segrest
- Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Amy S Shah
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Thomas B Thompson
- Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45237
| | - W Sean Davidson
- Departments of Pathology and Laboratory Medicine University of Cincinnati, Cincinnati, OH 45237
| |
Collapse
|
22
|
ApoA-I/A-II-HDL positively associates with apoB-lipoproteins as a potential atherogenic indicator. Lipids Health Dis 2017; 16:225. [PMID: 29187200 PMCID: PMC5708092 DOI: 10.1186/s12944-017-0619-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022] Open
Abstract
Background We recently reported distinct nature of high-density lipoproteins (HDL) subgroup particles with apolipoprotein (apo) A-I but not apoA-II (LpAI) and HDL having both (LpAI:AII) based on the data from 314 Japanese. While plasma HDL level almost exclusively depends on concentration of LpAI having 3 to 4 apoA-I molecules, LpAI:AII appeared with almost constant concentration regardless of plasma HDL levels having stable structure with two apoA-I and one disulfide-dimeric apoA-II molecules (Sci. Rep. 6; 31,532, 2016). The aim of this study is further characterization of LpAI:AII with respect to its role in atherogenesis. Methods Association of LpAI, LpAI:AII and other HDL parameters with apoB-lipoprotein parameters was analyzed among the cohort data above. Results ApoA-I in LpAI negatively correlated with the apoB-lipoprotein parameters such as apoB, triglyceride, nonHDL-cholesterol, and nonHDL-cholesterol + triglyceride, which are apparently reflected in the relations of the total HDL parameters to apoB-lipoproteins. In contrast, apoA-I in LpAI:AII and apoA-II positively correlated to the apoB-lipoprotein parameters even within their small range of variation. These relationships are independent of sex, but may slightly be influenced by the activity-related CETP mutations. Conclusions The study suggested that LpAI:AII is an atherogenic indicator rather than antiatherogenic. These sub-fractions of HDL are to be evaluated separately for estimating atherogenic risk of the patients.
Collapse
|
23
|
Melchior JT, Walker RG, Cooke AL, Morris J, Castleberry M, Thompson TB, Jones MK, Song HD, Rye KA, Oda MN, Sorci-Thomas MG, Thomas MJ, Heinecke JW, Mei X, Atkinson D, Segrest JP, Lund-Katz S, Phillips MC, Davidson WS. A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state. Nat Struct Mol Biol 2017; 24:1093-1099. [PMID: 29131142 PMCID: PMC5749415 DOI: 10.1038/nsmb.3501] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022]
Abstract
Apolipoprotein (apo)A-I is an organizing scaffold protein that is critical to high-density lipoprotein (HDL) structure and metabolism, probably mediating many of its cardioprotective properties. However, HDL biogenesis is poorly understood, as lipid-free apoA-I has been notoriously resistant to high-resolution structural study. Published models from low-resolution techniques share certain features but vary considerably in shape and secondary structure. To tackle this central issue in lipoprotein biology, we assembled a team of structural biologists specializing in apolipoproteins and set out to build a consensus model of monomeric lipid-free human apoA-I. Combining novel and published cross-link constraints, small-angle X-ray scattering (SAXS), hydrogen-deuterium exchange (HDX) and crystallography data, we propose a time-averaged model consistent with much of the experimental data published over the last 40 years. The model provides a long-sought platform for understanding and testing details of HDL biogenesis, structure and function.
Collapse
Affiliation(s)
- John T Melchior
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ryan G Walker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Allison L Cooke
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jamie Morris
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mark Castleberry
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Martin K Jones
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hyun D Song
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Mary G Sorci-Thomas
- Department of Medicine, Section on Endocrinology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Xiaohu Mei
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David Atkinson
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jere P Segrest
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sissel Lund-Katz
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C Phillips
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
24
|
Papachristou NI, Blair HC, Kypreos KE, Papachristou DJ. High-density lipoprotein (HDL) metabolism and bone mass. J Endocrinol 2017; 233:R95-R107. [PMID: 28314771 PMCID: PMC5598779 DOI: 10.1530/joe-16-0657] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
Abstract
It is well appreciated that high-density lipoprotein (HDL) and bone physiology and pathology are tightly linked. Studies, primarily in mouse models, have shown that dysfunctional and/or disturbed HDL can affect bone mass through many different ways. Specifically, reduced HDL levels have been associated with the development of an inflammatory microenvironment that affects the differentiation and function of osteoblasts. In addition, perturbation in metabolic pathways of HDL favors adipoblastic differentiation and restrains osteoblastic differentiation through, among others, the modification of specific bone-related chemokines and signaling cascades. Increased bone marrow adiposity also deteriorates bone osteoblastic function and thus bone synthesis, leading to reduced bone mass. In this review, we present the current knowledge and the future directions with regard to the HDL-bone mass connection. Unraveling the molecular phenomena that underline this connection will promote the deeper understanding of the pathophysiology of bone-related pathologies, such as osteoporosis or bone metastasis, and pave the way toward the development of novel and more effective therapies against these conditions.
Collapse
Affiliation(s)
- Nicholaos I Papachristou
- Department of Anatomy-Histology-EmbryologyUnit of Bone and Soft Tissue Studies, University of Patras Medical School, Patras, Greece
| | - Harry C Blair
- Department of PathologyUniversity of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical CenterPittsburgh, Pennsylvania, USA
| | - Kyriakos E Kypreos
- Department of PharmacologyUniversity of Patras Medical School, Patras, Greece
| | - Dionysios J Papachristou
- Department of Anatomy-Histology-EmbryologyUnit of Bone and Soft Tissue Studies, University of Patras Medical School, Patras, Greece
- Department of PathologyUniversity of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
DOBIÁŠOVÁ M. Atherogenic Impact of Lecithin-Cholesterol Acyltransferase and Its Relation to Cholesterol Esterification Rate in HDL (FERHDL) and AIP [log(TG/HDL-C)] Biomarkers: The Butterfly Effect? Physiol Res 2017; 66:193-203. [DOI: 10.33549/physiolres.933621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The atherogenic impact and functional capacity of LCAT was studied and discussed over a half century. This review aims to clarify the key points that may affect the final decision on whether LCAT is an anti-atherogenic or atherogenic factor. There are three main processes involving the efflux of free cholesterol from peripheral cells, LCAT action in intravascular pool where cholesterol esterification rate is under the control of HDL, LDL and VLDL subpopulations, and finally the destination of newly produced cholesteryl esters either to the catabolism in liver or to a futile cycle with apoB lipoproteins. The functionality of LCAT substantially depends on its mass together with the composition of the phospholipid bilayer as well as the saturation and the length of fatty acyls and other effectors about which we know yet nothing. Over the years, LCAT puzzle has been significantly supplemented but yet not so satisfactory as to enable how to manipulate LCAT in order to prevent cardiometabolic events. It reminds the butterfly effect when only a moderate change in the process of transformation free cholesterol to cholesteryl esters may cause a crucial turn in the intended target. On the other hand, two biomarkers – FERHDL (fractional esterification rate in HDL) and AIP [log(TG/HDL-C)] can offer a benefit to identify the risk of cardiovascular disease (CVD). They both reflect the rate of cholesterol esterification by LCAT and the composition of lipoprotein subpopulations that controls this rate. In clinical practice, AIP can be calculated from the routine lipid profile with help of AIP calculator www.biomed.cas.cz/fgu/aip/calculator.php.
Collapse
Affiliation(s)
- M. DOBIÁŠOVÁ
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
Gordon SM, Li H, Zhu X, Tso P, Reardon CA, Shah AS, Lu LJ, Davidson WS. Impact of genetic deletion of platform apolipoproteins on the size distribution of the murine lipoproteome. J Proteomics 2016; 146:184-94. [PMID: 27385375 DOI: 10.1016/j.jprot.2016.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/01/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
Abstract
UNLABELLED Given their association with cardiovascular disease protection, there has been intense interest in understanding the biology of high density lipoproteins (HDL). HDL is actually a family of diverse particle types, each made up of discrete - but as yet undetermined - combinations of proteins drawn from up to 95 lipophilic plasma proteins. The abundant apolipoproteins (apo) of the A class (apoA-I, apoA-II and apoA-IV) have been proposed to act as organizing platforms for auxiliary proteins, but this concept has not been systematically evaluated. We assessed the impact of genetic knock down of each platform protein on the particle size distribution of auxiliary HDL proteins. Loss of apoA-I or apoA-II massively reduced HDL lipids and changed the plasma size pattern and/or abundance of several plasma proteins. Surprisingly though, many HDL proteins were not affected, suggesting they assemble on lipid particles in the absence of apoA-I or apoA-II. In contrast, apoA-IV ablation had minor effects on plasma lipids and proteins, suggesting that it forms particles that largely exclude other apolipoproteins. Overall, the data indicate that distinct HDL subpopulations exist that do not contain, nor depend on, apoA-I, apoA-II or apoA-IV and these contribute substantially to the proteomic diversity of HDL. BIOLOGICAL SIGNIFICANCE Plasma levels of high density lipoproteins (HDL) are inversely correlated with cardiovascular disease. These particles are becoming known as highly heterogeneous entities that have diverse compositions and functions that may impact disease. Unfortunately, we know little about the forces that maintain the composition of each particle in plasma. It has been suggested that certain 'scaffold' proteins, such as apolipoprotein (apo) A-I, apoA-II and apoA-IV, may act as organizing centers for the docking of myriad accessory proteins. To test this hypothesis, we took advantage of the genetic tractability of the mouse model and ablated these three proteins individually. We then tracked the abundance and size profile of the remaining HDL proteins by gel filtration chromatography combined with mass spectrometry. The results clearly show that certain cohorts of proteins depend on each scaffold molecule to assemble normal sized HDL particles under wild-type conditions. This work forms the basis for more detailed studies that will define the specific compositions of HDL subspecies with the possibility of connecting them to specific functions or roles in disease.
Collapse
Affiliation(s)
- Scott M Gordon
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Hailong Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, MLC 7024, Cincinnati, OH 45229-3039, USA.
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, MLC 7024, Cincinnati, OH 45229-3039, USA.
| | - Patrick Tso
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | | | - Amy S Shah
- Department of Pediatrics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, MLC 7012, Cincinnati, OH 45229-3039, USA.
| | - L Jason Lu
- Division of Biomedical Informatics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, MLC 7024, Cincinnati, OH 45229-3039, USA.
| | - W Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, 2120 East Galbraith Road, Cincinnati, OH 45237-0507, USA.
| |
Collapse
|
27
|
Godzien J, Ciborowski M, Armitage EG, Jorge I, Camafeita E, Burillo E, Martín-Ventura JL, Rupérez FJ, Vázquez J, Barbas C. A Single In-Vial Dual Extraction Strategy for the Simultaneous Lipidomics and Proteomics Analysis of HDL and LDL Fractions. J Proteome Res 2016; 15:1762-75. [DOI: 10.1021/acs.jproteome.5b00898] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joanna Godzien
- CEMBIO,
Centre for Metabolomics and Bioanalysis, San Pablo CEU University, Madrid 28003, Spain
| | - Michal Ciborowski
- Clinical
Research Centre, Medical University of Bialystok, Bialystok 12-089, Poland
| | - Emily Grace Armitage
- CEMBIO,
Centre for Metabolomics and Bioanalysis, San Pablo CEU University, Madrid 28003, Spain
| | - Inmaculada Jorge
- Cardiovascular
Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Emilio Camafeita
- Cardiovascular
Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Elena Burillo
- Vascular
Research Laboratory, IIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain
| | - Jose Luis Martín-Ventura
- Vascular
Research Laboratory, IIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain
| | - Francisco J. Rupérez
- CEMBIO,
Centre for Metabolomics and Bioanalysis, San Pablo CEU University, Madrid 28003, Spain
| | - Jesús Vázquez
- Cardiovascular
Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Coral Barbas
- CEMBIO,
Centre for Metabolomics and Bioanalysis, San Pablo CEU University, Madrid 28003, Spain
| |
Collapse
|
28
|
Melchior JT, Walker RG, Morris J, Jones MK, Segrest JP, Lima DB, Carvalho PC, Gozzo FC, Castleberry M, Thompson TB, Davidson WS. An Evaluation of the Crystal Structure of C-terminal Truncated Apolipoprotein A-I in Solution Reveals Structural Dynamics Related to Lipid Binding. J Biol Chem 2016; 291:5439-51. [PMID: 26755744 DOI: 10.1074/jbc.m115.706093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) A-I mediates many of the anti-atherogenic functions attributed to high density lipoprotein. Unfortunately, efforts toward a high resolution structure of full-length apoA-I have not been fruitful, although there have been successes with deletion mutants. Recently, a C-terminal truncation (apoA-I(Δ185-243)) was crystallized as a dimer. The structure showed two helical bundles connected by a long, curved pair of swapped helical domains. To compare this structure to that existing under solution conditions, we applied small angle x-ray scattering and isotope-assisted chemical cross-linking to apoA-I(Δ185-243) in its dimeric and monomeric forms. For the dimer, we found evidence for the shared domains and aspects of the N-terminal bundles, but not the molecular curvature seen in the crystal. We also found that the N-terminal bundles equilibrate between open and closed states. Interestingly, this movement is one of the transitions proposed during lipid binding. The monomer was consistent with a model in which the long shared helix doubles back onto the helical bundle. Combined with the crystal structure, these data offer an important starting point to understand the molecular details of high density lipoprotein biogenesis.
Collapse
Affiliation(s)
- John T Melchior
- From the Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Ryan G Walker
- the Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237
| | - Jamie Morris
- From the Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237
| | - Martin K Jones
- the Department of Medicine and Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jere P Segrest
- the Department of Medicine and Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Diogo B Lima
- the Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná, Brazil 81350-010, and
| | - Paulo C Carvalho
- the Laboratory for Proteomics and Protein Engineering, Carlos Chagas Institute, Fiocruz, Paraná, Brazil 81350-010, and
| | - Fábio C Gozzo
- the Dalton Mass Spectrometry Laboratory, University of Campinas, São Paulo 13083-970, Brazil
| | - Mark Castleberry
- the Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237
| | - Thomas B Thompson
- the Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237,
| | - W Sean Davidson
- From the Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio 45237,
| |
Collapse
|
29
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
30
|
Ronsein GE, Reyes-Soffer G, He Y, Oda M, Ginsberg H, Heinecke JW. Targeted Proteomics Identifies Paraoxonase/Arylesterase 1 (PON1) and Apolipoprotein Cs as Potential Risk Factors for Hypoalphalipoproteinemia in Diabetic Subjects Treated with Fenofibrate and Rosiglitazone. Mol Cell Proteomics 2015; 15:1083-93. [PMID: 26667175 DOI: 10.1074/mcp.m115.054528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 11/06/2022] Open
Abstract
Low levels of high-density lipoprotein cholesterol (HDL-C) and high triglyceride levels contribute to the excess rate of cardiovascular events seen in subjects with type 2 diabetes. Fenofibrate treatment partially reverses dyslipidemia in these subjects. However, a paradoxical marked reduction in HDL-C and HDL's major protein, apolipoprotein A-I, is a complication of fenofibrate in combination with rosiglitazone, an insulin-sensitizing agent. Risk factors for this condition, termed hypoalphalipoproteinemia, have yet to be identified. Using a case-control study design with subjects enrolled in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, we tested the hypothesis that alterations in HDL's protein cargo predispose diabetic subjects to fenofibrate/rosiglitazone-induced hypoalphalipoproteinemia. HDL was isolated from blood obtained from controls (no decreases or increase in HDL-C while receiving fenofibrate/rosiglitazone therapy) and cases (developed hypoalphalipoproteinemia after fenofibrate/rosiglitazone treatment) participating in the ACCORD study before they began fenofibrate/rosiglitazone treatment. HDL proteins were quantified by targeted parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) with isotope dilution. This approach demonstrated marked increases in the relative concentrations of paraoxonase/arylesterase 1 (PON1), apolipoprotein C-II (APOC2), apolipoprotein C-I, and apolipoprotein H in the HDL of subjects who developed hypoalphalipoproteinemia. The case and control subjects did not differ significantly in baseline HDL-C levels or other traditional lipid risk factors. We used orthogonal biochemical techniques to confirm increased levels of PON1 and APOC2. Our observations suggest that an imbalance in HDL proteins predisposes diabetic subjects to develop hypoalphalipoproteinemia on fenofibrate/rosiglitazone therapy.
Collapse
Affiliation(s)
- Graziella E Ronsein
- From the ‡Department of Medicine, University of Washington, Seattle, WA, 98109;
| | - Gissette Reyes-Soffer
- § Columbia University College of Physicians and Surgeons, Department of Medicine, New York, NY 10032
| | - Yi He
- From the ‡Department of Medicine, University of Washington, Seattle, WA, 98109
| | - Michael Oda
- ¶Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Henry Ginsberg
- § Columbia University College of Physicians and Surgeons, Department of Medicine, New York, NY 10032
| | - Jay W Heinecke
- From the ‡Department of Medicine, University of Washington, Seattle, WA, 98109
| |
Collapse
|
31
|
The Apolipoprotein A1 polymorphisms were associated with decreased risk for metabolic syndrome in Koreans. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Gautier T, Masson D, Lagrost L. The potential of cholesteryl ester transfer protein as a therapeutic target. Expert Opin Ther Targets 2015. [PMID: 26212254 DOI: 10.1517/14728222.2015.1073713] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over recent decades, attempts to ascertain the pro-atherogenic nature of plasma cholesteryl ester transfer protein (CETP) and to establish the relevance of its pharmacological blockade as a promising high density lipoproteins-raising and anti-atherogenic therapy have been disappointing. AREAS COVERED The current review focuses on CETP as a multifaceted protein, on genetic variations at the CETP gene and on their possible consequences for cardiovascular risk in human populations. Specific attention is given to physiological modulation of endogenous CETP activity by the apoC1 inhibitor. Finally, the rationale behind the need for selection of patients to treat is discussed in the light of recent studies. EXPERT OPINION At this stage one can only speculate on the clinical outcome of pharmacological CETP inhibitors in high-risk populations, but recent advances give cause to adjust the expectations from now on. The CETP effect is probably largely influenced by the overall metabolic state, and whether CETP blockade may be relevant or not in promoting cholesterol disposal is still questioned. The possible need for a careful stratification of patients to treat with CETP inhibitors is outlined. Finally, manipulation of CETP activity should be considered with caution in the context of sepsis and infectious diseases.
Collapse
Affiliation(s)
- Thomas Gautier
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France
| | - David Masson
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France
| | - Laurent Lagrost
- a 1 INSERM, LNC UMR866 , F-21000 Dijon, France.,b 2 University of Bourgogne Franche-Comté , F-21000 Dijon, France.,c 3 LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté , F-21000 Dijon, France.,d 4 University Hospital of Dijon , F-21000 Dijon, France.,e 5 UMR866, UFR Sciences de Santé, 7 boulevard Jeanne d'Arc , F-21000 Dijon, France
| |
Collapse
|
33
|
Guardiola M, Oliva I, Guillaumet A, Martín-Trujillo Á, Rosales R, Vallvé JC, Sabench F, Del Castillo D, Zaina S, Monk D, Ribalta J. Tissue-specific DNA methylation profiles regulate liver-specific expression of the APOA1/C3/A4/A5 cluster and can be manipulated with demethylating agents on intestinal cells. Atherosclerosis 2014; 237:528-35. [PMID: 25463085 DOI: 10.1016/j.atherosclerosis.2014.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The tissue-specific expression profiles of genes within the APOA1/C3/A4/A5 cluster play an important role in lipid metabolism regulation. We hypothesize that the tissue-specific expression of the APOA1/C3/A4/A5 gene cluster will show an inverse pattern with DNA methylation, and that repression in non- or low-expressing tissue, such as the intestine, can be reversed using epigenetic drugs. METHODS AND RESULTS We analyzed DNA samples from different human adult tissues (liver, intestine, leukocytes, brain, kidney, pancreas, muscle and sperm) using the Infinium HumanMethyation450 BeadChip array. DNA methylation profiles in APOA1/C3/A4/A5 gene cluster were confirmed by bisulfite PCR and pyrosequencing. To determine whether the observed tissue-specific methylation was associated with the expression profile we exposed intestinal TC7/Caco-2 cells to the demethylating agent 5-Aza-2'-deoxycytidine and monitored intestinal APOA1/C3/A4/A5 transcript re-expression by RT-qPCR. The promoters of APOA1, APOC3 and APOA5 genes were less methylated in liver compared to other tissues, and APOA4 gene was highly methylated in most tissues and partially methylated in liver and intestine. In TC7/Caco-2 cells, 5-Aza-2'-deoxycytidine treatment induced a decrease between 37 and 24% in the methylation levels of APOA1/C3/A4/A5 genes and a concomitant re-expression mainly in APOA1, APOA4 and APOA5 genes ranging from 22 to 600%. CONCLUSIONS We have determined the methylation patterns of the APOA1/C3/A4/A5 cluster that may be directly involved in the transcriptional regulation of this cluster. DNA demethylation of intestinal cells increases the RNA levels especially of APOA1, APOA4 and APOA5 genes.
Collapse
Affiliation(s)
- Montse Guardiola
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Iris Oliva
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Amy Guillaumet
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Álex Martín-Trujillo
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Roser Rosales
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Joan Carles Vallvé
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| | - Fàtima Sabench
- Unitat de Recerca en Cirurgia, Universitat Rovira i Virgili, IISPV, Spain.
| | | | - Silvio Zaina
- Cancer Epigenetics Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain; Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, Mexico.
| | - David Monk
- Imprinting and Cancer Group, Epigenetics and Cancer Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain.
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, IISPV, CIBERDEM, Spain.
| |
Collapse
|
34
|
Karavia EA, Zvintzou E, Petropoulou PI, Xepapadaki E, Constantinou C, Kypreos KE. HDL quality and functionality: what can proteins and genes predict? Expert Rev Cardiovasc Ther 2014; 12:521-32. [DOI: 10.1586/14779072.2014.896741] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Nikolay B, Plieschnig JA, Subik D, Schneider JD, Schneider WJ, Hermann M. A novel estrogen-regulated avian apolipoprotein. Biochimie 2013; 95:2445-53. [PMID: 24047540 PMCID: PMC3898076 DOI: 10.1016/j.biochi.2013.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/05/2013] [Indexed: 11/21/2022]
Abstract
In search for yet uncharacterized proteins involved in lipid metabolism of the chicken, we have isolated a hitherto unknown protein from the serum lipoprotein fraction with a buoyant density of ≤1.063 g/ml. Data obtained by protein microsequencing and molecular cloning of cDNA defined a 537 bp cDNA encoding a precursor molecule of 178 residues. As determined by SDS-PAGE, the major circulating form of the protein, which we designate apolipoprotein-VLDL-IV (Apo-IV), has an apparent Mr of approximately 17 kDa. Northern Blot analysis of different tissues of laying hens revealed Apo-IV expression mainly in the liver and small intestine, compatible with an involvement of the protein in lipoprotein metabolism. To further investigate the biology of Apo-IV, we raised an antibody against a GST-Apo-IV fusion protein, which allowed the detection of the 17-kDa protein in rooster plasma, whereas in laying hens it was detectable only in the isolated ≤1.063 g/ml density lipoprotein fraction. Interestingly, estrogen treatment of roosters caused a reduction of Apo-IV in the liver and in the circulation to levels similar to those in mature hens. Furthermore, the antibody crossreacted with a 17-kDa protein in quail plasma, indicating conservation of Apo-IV in avian species. In search for mammalian counterparts of Apo-IV, alignment of the sequence of the novel chicken protein with those of different mammalian apolipoproteins revealed stretches with limited similarity to regions of ApoC-IV and possibly with ApoE from various mammalian species. These data suggest that Apo-IV is a newly identified avian apolipoprotein. Apo-VLDL-IV (Apo-IV) is a newly identified avian apolipoprotein. Apo-IV expression is suppressed by estrogen. Apo-IV containing VLDL particles are excluded from uptake into yolk. Apo-IV has limited similarity to mammalian ApoC-IV.
Collapse
Affiliation(s)
- Birgit Nikolay
- London School of Hygiene and Tropical Medicine, Faculty of Infectious and Tropical Diseases, Keppel St., London WC1E 7 HT, UK
| | | | | | | | | | | |
Collapse
|
36
|
Kypreos KE, Gkizas S, Rallidis LS, Karagiannides I. HDL particle functionality as a primary pharmacological target for HDL-based therapies. Biochem Pharmacol 2013; 85:1575-8. [DOI: 10.1016/j.bcp.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/17/2022]
|
37
|
Meyers NL, Wang L, Gursky O, Small DM. Changes in helical content or net charge of apolipoprotein C-I alter its affinity for lipid/water interfaces. J Lipid Res 2013; 54:1927-38. [PMID: 23670531 DOI: 10.1194/jlr.m037531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
38
|
Sequence-specific apolipoprotein A-I effects on lecithin:cholesterol acyltransferase activity. Mol Cell Biochem 2013; 378:283-90. [DOI: 10.1007/s11010-013-1619-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
|
39
|
Lecithin/cholesterol acyltransferase modulates diet-induced hepatic deposition of triglycerides in mice. J Nutr Biochem 2013; 24:567-77. [DOI: 10.1016/j.jnutbio.2012.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/10/2012] [Accepted: 02/20/2012] [Indexed: 11/20/2022]
|
40
|
Karavia EA, Papachristou DJ, Liopeta K, Triantaphyllidou IE, Dimitrakopoulos O, Kypreos KE. Apolipoprotein A-I modulates processes associated with diet-induced nonalcoholic fatty liver disease in mice. Mol Med 2012; 18:901-12. [PMID: 22576368 DOI: 10.2119/molmed.2012.00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/04/2012] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein (HDL). We investigated the involvement of apoA-I in diet-induced accumulation of triglycerides in hepatocytes and its potential role in the treatment of nonalcoholic fatty liver disease (NAFLD). ApoA-I-deficient (apoA-I(-/-)) mice showed increased diet-induced hepatic triglyceride deposition and disturbed hepatic histology while they exhibited reduced glucose tolerance and insulin sensitivity. Quantification of FASN (fatty acid synthase) [corrected], DGAT-1 (diacylglycerol O-acyltransferase 1), and PPARγ (peroxisome proliferator-activated receptor γ) mRNA expression suggested that the increased hepatic triglyceride content of the apoA-I(-/-) mice was not due to de novo synthesis of triglycerides. Similarly, metabolic profiling did not reveal differences in the energy expenditure between the two mouse groups. However, apoA-I(-/-) mice exhibited enhanced intestinal absorption of dietary triglycerides (3.6 ± 0.5 mg/dL/min for apoA-I(-/-) versus 2.0 ± 0.7 mg/dL/min for C57BL/6 mice, P < 0.05), accelerated clearance of postprandial triglycerides and a reduced rate of hepatic very low density lipoprotein (VLDL) triglyceride secretion (9.8 ± 1.1 mg/dL/min for apoA-I(-/-) versus 12.5 ± 1.3 mg/dL/min for C57BL/6 mice, P < 0.05). In agreement with these findings, adenovirus-mediated gene transfer of apoA-I(Milano) in apoA-I(-/-) mice fed a Western-type diet for 12 wks resulted in a significant reduction in hepatic triglyceride content and an improvement of hepatic histology and architecture. Our data extend the current knowledge on the functions of apoA-I, indicating that in addition to its well-established properties in atheroprotection, it is also an important modulator of processes associated with diet-induced hepatic lipid deposition and NAFLD development in mice. Our findings raise the interesting possibility that expression of therapeutic forms of apoA-I by gene therapy approaches may have a beneficial effect on NAFLD.
Collapse
Affiliation(s)
- Eleni A Karavia
- Pharmacology Laboratory, Department of Medicine, University of Patras Medical School, Rio, Greece
| | | | | | | | | | | |
Collapse
|
41
|
Li RX, Ding YB, Zhao SL, Xiao YY, Li QR, Xia FY, Sun L, Lin X, Wu JR, Liao K, Zeng R. Secretome-Derived Isotope Tags (SDIT) Reveal Adipocyte-Derived Apolipoprotein C-I as a Predictive Marker for Cardiovascular Disease. J Proteome Res 2012; 11:2851-62. [DOI: 10.1021/pr201224e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong-Xia Li
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Bo Ding
- State Key Laboratory of Cell
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes
for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shi-Lin Zhao
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan-Yuan Xiao
- State Key Laboratory of Cell
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes
for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing-run Li
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang-Ying Xia
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Sun
- Key Laboratory of Nutrition and
Metabolism, Institute for Nutritional Sciences, Shanghai Institutes
for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai,
China
| | - Xu Lin
- Key Laboratory of Nutrition and
Metabolism, Institute for Nutritional Sciences, Shanghai Institutes
for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai,
China
| | - Jia-Rui Wu
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kan Liao
- State Key Laboratory of Cell
Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes
for Biological Sciences, Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zeng
- Key Laboratory of Systems Biology,
Institute of Biochemistry and Cell Biology, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
42
|
Pillois X, Gautier T, Bouillet B, Pais de Barros JP, Jeannin A, Vergès B, Bonnet J, Lagrost L. Constitutive inhibition of plasma CETP by apolipoprotein C1 is blunted in dyslipidemic patients with coronary artery disease. J Lipid Res 2012; 53:1200-9. [PMID: 22474067 DOI: 10.1194/jlr.m022988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma cholesteryl ester transfer protein (CETP) promotes the cholesterol enrichment of apoB-containing lipoproteins (VLDL and LDL) at the expense of HDL. Recent studies demonstrated that apoC1 is a potent CETP inhibitor in plasma of healthy, normolipidemic subjects. Our goal was to establish whether the modulation of CETP activity by apoC1 is influenced by dyslipidemia in patients with documented coronary artery disease (CAD). In the total CAD population studied (n = 240), apoC1 levels correlated negatively with CETP activity, independently of apoE-epsilon, CETP-Taq1B, and apoC1-Hpa1 genotypes. In multivariate analysis, the negative relationship was observed only in normolipidemic patients, not in those with hypercholesterolemia, hypertriglyceridemia, or combined hyperlipidemia. In the normolipidemic subjects, apoC1 levels were positively associated with higher HDL- to LDL-cholesterol ratio (r = 0.359, P < 0.001). It is concluded that apoC1 as a CETP inhibitor no longer operates on cholesterol redistribution in high-risk patients with dyslipidemia, probably due to increasing amounts of VLDL-bound apoC1, which is inactive as a CETP inhibitor. Patients with dyslipidemia could experience major benefits from treatment with pharmacological CETP inhibitors, which might compensate for blunted endogenous inhibition.
Collapse
Affiliation(s)
- Xavier Pillois
- University Victor Segalen of Bordeaux II-INSERM Research Center UMR828, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Meyers NL, Wang L, Small DM. Apolipoprotein C-I binds more strongly to phospholipid/triolein/water than triolein/water interfaces: a possible model for inhibiting cholesterol ester transfer protein activity and triacylglycerol-rich lipoprotein uptake. Biochemistry 2012; 51:1238-48. [PMID: 22264166 DOI: 10.1021/bi2015212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein C-I (apoC-I) is an important constituent of high-density lipoprotein (HDL) and is involved in the accumulation of cholesterol ester in nascent HDL via inhibition of cholesterol ester transfer protein and potential activation of lecithin:cholesterol acyltransferase (LCAT). As the smallest exchangeable apolipoprotein (57 residues), apoC-I transfers between lipoproteins via a lipid-binding motif of two amphipathic α-helices (AαHs), spanning residues 7-29 and 38-52. To understand apoC-I's behavior at hydrophobic lipoprotein surfaces, oil drop tensiometry was used to compare the binding to triolein/water (TO/W) and palmitoyloleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. When apoC-I binds to either interface, the surface tension (γ) decreases by ~16-18 mN/m. ApoC-I can be exchanged at both interfaces, desorbing upon compression and readsorbing on expansion. The maximal surface pressures at which apoC-I begins to desorb (Π(max)) were 16.8 and 20.7 mN/m at TO/W and POPC/TO/W interfaces, respectively. This suggests that apoC-I interacts with POPC to increase its affinity for the interface. ApoC-I is more elastic on POPC/TO/W than TO/W interfaces, marked by higher values of the elasticity modulus (ε) on oscillations. At POPC/TO/W interfaces containing an increasing POPC:TO ratio, the pressure at which apoC-I begins to be ejected increases as the phospholipid surface concentration increases. The observed increase in apoC-I interface affinity due to higher degrees of apoC-I-POPC interactions may explain how apoC-I can displace larger apolipoproteins, such as apoE, from lipoproteins. These interactions allow apoC-I to remain bound to the interface at higher Π values, offering insight into apoC-I's rearrangement on triacylglycerol-rich lipoproteins as they undergo Π changes during lipoprotein maturation by plasma factors such as lipoprotein lipase.
Collapse
Affiliation(s)
- Nathan L Meyers
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | | | | |
Collapse
|
44
|
Kavo AE, Rallidis LS, Sakellaropoulos GC, Lehr S, Hartwig S, Eckel J, Bozatzi PI, Anastasiou-Nana M, Tsikrika P, Kypreos KE. Qualitative characteristics of HDL in young patients of an acute myocardial infarction. Atherosclerosis 2011; 220:257-64. [PMID: 22056215 DOI: 10.1016/j.atherosclerosis.2011.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/17/2011] [Accepted: 10/13/2011] [Indexed: 11/27/2022]
Abstract
AIM Recently, the concept that high density lipoprotein (HDL) quality is an important parameter for atheroprotection is gaining ground, though little data exists so far to support it. In an attempt to identify measurable qualitative parameters of HDL associated with increased risk for premature myocardial infarction (MI), we studied the structural characteristics of HDL from patients who survived an MI at a young age (≤35 years). METHODS AND RESULTS We studied 20 MI patients and 20 healthy control subjects. HDL of patients had reduced apolipoprotein A-I (apoA-I), apolipoprotein M, and paraoxonase 1 levels and significantly elevated apolipoprotein C-III (apoCIII) levels (all p<0.05). Specifically, the HDL apoA-I/apoC-III ratio was 0.24±0.01 in patients versus 4.88±0.90 in controls (p<0.001). These structural alterations correlated with increased oxidation potential of HDL of the MI group compared to controls (2.5-fold, p=0.026). Electron microscopy showed no significant difference in average HDL particle diameter between the two groups though a significant difference existed in HDL diameter distribution, suggesting the presence of different HDL subpopulations in MI and control subjects. Indeed, non-denaturing two-dimensional electrophoresis revealed that MI patients had reduced pre-β1(α), pre-β1(b) and α(2), and elevated α(1), α(3), and pre-α(4) HDL. CONCLUSIONS Reduction in the HDL apoA-I/apoC-III ratio, changes in the HDL subpopulation distribution and an increase in HDL oxidation potential correlated with the development of MI in young patients. The possibility that such changes may serve as markers for the early identification of young individuals at high risk for an acute coronary event should be further explored.
Collapse
Affiliation(s)
- Anthula E Kavo
- Pharmacology Unit, Department of Medicine, University of Patras School of Health Sciences, Patras, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Avery CL, He Q, North KE, Ambite JL, Boerwinkle E, Fornage M, Hindorff LA, Kooperberg C, Meigs JB, Pankow JS, Pendergrass SA, Psaty BM, Ritchie MD, Rotter JI, Taylor KD, Wilkens LR, Heiss G, Lin DY. A phenomics-based strategy identifies loci on APOC1, BRAP, and PLCG1 associated with metabolic syndrome phenotype domains. PLoS Genet 2011; 7:e1002322. [PMID: 22022282 PMCID: PMC3192835 DOI: 10.1371/journal.pgen.1002322] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/11/2011] [Indexed: 01/11/2023] Open
Abstract
Despite evidence of the clustering of metabolic syndrome components, current approaches for identifying unifying genetic mechanisms typically evaluate clinical categories that do not provide adequate etiological information. Here, we used data from 19,486 European American and 6,287 African American Candidate Gene Association Resource Consortium participants to identify loci associated with the clustering of metabolic phenotypes. Six phenotype domains (atherogenic dyslipidemia, vascular dysfunction, vascular inflammation, pro-thrombotic state, central obesity, and elevated plasma glucose) encompassing 19 quantitative traits were examined. Principal components analysis was used to reduce the dimension of each domain such that >55% of the trait variance was represented within each domain. We then applied a statistically efficient and computational feasible multivariate approach that related eight principal components from the six domains to 250,000 imputed SNPs using an additive genetic model and including demographic covariates. In European Americans, we identified 606 genome-wide significant SNPs representing 19 loci. Many of these loci were associated with only one trait domain, were consistent with results in African Americans, and overlapped with published findings, for instance central obesity and FTO. However, our approach, which is applicable to any set of interval scale traits that is heritable and exhibits evidence of phenotypic clustering, identified three new loci in or near APOC1, BRAP, and PLCG1, which were associated with multiple phenotype domains. These pleiotropic loci may help characterize metabolic dysregulation and identify targets for intervention.
Collapse
Affiliation(s)
- Christy L Avery
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Soutar AK, Sigler GF, Smith LC, Gotto AM, Sparrow JT. Lecithin:Cholesterol Aeyltransferase Activation and Lipid Binding by Synthetic Fragments of Apolipoprotein C-I. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365517809104900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Albers JJ. Effect of Human Plasma Apolipoproteins on the Activity of Purified Lecithin:Cholesterol Acyltransferase. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365517809104899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Assmann G, Schmitz G, Donath N, Lekim D. Phosphatidylcholine Substrate Specificity of Lecithin: Cholesterol Acyltransferase. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365517809104894] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Kostner GM. The Influence of Various Lipoproteins and Apolipoproteins on the In Vitro Esterification of Cholesterol in Human Serum by the Enzyme Lecithin: Cholesterol Acyltransferase. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365517809104902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Akanuma Y, Yokoyama S, Imawari M, Itakura H. A Role of ApoA-1 in LCAT Reaction. Scandinavian Journal of Clinical and Laboratory Investigation 2011. [DOI: 10.1080/00365517809104898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|