1
|
Nemeth DV, Iannelli L, Gangitano E, D’Andrea V, Bellini MI. Energy Metabolism and Metformin: Effects on Ischemia-Reperfusion Injury in Kidney Transplantation. Biomedicines 2024; 12:1534. [PMID: 39062107 PMCID: PMC11275143 DOI: 10.3390/biomedicines12071534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Metformin (MTF) is the only biguanide included in the World Health Organization's list of essential medicines; representing a widespread drug in the management of diabetes mellitus. With its accessibility and affordability being one of its biggest assets, it has become the target of interest for many trying to find alternative treatments for varied pathologies. Over time, an increasing body of evidence has shown additional roles of MTF, with unexpected interactions of benefit in other diseases. Metformin (MTF) holds significant promise in mitigating ischemia-reperfusion injury (IRI), particularly in the realm of organ transplantation. As acceptance criteria for organ transplants expand, IRI during the preservation phase remain a major concern within the transplant community, prompting a keen interest in MTF's effects. Emerging evidence suggests that administering MTF during reperfusion may activate the reperfusion injury salvage kinase (RISK) pathway. This pathway is pivotal in alleviating IRI in transplant recipients, potentially leading to improved outcomes such as reduced rates of organ rejection. This review aims to contextualize MTF historically, explore its current uses, pharmacokinetics, and pharmacodynamics, and link these aspects to the pathophysiology of IRI to illuminate its potential future role in transplantation. A comprehensive survey of the current literature highlights MTF's potential to recondition and protect against IRI by attenuating free radical damage, activating AMP-activated protein kinase to preserve cellular energy and promote repair, as well as directly reducing inflammation and enhancing microcirculation.
Collapse
Affiliation(s)
- Denise V. Nemeth
- School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Leonardo Iannelli
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Vito D’Andrea
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
2
|
Myllymäki H, Kelly L, Elliot AM, Carter RN, Johansson JA, Chang KY, Cholewa-Waclaw J, Morton NM, Feng Y. Preneoplastic cells switch to Warburg metabolism from their inception exposing multiple vulnerabilities for targeted elimination. Oncogenesis 2024; 13:7. [PMID: 38272902 PMCID: PMC10810875 DOI: 10.1038/s41389-024-00507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Otto Warburg described tumour cells as displaying enhanced aerobic glycolysis whilst maintaining defective oxidative phosphorylation (OXPHOS) for energy production almost 100 years ago [1, 2]. Since then, the 'Warburg effect' has been widely accepted as a key feature of rapidly proliferating cancer cells [3-5]. What is not clear is how early "Warburg metabolism" initiates in cancer and whether changes in energy metabolism might influence tumour progression ab initio. We set out to investigate energy metabolism in the HRASG12V driven preneoplastic cell (PNC) at inception, in a zebrafish skin PNC model. We find that, within 24 h of HRASG12V induction, PNCs upregulate glycolysis and blocking glycolysis reduces PNC proliferation, whilst increasing available glucose enhances PNC proliferation and reduces apoptosis. Impaired OXPHOS accompanies enhanced glycolysis in PNCs, and a mild complex I inhibitor, metformin, selectively suppresses expansion of PNCs. Enhanced mitochondrial fragmentation might be underlining impaired OXPHOS and blocking mitochondrial fragmentation triggers PNC apoptosis. Our data indicate that altered energy metabolism is one of the earliest events upon oncogene activation in somatic cells, which allows a targeted and effective PNC elimination.
Collapse
Affiliation(s)
- Henna Myllymäki
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Fimlab Laboratoriot Oy Ltd, Arvo Ylpön katu 4, 33520, Tampere, Finland
| | - Lisa Kelly
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Abigail M Elliot
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
| | - Jeanette Astorga Johansson
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Kai Yee Chang
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Justyna Cholewa-Waclaw
- High Content Screening Facility, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, UK
- Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Yi Feng
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
3
|
Okoye CN, Koren SA, Wojtovich AP. Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol 2023; 67:102926. [PMID: 37871533 PMCID: PMC10598411 DOI: 10.1016/j.redox.2023.102926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondria are a main source of cellular energy. Oxidative phosphorylation (OXPHOS) is the major process of aerobic respiration. Enzyme complexes of the electron transport chain (ETC) pump protons to generate a protonmotive force (Δp) that drives OXPHOS. Complex I is an electron entry point into the ETC. Complex I oxidizes nicotinamide adenine dinucleotide (NADH) and transfers electrons to ubiquinone in a reaction coupled with proton pumping. Complex I also produces reactive oxygen species (ROS) under various conditions. The enzymatic activities of complex I can be regulated by metabolic conditions and serves as a regulatory node of the ETC. Complex I ROS plays diverse roles in cell metabolism ranging from physiologic to pathologic conditions. Progress in our understanding indicates that ROS release from complex I serves important signaling functions. Increasing evidence suggests that complex I ROS is important in signaling a mismatch in energy production and demand. In this article, we review the role of ROS from complex I in sensing acute hypoxia.
Collapse
Affiliation(s)
- Chidozie N Okoye
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Shon A Koren
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
4
|
Koren SA, Ahmed Selim N, De la Rosa L, Horn J, Farooqi MA, Wei AY, Müller-Eigner A, Emerson J, Johnson GVW, Wojtovich AP. All-optical spatiotemporal mapping of ROS dynamics across mitochondrial microdomains in situ. Nat Commun 2023; 14:6036. [PMID: 37758713 PMCID: PMC10533892 DOI: 10.1038/s41467-023-41682-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Hydrogen peroxide (H2O2) functions as a second messenger to signal metabolic distress through highly compartmentalized production in mitochondria. The dynamics of reactive oxygen species (ROS) generation and diffusion between mitochondrial compartments and into the cytosol govern oxidative stress responses and pathology, though these processes remain poorly understood. Here, we couple the H2O2 biosensor, HyPer7, with optogenetic stimulation of the ROS-generating protein KillerRed targeted into multiple mitochondrial microdomains. Single mitochondrial photogeneration of H2O2 demonstrates the spatiotemporal dynamics of ROS diffusion and transient hyperfusion of mitochondria due to ROS. This transient hyperfusion phenotype required mitochondrial fusion but not fission machinery. Measurement of microdomain-specific H2O2 diffusion kinetics reveals directionally selective diffusion through mitochondrial microdomains. All-optical generation and detection of physiologically-relevant concentrations of H2O2 between mitochondrial compartments provide a map of mitochondrial H2O2 diffusion dynamics in situ as a framework to understand the role of ROS in health and disease.
Collapse
Affiliation(s)
- Shon A Koren
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Nada Ahmed Selim
- University of Rochester Medical Center, Department of Pharmacology and Physiology, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Lizbeth De la Rosa
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Jacob Horn
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - M Arsalan Farooqi
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), Dummerstorf, 18196, Germany
| | - Jacen Emerson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Gail V W Johnson
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, 575 Elmwood Ave., Rochester, NY, 14642, Box 711/604, USA.
| |
Collapse
|
5
|
Prag HA, Murphy MP, Krieg T. Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Res Cardiol 2023; 118:34. [PMID: 37639068 PMCID: PMC10462584 DOI: 10.1007/s00395-023-01002-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023]
Abstract
In the context of myocardial infarction, the burst of superoxide generated by reverse electron transport (RET) at complex I in mitochondria is a crucial trigger for damage during ischaemia/reperfusion (I/R) injury. Here we outline the necessary conditions for superoxide production by RET at complex I and how it can occur during reperfusion. In addition, we explore various pathways that are implicated in generating the conditions for RET to occur and suggest potential therapeutic strategies to target RET, aiming to achieve cardioprotection.
Collapse
Affiliation(s)
- Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
6
|
Xu Y, Xue D, Kyani A, Bankhead A, Roy J, Ljungman M, Neamati N. First-in-Class NADH/Ubiquinone Oxidoreductase Core Subunit S7 (NDUFS7) Antagonist for the Treatment of Pancreatic Cancer. ACS Pharmacol Transl Sci 2023; 6:1164-1181. [PMID: 37588763 PMCID: PMC10425995 DOI: 10.1021/acsptsci.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/18/2023]
Abstract
Pancreatic cancer cells adapt to nutrient-scarce metabolic conditions by increasing their oxidative phosphorylation reserve to survive. Here, we present a first-in-class small-molecule NDUFS7 antagonist that inhibits oxidative phosphorylation (OXPHOS) for the treatment of pancreatic cancer. The lead compound, DX2-201, suppresses the proliferation of a panel of cell lines, and a metabolically stable analogue, DX3-213B, shows significant efficacy in a syngeneic model of pancreatic cancer. Exome sequencing of six out of six clones resistant to DX2-201 revealed a pV91M mutation in NDUFS7, providing direct evidence of its drug-binding site. In combination studies, DX2-201 showed synergy with multiple metabolic modulators, select OXPHOS inhibitors, and PARP inhibitors. Importantly, a combination with 2-deoxyglucose overcomes drug resistance in vivo. This study demonstrates that an efficacious treatment for pancreatic cancer can be achieved through inhibition of OXPHOS and direct binding to NDUFS7, providing a novel therapeutic strategy for this hard-to-treat cancer.
Collapse
Affiliation(s)
- Yibin Xu
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armita Kyani
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Biostatistics and Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan 48109, United States
| | - Joyeeta Roy
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel
Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Monroy-Cárdenas M, Andrades V, Almarza C, Vera MJ, Martínez J, Pulgar R, Amalraj J, Araya-Maturana R, Urra FA. A New Quinone-Based Inhibitor of Mitochondrial Complex I in D-Conformation, Producing Invasion Reduction and Sensitization to Venetoclax in Breast Cancer Cells. Antioxidants (Basel) 2023; 12:1597. [PMID: 37627592 PMCID: PMC10451541 DOI: 10.3390/antiox12081597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV-1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV-1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV-1 is a NOQ1 substrate. Importantly, FRV-1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV-1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Víctor Andrades
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Cristopher Almarza
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - María Jesús Vera
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Jorge Martínez
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
| | - John Amalraj
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Félix A. Urra
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| |
Collapse
|
8
|
Li Z, Wang H, Zoungrana LI, James A, Slotabec L, Didik S, Fatmi MK, Krause-Hauch M, Lesnefsky EJ, Li J. Administration of metformin rescues age-related vulnerability to ischemic insults through mitochondrial energy metabolism. Biochem Biophys Res Commun 2023; 659:46-53. [PMID: 37031594 PMCID: PMC10190118 DOI: 10.1016/j.bbrc.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of death on a global scale. Despite significant advances in the reperfusion treatment of acute myocardial infarction, there is still a significant early mortality rate among the elderly, as angioplasty-achieved reperfusion can exacerbate myocardial damage, leading to severe ischemia/reperfusion (I/R) injury and induce fatal arrhythmias. Mitochondria are a key mediator of ischemic insults; a transient blockade of the electron transport chain (ETC) at complex I during reperfusion can reduce myocardial infarct caused by ischemic insults. The reversible, transient modulation of complex I during early reperfusion is limited by the available of clinically tractable agents. We employed the novel use of acute, high dose metformin to modulate complex I activity during early reperfusion to decrease cardiac injury in the high-risk aged heart. Young (3-6 months) and aged (22-24 months) male and female C57BL/6 J mice were subjected to in vivo regional ischemia for 45 min, followed by metformin (2 mM, i. v.) injection 5 min prior to reperfusion for 24 h. The cardiac functions were measured with echocardiography. A Seahorse XF24 Analyzer was used to ascertain mitochondrial function. Cardiomyocyte sarcomere shortening and calcium transients were measured using the IonOptix Calcium and Contractility System. The results demonstrated that administration of acute, high dose metformin at the onset of reperfusion significantly limited cardiac damage and rescued cardiac dysfunction caused by I/R in both young and aged mice. Importantly, metformin treatment improves contractile functions of isolated cardiomyocytes and maintains mitochondrial integrity under I/R stress conditions. Thus, acute metformin administration at the onset of reperfusion has potential as a mitochondrial-based therapeutic to mitigate reperfusion injury and reduce infarct size in the elderly heart attack patient who remains at greater mortality risk despite reperfusion alone.
Collapse
Affiliation(s)
- Zehui Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Hao Wang
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Linda Ines Zoungrana
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Adewale James
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Lily Slotabec
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Steven Didik
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Meredith Krause-Hauch
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Edward J Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA; Cardiology Section, Medical Service, Richmond Department of Veterans Affairs Medical Center, Richmond, VA, USA
| | - Ji Li
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; James A. Haley Veterans' Hospital, Tampa, FL, USA.
| |
Collapse
|
9
|
Valero P, Cornejo M, Fuentes G, Wehinger S, Toledo F, van der Beek EM, Sobrevia L, Moore-Carrasco R. Platelets and endothelial dysfunction in gestational diabetes mellitus. Acta Physiol (Oxf) 2023; 237:e13940. [PMID: 36700365 DOI: 10.1111/apha.13940] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
The prevalence of gestational diabetes mellitus (GDM) has increased in recent years, along with the higher prevalence of obesity in women of reproductive age. GDM is a pathology associated with vascular dysfunction in the fetoplacental unit. GDM-associated endothelial dysfunction alters the transfer of nutrients to the foetus affecting newborns and pregnant women. Various mechanisms for this vascular dysfunction have been proposed, of which the most studied are metabolic alterations of the vascular endothelium. However, different cell types are involved in GDM-associated endothelial dysfunction, including platelets. Platelets are small, enucleated cell fragments that actively take part in blood haemostasis and thrombus formation. Thus, they play crucial roles in pathologies coursing with endothelial dysfunction, such as atherosclerosis, cardiovascular diseases, and diabetes mellitus. Nevertheless, platelet function in GDM is understudied. Several reports show a potential relationship between platelet volume and mass with GDM; however, platelet roles and signaling mechanisms in GDM-associated endothelial dysfunction are unclear. This review summarizes the reported findings and proposes a link among altered amount, volume, mass, reactivity, and function of platelets and placenta development, resulting in fetoplacental vascular dysfunction in GDM.
Collapse
Affiliation(s)
- Paola Valero
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Marcelo Cornejo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - Sergio Wehinger
- Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Eline M van der Beek
- Department of Pediatrics, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- Nestlé Institute for Health Sciences, Nestlé Research, Societé des Produits de Nestlé, Lausanne, Switzerland
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, Department of Obstetrics, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Mexico
| | | |
Collapse
|
10
|
Bridges HR, Blaza JN, Yin Z, Chung I, Pollak MN, Hirst J. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 2023; 379:351-357. [PMID: 36701435 PMCID: PMC7614227 DOI: 10.1126/science.ade3332] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular mode of action of biguanides, including the drug metformin, which is widely used in the treatment of diabetes, is incompletely characterized. Here, we define the inhibitory drug-target interaction(s) of a model biguanide with mammalian respiratory complex I by combining cryo-electron microscopy and enzyme kinetics. We interpret these data to explain the selectivity of biguanide binding to different enzyme states. The primary inhibitory site is in an amphipathic region of the quinone-binding channel, and an additional binding site is in a pocket on the intermembrane-space side of the enzyme. An independent local chaotropic interaction, not previously described for any drug, displaces a portion of a key helix in the membrane domain. Our data provide a structural basis for biguanide action and enable the rational design of medicinal biguanides.
Collapse
Affiliation(s)
- Hannah R. Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,Authors for correspondence: and
| | - James N. Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, The University of York, YO10 5DD, UK
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Injae Chung
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Michael N. Pollak
- Lady Davis Institute of the Jewish General Hospital and Department of Oncology, McGill University, Montreal, QC H3T 1E2, Canada
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK,Authors for correspondence: and
| |
Collapse
|
11
|
Wang X, Wei Z, Gu M, Zhu L, Hai C, Di A, Wu D, Bai C, Su G, Liu X, Yang L, Li G. Loss of Myostatin Alters Mitochondrial Oxidative Phosphorylation, TCA Cycle Activity, and ATP Production in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232415707. [PMID: 36555347 PMCID: PMC9779574 DOI: 10.3390/ijms232415707] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (Mstn-/-) mouse has a hypermuscular phenotype. The muscle metabolism of the Mstn-/- mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the Mstn-/- mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the Mstn-/- mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.
Collapse
Affiliation(s)
- Xueqiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China
- Correspondence: (L.Y.); (G.L.)
| |
Collapse
|
12
|
ÇİFTÇİOĞLU M. Shouldn't Stage 4 And 5 Chronic Kidney Disease Patients Use Metformin? KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2022. [DOI: 10.17517/ksutfd.1181458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metformin is the first place anti-diabetic agent recommended with life style changes in many guidelines for the treatment of patients with type 2 diabetes mellitus (DM). The mechanism of effect of the drug is to increase insulin sensitivity in peripheral tissue and reduce glucose secretion from the liver. Metformin is a low cost, effective and safe drug. Although its frequent side effects are gastrointestinal side effects and the most feared side effect is lactic acidosis. Due to this side effect, its use is limited in many guidelines in patients with chronic kidney disease (CKD). In this article, we examined the use of metformin in all stages of CKD. We investigated the incidence of metformin-associated lactic acidosis (MALA). Shouldn't stage 4 and 5 chronic kidney disease patients use metformin? We sought an answer to question. As a result, we decided that side effects like MALA are extremely rare. We observed that these side effects occur mostly in the presence of diseases in which tissue perfusion is impaired such as infections, serious cardiovascular events, and hypotension. We came to the conclusion that metformin should be used in patients with stage 4 and 5 CKD patients, without much fear, considering the profit and loss relationship.
Collapse
|
13
|
Effect of metformin on intact mitochondria from liver and brain: Concept revisited. Eur J Pharmacol 2022; 931:175177. [DOI: 10.1016/j.ejphar.2022.175177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
|
14
|
Martinelli S, Amore F, Mello T, Mannelli M, Maggi M, Rapizzi E. Metformin Treatment Induces Different Response in Pheochromocytoma/Paraganglioma Tumour Cells and in Primary Fibroblasts. Cancers (Basel) 2022; 14:cancers14143471. [PMID: 35884532 PMCID: PMC9320533 DOI: 10.3390/cancers14143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours and are often non-metastatic. However, no effective treatment is available for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available concerning whether metformin is also able to inhibit PPGL metastatic spread. A tumour is a very complex system, comprising not only cancer cells, but also other cells that all together form the so-called tumour microenvironment. Cancer-associated fibroblasts are residential or recruited fibroblasts, transformed by cancer cells, to promote tumour growth and spread. Therefore, the interplay between tumour cells and cancer-associated fibroblasts has become an interesting target for cancer therapy. Here, we demonstrate that metformin has different effects on cancer cells and fibroblasts, providing evidence that metformin may hold promise for altering tumour microenvironment homeostasis. Improving our knowledge on malignant tumour microenvironment properties could lead to develop complementary strategies to target tumour spread and progression. Abstract Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours, often non-metastatic, but without available effective treatment for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available on the role of metformin on PPGL cells (two-dimension, 2D) and spheroids (three-dimension, 3D) migration/invasion. In this study, we observed that metformin exerts an antiproliferative effect on 2D and 3D cultures of pheochromocytoma mouse tumour tissue (MTT), either silenced or not for the SDHB subunit. However, metformin did not affect MTT migration. On the other hand, metformin did not have a short-term effect on the proliferation of mouse primary fibroblasts, but significantly decreased their ability to migrate. Although the metabolic changes induced by metformin were similar between MTT and fibroblasts (i.e., an overall decrease of ATP production and an increase in intracellular lactate concentration) the activated signalling pathways were different. Indeed, after metformin administration, MTT showed a reduced phosphorylation of Akt and Erk1/2, while fibroblasts exhibited a downregulation of N-Cadherin and an upregulation of E-Cadherin. Herein, we demonstrated that metformin has different effects on cell growth and spread depending on the cell type nature, underlining the importance of the tumour microenvironment in dictating the drug response.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Francesca Amore
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
| | - Massimo Mannelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (S.M.); (F.A.); (T.M.); (M.M.); (M.M.)
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
| | - Elena Rapizzi
- Centro di Ricerca e Innovazione Sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
- ENS@T Center of Excellence, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2758245
| |
Collapse
|
15
|
Kampjut D, Sazanov LA. Structure of respiratory complex I – An emerging blueprint for the mechanism. Curr Opin Struct Biol 2022; 74:102350. [PMID: 35316665 PMCID: PMC7613608 DOI: 10.1016/j.sbi.2022.102350] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Complex I is one of the major respiratory complexes, conserved from bacteria to mammals. It oxidises NADH, reduces quinone and pumps protons across the membrane, thus playing a central role in the oxidative energy metabolism. In this review we discuss our current state of understanding the structure of complex I from various species of mammals, plants, fungi, and bacteria, as well as of several complex I-related proteins. By comparing the structural evidence from these systems in different redox states and data from mutagenesis and molecular simulations, we formulate the mechanisms of electron transfer and proton pumping and explain how they are conformationally and electrostatically coupled. Finally, we discuss the structural basis of the deactivation phenomenon in mammalian complex I.
Collapse
|
16
|
Therapeutic Targets for Regulating Oxidative Damage Induced by Ischemia-Reperfusion Injury: A Study from a Pharmacological Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8624318. [PMID: 35450409 PMCID: PMC9017553 DOI: 10.1155/2022/8624318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
Ischemia-reperfusion (I-R) injury is damage caused by restoring blood flow into ischemic tissues or organs. This complex and characteristic lesion accelerates cell death induced by signaling pathways such as apoptosis, necrosis, and even ferroptosis. In addition to the direct association between I-R and the release of reactive oxygen species and reactive nitrogen species, it is involved in developing mitochondrial oxidative damage. Thus, its mechanism plays a critical role via reactive species scavenging, calcium overload modulation, electron transport chain blocking, mitochondrial permeability transition pore activation, or noncoding RNA transcription. Other receptors and molecules reduce tissue and organ damage caused by this pathology and other related diseases. These molecular targets have been gradually discovered and have essential roles in I-R resolution. Therefore, the current study is aimed at highlighting the importance of these discoveries. In this review, we inquire about the oxidative damage receptors that are relevant to reducing the damage induced by oxidative stress associated with I-R. Several complications on surgical techniques and pathology interventions do not mitigate the damage caused by I-R. Nevertheless, these therapies developed using alternative targets could work as coadjuvants in tissue transplants or I-R-related pathologies
Collapse
|
17
|
Meireles CG, Lourenço de Lima C, Martins de Paula Oliveira M, Abe da Rocha Miranda R, Romano L, Yo-Stella Brashaw T, Neves da Silva Guerra E, de Assis Rocha Neves F, Chapple JP, Simeoni LA, Lofrano-Porto A. Antiproliferative effects of metformin in cellular models of pheochromocytoma. Mol Cell Endocrinol 2022; 539:111484. [PMID: 34637881 DOI: 10.1016/j.mce.2021.111484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/20/2022]
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors derived from adrenal medulla chromaffin cells. Malignancy and recurrence are rare but demand effective treatment. Metformin exerts antiproliferative effects in several cancer cell lines. We thus evaluated the effects of metformin on cell viability and proliferation, cellular respiration and AMPK-AKT-mTOR-HIFA proliferation pathway on a rat PCC cell line (PC12-Adh). We then addressed metformin's effects on the AMPK-AKT-mTOR-HIFA pathway on two human primary cultures: one from a VHL-mutant PCC and other from a sporadic PCC. Metformin (20 mM) inhibited PC12-Adh cell proliferation, and decreased oxygen consumption, ATP production and proton leak, in addition to loss of mitochondrial membrane potential. Further, metformin induced AMPK phosphorylation and impaired AMPK-PI3k-AKT-mTOR pathway activation. The mTOR pathway was also inhibited in human VHL-related PCC cells, however, in an AMPK-independent manner. Metformin-induced decrease of HIF1A levels was likely mediated by proteasomal degradation. Altogether our results suggest that metformin impairs PCC cellular proliferation.
Collapse
Affiliation(s)
- Cinthia Gabriel Meireles
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil.
| | - Caroline Lourenço de Lima
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil; Laboratory of Oral Histopathology, School of Health Sciences, University of Brasília, Brasília, Brazil
| | | | | | - Lisa Romano
- Center of Endocrinology, Queen Mary University of London, William Harvey Research Institute, London, England, United Kingdom
| | - Teisha Yo-Stella Brashaw
- Center of Endocrinology, Queen Mary University of London, William Harvey Research Institute, London, England, United Kingdom
| | | | | | - J Paul Chapple
- Center of Endocrinology, Queen Mary University of London, William Harvey Research Institute, London, England, United Kingdom
| | - Luiz Alberto Simeoni
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Adriana Lofrano-Porto
- Molecular Pharmacology Laboratory, School of Health Sciences, University of Brasília, Brasília, Brazil; Gonadal and Adrenal Diseases Clinics, University Hospital of Brasília, University of Brasília, Brasília, Brazil
| |
Collapse
|
18
|
Insulin signaling alters antioxidant capacity in the diabetic heart. Redox Biol 2021; 47:102140. [PMID: 34560411 PMCID: PMC8473541 DOI: 10.1016/j.redox.2021.102140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic cardiomyopathy is associated with an increase in oxidative stress. However, antioxidant therapy has shown a limited capacity to mitigate disease pathology. The molecular mechanisms responsible for the modulation of reactive oxygen species (ROS) production and clearance must be better defined. The objective of this study was to determine how insulin affects superoxide radical (O2•–) levels. O2•– production was evaluated in adult cardiomyocytes isolated from control and Akita (type 1 diabetic) mice by spin-trapping electron paramagnetic resonance spectroscopy. We found that the basal rates of O2•– production were comparable in control and Akita cardiomyocytes. However, culturing cardiomyocytes without insulin resulted in a significant increase in O2•– production only in the Akita group. In contrast, O2•– production was unaffected by high glucose and/or fatty acid supplementation. The increase in O2•– was due in part to a decrease in superoxide dismutase (SOD) activity. The PI3K inhibitor, LY294002, decreased Akita SOD activity when insulin was present, indicating that the modulation of antioxidant activity is through insulin signaling. The effect of insulin on mitochondrial O2•– production was evaluated in Akita mice that underwent a 1-week treatment of insulin. Mitochondria isolated from insulin-treated Akita mice produced less O2•– than vehicle-treated diabetic mice. Quantitative proteomics was performed on whole heart homogenates to determine how insulin affects antioxidant protein expression. Of 29 antioxidant enzymes quantified, thioredoxin 1 was the only one that was significantly enhanced by insulin treatment. In vitro analysis of thioredoxin 1 revealed a previously undescribed capacity of the enzyme to directly scavenge O2•–. These findings demonstrate that insulin has a role in mitigating cardiac oxidative stress in diabetes via regulation of endogenous antioxidant activity. Insulin decreases ROS production in T1D Akita cardiomyocytes. Insulin signaling downstream of PI3K is required for this effect. Insulin increases the antioxidant capacity in the Akita heart. Trx1 is upregulated by insulin in the Akita heart in vivo.
Collapse
|
19
|
Effects of Metformin on Spontaneous Ca 2+ Signals in Cultured Microglia Cells under Normoxic and Hypoxic Conditions. Int J Mol Sci 2021; 22:ijms22179493. [PMID: 34502402 PMCID: PMC8430509 DOI: 10.3390/ijms22179493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Microglial functioning depends on Ca2+ signaling. By using Ca2+ sensitive fluorescence dye, we studied how inhibition of mitochondrial respiration changed spontaneous Ca2+ signals in soma of microglial cells from 5-7-day-old rats grown under normoxic and mild-hypoxic conditions. In microglia under normoxic conditions, metformin or rotenone elevated the rate and the amplitude of Ca2+ signals 10-15 min after drug application. Addition of cyclosporin A, a blocker of mitochondrial permeability transition pore (mPTP), antioxidant trolox, or inositol 1,4,5-trisphosphate receptor (IP3R) blocker caffeine in the presence of rotenone reduced the elevated rate and the amplitude of the signals implying sensitivity to reactive oxygen species (ROS), and involvement of mitochondrial mPTP together with IP3R. Microglial cells exposed to mild hypoxic conditions for 24 h showed elevated rate and increased amplitude of Ca2+ signals. Application of metformin or rotenone but not phenformin before mild hypoxia reduced this elevated rate. Thus, metformin and rotenone had the opposing fast action in normoxia after 10-15 min and the slow action during 24 h mild-hypoxia implying activation of different signaling pathways. The slow action of metformin through inhibition of complex I could stabilize Ca2+ homeostasis after mild hypoxia and could be important for reduction of ischemia-induced microglial activation.
Collapse
|
20
|
Chen Q, Lesnefsky EJ. Metformin and myocardial ischemia and reperfusion injury: Moving toward "prime time" human use? Transl Res 2021; 229:1-4. [PMID: 33148475 DOI: 10.1016/j.trsl.2020.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Qun Chen
- Departments of Internal Medicine, Cardiology, Pauley Heart Center, Richmond, Virginia
| | - Edward J Lesnefsky
- Departments of Internal Medicine, Cardiology, Pauley Heart Center, Richmond, Virginia; Biochemistry, and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia; Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; Medical Service of the McGuire Veterans Affairs Medical Center, Richmond, Virginia.
| |
Collapse
|
21
|
Emelyanova L, Bai X, Yan Y, Bosnjak ZJ, Kress D, Warner C, Kroboth S, Rudic T, Kaushik S, Stoeckl E, Ross GR, Rizvi F, Tajik AJ, Jahangir A. Biphasic effect of metformin on human cardiac energetics. Transl Res 2021; 229:5-23. [PMID: 33045408 PMCID: PMC10655614 DOI: 10.1016/j.trsl.2020.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/01/2023]
Abstract
Metformin is the first-line medication for treatment of type 2 diabetes and has been shown to reduce heart damage and death. However, mechanisms by which metformin protects human heart remain debated. The aim of the study was to evaluate the cardioprotective effect of metformin on cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) and mitochondria isolated from human cardiac tissue. At concentrations ≤2.5 mM, metformin significantly increased oxygen consumption rate (OCR) in the hiPSC-CMs by activating adenosine monophosphate activated protein kinase (AMPK)-dependent signaling and enhancing mitochondrial biogenesis. This effect was abrogated by compound C, an inhibitor of AMPK. At concentrations >5 mM, metformin inhibited the cellular OCR and triggered metabolic reprogramming by enhancing glycolysis and glutaminolysis in the cardiomyocytes. In isolated cardiac mitochondria, metformin did not increase the OCR at any concentrations but inhibited the OCR starting at 1 mM through direct inhibition of electron-transport chain complex I. This was associated with reduction of superoxide production and attenuation of Ca2+-induced mitochondrial permeability transition pore (mPTP) opening in the mitochondria. Thus, in human heart, metformin might improve cardioprotection due to its biphasic effect on mitochondria: at low concentrations, it activates mitochondrial biogenesis via AMPK signaling and increases the OCR; at high concentrations, it inhibits the respiration by directly affecting the activity of complex I, reduces oxidative stress and delays mPTP formation. Moreover, metformin at high concentrations causes metabolic reprogramming by enhancing glycolysis and glutaminolysis. These effects can be a beneficial adjunct to patients with impaired endogenous cardioprotective responses.
Collapse
Affiliation(s)
- Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin.
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zeljko J Bosnjak
- Departments of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David Kress
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| | - Catherine Warner
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Stacie Kroboth
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| | - Teodore Rudic
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Sirisha Kaushik
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Elizabeth Stoeckl
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Gracious R Ross
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - Farhan Rizvi
- Center for Integrative Research on Cardiovascular Aging, Advocate Aurora Research Institute, Milwaukee, Wisconsin
| | - A Jamil Tajik
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| | - Arshad Jahangir
- Aurora Cardiovascular and Thoracic Services, St. Luke's Medical Center, Advocate Aurora Health Care, Milwaukee, Wisconsin
| |
Collapse
|
22
|
Drzewoski J, Hanefeld M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals (Basel) 2021; 14:122. [PMID: 33562458 PMCID: PMC7915435 DOI: 10.3390/ph14020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin, one of the oldest oral antidiabetic agents and still recommended by almost all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become the medication with steadily increasing potential therapeutic indications. A broad spectrum of experimental and clinical studies showed that metformin has a pleiotropic activity and favorable effect in different pathological conditions, including prediabetes, type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM). Moreover, there are numerous studies, meta-analyses and population studies indicating that metformin is safe and well tolerated and may be associated with cardioprotective and nephroprotective effect. Recently, it has also been reported in some studies, but not all, that metformin, besides improvement of glucose homeostasis, may possibly reduce the risk of cancer development, inhibit the incidence of neurodegenerative disease and prolong the lifespan. This paper presents some arguments supporting the initiation of metformin in patients with newly diagnosed T2DM, especially those without cardiovascular risk factors or without established cardiovascular disease or advanced kidney insufficiency at the time of new guidelines favoring new drugs with pleotropic effects complimentary to glucose control. Moreover, it focuses on the potential beneficial effects of metformin in patients with T2DM and coexisting chronic diseases.
Collapse
Affiliation(s)
- Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Markolf Hanefeld
- Medical Clinic III, Department of Medicine Technical University Dresden, 01307 Dresden, Germany;
| |
Collapse
|
23
|
Xu Y, Xue D, Bankhead A, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 2020; 63:14276-14307. [PMID: 33103432 DOI: 10.1021/acs.jmedchem.0c01013] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Certain subtypes of cancer cells require oxidative phosphorylation (OXPHOS) to survive. Increased OXPHOS dependency is frequently a hallmark of cancer stem cells and cells resistant to chemotherapy and targeted therapies. Suppressing the OXPHOS function might also influence the tumor microenvironment by alleviating hypoxia and improving the antitumor immune response. Thus, targeting OXPHOS is a promising strategy to treat various cancers. A growing arsenal of therapeutic agents is under development to inhibit this biological process. This Perspective provides an overview of the structure and function of OXPHOS complexes, their biological functions in cancer, relevant research tools and models, as well as the limitations of OXPHOS as drug targets. We also focus on the current development status of OXPHOS inhibitors and potential therapeutic strategies to strengthen their clinical applications.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Skemiene K, Rekuviene E, Jekabsone A, Cizas P, Morkuniene R, Borutaite V. Comparison of Effects of Metformin, Phenformin, and Inhibitors of Mitochondrial Complex I on Mitochondrial Permeability Transition and Ischemic Brain Injury. Biomolecules 2020; 10:biom10101400. [PMID: 33019635 PMCID: PMC7600544 DOI: 10.3390/biom10101400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Damage to cerebral mitochondria, particularly opening of mitochondrial permeability transition pore (MPTP), is a key mechanism of ischemic brain injury, therefore, modulation of MPTP may be a potential target for a neuroprotective strategy in ischemic brain pathologies. The aim of this study was to investigate whether biguanides-metformin and phenformin as well as other inhibitors of Complex I of the mitochondrial electron transfer system may protect against ischemia-induced cell death in brain slice cultures by suppressing MPTP, and whether the effects of these inhibitors depend on the age of animals. Experiments were performed on brain slice cultures prepared from 5-7-day (premature) and 2-3-month old (adult) rat brains. In premature brain slice cultures, simulated ischemia (hypoxia plus deoxyglucose) induced necrosis whereas in adult rat brain slice cultures necrosis was induced by hypoxia alone and was suppressed by deoxyglucose. Phenformin prevented necrosis induced by simulated ischemia in premature and hypoxia-induced-in adult brain slices, whereas metformin was protective in adult brain slices cultures. In premature brain slices, necrosis was also prevented by Complex I inhibitors rotenone and amobarbital and by MPTP inhibitor cyclosporine A. The latter two inhibitors were protective in adult brain slices as well. Short-term exposure of cultured neurons to phenformin, metformin and rotenone prevented ionomycin-induced MPTP opening in intact cells. The data suggest that, depending on the age, phenformin and metformin may protect the brain against ischemic damage possibly by suppressing MPTP via inhibition of mitochondrial Complex I.
Collapse
|
25
|
Kampjut D, Sazanov LA. The coupling mechanism of mammalian respiratory complex I. Science 2020; 370:science.abc4209. [PMID: 32972993 DOI: 10.1126/science.abc4209] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial complex I couples NADH:ubiquinone oxidoreduction to proton pumping by an unknown mechanism. Here, we present cryo-electron microscopy structures of ovine complex I in five different conditions, including turnover, at resolutions up to 2.3 to 2.5 angstroms. Resolved water molecules allowed us to experimentally define the proton translocation pathways. Quinone binds at three positions along the quinone cavity, as does the inhibitor rotenone that also binds within subunit ND4. Dramatic conformational changes around the quinone cavity couple the redox reaction to proton translocation during open-to-closed state transitions of the enzyme. In the induced deactive state, the open conformation is arrested by the ND6 subunit. We propose a detailed molecular coupling mechanism of complex I, which is an unexpected combination of conformational changes and electrostatic interactions.
Collapse
Affiliation(s)
- Domen Kampjut
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | | |
Collapse
|
26
|
Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling. Cells 2020; 9:cells9092013. [PMID: 32883024 PMCID: PMC7565066 DOI: 10.3390/cells9092013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/25/2022] Open
Abstract
The greatest challenge in cancer therapy is posed by drug-resistant recurrence following treatment. Anticancer chemotherapy is largely focused on targeting the rapid proliferation and biosynthesis of cancer cells. This strategy has the potential to trigger autophagy, enabling cancer cell survival through the recycling of molecules and energy essential for biosynthesis, leading to drug resistance. Autophagy recycling contributes amino acids and ATP to restore mTOR complex 1 (mTORC1) activity, which leads to cell survival. However, autophagy with mTORC1 activation can be stalled by reducing the ATP level. We have previously shown that cytosolic NADH production supported by aldehyde dehydrogenase (ALDH) is critical for supplying ATP through oxidative phosphorylation (OxPhos) in cancer cell mitochondria. Inhibitors of the mitochondrial complex I of the OxPhos electron transfer chain and ALDH significantly reduce the ATP level selectively in cancer cells, terminating autophagy triggered by anticancer drug treatment. With the aim of overcoming drug resistance, we investigated combining the inhibition of mitochondrial complex I, using phenformin, and ALDH, using gossypol, with anticancer drug treatment. Here, we show that OxPhos targeting combined with anticancer drugs acts synergistically to enhance the anticancer effect in mouse xenograft models of various cancers, which suggests a potential therapeutic approach for drug-resistant cancer.
Collapse
|
27
|
Mitochondrial dysfunction in the fetoplacental unit in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165948. [PMID: 32866635 DOI: 10.1016/j.bbadis.2020.165948] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy that is associated with d-glucose intolerance and foeto-placental vascular dysfunction. GMD causes mitochondrial dysfunction in the placental endothelium and trophoblast. Additionally, GDM is associated with reduced placental oxidative phosphorylation due to diminished activity of the mitochondrial F0F1-ATP synthase (complex V). This phenomenon may result from a higher generation of reactive superoxide anion and nitric oxide. Placental mitochondrial biogenesis and mitophagy work in concert to maintain cell homeostasis and are vital mechanisms securing the efficient generation of ATP, whose demand is higher in pregnancy, ensuring foetal growth and development. Additional factors disturbing placental ATP synthase activity in GDM include pre-gestational maternal obesity or overweight, intracellular pH, miRNAs, fatty acid oxidation, and foetal (and 'placental') sex. GDM is also associated with maternal and foetal hyperinsulinaemia, altered circulating levels of adiponectin and leptin, and the accumulation of extracellular adenosine. Here, we reviewed the potential interplay between these molecules or metabolic conditions on the mechanisms of mitochondrial dysfunction in the foeto-placental unit in GDM pregnancies.
Collapse
|
28
|
Pharmacology of metformin - An update. Eur J Pharmacol 2019; 865:172782. [PMID: 31705902 DOI: 10.1016/j.ejphar.2019.172782] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023]
Abstract
Despite being a successful diabetes type 2 drug for more than a half-century in Europe, the mode of action of metformin is still debated. It is the purpose of this review to inform the reader about most recent findings for metformin with respect to its antidiabetic activity as well as proposed benefits beyond glucose control in humans. Clinical evidence now suggests that most of metformin benefits originate from its actions in the gut, involving hormone signaling by glucagon-like peptide 1 and peptide YY. Growth differentiation factor 15, also mainly produced in the gut, was first identified as a biomarker for metformin use but is now suggested to play a significant role in e.g. weight loss of prediabetics. The pharmacokinetics of the drug in humans as basis for pharmacodynamics, resulting in high tissue levels of the intestinal wall, including the colon, proven by biopsies, is presented. A critical survey of metformin actions on mitochondria, increasing the AMP/ATP ratio but also acting as a mild uncoupler, and of postulated new cellular targets (lysosomes) is included.
Collapse
|
29
|
Galkin A. Brain Ischemia/Reperfusion Injury and Mitochondrial Complex I Damage. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:1411-1423. [PMID: 31760927 DOI: 10.1134/s0006297919110154] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/08/2024]
Abstract
Ischemic stroke and neonatal hypoxic-ischemic encephalopathy are two of the leading causes of disability in adults and infants. The energy demands of the brain are provided by mitochondrial oxidative phosphorylation. Ischemia/reperfusion (I/R) affects the production of ATP in brain mitochondria, leading to energy failure and death of the affected tissue. Among the enzymes of the mitochondrial respiratory chain, mitochondrial complex I is the most sensitive to I/R; however, the mechanisms of its inhibition are poorly understood. This article reviews some of the existing data on the mitochondria impairment during I/R and proposes two distinct mechanisms of complex I damage emerging from recent studies. One mechanism is a reversible dissociation of natural flavin mononucleotide cofactor from the enzyme I after ischemia. Another mechanism is a modification of critical cysteine residue of complex I involved into the active/deactive conformational transition of the enzyme. I describe potential effects of these two processes in the development of mitochondrial I/R injury and briefly discuss possible neuroprotective strategies to ameliorate I/R brain injury.
Collapse
Affiliation(s)
- A Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University William Black Building, NY 10032, New York, USA.
| |
Collapse
|
30
|
Park J, Shim JK, Kang JH, Choi J, Chang JH, Kim SY, Kang SG. Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres. Neuro Oncol 2019; 20:954-965. [PMID: 29294080 DOI: 10.1093/neuonc/nox243] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Targeted approaches for treating glioblastoma (GBM) attempted to date have consistently failed, highlighting the imperative for treatment strategies that operate on different mechanistic principles. Bioenergetics deprivation has emerged as an effective therapeutic approach for various tumors. We have previously found that cancer cells preferentially utilize cytosolic NADH supplied by aldehyde dehydrogenase (ALDH) for ATP production through oxidative phosphorylation (OxPhos). This study is aimed at examining therapeutic responses and underlying mechanisms of dual inhibition of ALDH and OxPhos against GBM. Methods For inhibition of ALDH and OxPhos, the corresponding inhibitors, gossypol and phenformin were used. Biological functions, including ATP levels, stemness, invasiveness, and viability, were evaluated in GBM tumorspheres (TSs). Gene expression profiles were analyzed using microarray data. In vivo anticancer efficacy was examined in a mouse orthotopic xenograft model. Results Combined treatment of GBM TSs with gossypol and phenformin significantly reduced ATP levels, stemness, invasiveness, and cell viability. Consistently, this therapy substantially decreased expression of genes associated with stemness, mesenchymal transition, and invasion in GBM TSs. Supplementation of ATP using malate abrogated these effects, whereas knockdown of ALDH1L1 mimicked them, suggesting that disruption of ALDH-mediated ATP production is a key mechanism of this therapeutic combination. In vivo efficacy confirmed remarkable therapeutic responses to combined treatment with gossypol and phenformin. Conclusion Our findings suggest that dual inhibition of tumor bioenergetics is a novel and effective strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Hee Kang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
31
|
Uetrecht J. Mechanistic Studies of Idiosyncratic DILI: Clinical Implications. Front Pharmacol 2019; 10:837. [PMID: 31402866 PMCID: PMC6676790 DOI: 10.3389/fphar.2019.00837] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
The idiosyncratic nature of idiosyncratic drug-induced liver injury (IDILI) makes mechanistic studies very difficult, and little is known with certainty. However, the fact that the IDILI caused by some drugs is associated with specific HLA genotypes provides strong evidence that it is mediated by the adaptive immune system. This is also consistent with the histology and the general characteristics of IDILI. However, there are other mechanistic hypotheses. Various in vitro and in vivo systems have been used to test hypotheses. Two other hypotheses are mitochondrial injury and inhibition of the bile salt export pump. It is possible that these mechanisms are responsible for some cases of IDILI or that these mechanisms are complementary and are involved in initiating an immune response. In general, it is believed that the initiation of an immune response requires activation of antigen-presenting cells by molecules such as danger-associated molecular pattern molecules (DAMPs). An attractive hypothesis for the mechanism by which DAMPs induce an immune response is through the activation of inflammasomes. The dominant immune response in the liver is immune tolerance, and it is only when immune tolerance fails that significant liver injury occurs. Consistent with this concept, an animal model was developed in which immune checkpoint inhibition unmasked the ability of drugs to cause liver injury. Although it appears that the liver damage is mediated by the adaptive immune system, an innate immune response is required for an adaptive immune response. The innate immune response is not dependent on specific HLA genes or T cell receptors and may occur in most patients and animals treated with a drug that can cause IDILI. Studies of the subclinical innate immune response to drugs may provide important mechanistic clues and provide a method to screen drugs for their potential to cause IDILI.
Collapse
Affiliation(s)
- Jack Uetrecht
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Li LX, Liu MY, Jiang X, Xia ZH, Wang YX, An D, Wang HG, Heng B, Liu YQ. Metformin inhibits Aβ 25-35 -induced apoptotic cell death in SH-SY5Y cells. Basic Clin Pharmacol Toxicol 2019; 125:439-449. [PMID: 31220411 DOI: 10.1111/bcpt.13279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022]
Abstract
Metformin, a first-line drug for type-2 diabetes, plays a potentially protective role in preventing Alzheimer's disease (AD), but its underlying mechanism is unclear. In this study, Aβ25-35 -treated SH-SY5Y cells were used as a cell model of AD to investigate the neuroprotective effect of metformin, as well as its underlying mechanisms. We found that metformin decreased the cell apoptosis rate and death, ratio of Bcl-2/Bax, and expression of NR2A and NR2B, and increased the expression of LC3 in Aβ25-35 -treated SH-SY5Y cells. Metformin also reduced intracellular and extracellular Glu concentrations, as well as the intracellular concentration of Ca2+ and ROS in Aβ25-35 -treated SH-SY5Y cells. These findings suggest that metformin inhibits Aβ25-35 -treated SH-SY5Y cell death by inhibiting apoptosis, decreasing intracellular Ca2+ and ROS by reducing neurotoxicity of excitatory amino acids, and by possibly reversing autophagy disorder via regulating autophagy process.
Collapse
Affiliation(s)
- Li-Xia Li
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Meng-Yu Liu
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Jiang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhen-Hong Xia
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yu-Xiang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Di An
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Heng
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
33
|
Cho T, Wang X, Uetrecht J. Rotenone Increases Isoniazid Toxicity but Does Not Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-Induced Liver Injury. Chem Res Toxicol 2019; 32:1423-1431. [PMID: 31251588 DOI: 10.1021/acs.chemrestox.9b00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Idiosyncratic drug reactions (IDRs) significantly increase the risk of failure in drug development. The major IDR leading to drug candidate failure is idiosyncratic drug-induced liver injury (IDILI). Although most evidence suggests that IDRs are mediated by the immune system, there are other hypotheses, such as mitochondrial dysfunction. Many pharmaceutical companies routinely screen for mitochondrial toxicity in an attempt to "derisk" drug candidates. However, the basic hypothesis has never been rigorously tested. A major assay used for this screening involves measurement of inhibition of the mitochondrial electron transport chain. One study found that the combination of rotenone and isoniazid, which inhibit mitochondrial complex I and II, respectively, were synergistic in causing hepatocyte toxicity in vitro and suggested the combination of another drug that inhibited complex I would increase the risk of isoniazid-induced liver injury in patients. We tested this hypothesis in vivo where wild-type and PD-1-/- mice administered anti-CTLA-4, our impaired immune tolerance mouse model, were given 0.02% (w/v) rotenone in water or 0.1%, 0.05%, and 0.01% (w/w) rotenone alone or in combination with isoniazid in food. The cotreatment led to lethality in 100% of the animals receiving 0.1% rotenone and 0.2% isoniazid and 83% of the animals cotreated with 0.05% rotenone and 0.2% isoniazid in food. Nevertheless, there was no significant increase in GLDH or histological evidence of liver injury. No signs of toxicity were observed in any of the mice given rotenone or isoniazid alone. Even though inhibition of the mitochondrial electron transport chain did not lead to significant liver toxicity, it could provide danger signals that promote immune-mediated liver injury. However, rotenone did not significantly increase the liver injury induced by isoniazid in our impaired immune tolerance model. Overall, we conclude that inhibition of the mitochondrial electron transport chain is not a significant mechanism of IDILI.
Collapse
Affiliation(s)
- Tiffany Cho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Xijin Wang
- Department of Pharmaceutical Sciences, Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, Faculty of Pharmacy , University of Toronto , 144 College Street , Toronto , Ontario M5S 3M2 , Canada
| |
Collapse
|
34
|
Mohsin AA, Chen Q, Quan N, Rousselle T, Maceyka MW, Samidurai A, Thompson J, Hu Y, Li J, Lesnefsky EJ. Mitochondrial Complex I Inhibition by Metformin Limits Reperfusion Injury. J Pharmacol Exp Ther 2019; 369:282-290. [PMID: 30846619 DOI: 10.1124/jpet.118.254300] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Transient, reversible blockade of complex I during early reperfusion after ischemia limits cardiac injury. We studied the cardioprotection of high dose of metformin in cultured cells and mouse hearts via the novel mechanism of acute downregulation of complex I. The effect of high dose of metformin on complex I activity was studied in isolated heart mitochondria and cultured H9c2 cells. Protection with metformin was evaluated in H9c2 cells at reoxygenation and at early reperfusion in isolated perfused mouse hearts and in vivo regional ischemia reperfusion. Acute, high-dose metformin treatment inhibited complex I in ischemia-damaged mitochondria and in H9c2 cells following hypoxia. Accompanying the complex I modulation, high-dose metformin at reoxygenation decreased death in H9c2 cells. Acute treatment with high-dose metformin at the end of ischemia reduced infarct size following ischemia reperfusion in vitro and in vivo, including in the AMP kinase-dead mouse. Metformin treatment during early reperfusion improved mitochondrial calcium retention capacity, indicating decreased permeability transition pore (MPTP) opening. Acute, high-dose metformin therapy decreased cardiac injury through inhibition of complex I accompanied by attenuation of MPTP opening. Moreover, in contrast to chronic metformin treatment, protection by acute, high-dose metformin is independent of AMP-activated protein kinase activation. Thus, a single, high-dose metformin treatment at reperfusion reduces cardiac injury via modulation of complex I.
Collapse
Affiliation(s)
- Ahmed A Mohsin
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Qun Chen
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Nanhu Quan
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Thomas Rousselle
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Michael W Maceyka
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Arun Samidurai
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Jeremy Thompson
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Ying Hu
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Ji Li
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| | - Edward J Lesnefsky
- Department of Biochemistry and Molecular Biology (A.A.M., M.W.M., E.J.L.) and Pauley Heart Center, Division of Cardiology, Department of Internal Medicine (Q.C., A.S., J.T., Y.H., E.J.L.), Virginia Commonwealth University, Richmond, Virginia; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi (N.Q., T.R., J.L.); and Cardiology Section Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia (E.J.L.)
| |
Collapse
|
35
|
Lee S, Lee JS, Seo J, Lee SH, Kang JH, Song J, Kim SY. Targeting Mitochondrial Oxidative Phosphorylation Abrogated Irinotecan Resistance in NSCLC. Sci Rep 2018; 8:15707. [PMID: 30356107 PMCID: PMC6200737 DOI: 10.1038/s41598-018-33667-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022] Open
Abstract
Anticancer drug resistance is a major challenge of cancer therapy. We found that irinotecan-resistant NSCLC cells showed increased mitochondrial oxidative phosphorylation compared to the drug sensitive NSCLC cells. Previously, we found that combined inhibition of aldehyde dehydrogenase using gossypol, and mitochondrial complex I using phenformin, effectively reduced oxidative phosphorylation in NSCLC. Here, we showed that targeting oxidative phosphorylation with gossypol and phenformin abrogated irinotecan resistance in NSCLC. Furthermore, irinotecan treatment by blocking oxidative phosphorylation induced synergistic anti-cancer effect in NSCLC. The pre-clinical xenograft model of human NSCLC also demonstrated a therapeutic response to the dual targeting treatment. Therefore, this combination of gossypol and phenformin increases irinotecan sensitivity as well as preventing irinotecan resistance.
Collapse
Affiliation(s)
- Soohyun Lee
- Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jae-Seon Lee
- Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jinho Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Seon-Hyeong Lee
- Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Joon Hee Kang
- Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Soo-Youl Kim
- Tumor Microenvironment Research Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea.
| |
Collapse
|
36
|
de Mey S, Jiang H, Corbet C, Wang H, Dufait I, Law K, Bastien E, Verovski V, Gevaert T, Feron O, De Ridder M. Antidiabetic Biguanides Radiosensitize Hypoxic Colorectal Cancer Cells Through a Decrease in Oxygen Consumption. Front Pharmacol 2018; 9:1073. [PMID: 30337872 PMCID: PMC6178882 DOI: 10.3389/fphar.2018.01073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose: The anti-diabetic biguanide drugs metformin and phenformin exhibit antitumor activity in various models. However, their radiomodulatory effect under hypoxic conditions, particularly for phenformin, is largely unknown. This study therefore examines whether metformin and phenformin as mitochondrial complex I blockades could overcome hypoxic radioresistance through inhibition of oxygen consumption. Materials and Methods: A panel of colorectal cancer cells (HCT116, DLD-1, HT29, SW480, and CT26) was exposed to metformin or phenformin for 16 h at indicated concentrations. Afterward, cell viability was measured by MTT and colony formation assays. Apoptosis and reactive oxygen species (ROS) were detected by flow cytometry. Phosphorylation of AMP-activated protein kinase (AMPK) was examined by western blot. Mitochondria complexes activity and oxygen consumption rate (OCR) were measured by seahorse analyzer. The radiosensitivity of tumor cells was assessed by colony formation assay under aerobic and hypoxic conditions. The in vitro findings were further validated in colorectal CT26 tumor model. Results: Metformin and phenformin inhibited mitochondrial complex I activity and subsequently reduced OCR in a dose-dependent manner starting at 3 mM and 30 μM, respectively. As a result, the hypoxic radioresistance of tumor cells was counteracted by metformin and phenformin with an enhancement ratio about 2 at 9 mM and 100 μM, respectively. Regarding intrinsic radioresistance, both of them did not exhibit any effect although there was an increase of phosphorylation of AMPK and ROS production. In tumor-bearing mice, metformin or phenformin alone did not show any anti-tumor effect. While in combination with radiation, both of them substantially delayed tumor growth and enhanced radioresponse, respectively, by 1.3 and 1.5-fold. Conclusion: Our results demonstrate that metformin and phenformin overcome hypoxic radioresistance through inhibition of mitochondrial respiration, and provide a rationale to explore metformin and phenformin as hypoxic radiosensitizers.
Collapse
Affiliation(s)
- Sven de Mey
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kalun Law
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Valeri Verovski
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
37
|
Melnik S, Dvornikov D, Müller-Decker K, Depner S, Stannek P, Meister M, Warth A, Thomas M, Muley T, Risch A, Plass C, Klingmüller U, Niehrs C, Glinka A. Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification. Cell Discov 2018; 4:37. [PMID: 29977599 PMCID: PMC6028397 DOI: 10.1038/s41421-018-0033-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Use of the diabetes type II drug Metformin is associated with a moderately lowered risk of cancer incidence in numerous tumor entities. Studying the molecular changes associated with the tumor-suppressive action of Metformin we found that the oncogene SOX4, which is upregulated in solid tumors and associated with poor prognosis, was induced by Wnt/β-catenin signaling and blocked by Metformin. Wnt signaling inhibition by Metformin was surprisingly specific for cancer cells. Unraveling the underlying specificity, we identified Metformin and other Mitochondrial Complex I (MCI) inhibitors as inducers of intracellular acidification in cancer cells. We demonstrated that acidification triggers the unfolded protein response to induce the global transcriptional repressor DDIT3, known to block Wnt signaling. Moreover, our results suggest that intracellular acidification universally inhibits Wnt signaling. Based on these findings, we combined MCI inhibitors with H+ ionophores, to escalate cancer cells into intracellular hyper-acidification and ATP depletion. This treatment lowered intracellular pH both in vitro and in a mouse xenograft tumor model, depleted cellular ATP, blocked Wnt signaling, downregulated SOX4, and strongly decreased stemness and viability of cancer cells. Importantly, the inhibition of Wnt signaling occurred downstream of β-catenin, encouraging applications in treatment of cancers caused by APC and β-catenin mutations.
Collapse
Affiliation(s)
- Svitlana Melnik
- 1Division of Epigenetics and Cancer Risks Factors, German Cancer Research Center, Heidelberg, D-69120 Germany.,2DNA vectors, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Dmytro Dvornikov
- 3Division of Systems Biology and Signal Transduction, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Karin Müller-Decker
- 5Tumor Models Unit, Center for Preclinical Research, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Sofia Depner
- 3Division of Systems Biology and Signal Transduction, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Peter Stannek
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Michael Meister
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,7Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, D-69126 Germany
| | - Arne Warth
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,8Institute of Pathology, Heidelberg University Hospital, Heidelberg, 69120 Germany
| | - Michael Thomas
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,7Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, D-69126 Germany
| | - Tomas Muley
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,7Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, D-69126 Germany
| | - Angela Risch
- 1Division of Epigenetics and Cancer Risks Factors, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,9Department of Molecular Biology, University of Salzburg, Salzburg, 5020 Austria.,Cancer Cluster Salzburg, Salzburg, 5020 Austria
| | - Christoph Plass
- 1Division of Epigenetics and Cancer Risks Factors, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ursula Klingmüller
- 3Division of Systems Biology and Signal Transduction, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, D-69120 Germany.,11Institute of Molecular Biology (IMB), Mainz, 55128 Germany
| | - Andrey Glinka
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, D-69120 Germany
| |
Collapse
|
38
|
Jaeschke H, Ramachandran A. Oxidant Stress and Lipid Peroxidation in Acetaminophen Hepatotoxicity. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2018; 5:145-158. [PMID: 29682614 PMCID: PMC5903282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of liver injury and acute liver failure in many western countries. The mechanism of APAP-induced hepatocyte necrosis has been investigated extensively. The formation of a reactive metabolite and its binding to cellular proteins was initially thought to be responsible for cell death. A competing hypothesis was introduced that questioned the relevance of protein binding and instead suggested that P450-derived oxidant stress and lipid peroxidation causes APAP-induced liver injury. However, work over the last 15 years has reconciled some of these apparent contradictory hypotheses. This review summarizes the present state of knowledge on the role of reactive oxygen species (ROS) in APAP hepatotoxicity. Detailed investigations into the sources and relevance of the oxidant stress have clearly shown the critical role of the electron transport chain of mitochondria as main source of the oxidant stress. Other potential sources of ROS such as cytochrome P450 enzymes or NADPH oxidase on phagocytes are of limited relevance. The mitochondria-derived superoxide and peroxynitrite formation is initiated by the binding of the reactive metabolite to mitochondrial proteins and the amplification by mitogen activated protein kinases. The consequences of this oxidant stress are the opening of the mitochondrial membrane permeability transition pore with cessation of ATP synthesis, nuclear DNA fragmentation and ultimately cell necrosis. Lipid peroxidation is not a relevant mechanism of cell death but can be a marker of ROS formation. These mechanistic insights suggest that targeting mitochondrial oxidant stress is a promising therapeutic option for APAP hepatotoxicity.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
39
|
Cameron AR, Logie L, Patel K, Erhardt S, Bacon S, Middleton P, Harthill J, Forteath C, Coats JT, Kerr C, Curry H, Stewart D, Sakamoto K, Repiščák P, Paterson MJ, Hassinen I, McDougall G, Rena G. Metformin selectively targets redox control of complex I energy transduction. Redox Biol 2018; 14:187-197. [PMID: 28942196 PMCID: PMC5609876 DOI: 10.1016/j.redox.2017.08.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/15/2017] [Accepted: 08/25/2017] [Indexed: 11/24/2022] Open
Abstract
Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled.
Collapse
Affiliation(s)
- Amy R Cameron
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Lisa Logie
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Kashyap Patel
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland, UK
| | - Stefan Erhardt
- Institute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Sandra Bacon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Paul Middleton
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Jean Harthill
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Calum Forteath
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Josh T Coats
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Calum Kerr
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Heather Curry
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Derek Stewart
- Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK; Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Kei Sakamoto
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland, UK
| | - Peter Repiščák
- Institute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Ilmo Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Gordon McDougall
- Environmental and Biochemical Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Graham Rena
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
40
|
Kang JH, Lee SH, Lee JS, Nam B, Seong TW, Son J, Jang H, Hong KM, Lee C, Kim SY. Aldehyde dehydrogenase inhibition combined with phenformin treatment reversed NSCLC through ATP depletion. Oncotarget 2018; 7:49397-49410. [PMID: 27384481 PMCID: PMC5226516 DOI: 10.18632/oncotarget.10354] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 01/19/2023] Open
Abstract
Among ALDH isoforms, ALDH1L1 in the folate pathway showed highly increased expression in non-small-cell lung cancer cells (NSCLC). Based on the basic mechanism of ALDH converting aldehyde to carboxylic acid with by-product NADH, we suggested that ALDH1L1 may contribute to ATP production using NADH through oxidative phosphorylation. ALDH1L1 knockdown reduced ATP production by up to 60% concomitantly with decrease of NADH in NSCLC. ALDH inhibitor, gossypol, also reduced ATP production in a dose dependent manner together with decrease of NADH level in NSCLC. A combination treatment of gossypol with phenformin, mitochondrial complex I inhibitor, synergized ATP depletion, which efficiently induced cell death. Pre-clinical xenograft model using human NSCLC demonstrated a remarkable therapeutic response to the combined treatment of gossypol and phenformin.
Collapse
Affiliation(s)
- Joon Hee Kang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Seon-Hyeong Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Jae-Seon Lee
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Boas Nam
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Tae Wha Seong
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Jaekyoung Son
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Hyonchol Jang
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Kyeong Man Hong
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.,Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Republic of Korea
| | - Soo-Youl Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi-do 410-769, Republic of Korea
| |
Collapse
|
41
|
Sumi C, Okamoto A, Tanaka H, Nishi K, Kusunoki M, Shoji T, Uba T, Matsuo Y, Adachi T, Hayashi JI, Takenaga K, Hirota K. Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner. PLoS One 2018; 13:e0192796. [PMID: 29447230 PMCID: PMC5813975 DOI: 10.1371/journal.pone.0192796] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 12/14/2022] Open
Abstract
The intravenous anesthetic propofol (2,6-diisopropylphenol) has been used for the induction and maintenance of anesthesia and sedation in critical patient care. However, the rare but severe complication propofol infusion syndrome (PRIS) can occur, especially in patients receiving high doses of propofol for prolonged periods. In vivo and in vitro evidence suggests that the propofol toxicity is related to the impaired mitochondrial function. However, underlying molecular mechanisms remain unknown. Therefore, we investigated effects of propofol on cell metabolism and death using a series of established cell lines of various origins, including neurons, myocytes, and trans-mitochondrial cybrids, with defined mitochondrial DNA deficits. We demonstrated that supraclinical concentrations of propofol in not less than 50 μM disturbed the mitochondrial function and induced a metabolic switch, from oxidative phosphorylation to glycolysis, by targeting mitochondrial complexes I, II and III. This disturbance in mitochondrial electron transport caused the generation of reactive oxygen species, resulting in apoptosis. We also found that a predisposition to mitochondrial dysfunction, caused by a genetic mutation or pharmacological suppression of the electron transport chain by biguanides such as metformin and phenformin, promoted propofol-induced caspase activation and cell death induced by clinical relevant concentrations of propofol in not more than 25 μM. With further experiments with appropriate in vivo model, it is possible that the processes to constitute the molecular basis of PRIS are identified.
Collapse
Affiliation(s)
- Chisato Sumi
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Akihisa Okamoto
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Hiromasa Tanaka
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kenichiro Nishi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Munenori Kusunoki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tomohiro Shoji
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Takeo Uba
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Takehiko Adachi
- Department of Anesthesiology, Tazuke Kofukai Medical Institute Kitano Hospital, Osaka, Japan
| | | | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, Izumo, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- * E-mail:
| |
Collapse
|
42
|
Fontaine E. Metformin-Induced Mitochondrial Complex I Inhibition: Facts, Uncertainties, and Consequences. Front Endocrinol (Lausanne) 2018; 9:753. [PMID: 30619086 PMCID: PMC6304344 DOI: 10.3389/fendo.2018.00753] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/27/2018] [Indexed: 12/24/2022] Open
Abstract
Metformin is the most widely prescribed drug to treat patients with type II diabetes, for whom retrospective studies suggest that metformin may have anticancer properties. However, in experiments performed with isolated cells, authors have reported both pro- and anti-apoptotic effects of metformin. The exact molecular mechanism of action of metformin remains partly unknown despite its use for over 60 years and more than 17,000 articles in PubMed. Among the various widely recognized or recently proposed targets, it has been reported consistently that metformin is capable of inhibiting mitochondrial respiratory chain Complex I. Since most of the effects of metformin have been replicated by other inhibitors of Complex I, it has been suggested that the mechanism of action of metformin involved the inhibition of Complex I. However, compared to conventional Complex I inhibitors, the metformin-induced inhibition of Complex I has unique characteristics. Among these, the most original one is that the concentrations of metformin required to inhibit Complex I are lower in intact cells than in isolated mitochondria. Experiments with isolated mitochondria or Complex I were generally performed using millimolar concentrations of metformin, while plasma levels remain in the micromolar range in both human and animal studies, highlighting that metformin concentration is an important issue. In order to explain the effects in animals based on observations in cells and mitochondria, some authors proposed a direct effect of the drug on Complex I involving an accumulation of metformin inside the mitochondria while others proposed an indirect effect (the drug no longer having to diffuse into the mitochondria). This brief review attempts to: gather arguments for and against each hypothesis concerning the mechanism by which metformin inhibits Complex I and to highlight remaining questions about the toxicity mechanism of metformin for certain cancer cells.
Collapse
|
43
|
Huang J, Yang X, Peng X, Huang W. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis. Biochem Biophys Res Commun 2017; 493:921-927. [DOI: 10.1016/j.bbrc.2017.09.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 09/20/2017] [Indexed: 11/29/2022]
|
44
|
Vignoni M, Walalawela N, Bonesi SM, Greer A, Thomas AH. Lipophilic Decyl Chain–Pterin Conjugates with Sensitizer Properties. Mol Pharm 2017; 15:798-807. [DOI: 10.1021/acs.molpharmaceut.7b00136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mariana Vignoni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - Niluksha Walalawela
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Sergio M. Bonesi
- CIHIDECAR-CONICET, Departamento de Química Orgánica, FCEyN, Universidad de Buenos Aires, Pabellón 2, 3er Piso, Ciudad Universitaria, Buenos Aires, Argentina
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Andrés H. Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina
| |
Collapse
|
45
|
Galkin A, Moncada S. Modulation of the conformational state of mitochondrial complex I as a target for therapeutic intervention. Interface Focus 2017; 7:20160104. [PMID: 28382200 DOI: 10.1098/rsfs.2016.0104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, there have been significant advances in our understanding of the functions of mitochondrial complex I other than the generation of energy. These include its role in generation of reactive oxygen species, involvement in the hypoxic tissue response and its possible regulation by nitric oxide (NO) metabolites. In this review, we will focus on the hypoxic conformational change of this mitochondrial enzyme, the so-called active/deactive transition. This conformational change is physiological and relevant to the understanding of certain pathological conditions including, in the cardiovascular system, ischaemia/reperfusion (I/R) damage. We will discuss how complex I can be affected by NO metabolites and will outline some potential mitochondria-targeted therapies in I/R damage.
Collapse
Affiliation(s)
- Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, 5th floor, New York, NY 10065, USA; Queens University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Salvador Moncada
- Manchester Cancer Research Centre , University of Manchester , Wilmslow Road, Manchester M20 4QL , UK
| |
Collapse
|
46
|
Chen L, Wang L, Shen H, Lin H, Li D. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochem Biophys Res Commun 2017; 484:416-421. [PMID: 28137584 DOI: 10.1016/j.bbrc.2017.01.140] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
Drug repurposing represents an alternative therapeutic strategy to cancer treatment. The potent anti-cancer activities of a FDA-approved anthelminthic drug niclosamide have been demonstrated in various cancers. However, whether niclosamide is active against cervical cancer is unknown. In this study, we investigated the effects of niclosamide alone and its combination with paclitaxel in cervical cancer in vitro and in vivo. We found that niclosamide significantly inhibited proliferation and induced apoptosis of a panel of cervical cancer cell lines, regardless of their cellular origin and genetic pattern. Niclosamide also inhibited tumor growth in cervical cancer xenograft mouse model. Importantly, niclosamide significantly enhanced the responsiveness of cervical cancer cell to paclitaxel. We further found that niclosamide induced mitochondrial dysfunctions via inhibiting mitochondrial respiration, complex I activity and ATP generation, which led to oxidative stress. ROS scavenge agent N-acetyl-l-cysteine (NAC) completely reversed the effects of niclosamide in increasing cellular ROS, inhibiting proliferation and inducing apoptosis, suggesting that oxidative stress induction is the mechanism of action of niclosamide in cervical cancer cells. In addition, niclosamide significantly inhibited mammalian target of rapamycin (mTOR) signaling pathway in cervical cancer cells and its inhibitory effect on mTOR is modulated by oxidative stress. Our work suggests that niclosamide is a useful addition to the treatment armamentarium for cervical cancer and induction of oxidative stress may be a potential therapeutic strategy in cervical cancer.
Collapse
Affiliation(s)
- Liping Chen
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China
| | - Li Wang
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China
| | - Haibin Shen
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China
| | - Hui Lin
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China.
| | - Dan Li
- Department of Obstetrics and Gynecology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, China.
| |
Collapse
|
47
|
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annu Rev Pharmacol Toxicol 2017; 57:535-565. [PMID: 27860548 PMCID: PMC11060135 DOI: 10.1146/annurev-pharmtox-010715-103335] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria have emerged as key participants in and regulators of myocardial injury during ischemia and reperfusion. This review examines the sites of damage to cardiac mitochondria during ischemia and focuses on the impact of these defects. The concept that mitochondrial damage during ischemia leads to cardiac injury during reperfusion is addressed. The mechanisms that translate ischemic mitochondrial injury into cellular damage, during both ischemia and early reperfusion, are examined. Next, we discuss strategies that modulate and counteract these mechanisms of mitochondrial-driven injury. The new concept that mitochondria are not merely stochastic sites of oxidative and calcium-mediated injury but that they activate cellular responses of mitochondrial remodeling and cellular reactions that modulate the balance between cell death and recovery is reviewed, and the therapeutic implications of this concept are discussed.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia 23298; ,
- Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249;
| | - Qun Chen
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia 23298; ,
| | - Bernard Tandler
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106;
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106;
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
48
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Bastian A, Matsuzaki S, Humphries KM, Pharaoh GA, Doshi A, Zaware N, Gangjee A, Ihnat MA. AG311, a small molecule inhibitor of complex I and hypoxia-induced HIF-1α stabilization. Cancer Lett 2016; 388:149-157. [PMID: 27939695 DOI: 10.1016/j.canlet.2016.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
Cancer cells have a unique metabolic profile and mitochondria have been shown to play an important role in chemoresistance, tumor progression and metastases. This unique profile can be exploited by mitochondrial-targeted anticancer therapies. A small anticancer molecule, AG311, was previously shown to possess anticancer and antimetastatic activity in two cancer mouse models and to induce mitochondrial depolarization. This study defines the molecular effects of AG311 on the mitochondria to elucidate its observed efficacy. AG311 was found to competitively inhibit complex I activity at the ubiquinone-binding site. Complex I as a target for AG311 was further established by measuring oxygen consumption rate in tumor tissue isolated from AG311-treated mice. Cotreatment of cells and animals with AG311 and dichloroacetate, a pyruvate dehydrogenase kinase inhibitor that increases oxidative metabolism, resulted in synergistic cell kill and reduced tumor growth. The inhibition of mitochondrial oxygen consumption by AG311 was found to reduce HIF-1α stabilization by increasing oxygen tension in hypoxic conditions. Taken together, these results suggest that AG311 at least partially mediates its antitumor effect through inhibition of complex I, which could be exploited in its use as an anticancer agent.
Collapse
Affiliation(s)
- Anja Bastian
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Satoshi Matsuzaki
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Kenneth M Humphries
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Gavin A Pharaoh
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, United States
| | - Arpit Doshi
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Nilesh Zaware
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Michael A Ihnat
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States; Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, Oklahoma City, OK 73117, United States.
| |
Collapse
|
50
|
Gurley JM, Ilkayeva O, Jackson RM, Griesel BA, White P, Matsuzaki S, Qaisar R, Van Remmen H, Humphries KM, Newgard CB, Olson AL. Enhanced GLUT4-Dependent Glucose Transport Relieves Nutrient Stress in Obese Mice Through Changes in Lipid and Amino Acid Metabolism. Diabetes 2016; 65:3585-3597. [PMID: 27679559 PMCID: PMC5127250 DOI: 10.2337/db16-0709] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Abstract
Impaired GLUT4-dependent glucose uptake is a contributing factor in the development of whole-body insulin resistance in obese patients and obese animal models. Previously, we demonstrated that transgenic mice engineered to express the human GLUT4 gene under the control of the human GLUT4 promoter (i.e., transgenic [TG] mice) are resistant to obesity-induced insulin resistance. A likely mechanism underlying increased insulin sensitivity is increased glucose uptake in skeletal muscle. The purpose of this study was to investigate the broader metabolic consequences of enhanced glucose uptake into muscle. We observed that the expression of several nuclear and mitochondrially encoded mitochondrial enzymes was decreased in TG mice but that mitochondrial number, size, and fatty acid respiration rates were unchanged. Interestingly, both pyruvate and glutamate respiration rates were decreased in TG mice. Metabolomics analyses of skeletal muscle samples revealed that increased GLUT4 transgene expression was associated with decreased levels of some tricarboxylic acid intermediates and amino acids, whereas the levels of several glucogenic amino acids were elevated. Furthermore, fasting acyl carnitines in obese TG mice were decreased, indicating that increased GLUT4-dependent glucose flux decreases nutrient stress by altering lipid and amino acid metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Jami M Gurley
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Robert M Jackson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Beth A Griesel
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Phillip White
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Satochi Matsuzaki
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Rizwan Qaisar
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Holly Van Remmen
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Kenneth M Humphries
- Oklahoma Medical Research Foundation, Metabolism and Aging Program, Oklahoma City, OK
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Ann Louise Olson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|