1
|
Artunç T, Çetinkaya Y, Taslimi P, Menzek A. Investigation of cholinesterase and α-glucosidase enzyme activities, and molecular docking and dft studies for 1,2-disubstituted cyclopentane derivatives with phenyl and benzyl units. Mol Divers 2024:10.1007/s11030-024-10911-y. [PMID: 38976121 DOI: 10.1007/s11030-024-10911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024]
Abstract
Six known products (4-9) were prepared from reaction of adipoyl chloride with 1,2,3-trimethoxybenzene according to the literature. From (2,3,4-trimethoxyphenyl)(2-(2,3,4-trimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4) of them, four new 1,2-disubstituted cyclopentane derivatives (10-13) with phenyl and benzyl units were synthesized by reactions such as hydrazonation, catalytic hydrogenation and bromination. The obtained compounds 4-13 were examined for their in vitro inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes. All compounds 4-13 showed inhibition at nanomolar level with Ki values in the range of 45.53 ± 7.35-631.96 ± 18.88 nM for AChE, 84.30 ± 9.92-622.10 ± 35.14 nM for BChE, and 25.47 ± 4.46-48.87 ± 7.33 for α-Glu. In silico molecular docking studies of the potent compounds were performed in the active sites of AChE (PDB: 1E66), BChE (PDB: 1P0I), and α-glucosidase (PDB: 5ZCC) to compare the effect of bromine atom on the inhibition mechanism. The optimized molecular structures, HOMO-LUMO energies and molecular electrostatic potential maps for the compounds were calculated by using density functional theory with B3LYP/6-31 + G(d,p).
Collapse
Affiliation(s)
- Tekin Artunç
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey
| | - Yasin Çetinkaya
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey.
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Emergency Aid and Disaster Management, Faculty of Health Sciences, Ardahan University, 75002, Ardahan, Turkey.
| |
Collapse
|
2
|
Kolić D, Šinko G. Evaluation of Anticholinesterase Activity of the Fungicides Mefentrifluconazole and Pyraclostrobin. Int J Mol Sci 2024; 25:6310. [PMID: 38928014 PMCID: PMC11204243 DOI: 10.3390/ijms25126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Triazoles are compounds with various biological activities, including fungicidal action. They became popular through cholinesterase studies after the successful synthesis of the dual binding femtomolar triazole inhibitor of acetylcholinesterase (AChE, EC 3.1.1.7) by Sharpless et al. via in situ click chemistry. Here, we evaluate the anticholinesterase effect of the first isopropanol triazole fungicide mefentrifluconazole (Ravystar®), developed to overcome fungus resistance in plant disease management. Mefentrifluconazole is commercially available individually or in a binary fungicidal mixture, i.e., with pyraclostrobin (Ravycare®). Pyraclostrobin is a carbamate that contains a pyrazole ring. Carbamates are known inhibitors of cholinesterases and the carbamate rivastigmine is already in use for the treatment of Alzheimer's disease. We tested the type and potency of anticholinesterase activity of mefentrifluconazole and pyraclostrobin. Mefentrifluconazole reversibly inhibited human AChE and BChE with a seven-fold higher potency toward AChE (Ki = 101 ± 19 μM). Pyraclostrobin (50 μM) inhibited AChE and BChE progressively with rate constants of (t1/2 = 2.1 min; ki = 6.6 × 103 M-1 min-1) and (t1/2 = 1.5 min; ki = 9.2 × 103 M-1 min-1), respectively. A molecular docking study indicated key interactions between the tested fungicides and residues of the lipophilic active site of AChE and BChE. Additionally, the physicochemical properties of the tested fungicides were compared to values for CNS-active drugs to estimate the blood-brain barrier permeability. Our results can be applied in the design of new molecules with a lesser impact on humans and the environment.
Collapse
Affiliation(s)
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia;
| |
Collapse
|
3
|
Luque FJ, Muñoz-Torrero D. Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Acc Chem Res 2024. [PMID: 38333993 PMCID: PMC10882973 DOI: 10.1021/acs.accounts.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
ConspectusThe enzyme acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine (ACh) at cholinergic synapses of the peripheral and central nervous system. Thus, it is a prime therapeutic target for diseases that occur with a cholinergic deficit, prominently Alzheimer's disease (AD). Working at a rate near the diffusion limit, it is considered one of nature's most efficient enzymes. This is particularly meritorious considering that its catalytic site is buried at the bottom of a 20-Å-deep cavity, which is preceded by a bottleneck with a diameter shorter than that of the trimethylammonium group of ACh, which has to transit through it. Not only the particular architecture and amino acid composition of its active site gorge enable AChE to largely overcome this potential drawback, but it also offers plenty of possibilities for the design of novel inhibitor drug candidates.In this Account, we summarize our different approaches to colonize the vast territory of the AChE gorge in the pursuit of increased occupancy and hence of inhibitors with increased affinity. We pioneered the use of molecular hybridization to design inhibitors with extended binding at the CAS, reaching affinities among the highest reported so far. Further application of molecular hybridization to grow CAS extended binders by attaching a PAS-binding moiety through suitable linkers led to multisite inhibitors that span the whole length of the gorge, reaching the PAS and even interacting with midgorge residues. We show that multisite AChE inhibitors can also be successfully designed the other way around, by starting with an optimized PAS binder and then colonizing the gorge and CAS. Molecular hybridization from a multicomponent reaction-derived PAS binder afforded a single-digit picomolar multisite AChE inhibitor with more than 1.5 million-fold increased potency relative to the initial hit. This illustrates the powerful alliance between molecular hybridization and gorge occupancy for designing potent AChE inhibitors.Beyond AChE, we show that the stereoelectronic requirements imposed by the AChE gorge for multisite binding have a templating effect that leads to compounds that are active in other key biological targets in AD and other neurological and non-neurological diseases, such as BACE-1 and the aggregation of amyloidogenic proteins (β-amyloid, tau, α-synuclein, prion protein, transthyretin, and human islet amyloid polypeptide). The use of known pharmacophores for other targets as the PAS-binding motif enables the rational design of multitarget agents with multisite binding within AChE and activity against a variety of targets or pathological events, such as oxidative stress and the neuroinflammation-modulating enzyme soluble epoxide hydrolase, among others.We hope that our results can contribute to the development of drug candidates that can modify the course of neurodegeneration and may inspire future works that exploit the power of molecular hybridization in other proteins featuring large cavities.
Collapse
Affiliation(s)
- F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, E-08921 Santa Coloma de Gramenet, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
4
|
Jiang S, Gu Q, Yu X. Detection of insecticides by Tetronarce californica acetylcholinesterase via expression and in silico analysis. Appl Microbiol Biotechnol 2023; 107:7657-7671. [PMID: 37831186 DOI: 10.1007/s00253-023-12780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The acetylcholinesterase (AChE) is involved in termination of synaptic transmission at cholinergic synapses and plays a vital role in the insecticide detection and inhibitor screening. Here, we report the heterologous expression of an AChE from Tetronarce californica (TcA) in Escherichia coli (E. coli) as a soluble active protein. TcA was immobilized in calcium alginate beads; the morphology, biochemical properties, and insecticide detection performance of free and immobilized TcA were characterized. Moreover, we used sequence, structure-based approaches, and molecular docking to investigate structural and functional characterization of TcA. The results showed that TcA exhibited a specific activity of 102 U/mg, with optimal activity at pH 8.0 and 30 °C. Immobilized TcA demonstrated superior thermal stability, pH stability, and storage stability compared to the free enzyme. The highest sensitivity of free TcA was observed with trichlorfon, whereas immobilized TcA showed reduced IC50 values towards tested insecticides by 3 to 180-fold. Molecular docking analysis revealed the interaction of trichlorfon, acephate, isoprocarb, λ-cyhalothrin, and fenpropathrin in the active site gorge of TcA, particularly mediated through the formation of hydrogen bonds and π-π stacking. Therefore, TcA expressed heterologously in E. coli is a promising candidate for applications in food safety and environmental analysis. KEY POINTS: • T. californica AChE was expressed solubly in prokaryotic system. • The biochemical properties of free/immobilized enzyme were characterized. • The sensitivity of enzyme to insecticides was evaluated in vitro and in silico.
Collapse
Affiliation(s)
- Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
PyPLIF HIPPOS and Receptor Ensemble Docking Increase the Prediction Accuracy of the Structure-Based Virtual Screening Protocol Targeting Acetylcholinesterase. Molecules 2022; 27:molecules27175661. [PMID: 36080428 PMCID: PMC9458236 DOI: 10.3390/molecules27175661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
In this article, the upgrading process of the structure-based virtual screening (SBVS) protocol targeting acetylcholinesterase (AChE) previously published in 2017 is presented. The upgraded version of PyPLIF called PyPLIF HIPPOS and the receptor ensemble docking (RED) method using AutoDock Vina were employed to calculate the ensemble protein–ligand interaction fingerprints (ensPLIF) in a retrospective SBVS campaign targeting AChE. A machine learning technique called recursive partitioning and regression trees (RPART) was then used to optimize the prediction accuracy of the protocol by using the ensPLIF values as the descriptors. The best protocol resulting from this research outperformed the previously published SBVS protocol targeting AChE.
Collapse
|
6
|
Jansa P, Barvík I, Hulcová D, Matoušová E. Synthesis and cholinesterase inhibitory activity study of Amaryllidaceae alkaloid analogues with N-methyl substitution. Org Biomol Chem 2022; 20:3960-3966. [PMID: 35471452 DOI: 10.1039/d2ob00553k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polycyclic compounds with N-methyl substitution, structurally related to Amaryllidaceae alkaloids, have been synthesised, together with their analogues bearing a quaternary nitrogen atom. To prevent the lone electron pair of the nitrogen from interfering with the reaction sequence, two approaches to the synthesis were investigated: N-oxidation and Boc protection of the nitrogen. The second method was more successful due to the limited stability of N-oxides in the halocyclisation step. An asymmetric version of the synthesis was also developed for this type of compounds. The prepared products were tested in vitro for their cholinesterase inhibitory activity and the results were rationalised by molecular docking studies with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). In general, our products were more active against BuChE than against AChE, and it was noted that larger ligands should be prepared for future studies, since in some cases acetylcholine can still fit into the active site along with the bound ligand.
Collapse
Affiliation(s)
- Petr Jansa
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| | - Ivan Barvík
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 2026/5, 121 16 Praha 2, Czech Republic
| | - Daniela Hulcová
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Eliška Matoušová
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Praha 2, Czech Republic.
| |
Collapse
|
7
|
Lim H, Hong H, Hwang S, Kim SJ, Seo SY, No KT. Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. Int J Mol Sci 2022; 23:4438. [PMID: 35457257 PMCID: PMC9030947 DOI: 10.3390/ijms23084438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases involved in multiple cellular processes. Among the MMP isoforms, MMP-9 regulates cancer invasion, rheumatoid arthritis, and osteoarthritis by degrading extracellular matrix proteins present in the tumor microenvironment and cartilage and promoting angiogenesis. Here, we identified two potent natural product inhibitors of the non-catalytic hemopexin domain of MMP-9 using a novel quantum mechanical fragment molecular orbital (FMO)-based virtual screening workflow. The workflow integrates qualitative pharmacophore modeling, quantitative binding affinity prediction, and a raw material search of natural product inhibitors with the BMDMS-NP library. In binding affinity prediction, we made a scoring function with the FMO method and applied the function to two protein targets (acetylcholinesterase and fibroblast growth factor 1 receptor) from DUD-E benchmark sets. In the two targets, the FMO method outperformed the Glide docking score and MM/PBSA methods. By applying this workflow to MMP-9, we proposed two potent natural product inhibitors (laetanine 9 and genkwanin 10) that interact with hotspot residues of the hemopexin domain of MMP-9. Laetanine 9 and genkwanin 10 bind to MMP-9 with a dissociation constant (KD) of 21.6 and 0.614 μM, respectively. Overall, we present laetanine 9 and genkwanin 10 for MMP-9 and demonstrate that the novel FMO-based workflow with a quantum mechanical approach is promising to discover potent natural product inhibitors of MMP-9, satisfying the pharmacophore model and good binding affinity.
Collapse
Affiliation(s)
- Hocheol Lim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Hansol Hong
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Seonik Hwang
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea;
| | - Song Ja Kim
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Sung Yum Seo
- Department of Biological Science, Kongju National University, Kongju 32588, Korea; (S.J.K.); (S.Y.S.)
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Korea; (H.L.); (H.H.)
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Korea
- Baobab AiBIO Co., Ltd., Incheon 21983, Korea
| |
Collapse
|
8
|
The ACE genes in Aphelenchoides besseyi isolates and their expression correlation to the fenamiphos treatment. Sci Rep 2022; 12:1975. [PMID: 35132122 PMCID: PMC8821594 DOI: 10.1038/s41598-022-05998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Aphelenchoides besseyi could cause great yield losses of rice and many economically important crops. Acetylcholinesterase (AChE) inhibitors were commonly used to manage plant-parasitic nematodes. However, nematodes resistant to AChE inhibitors have been increasingly reported due to the extensive use of these chemicals. The current study was aimed to establish the correlation between fenamiphos (an AChE-inhibitor) sensitivities and acetylcholinesterase genes (ace) by analyzing two isolates of A. besseyi (designated Rl and HSF), which displayed differential sensitivities to fenamiphos. The concentrations of fenamiphos that led to the death of 50% (LD50) of Rl and HSF were 572.2 ppm and 129.4 ppm, respectively. Three ace genes were cloned from A. besseyi and sequenced. Sequence searching and phylogenic analyses revealed that AChEs of R1 and HSF shared strong similarities with those of various vertebrate and invertebrate species. Molecular docking analysis indicated that AChEs-HSF had much higher affinities to fenamiphos than AChEs-R1. Quantitative reverse transcriptase-PCR analyses revealed that expression of three ace genes were downregulated in HSF but were upregulated in Rl after exposure to 100 ppm fenamiphos for 12 h. The results indicated that the expression of the ace genes was modulated in response to fenamiphos in different nematode strains. An increased expression of the ace genes might contribute to fenamiphos-insensitivity as seen in the Rl isolate.
Collapse
|
9
|
Mezeiova E, Hrabinova M, Hepnarova V, Jun D, Janockova J, Muckova L, Prchal L, Kristofikova Z, Kucera T, Gorecki L, Chalupova K, Kunes J, Hroudova J, Soukup O, Korabecny J. Huprine Y - Tryptophan heterodimers with potential implication to Alzheimer's disease treatment. Bioorg Med Chem Lett 2021; 43:128100. [PMID: 33984470 DOI: 10.1016/j.bmcl.2021.128100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022]
Abstract
The search for novel and effective therapeutics for Alzheimer's disease (AD) is the main quest that remains to be resolved. The goal is to find a disease-modifying agent able to confront the multifactorial nature of the disease positively. Herewith, a family of huprineY-tryptophan heterodimers was prepared, resulting in inhibition of cholinesterase and neuronal nitric oxide synthase enzymes, with effect against amyloid-beta (Aβ) and potential ability to cross the blood-brain barrier. Their cholinesterase pattern of behavior was inspected using kinetic analysis in tandem with docking studies. These heterodimers exhibited a promising pharmacological profile with strong implication in AD.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Lubica Muckova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Zdena Kristofikova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Chemistry, University of Hradec Kralove, Rokytanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jiri Kunes
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Hroudova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Design, synthesis and evaluation of cholinesterase hybrid inhibitors using a natural steroidal alkaloid as precursor. Bioorg Chem 2021; 111:104893. [PMID: 33882364 DOI: 10.1016/j.bioorg.2021.104893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/05/2023]
Abstract
To date, Alzheimer's disease is the most alarming neurodegenerative disorder worldwide. This illness is multifactorial in nature and cholinesterase inhibitors have been the ones used in clinical treatments. In this context, many of these drugs selectively inhibit the acetylcholinesterase enzyme interacting in both the active site and the peripheric anionic site. Besides, some agents have exhibited extensive benefits being able to co-inhibit butyrylcholinesterase. In this contribution, a strategy previously explored by numerous authors is reported; the synthesis of hybrid cholinesterase inhibitors. This strategy uses a molecule of recognized high inhibitory activity (tacrine) together with a steroidal alkaloid of natural origin using different connectors. The biological assays demonstrated the improvement in the inhibitory activity compared to the alkaloidal precursor, together with the reinforcement of the interactions in multiple sites of the enzymatic cavity. This strategy should be explored and exploited in this area. Docking and molecular dynamic studies were performed to explain enzyme-ligand interactions, assisting a structure-activity relationship analysis.
Collapse
|
11
|
Viayna E, Coquelle N, Cieslikiewicz-Bouet M, Cisternas P, Oliva CA, Sánchez-López E, Ettcheto M, Bartolini M, De Simone A, Ricchini M, Rendina M, Pons M, Firuzi O, Pérez B, Saso L, Andrisano V, Nachon F, Brazzolotto X, García ML, Camins A, Silman I, Jean L, Inestrosa NC, Colletier JP, Renard PY, Muñoz-Torrero D. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J Med Chem 2020; 64:812-839. [PMID: 33356266 DOI: 10.1021/acs.jmedchem.0c01775] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of the scaffolds of the cholinesterase inhibitor huprine Y and the antioxidant capsaicin results in compounds with nanomolar potencies toward human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) that retain or improve the antioxidant properties of capsaicin. Crystal structures of their complexes with AChE and BChE revealed the molecular basis for their high potency. Brain penetration was confirmed by biodistribution studies in C57BL6 mice, with one compound (5i) displaying better brain/plasma ratio than donepezil. Chronic treatment of 10 month-old APP/PS1 mice with 5i (2 mg/kg, i.p., 3 times per week, 4 weeks) rescued learning and memory impairments, as measured by three different behavioral tests, delayed the Alzheimer-like pathology progression, as suggested by a significantly reduced Aβ42/Aβ40 ratio in the hippocampus, improved basal synaptic efficacy, and significantly reduced hippocampal oxidative stress and neuroinflammation. Compound 5i emerges as an interesting anti-Alzheimer lead with beneficial effects on cognitive symptoms and on some underlying disease mechanisms.
Collapse
Affiliation(s)
- Elisabet Viayna
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France.,Large Scale Structures Group, Institut Laue-Langevin, F-38042 Grenoble Cedex 9, France
| | | | - Pedro Cisternas
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, University Rovira i Virgili, E-43201 Reus, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Mattia Ricchini
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Marisa Rendina
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Mégane Pons
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 3288, 71345 Shiraz, Iran
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso d'Augusto 237, I-47921 Rimini, Italy
| | - Florian Nachon
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées BP73, 91993 Brétigny sur Orge, France
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, E-28031 Madrid, Spain.,Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ludovic Jean
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, P.O. Box 114, 8331150 Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 6200000 Punta Arenas, Chile
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS UMR 5075, F-38054 Grenoble, France
| | - Pierre-Yves Renard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| |
Collapse
|
12
|
Mezeiova E, Soukup O, Korabecny J. Huprines — an insight into the synthesis and biological properties. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Mezeiova E, Chalupova K, Nepovimova E, Gorecki L, Prchal L, Malinak D, Kuca K, Soukup O, Korabecny J. Donepezil Derivatives Targeting Amyloid-β Cascade in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:772-800. [PMID: 30819078 DOI: 10.2174/1567205016666190228122956] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder with an increasing impact on society. Because currently available therapy has only a short-term effect, a huge number of novel compounds are developed every year exploiting knowledge of the various aspects of AD pathophysiology. To better address the pathological complexity of AD, one of the most extensively pursued strategies by medicinal chemists is based on Multi-target-directed Ligands (MTDLs). Donepezil is one of the currently approved drugs for AD therapy acting as an acetylcholinesterase inhibitor. In this review, we have made an extensive literature survey focusing on donepezil-derived MTDL hybrids primarily targeting on different levels cholinesterases and amyloid beta (Aβ) peptide. The targeting includes direct interaction of the compounds with Aβ, AChE-induced Aβ aggregation, inhibition of BACE-1 enzyme, and modulation of biometal balance thus impeding Aβ assembly.
Collapse
Affiliation(s)
- Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Katarina Chalupova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - David Malinak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Pérez-Areales FJ, Garrido M, Aso E, Bartolini M, De Simone A, Espargaró A, Ginex T, Sabate R, Pérez B, Andrisano V, Puigoriol-Illamola D, Pallàs M, Luque FJ, Loza MI, Brea J, Ferrer I, Ciruela F, Messeguer A, Muñoz-Torrero D. Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. J Med Chem 2020; 63:9360-9390. [PMID: 32706255 DOI: 10.1021/acs.jmedchem.0c00528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress is a major pathogenic factor in Alzheimer's disease, but it should not be tackled alone rather together with other key targets to derive effective treatments. The combination of the scaffold of the polar antioxidant lead 7-methoxy-2,2-dimethylchroman-6-ol (CR-6) with that of the lipophilic cholinesterase inhibitor 6-chlorotacrine results in compounds with favorable brain permeability and multiple activities in vitro (acetylcholinesterase, butyrylcholinesterase, β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE-1), and Aβ42 and tau aggregation inhibition). In in vivo studies on wild-type and APP/presenilin 1 (PS1) mice, two selected compounds were well tolerated and led to positive trends, albeit statistically nonsignificant in some cases, on memory performance, amyloid pathology (reduced amyloid burden and potentiated non-amyloidogenic APP processing), and oxidative stress (reduced cortical oxidized proteins and increased antioxidant enzymes superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (Hmox1) and transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2)). These compounds emerge as interesting brain-permeable multitarget compounds, with a potential as anti-Alzheimer agents beyond that of the original lead CR-6.
Collapse
Affiliation(s)
- F Javier Pérez-Areales
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - María Garrido
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ester Aso
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Alba Espargaró
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics, and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, I-47921 Rimini, Italy
| | - Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain.,CIBERNED, E-28031 Madrid, Spain
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| |
Collapse
|
15
|
Sylvetsky N. Toward Simple, Predictive Understanding of Protein-Ligand Interactions: Electronic Structure Calculations on Torpedo Californica Acetylcholinesterase Join Forces with the Chemist's Intuition. Sci Rep 2020; 10:9218. [PMID: 32513975 PMCID: PMC7280257 DOI: 10.1038/s41598-020-65984-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Contemporary efforts for empirically-unbiased modeling of protein-ligand interactions entail a painful tradeoff - as reliable information on both noncovalent binding factors and the dynamic behavior of a protein-ligand complex is often beyond practical limits. We demonstrate that information drawn exclusively from static molecular structures can be used for reproducing and predicting experimentally-measured binding affinities for protein-ligand complexes. In particular, inhibition constants (Ki) were calculated for seven different competitive inhibitors of Torpedo californica acetylcholinesterase using a multiple-linear-regression-based model. The latter, incorporating five independent variables - drawn from QM cluster, DLPNO-CCSD(T) calculations and LED analyses on the seven complexes, each containing active amino-acid residues found within interacting distance (3.5 Å) from the corresponding ligand - is shown to recover 99.9% of the sum of squares for measured Ki values, while having no statistically-significant residual errors. Despite being fitted to a small number of data points, leave-one-out cross-validation statistics suggest that it possesses surprising predictive value (Q2LOO=0.78, or 0.91 upon removal of a single outlier). This thus challenges ligand-invariant definitions of active sites, such as implied in the lock-key binding theory, as well as in alternatives highlighting shape-complementarity without taking electronic effects into account. Broader implications of the current work are discussed in dedicated appendices.
Collapse
Affiliation(s)
- Nitai Sylvetsky
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
16
|
Functional characterization of multifunctional ligands targeting acetylcholinesterase and alpha 7 nicotinic acetylcholine receptor. Biochem Pharmacol 2020; 177:114010. [PMID: 32360492 DOI: 10.1016/j.bcp.2020.114010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/28/2020] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with cholinergic dysfunction, provoking memory loss and cognitive dysfunction in elderly patients. The cholinergic hypothesis provided over the years with molecular targets for developing palliative treatments for AD, acting on the cholinergic system, namely, acetylcholinesterase and α7 nicotinic acetylcholine receptor (α7 nAChR). In our synthetic work, we used "click-chemistry" to synthesize two Multi Target Directed Ligands (MTDLs) MB105 and MB118 carrying tacrine and quinuclidine scaffolds which are known for their anticholinesterase and α7 nAChR agonist activities, respectively. Both, MB105 and MB118, inhibit human acetylcholinesterase and human butyrylcholinesterase in the nanomolar range. Electrophysiological recordings on Xenopus laevis oocytes expressing human α7 nAChR showed that MB105 and MB118 acted as partial agonists of the referred nicotinic receptor, albeit, with different potencies despite their similar structure. The different substitution at C-3 on the 2,3-disubstituted quinuclidine scaffold may account for the significantly lower potency of MB118 compared to MB105. Electrophysiological recordings also showed that the tacrine precursor MB320 behaved as a competitive antagonist of human α7 nAChR, in the micromolar range, while the quinuclidine synthetic precursor MB099 acted as a partial agonist. Taken all together, MB105 behaved as a partial agonist of α7 nAChR at concentrations where it completely inhibited human acetylcholinesterase activity paving the way for the design of novel MTDLs for palliative treatment of AD.
Collapse
|
17
|
Tetrahydroquinoline-Isoxazole/Isoxazoline Hybrid Compounds as Potential Cholinesterases Inhibitors: Synthesis, Enzyme Inhibition Assays, and Molecular Modeling Studies. Int J Mol Sci 2019; 21:ijms21010005. [PMID: 31861333 PMCID: PMC6981637 DOI: 10.3390/ijms21010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/18/2023] Open
Abstract
A series of 44 hybrid compounds that included in their structure tetrahydroquinoline (THQ) and isoxazole/isoxazoline moieties were synthesized through the 1,3-dipolar cycloaddition reaction (1,3-DC) from the corresponding N-allyl/propargyl THQs, previously obtained via cationic Povarov reaction. In vitro cholinergic enzymes inhibition potential of all compounds was tested. Enzyme inhibition assays showed that some hybrids exhibited significant potency to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Especially, the hybrid compound 5n presented the more effective inhibition against AChE (4.24 µM) with an acceptable selectivity index versus BChE (SI: 5.19), while compound 6aa exhibited the greatest inhibition activity on BChE (3.97 µM) and a significant selectivity index against AChE (SI: 0.04). Kinetic studies were carried out for compounds with greater inhibitory activity of cholinesterases. Structure–activity relationships of the molecular hybrids were analyzed, through computational models using a molecular cross-docking algorithm and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy approach, which indicated a good correlation between the experimental inhibition values and the predicted free binding energy.
Collapse
|
18
|
D'Avila da Silva F, Nogara PA, Ochoa-Rodríguez E, Nuñez-Figueredo Y, Wong-Guerra M, Rosemberg DB, Rocha JBTD. Molecular docking and in vitro evaluation of a new hybrid molecule (JM-20) on cholinesterase activity from different sources. Biochimie 2019; 168:297-306. [PMID: 31770565 DOI: 10.1016/j.biochi.2019.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
The main function of AChE is the hydrolysis of the neurotransmitter acetylcholine (ACh) at the neuromuscular and in cholinergic brain synapses. In some pathologies, loss of cholinergic neurons may be associated with a deficiency of ACh in specific brain areas. Consequently, the study of new safe drugs that inhibit AChE is important, because they can increase ACh levels in the synaptic cleft without adverse effects. Here, we evaluated the effects of JM-20 (a benzodiazepine-dihydropyridine hybrid molecule) on cholinesterase (ChE) activities from distinct sources (AChE from Electrophorus electricus (EeAChE), human erythrocyte membranes (HsAChE (ghost)), total erythrocyte (HsAChE (erythrocyte)) and BChE from plasma (HsBChE) and purified enzyme from the horse (EcBChE)). Kinetic parameters were determined in the presence of 0.05-1.6 mM of substrate concentration. The interactions ChEs with JM-20 were performed using molecular docking simulations. JM-20 inhibited all tested AChE but not BChE. The IC50 values were 123 nM ± 0.2 (EeAChE), 158 nM ± 0.1 (ghost HsAChE), and 172 nM ± 0.2 (erythrocytic HsAChE). JM-20 caused a mixed type of inhibition (it altered Km and Vmax of AChE). The molecular docking indicated the binding poses and the most plausible active isomer of JM-20. Besides giving important data for future drug design, our results help us understand the mode of action of JM-20 as a specific inhibitor of AChE enzymes.
Collapse
Affiliation(s)
- Fernanda D'Avila da Silva
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Pablo Andrei Nogara
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Estael Ochoa-Rodríguez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, Nº 1605 Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Denis Broock Rosemberg
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação Em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
19
|
Structural aspects of 4-aminoquinolines as reversible inhibitors of human acetylcholinesterase and butyrylcholinesterase. Chem Biol Interact 2019; 308:101-109. [PMID: 31100281 DOI: 10.1016/j.cbi.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
Eight derivatives of 4-aminoquinolines differing in the substituents attached to the C(4)-amino group and C(7) were synthesised and tested as inhibitors of human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Both enzymes were inhibited by all of the compounds with inhibition constants (Ki) ranging from 0.50 to 50 μM exhibiting slight selectivity toward AChE over BChE. The most potent inhibitors of AChE were compounds with an n-octylamino chain or adamantyl group. The shortening of the chain length resulted in a decrease in AChE inhibition by 5-20 times. Docking studies revealed that the quinoline group within the AChE active site was positioned in the choline binding site, while the C(4)-amino group substituents, depending on their lipophilicity, could establish hydrogen bonds or π-interactions with residues of the peripheral anionic site. The most potent inhibitors of BChE were compounds with the most voluminous substituent on C(4)-amino group (adamantyl) or those with a stronger electron withdrawing substituent on C(7) (trifluormethyl group). Based on AChE inhibition, compounds with an n-octylamino chain or adamantyl substituent were shown to possess the capacity for further development as potential drugs for treatment of neurodegenerative diseases.
Collapse
|
20
|
Minovski N, Saçan MT, Eminoğlu EM, Erdem SS, Novič M. Revisiting fish toxicity of active pharmaceutical ingredients: Mechanistic insights from integrated ligand-/structure-based assessments on acetylcholinesterase. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:548-558. [PMID: 30572250 DOI: 10.1016/j.ecoenv.2018.11.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
The release of active pharmaceutical ingredients (APIs) into the environment is of great concern for aquatic ecosystem as many of these chemicals are designed to exert biological activity. Hence, their impact on non-target organisms like fish would not be surprising. In this respect, we revisited fish toxicity data of pharmaceuticals to generate linear and non-linear quantitative structure-toxicity relationships (QSTRs). We predicted fish lethality data from the validated QSTR models for 120 APIs with no experimental fish toxicity data. Toxicity of APIs on aquatic organisms is not fully characterized. Therefore, to provide a mechanistic insight for the assessment of API's toxicity to fish, the outcome of the derived QSTR models was integrated with structure-based toxicophore and molecular docking studies, utilizing the biomarker enzyme acetylcholinesterase originating from fish Torpedo californica (TcAChE). Toxicophore virtual screening of 60 chemicals with pT > 0 identified 23 hits as potential TcAChE binders with binding free energies ranging from -6.5 to -12.9 kcal/mol. The TcAChE-ligand interaction analysis revealed a good nesting of all 23 hits within TcAChE binding site through establishing strong lipophilic and hydrogen bonding interactions with the surrounding key amino acid residues. Among the chemicals passing the criteria of our integrated approach, majority of APIs belong noticeably to the Central Nervous System class. The screened chemicals displayed not only comprehensive toxicophore coverage, but also strong binding affinities according to the docking calculations, mainly due to interactions with TcAChE's key amino acid residues Tyr121, Tyr130, Tyr334, Trp84, Phe290, Phe330, Phe331, Ser122, and Ser200. Moreover, we propose here that binding of pharmaceuticals to AChE might have a potential in triggering molecular initiating events for adverse outcome pathways (AOPs), which in turn can play an important role for future screening of APIs lacking fish lethality data.
Collapse
Affiliation(s)
- Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| | - Melek Türker Saçan
- Institute of Environmental Sciences, Bogazici University, 34342, Hisar Campus, Bebek, Istanbul, Turkey.
| | - Elif Merve Eminoğlu
- Faculty of Arts and Sciences, Department of Chemistry, Marmara University, 34722 Göztepe, Istanbul, Turkey
| | - Safiye Sağ Erdem
- Faculty of Arts and Sciences, Department of Chemistry, Marmara University, 34722 Göztepe, Istanbul, Turkey
| | - Marjana Novič
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer's disease. Eur J Med Chem 2019; 168:491-514. [DOI: 10.1016/j.ejmech.2019.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022]
|
22
|
Zanon VS, Lima JA, Cuya T, Lima FRS, da Fonseca ACC, Gomez JG, Ribeiro RR, França TCC, Vargas MD. In-vitro evaluation studies of 7-chloro-4-aminoquinoline Schiff bases and their copper complexes as cholinesterase inhibitors. J Inorg Biochem 2018; 191:183-193. [PMID: 30530179 DOI: 10.1016/j.jinorgbio.2018.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common age-related neurodegenerative disorders. Aggregation of amyloid-β peptide into extracellular plaques with incorporation of metal ions, such as Cu2+, and reduction of the neurotransmitter acetylcholine levels are among the factors associated to the AD brain. Hence, a series of 7-chloro-4-aminoquinoline Schiff bases (HLa-e) were synthesized and their cytotoxicity and anti-cholinesterase activity, assessed for Alzheimer's disease. The intrinsic relationship between Cu2+ and the amyloidogenic plaques encouraged us to investigate the chelating ability of HLa-e. Dimeric tetracationic compounds, [Cu2(NHLa-e)4]Cl4, containing quinoline protonated ligands were isolated from the reactions with CuCl2·2H2O and fully characterized in the solid state, including an X ray diffraction study, whereas EPR data showed that the complexes exist as monomers in DMSO solution. The inhibitory activity of all compounds was evaluated by Ellman's spectrophotometric method in acetylcholinesterase (AChE) from Electrophorus electricus and butyrylcholinesterase (BChE) from equine serum. HLa-e and [Cu(NHLd)2]Cl2 were selective for AChE (IC50 = 4.61-9.31 μM) and were not neurotoxic in primary brain cultures. Docking and molecular dynamics studies of HLa-e inside AChE were performed and the results suggested that these compounds are able to bind inside AChE similarly to other AChE inhibitors, such as donepezil. Studies of the affinity of HLd for Cu2+ in DMSO/HEPES at pH 6.6 and pH 7.4 in μM concentrations showed formation of analogous 1:2 Cu2+/ligand complexes, which may suggest that in the AD-affected brain HLd may scavenge Cu2+ and the complex, also inhibit AChE.
Collapse
Affiliation(s)
- Vanessa S Zanon
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-141 Niterói, RJ, Brazil
| | - Josélia A Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ, Brazil; Laboratório de Modelagem Aplicada a Defesa Química e Biológica (LMDQB), Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Teobaldo Cuya
- Faculdade de Tecnologia, Departamento de Matemática, Física e Computação, Universidade do Estado do Rio de Janeiro, 27537-000 Resende, RJ, Brazil
| | - Flavia R S Lima
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Anna C C da Fonseca
- Laboratório de Biologia das Células Gliais, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Javier G Gomez
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-141 Niterói, RJ, Brazil
| | - Ronny R Ribeiro
- Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990 Curitiba, PR, Brazil
| | - Tanos C C França
- Laboratório de Modelagem Aplicada a Defesa Química e Biológica (LMDQB), Instituto Militar de Engenharia, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Maria D Vargas
- Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, 24020-141 Niterói, RJ, Brazil.
| |
Collapse
|
23
|
Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer's disease. Biomed Pharmacother 2018; 106:553-565. [PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia.
| | - Christine Kettle
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia
| | - David W Morton
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia
| |
Collapse
|
24
|
Gálvez J, Polo S, Insuasty B, Gutiérrez M, Cáceres D, Alzate-Morales JH, De-la-Torre P, Quiroga J. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies. Comput Biol Chem 2018; 74:218-229. [DOI: 10.1016/j.compbiolchem.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/26/2018] [Accepted: 03/03/2018] [Indexed: 11/27/2022]
|
25
|
Nascimento ÉCM, Oliva M, Andrés J. Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase. J Comput Aided Mol Des 2018; 32:607-622. [DOI: 10.1007/s10822-018-0114-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/20/2018] [Indexed: 11/27/2022]
|
26
|
Galdeano C, Coquelle N, Cieslikiewicz-Bouet M, Bartolini M, Pérez B, Clos MV, Silman I, Jean L, Colletier JP, Renard PY, Muñoz-Torrero D. Increasing Polarity in Tacrine and Huprine Derivatives: Potent Anticholinesterase Agents for the Treatment of Myasthenia Gravis. Molecules 2018. [PMID: 29534488 PMCID: PMC6017698 DOI: 10.3390/molecules23030634] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Symptomatic treatment of myasthenia gravis is based on the use of peripherally-acting acetylcholinesterase (AChE) inhibitors that, in some cases, must be discontinued due to the occurrence of a number of side-effects. Thus, new AChE inhibitors are being developed and investigated for their potential use against this disease. Here, we have explored two alternative approaches to get access to peripherally-acting AChE inhibitors as new agents against myasthenia gravis, by structural modification of the brain permeable anti-Alzheimer AChE inhibitors tacrine, 6-chlorotacrine, and huprine Y. Both quaternization upon methylation of the quinoline nitrogen atom, and tethering of a triazole ring, with, in some cases, the additional incorporation of a polyphenol-like moiety, result in more polar compounds with higher inhibitory activity against human AChE (up to 190-fold) and butyrylcholinesterase (up to 40-fold) than pyridostigmine, the standard drug for symptomatic treatment of myasthenia gravis. The novel compounds are furthermore devoid of brain permeability, thereby emerging as interesting leads against myasthenia gravis.
Collapse
Affiliation(s)
- Carles Galdeano
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Énergie Atomique (CEA) (UMR 5075), F-38054 Grenoble, France.
- Large-Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France.
| | - Monika Cieslikiewicz-Bouet
- Laboratory COBRA (UMR 6014), Normandie Université, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, 76000 Rouen, France.
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy.
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, E-08193 Barcelona, Spain.
| | - M Victòria Clos
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, E-08193 Barcelona, Spain.
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Ludovic Jean
- Laboratory COBRA (UMR 6014), Normandie Université, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, 76000 Rouen, France.
| | - Jacques-Philippe Colletier
- Institut de Biologie Structurale, Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'Énergie Atomique (CEA) (UMR 5075), F-38054 Grenoble, France.
| | - Pierre-Yves Renard
- Laboratory COBRA (UMR 6014), Normandie Université, UNIROUEN, Institut National des Sciences Appliquées (INSA) Rouen, CNRS, 76000 Rouen, France.
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
27
|
Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017; 22:molecules22122098. [PMID: 29186056 PMCID: PMC6149722 DOI: 10.3390/molecules22122098] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) hydrolyze the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. Although closely related, these enzymes display very different substrate specificities that only partially overlap. This disparity is largely due to differences in the number of aromatic residues lining the active site gorge, which leads to large differences in the shape of the gorge and potentially to distinct interactions with an individual ligand. Considerable structural information is available for the binding of a wide diversity of ligands to AChE. In contrast, structural data on the binding of reversible ligands to BChE are lacking. In a recent effort, an inhibitor competition approach was used to probe the overlap of ligand binding sites in BChE. Here, we extend this study by solving the crystal structures of human BChE in complex with five reversible ligands, namely, decamethonium, thioflavin T, propidium, huprine, and ethopropazine. We compare these structures to equivalent AChE complexes when available in the protein data bank and supplement this comparison with kinetic data and observations from isothermal titration calorimetry. This new information now allows us to define the binding mode of various ligand families and will be of importance in designing specific reversible ligands of BChE that behave as inhibitors or reactivators.
Collapse
|
28
|
|
29
|
Development of 2-Methoxyhuprine as Novel Lead for Alzheimer's Disease Therapy. Molecules 2017; 22:molecules22081265. [PMID: 28788095 PMCID: PMC6152224 DOI: 10.3390/molecules22081265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 11/29/2022] Open
Abstract
Tacrine (THA), the first clinically effective acetylcholinesterase (AChE) inhibitor and the first approved drug for the treatment of Alzheimer’s disease (AD), was withdrawn from the market due to its side effects, particularly its hepatotoxicity. Nowadays, THA serves as a valuable scaffold for the design of novel agents potentially applicable for AD treatment. One such compound, namely 7-methoxytacrine (7-MEOTA), exhibits an intriguing profile, having suppressed hepatotoxicity and concomitantly retaining AChE inhibition properties. Another interesting class of AChE inhibitors represents Huprines, designed by merging two fragments of the known AChE inhibitors—THA and (−)-huperzine A. Several members of this compound family are more potent human AChE inhibitors than the parent compounds. The most promising are so-called huprines X and Y. Here, we report the design, synthesis, biological evaluation, and in silico studies of 2-methoxyhuprine that amalgamates structural features of 7-MEOTA and huprine Y in one molecule.
Collapse
|
30
|
Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein-huprine hybrids. Future Med Chem 2017. [PMID: 28632395 DOI: 10.4155/fmc-2017-0049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM Simultaneous modulation of several key targets of the pathological network of Alzheimer's disease (AD) is being increasingly pursued as a promising option to fill the critical gap of efficacious drugs against this condition. MATERIALS & METHODS A short series of compounds purported to hit multiple targets of relevance in AD has been designed, on the basis of their distinct basicities estimated from high-level quantum mechanical computations, synthesized, and subjected to assays of inhibition of cholinesterases, BACE-1, and Aβ42 and tau aggregation, of antioxidant activity, and of brain permeation. RESULTS Using, as a template, a lead rhein-huprine hybrid with an interesting multitarget profile, we have developed second-generation compounds, designed by the modification of the huprine aromatic ring. Replacement by [1,8]-naphthyridine or thieno[3,2-e]pyridine systems resulted in decreased, although still potent, acetylcholinesterase or BACE-1 inhibitory activities, which are more balanced relative to their Aβ42 and tau antiaggregating and antioxidant activities. CONCLUSION Second-generation naphthyridine- and thienopyridine-based rhein-huprine hybrids emerge as interesting brain permeable compounds that hit several crucial pathogenic factors of AD.
Collapse
|
31
|
Silman I, Sussman JL. Recent developments in structural studies on acetylcholinesterase. J Neurochem 2017; 142 Suppl 2:19-25. [PMID: 28503857 DOI: 10.1111/jnc.13992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review focuses on several recent developments concerning structure-function relationships in vertebrate acetylcholinesterase. These include studies on high-resolution structures of human acetylcholinesterase and its complexes; the first crystal structure of a snake venom acetylcholinesterase, in which open and closed states of the 'back door' are visualized; a powerful algorithm for redesigning proteins for enhanced expression in prokaryotic systems, as applied to human acetylcholinesterase, which has hitherto been an intractable target; in situ implementation of 'click chemistry' in crystalline acetylcholinesterase, which yields novel insights into the steric and dynamic changes involved in the reaction within the active-site gorge; and a study that demonstrates the effect of crystallization conditions on ligand alignment within a protein complex, in this case the methylene blue-Torpedo californica acetylcholinesterase complex, which highlights the relevance of the precipitant employed to structure-based drug design. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Joel L Sussman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Nascimento ÉCM, Oliva M, Świderek K, Martins JBL, Andrés J. Binding Analysis of Some Classical Acetylcholinesterase Inhibitors: Insights for a Rational Design Using Free Energy Perturbation Method Calculations with QM/MM MD Simulations. J Chem Inf Model 2017; 57:958-976. [DOI: 10.1021/acs.jcim.7b00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Érica C. M. Nascimento
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
- Institute
of Chemistry, University of Brasília, 70910-000, Brasília-DF, Brazil
| | - Mónica Oliva
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
| | - Katarzyna Świderek
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - João B. L. Martins
- Institute
of Chemistry, University of Brasília, 70910-000, Brasília-DF, Brazil
| | - Juan Andrés
- Department
of Analytical and Physical Chemistry, Jaume I University, 12071 Castellón, Spain
| |
Collapse
|
33
|
Zhang A, Mu Y, Wu F. An enantiomer-based virtual screening approach: Discovery of chiral organophosphates as acetyl cholinesterase inhibitors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:215-222. [PMID: 28061415 DOI: 10.1016/j.ecoenv.2016.12.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Chiral organophosphates (OPs) have been used widely around the world, very little is known about binding mechanisms with biological macromolecules. An in-depth understanding of the stereo selectivity of human AChE and discovering bioactive enantiomers of OPs can decrease health risks of these chiral chemicals. In the present study, a flexible molecular docking approach was conducted to investigate different binding modes of twelve phosphorus enantiomers. A pharmacophore model was then developed on basis of the bioactive conformations of these compounds. After virtual screening, twenty-four potential bioactive compounds were found, of which three compounds (Ethyl p-nitrophenyl phenylphosphonate (EPN), 1-naphthaleneacetic anhydride and N,4-dimethyl-N-phenyl-benzenesulfonamide) were tested by use of different in vitro assays. S-isomer of EPN was also found to exhibit greater inhibitory activity towards human AChE than the corresponding R-isomer. These findings affirm that stereochemistry plays a crucial role in virtual screening, and provide a new insight into designing safer organ phosphorus pesticides on human health.
Collapse
Affiliation(s)
- Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunsong Mu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
34
|
Pecina A, Haldar S, Fanfrlík J, Meier R, Řezáč J, Lepšík M, Hobza P. SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native Protein–Ligand Poses. J Chem Inf Model 2017; 57:127-132. [DOI: 10.1021/acs.jcim.6b00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Adam Pecina
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Susanta Haldar
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Jindřich Fanfrlík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - René Meier
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Jan Řezáč
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Pavel Hobza
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Palacký University, 77146 Olomouc, Czech Republic
| |
Collapse
|
35
|
Gerogiokas G, Southey MWY, Mazanetz MP, Heifetz A, Bodkin M, Law RJ, Henchman RH, Michel J. Assessment of Hydration Thermodynamics at Protein Interfaces with Grid Cell Theory. J Phys Chem B 2016; 120:10442-10452. [PMID: 27645529 DOI: 10.1021/acs.jpcb.6b07993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular dynamics simulations have been analyzed with the Grid Cell Theory (GCT) method to spatially resolve the binding enthalpies and entropies of water molecules at the interface of 17 structurally diverse proteins. Correlations between computed energetics and structural descriptors have been sought to facilitate the development of simple models of protein hydration. Little correlation was found between GCT-computed binding enthalpies and continuum electrostatics calculations. A simple count of contacts with functional groups in charged amino acids correlates well with enhanced water stabilization, but the stability of water near hydrophobic and polar residues depends markedly on its coordination environment. The positions of X-ray-resolved water molecules correlate with computed high-density hydration sites, but many unresolved waters are significantly stabilized at the protein surfaces. A defining characteristic of ligand-binding pockets compared to nonbinding pockets was a greater solvent-accessible volume, but average water thermodynamic properties were not distinctive from other interfacial regions. Interfacial water molecules are frequently stabilized by enthalpy and destabilized entropy with respect to bulk, but counter-examples occasionally occur. Overall detailed inspection of the local coordinating environment appears necessary to gauge the thermodynamic stability of water in protein structures.
Collapse
Affiliation(s)
- Georgios Gerogiokas
- EaStCHEM School of Chemistry , Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| | - Michelle W Y Southey
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Michael P Mazanetz
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Alexander Heifetz
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Michael Bodkin
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Richard J Law
- Evotec (U.K.) Limited , 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom.,School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, United Kingdom
| | - J Michel
- EaStCHEM School of Chemistry , Joseph Black Building, The King's Buildings, Edinburgh EH9 3JJ, United Kingdom
| |
Collapse
|
36
|
Rodríguez YA, Gutiérrez M, Ramírez D, Alzate-Morales J, Bernal CC, Güiza FM, Romero Bohórquez AR. Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors. Chem Biol Drug Des 2016; 88:498-510. [PMID: 27085663 PMCID: PMC5053295 DOI: 10.1111/cbdd.12773] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/10/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
New N‐allyl/propargyl 4‐substituted 1,2,3,4‐tetrahydroquinolines derivatives were efficiently synthesized using acid‐catalyzed three components cationic imino Diels–Alder reaction (70–95%). All compounds were tested in vitro as dual acetylcholinesterase and butyryl‐cholinesterase inhibitors and their potential binding modes, and affinity, were predicted by molecular docking and binding free energy calculations (∆G) respectively. The compound 4af (IC50 = 72 μm) presented the most effective inhibition against acetylcholinesterase despite its poor selectivity (SI = 2), while the best inhibitory activity on butyryl‐cholinesterase was exhibited by compound 4ae (IC50 = 25.58 μm) with considerable selectivity (SI = 0.15). Molecular docking studies indicated that the most active compounds fit in the reported acetylcholinesterase and butyryl‐cholinesterase active sites. Moreover, our computational data indicated a high correlation between the calculated ∆G and the experimental activity values in both targets.
Collapse
Affiliation(s)
- Yeray A Rodríguez
- Laboratorio Síntesis Orgánica, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, 3460000, Chile
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica, Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, 3460000, Chile.
| | - David Ramírez
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, 3460000, Chile
| | - Jans Alzate-Morales
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, 2 Norte 685, Casilla 721, Talca, 3460000, Chile
| | - Cristian C Bernal
- Grupo de Investigación de Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, A.A. 678, Piedecuesta, Colombia
| | - Fausto M Güiza
- Grupo de Investigación de Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, A.A. 678, Piedecuesta, Colombia
| | - Arnold R Romero Bohórquez
- Grupo de Investigación de Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, A.A. 678, Piedecuesta, Colombia.
| |
Collapse
|
37
|
Wu Q, Yan W, Liu C, Li L, Yu L, Zhao S, Li G. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:793-800. [PMID: 27038211 DOI: 10.1016/j.envpol.2016.03.048] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Microcystin-LR (MCLR) is a commonly acting potent hepatotoxin and has been pointed out of potentially causing developmental neurotoxicity, but the exact mechanism is little known. In this study, zebrafish embryos were exposed to 0, 0.8, 1.6 or 3.2 mg/L MCLR for 120 h. MCLR exposure through submersion caused serious hatching delay and body length decrease. The content of MCLR in zebrafish larvae was analyzed and the results demonstrated that MCLR can accumulate in zebrafish larvae. The locomotor speed of zebrafish larvae was decreased. Furthermore, the dopamine and acetylcholine (ACh) content were detected to be significantly decreased in MCLR exposure groups. And the acetylcholinesterase (AChE) activity was significantly increased after exposure to 1.6 and 3.2 mg/L MCLR. The transcription pattern of manf, chrnα7 and ache gene was consistent with the change of the dopamine content, ACh content and AChE activity. Gene expression involved in the development of neurons was also measured. ɑ1-tubulin and shha gene expression were down-regulated, whereas mbp and gap43 gene expression were observed to be significantly up-regulated upon exposure to MCLR. The above results indicated that MCLR-induced developmental toxicity might attribute to the disorder of cholinergic system, dopaminergic signaling, and the development of neurons.
Collapse
Affiliation(s)
- Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China
| | - Wei Yan
- Institute of Agricultural Quality Standards & Testing Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China.
| |
Collapse
|
38
|
Sawatzky E, Wehle S, Kling B, Wendrich J, Bringmann G, Sotriffer CA, Heilmann J, Decker M. Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode. J Med Chem 2016; 59:2067-82. [DOI: 10.1021/acs.jmedchem.5b01674] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Edgar Sawatzky
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sarah Wehle
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Beata Kling
- Lehrstuhl
für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jan Wendrich
- Lehrstuhl
für Organische Chemie I, Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerhard Bringmann
- Lehrstuhl
für Organische Chemie I, Institut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christoph A. Sotriffer
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jörg Heilmann
- Lehrstuhl
für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Michael Decker
- Pharmazeutische
und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
39
|
Zhang S, Hou B, Yang H, Zuo Z. Design and prediction of new acetylcholinesterase inhibitor via quantitative structure activity relationship of huprines derivatives. Arch Pharm Res 2016; 39:591-602. [PMID: 26832327 DOI: 10.1007/s12272-016-0709-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/14/2016] [Indexed: 11/26/2022]
Abstract
Acetylcholinesterase (AChE) is an important enzyme in the pathogenesis of Alzheimer's disease (AD). Comparative quantitative structure-activity relationship (QSAR) analyses on some huprines inhibitors against AChE were carried out using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR) methods. Three highly predictive QSAR models were constructed successfully based on the training set. The CoMFA, CoMSIA, and HQSAR models have values of r (2) = 0.988, q (2) = 0.757, ONC = 6; r (2) = 0.966, q (2) = 0.645, ONC = 5; and r (2) = 0.957, q (2) = 0.736, ONC = 6. The predictabilities were validated using an external test sets, and the predictive r (2) values obtained by the three models were 0.984, 0.973, and 0.783, respectively. The analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the AChE to further understand the vital interactions between huprines and the protease. On the basis of the QSAR study, 14 new potent molecules have been designed and six of them are predicted to be more active than the best active compound 24 described in the literature. The final QSAR models could be helpful in design and development of novel active AChE inhibitors.
Collapse
Affiliation(s)
- Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Bo Hou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huaiyu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
40
|
Pecina A, Meier R, Fanfrlík J, Lepšík M, Řezáč J, Hobza P, Baldauf C. The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein–ligand interactions and implicit COSMO solvation. Chem Commun (Camb) 2016; 52:3312-5. [DOI: 10.1039/c5cc09499b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Strictly uphill – in cognate docking experiments we show that a quantum mechanical description of interaction and solvation outperforms established scoring functions in sharply distinguishing the native state from decoy poses.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - René Meier
- Institut für Biochemie
- Fakultät für Biowissenschaften
- Pharmazie und Psychologie
- Universität Leipzig
- D-04109 Leipzig
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry (IOCB) and Gilead Sciences and IOCB Research Center
- 16610 Prague 6
- Czech Republic
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft
- D-14195 Berlin
- Germany
| |
Collapse
|
41
|
García ME, Borioni JL, Cavallaro V, Puiatti M, Pierini AB, Murray AP, Peñéñory AB. Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Steroids 2015; 104:95-110. [PMID: 26362598 DOI: 10.1016/j.steroids.2015.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 10/23/2022]
Abstract
The investigation of natural products in medicinal chemistry is essential today. In this context, acetylcholinesterase (AChE) inhibitors comprise one type of the compounds most actively studied in the search for an effective treatment of symptoms of Alzheimer's disease. This work describes the isolation of a natural compound, solanocapsine, the preparation of its chemical derivatives, the evaluation of AChE inhibitory activity, and the structure-activity analysis of relevant cases. The influence of structural variations on the inhibitory potency was carefully investigated by modifying different reactive parts of the parent molecule. A theoretical study was also carried out into the binding mode of representative compounds to the enzyme through molecular modeling. The biological properties of the series were investigated. Through this study valuable information was obtained of steroidal alkaloid-type compounds as a starting point for the synthesis of AChE inhibitors.
Collapse
Affiliation(s)
- Manuela E García
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - José L Borioni
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, B8000CPB Bahía Blanca, Argentina
| | - Marcelo Puiatti
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Adriana B Pierini
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Ana P Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, B8000CPB Bahía Blanca, Argentina
| | - Alicia B Peñéñory
- INFIQC-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
42
|
Sola I, Aso E, Frattini D, López-González I, Espargaró A, Sabaté R, Di Pietro O, Luque FJ, Clos MV, Ferrer I, Muñoz-Torrero D. Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. J Med Chem 2015; 58:6018-32. [PMID: 26181606 DOI: 10.1021/acs.jmedchem.5b00624] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have synthesized a series of heptamethylene-linked levetiracetam-huprine and levetiracetam-(6-chloro)tacrine hybrids to hit amyloid, tau, and cholinergic pathologies as well as β-amyloid (Aβ)-induced epileptiform activity, some of the mechanisms that eventually lead to cognitive deficits in Alzheimer's disease patients. These hybrids are potent inhibitors of human acetylcholinesterase and butyrylcholinesterase in vitro and moderately potent Aβ42 and tau antiaggregating agents in a simple E. coli model of amyloid aggregation. Ex vivo determination of the brain acetylcholinesterase inhibitory activity of these compounds after intraperitoneal injection to C57BL6J mice has demonstrated their ability to enter the brain. The levetiracetam-huprine hybrid 10 significantly reduced the incidence of epileptic seizures, cortical amyloid burden, and neuroinflammation in APP/PS1 mice after a 4-week treatment with a 5 mg/kg dose. Moreover, the hybrid 10 rescued transgenic mice from cognitive deficits, thereby emerging as an interesting disease-modifying anti-Alzheimer drug candidate.
Collapse
Affiliation(s)
- Irene Sola
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Ester Aso
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Daniela Frattini
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - Irene López-González
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Alba Espargaró
- ∥Departament de Fisicoquímica, Facultat de Farmàcia, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raimon Sabaté
- ∥Departament de Fisicoquímica, Facultat de Farmàcia, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ornella Di Pietro
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| | - F Javier Luque
- ⊥Departament de Fisicoquímica, Facultat de Farmàcia (Campus Torribera), and IBUB, Universitat de Barcelona, Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - M Victòria Clos
- #Departament de Farmacologia, de Terapèutica, i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Isidro Ferrer
- ‡Institut de Neuropatologia, Servei d'Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, 08908 Barcelona, Spain.,§CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto Carlos III, Spain
| | - Diego Muñoz-Torrero
- †Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028, Barcelona, Spain
| |
Collapse
|
43
|
Nepovimova E, Uliassi E, Korabecny J, Peña-Altamira LE, Samez S, Pesaresi A, Garcia GE, Bartolini M, Andrisano V, Bergamini C, Fato R, Lamba D, Roberti M, Kuca K, Monti B, Bolognesi ML. Multitarget Drug Design Strategy: Quinone–Tacrine Hybrids Designed To Block Amyloid-β Aggregation and To Exert Anticholinesterase and Antioxidant Effects. J Med Chem 2014; 57:8576-89. [DOI: 10.1021/jm5010804] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Eugenie Nepovimova
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
- Department
of Toxicology, Department of Public Health, Centre for Advanced Studies,
Faculty of Military Health Sciences, University of Defence, Trebesska
1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
- Department
of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy
in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Jan Korabecny
- Department
of Toxicology, Department of Public Health, Centre for Advanced Studies,
Faculty of Military Health Sciences, University of Defence, Trebesska
1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Luis Emiliano Peña-Altamira
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Sarah Samez
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri
1, I-34127 Trieste, Italy
| | - Alessandro Pesaresi
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
| | - Gregory E. Garcia
- Research
Division, U.S. Army Medical Research Institute of Chemical Defense, 3100 Ricketts, Point Road, Aberdeen Proving
Ground, Maryland 21010-5400, United States
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Vincenza Andrisano
- Department
for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto
237, I-47921 Rimini, Italy
| | - Christian Bergamini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Romana Fato
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Doriano Lamba
- Istituto
di Crystallografia, Consiglio Nazionale delle Ricerche, Area
Science Park-Basovizza, S.S. 14-Km 163.5, I-34149 Trieste, Italy
| | - Marinella Roberti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Kamil Kuca
- Biomedical
Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Barbara Monti
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
44
|
Pérez-Areales FJ, Di Pietro O, Espargaró A, Vallverdú-Queralt A, Galdeano C, Ragusa IM, Viayna E, Guillou C, Clos MV, Pérez B, Sabaté R, Lamuela-Raventós RM, Luque FJ, Muñoz-Torrero D. Shogaol–huprine hybrids: Dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties. Bioorg Med Chem 2014; 22:5298-307. [DOI: 10.1016/j.bmc.2014.07.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
|
45
|
Di Pietro O, Pérez-Areales FJ, Juárez-Jiménez J, Espargaró A, Clos MV, Pérez B, Lavilla R, Sabaté R, Luque FJ, Muñoz-Torrero D. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies. Eur J Med Chem 2014; 84:107-17. [DOI: 10.1016/j.ejmech.2014.07.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/18/2014] [Accepted: 07/06/2014] [Indexed: 11/28/2022]
|
46
|
Viayna E, Sola I, Bartolini M, De Simone A, Tapia-Rojas C, Serrano FG, Sabaté R, Juárez-Jiménez J, Pérez B, Luque FJ, Andrisano V, Clos MV, Inestrosa NC, Muñoz-Torrero D. Synthesis and Multitarget Biological Profiling of a Novel Family of Rhein Derivatives As Disease-Modifying Anti-Alzheimer Agents. J Med Chem 2014; 57:2549-67. [DOI: 10.1021/jm401824w] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat
Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- Institut de Biomedicina
(IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Irene Sola
- Laboratori de Química Farmacèutica (Unitat
Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- Institut de Biomedicina
(IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, I-47921 Rimini, Italy
| | - Cheril Tapia-Rojas
- Centro de Envejecimiento
y Regeneración (CARE), Departamento de Biología Celular
y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150 Santiago, Chile
| | - Felipe G. Serrano
- Centro de Envejecimiento
y Regeneración (CARE), Departamento de Biología Celular
y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150 Santiago, Chile
| | - Raimon Sabaté
- Departament de Fisicoquímica,
Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
- Institut de Nanociència
i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Jordi Juárez-Jiménez
- Institut de Biomedicina
(IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Departament de Fisicoquímica,
Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Belén Pérez
- Departament de Farmacologia,
de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - F. Javier Luque
- Institut de Biomedicina
(IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
- Departament de Fisicoquímica,
Facultat de Farmàcia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, I-47921 Rimini, Italy
| | - M. Victòria Clos
- Departament de Farmacologia,
de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento
y Regeneración (CARE), Departamento de Biología Celular
y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, 8331150 Santiago, Chile
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat
Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
- Institut de Biomedicina
(IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
47
|
1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: Synthesis, pharmacological evaluation and mechanistic studies. Eur J Med Chem 2014; 73:141-52. [DOI: 10.1016/j.ejmech.2013.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 01/01/2023]
|
48
|
Beri V, Wildman SA, Shiomi K, Al-Rashid ZF, Cheung J, Rosenberry TL. The natural product dihydrotanshinone I provides a prototype for uncharged inhibitors that bind specifically to the acetylcholinesterase peripheral site with nanomolar affinity. Biochemistry 2013; 52:7486-99. [PMID: 24040835 DOI: 10.1021/bi401043w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinergic synaptic transmission often requires extremely rapid hydrolysis of acetylcholine by acetylcholinesterase (AChE). AChE is inactivated by organophosphates (OPs) in chemical warfare nerve agents. The resulting accumulation of acetylcholine disrupts cholinergic synaptic transmission and can lead to death. A potential long-term strategy for preventing AChE inactivation by OPs is based on evidence that OPs must pass through a peripheral site or P-site near the mouth of the AChE active site gorge before reacting with a catalytic serine in an acylation site or A-site at the base of the gorge. An ultimate goal of this strategy is to design compounds that bind tightly at or near the P-site and exclude OPs from the active site while interfering minimally with the passage of acetylcholine. However, to target the AChE P-site with ligands and potential drugs that selectively restrict access, much more information must be gathered about the structure-activity relationships of ligands that bind specifically to the P-site. We apply here an inhibitor competition assay that can correctly determine whether an AChE inhibitor binds to the P-site, the A-site, or both sites. We have used this assay to examine three uncharged, natural product inhibitors of AChE, including aflatoxin B1, dihydrotanshinone I, and territrem B. The first two of these inhibitors are predicted by the competition assay to bind selectively to the P-site, while territrem B is predicted to span both the P- and A-sites. These predictions have recently been confirmed by X-ray crystallography. Dihydrotanshinone I, with an observed binding constant (KI) of 750 nM, provides a good lead compound for the development of high-affinity, uncharged inhibitors with specificity for the P-site.
Collapse
Affiliation(s)
- Veena Beri
- Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine , Jacksonville, Florida 32224, United States
| | | | | | | | | | | |
Collapse
|
49
|
Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase. Biochem J 2013; 453:393-9. [PMID: 23679855 DOI: 10.1042/bj20130013] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The multifunctional nature of Alzheimer's disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, π-π/cation-π interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.
Collapse
|
50
|
Study of the interaction of Huperzia saururus Lycopodium alkaloids with the acetylcholinesterase enzyme. J Mol Graph Model 2013; 44:136-44. [PMID: 23827878 DOI: 10.1016/j.jmgm.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/14/2013] [Accepted: 05/27/2013] [Indexed: 11/22/2022]
Abstract
In the present study, we describe and compare the binding modes of three Lycopodium alkaloids (sauroine, 6-hydroxylycopodine and sauroxine; isolated from Huperzia saururus) and huperzine A with the enzyme acetylcholinesterase. Refinement and rescoring of the docking poses (obtained with different programs) with an all atom force field helped to improve the quality of the protein-ligand complexes. Molecular dynamics simulations were performed to investigate the complexes and the alkaloid's binding modes. The combination of the latter two methodologies indicated that binding in the active site is favored for the active compounds. On the other hand, similar binding energies in both the active and the peripheral sites were obtained for sauroine, thus explaining its experimentally determined lack of activity. MM-GBSA predicted the order of binding energies in agreement with the experimental IC50 values.
Collapse
|