1
|
Bueno D, Schäfer MK, Wang S, Schmeisser MJ, Methner A. NECAB family of neuronal calcium-binding proteins in health and disease. Neural Regen Res 2025; 20:1236-1243. [PMID: 38934399 PMCID: PMC11624857 DOI: 10.4103/nrr.nrr-d-24-00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The N-terminal EF-hand calcium-binding proteins 1-3 (NECAB1-3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-β A4 precursor protein-binding family A members 2 and 3, key regulators of amyloid-β production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not well-characterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein-protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.
Collapse
Affiliation(s)
- Diones Bueno
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael K.E. Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sudena Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Axel Methner
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Maliković J, Amrein I, Vinciguerra L, Wolfer DP, Slomianka L. NECAB1-3, parvalbumin, calbindin, and calretinin in the hippocampus of the European mole. Front Neuroanat 2024; 18:1452722. [PMID: 39296922 PMCID: PMC11408328 DOI: 10.3389/fnana.2024.1452722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Many calcium-binding proteins are expressed in a region-and cell-type specific manner in the mammalian hippocampus. Neuronal calcium-binding proteins (NECABs) are also expressed in hippocampal neurons, but few species have been investigated, with partly controversial findings. We here describe NECAB1, NECAB2 and NECAB3 as well as parvalbumin, calbindin, and calretinin in the European mole, and compare staining patterns of these proteins with those in mouse and other species. While subtle differences are present, NECAB staining in the European mole was generally similar to those in mouse. Common to European moles, mice, and other species we investigated, large hilar polymorphic cells, likely to represent mossy cells, were positive for all three NECABs. NECAB1 and 2 are suitable as markers for these cells along the entire septotemporal axis of the hippocampus. In the European mole, parvalbumin, calbindin and calretinin showed traits that have been described in other species before, albeit in a unique combination. In summary, we provide the first description of distribution of these proteins in the hippocampus of the European mole. This subterranean, insectivorous, and solitary living species belongs to the Order of Eulipotyphla. Despite many similarities with other subterranean species from the rodent order in terms of lifestyle, its hippocampus is cytoarchitecturally much more elaborated than in, e.g., mole-rats. It remains an open question if the hippocampal structure of the European mole reflects evolutionary constraints or ecology. Our descriptive study highlights the diversity in hippocampal cytoarchitecture even in small mammalian species.
Collapse
Affiliation(s)
- Jovana Maliković
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - David P Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lutz Slomianka
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Tsarouhas V, Liu D, Tsikala G, Engström Y, Strigini M, Samakovlis C. A surfactant lipid layer of endosomal membranes facilitates airway gas filling in Drosophila. Curr Biol 2023; 33:5132-5146.e5. [PMID: 37992718 DOI: 10.1016/j.cub.2023.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
The mechanisms underlying the construction of an air-liquid interface in respiratory organs remain elusive. Here, we use live imaging and genetic analysis to describe the morphogenetic events generating an extracellular lipid lining of the Drosophila airways required for their gas filing and animal survival. We show that sequential Rab39/Syx1A/Syt1-mediated secretion of lysosomal acid sphingomyelinase (Drosophila ASM [dASM]) and Rab11/35/Syx1A/Rop-dependent exosomal secretion provides distinct components for lipid film assembly. Tracheal inactivation of Rab11 or Rab35 or loss of Rop results in intracellular accumulation of exosomal, multi-vesicular body (MVB)-derived vesicles. On the other hand, loss of dASM or Rab39 causes luminal bubble-like accumulations of exosomal membranes and liquid retention in the airways. Inactivation of the exosomal secretion in dASM mutants counteracts this phenotype, arguing that the exosomal secretion provides the lipid vesicles and that secreted lysosomal dASM organizes them into a continuous film. Our results reveal the coordinated functions of extracellular vesicle and lysosomal secretions in generating a lipid layer crucial for airway gas filling and survival.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden.
| | - Dan Liu
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | - Georgia Tsikala
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; IMBB, 70013 Heraklion, Crete, Greece
| | - Ylva Engström
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden
| | | | - Christos Samakovlis
- Stockholm University, Department of Molecular Biosciences, The Wenner-Gren Institute, 10691 Stockholm, Sweden; Science for Life Laboratory, SciLifeLab, 171 65 Stockholm, Sweden; ECCPS, Justus Liebig University of Giessen, 35390 Giessen, Germany.
| |
Collapse
|
4
|
Udagawa H, Funahashi N, Nishimura W, Uebanso T, Kawaguchi M, Asahi R, Nakajima S, Nammo T, Hiramoto M, Yasuda K. Glucocorticoid receptor-NECAB1 axis can negatively regulate insulin secretion in pancreatic β-cells. Sci Rep 2023; 13:17958. [PMID: 37863964 PMCID: PMC10589354 DOI: 10.1038/s41598-023-44324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The mechanisms of impaired glucose-induced insulin secretion from the pancreatic β-cells in obesity have not yet been completely elucidated. Here, we aimed to assess the effects of adipocyte-derived factors on the functioning of pancreatic β-cells. We prepared a conditioned medium using 3T3-L1 cell culture supernatant collected at day eight (D8CM) and then exposed the rat pancreatic β-cell line, INS-1D. We found that D8CM suppressed insulin secretion in INS-1D cells due to reduced intracellular calcium levels. This was mediated by the induction of a negative regulator of insulin secretion-NECAB1. LC-MS/MS analysis results revealed that D8CM possessed steroid hormones (cortisol, corticosterone, and cortisone). INS-1D cell exposure to cortisol or corticosterone increased Necab1 mRNA expression and significantly reduced insulin secretion. The increased expression of Necab1 and reduced insulin secretion effects from exposure to these hormones were completely abolished by inhibition of the glucocorticoid receptor (GR). NECAB1 expression was also increased in the pancreatic islets of db/db mice. We demonstrated that the upregulation of NECAB1 was dependent on GR activation, and that binding of the GR to the upstream regions of Necab1 was essential for this effect. NECAB1 may play a novel role in the adipoinsular axis and could be potentially involved in the pathophysiology of obesity-related diabetes mellitus.
Collapse
Affiliation(s)
- Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Nobuaki Funahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, 286-8686, Japan
- Division of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
5
|
Wang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, Chen S, Yin P. Rab3 and synaptotagmin proteins in the regulation of vesicle fusion and neurotransmitter release. Life Sci 2022; 309:120995. [PMID: 36167148 DOI: 10.1016/j.lfs.2022.120995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
Abstract
Ca2+-triggered neurotransmitter release involves complex regulatory mechanisms, including a series of protein-protein interactions. Three proteins, synaptobrevin (VAMP), synaptosomal-associated protein of 25kDa (SNAP-25) and syntaxin, constitute the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complex that plays key roles in controlling vesicle fusion and exocytosis. Many other proteins participate in the regulation of the processes via direct and/or indirect interaction with the SNARE complex. Although much effort has been made, the regulatory mechanism for exocytosis is still not completely clear. Accumulated evidence indicates that the small GTPase Rab3 and synaptotagmin proteins play important regulatory roles during vesicle fusion and neurotransmitter release. This review outlines our present understanding of the two regulatory proteins, with the focus on the interaction of Rab3 with synaptotagmin in the regulatory process.
Collapse
Affiliation(s)
- Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Minlu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Panfeng Yin
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
6
|
Chen Z, Long H, Guo J, Wang Y, He K, Tao C, Li X, Jiang K, Guo S, Pi Y. Autism-Risk Gene necab2 Regulates Psychomotor and Social Behavior as a Neuronal Modulator of mGluR1 Signaling. Front Mol Neurosci 2022; 15:901682. [PMID: 35909444 PMCID: PMC9326220 DOI: 10.3389/fnmol.2022.901682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundDe novo deletion of the neuronal calcium-binding protein 2 (NECAB2) locus is associated with idiopathic autism spectrum disorders (ASDs). The in vivo function of NECAB2 in the brain remains largely elusive.MethodsWe investigated the morphological and behavioral profiles of both necab2 knock-out and overexpression zebrafish models. The expression pattern and molecular role of necab2 were probed through a combination of in vitro and in vivo assays.ResultsWe show that Necab2 is a neuronal specific, cytoplasmic, and membrane-associated protein, abundantly expressed in the telencephalon, habenula, and cerebellum. Necab2 is distributed peri-synaptically in subsets of glutamatergic and GABAergic neurons. CRISPR/Cas9-generated necab2 knock-out zebrafish display normal morphology but exhibit a decrease in locomotor activity and thigmotaxis with impaired social interaction only in males. Conversely, necab2 overexpression yields behavioral phenotypes opposite to the loss-of-function. Proteomic profiling uncovers a role of Necab2 in modulating signal transduction of G-protein coupled receptors. Specifically, co-immunoprecipitation, immunofluorescence, and confocal live-cell imaging suggest a complex containing NECAB2 and the metabotropic glutamate receptor 1 (mGluR1). In vivo measurement of phosphatidylinositol 4,5-bisphosphate further substantiates that Necab2 promotes mGluR1 signaling.ConclusionsNecab2 regulates psychomotor and social behavior via modulating a signaling cascade downstream of mGluR1.
Collapse
Affiliation(s)
- Zexu Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Han Long
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianhua Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiran Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Kezhe He
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenchen Tao
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Keji Jiang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Su Guo,
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Yan Pi,
| |
Collapse
|
7
|
Shimojo M, Madara J, Pankow S, Liu X, Yates J, Südhof TC, Maximov A. Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes Dev 2019; 33:365-376. [PMID: 30808661 PMCID: PMC6411015 DOI: 10.1101/gad.320077.118] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022]
Abstract
Synaptotagmin-11 (Syt11) is a Synaptotagmin isoform that lacks an apparent ability to bind calcium, phospholipids, or SNARE proteins. While human genetic studies have linked mutations in the Syt11 gene to schizophrenia and Parkinson's disease, the localization or physiological role of Syt11 remain unclear. We found that in neurons, Syt11 resides on abundant vesicles that differ from synaptic vesicles and resemble trafficking endosomes. These vesicles recycle via the plasma membrane in an activity-dependent manner, but their exocytosis is slow and desynchronized. Constitutive knockout mice lacking Syt11 died shortly after birth, suggesting Syt11-mediated membrane transport is required for survival. In contrast, selective ablation of Syt11 in excitatory forebrain neurons using a conditional knockout did not affect life span but impaired synaptic plasticity and memory. Syt11-deficient neurons displayed normal secretion of fast neurotransmitters and peptides but exhibited a reduction of long-term synaptic potentiation. Hence, Syt11 is an essential component of a neuronal vesicular trafficking pathway that differs from the well-characterized synaptic vesicle trafficking pathway but is also essential for life.
Collapse
Affiliation(s)
- Masafumi Shimojo
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Joseph Madara
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
| | - Sandra Pankow
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92037, USA
| | - Xinran Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
| | - John Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California 92037, USA
| | - Thomas C Südhof
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
- Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, California 94035, USA
| | - Anton Maximov
- Department of Neuroscience, Scripps Research, La Jolla, California 92037, USA
- The Dorris Neuroscience, Scripps Research, La Jolla, California 92037, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas 75235, Texas, USA
| |
Collapse
|
8
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Finno CJ, Bordbari MH, Gianino G, Ming-Whitfield B, Burns E, Merkel J, Britton M, Durbin-Johnson B, Sloma EA, McMackin M, Cortopassi G, Rivas V, Barro M, Tran CK, Gennity I, Habib H, Xu L, Puschner B, Miller AD. An innate immune response and altered nuclear receptor activation defines the spinal cord transcriptome during alpha-tocopherol deficiency in Ttpa-null mice. Free Radic Biol Med 2018; 120. [PMID: 29526809 PMCID: PMC5940542 DOI: 10.1016/j.freeradbiomed.2018.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mice with deficiency in tocopherol (alpha) transfer protein gene develop peripheral tocopherol deficiency and sensory neurodegeneration. Ttpa-/- mice maintained on diets with deficient α-tocopherol (α-TOH) had proprioceptive deficits by six months of age, axonal degeneration and neuronal chromatolysis within the dorsal column of the spinal cord and its projections into the medulla. Transmission electron microscopy revealed degeneration of dorsal column axons. We addressed the potential pathomechanism of α-TOH deficient neurodegeneration by global transcriptome sequencing within the spinal cord and cerebellum. RNA-sequencing of the spinal cord in Ttpa-/- mice revealed upregulation of genes associated with the innate immune response, indicating a molecular signature of microglial activation as a result of tocopherol deficiency. For the first time, low level Ttpa expression was identified in the murine spinal cord. Further, the transcription factor liver X receptor (LXR) was strongly activated by α-TOH deficiency, triggering dysregulation of cholesterol biosynthesis. The aberrant activation of transcription factor LXR suppressed the normal induction of the transcription factor retinoic-related orphan receptor-α (RORA), which is required for neural homeostasis. Thus we find that α-TOH deficiency induces LXR, which may lead to a molecular signature of microglial activation and contribute to sensory neurodegeneration.
Collapse
Affiliation(s)
- Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States.
| | - Matthew H Bordbari
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Giuliana Gianino
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Brittni Ming-Whitfield
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Erin Burns
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Janel Merkel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, United States
| | - Blythe Durbin-Johnson
- Bioinformatics Core Facility, Genome Center, University of California, Davis, CA 95616, United States
| | - Erica A Sloma
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| | - Marissa McMackin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Gino Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Victor Rivas
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Marietta Barro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Cecilia K Tran
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Ingrid Gennity
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Hadi Habib
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, United States
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, United States
| |
Collapse
|
10
|
Bendahmane M, Bohannon KP, Bradberry MM, Rao TC, Schmidtke MW, Abbineni PS, Chon NL, Tran S, Lin H, Chapman ER, Knight JD, Anantharam A. The synaptotagmin C2B domain calcium-binding loops modulate the rate of fusion pore expansion. Mol Biol Cell 2018; 29:834-845. [PMID: 29444959 PMCID: PMC5905296 DOI: 10.1091/mbc.e17-11-0623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023] Open
Abstract
In chromaffin cells, the kinetics of fusion pore expansion vary depending on which synaptotagmin isoform (Syt-1 or Syt-7) drives release. Our recent studies have shown that fusion pores of granules harboring Syt-1 expand more rapidly than those harboring Syt-7. Here we sought to define the structural specificity of synaptotagmin action at the fusion pore by manipulating the Ca2+-binding C2B module. We generated a chimeric Syt-1 in which its C2B Ca2+-binding loops had been exchanged for those of Syt-7. Fusion pores of granules harboring a Syt-1 C2B chimera with all three Ca2+-binding loops of Syt-7 (Syt-1:7C2B123) exhibited slower rates of fusion pore expansion and neuropeptide cargo release relative to WT Syt-1. After fusion, this chimera also dispersed more slowly from fusion sites than WT protein. We speculate that the Syt-1:7 C2B123 and WT Syt-1 are likely to differ in their interactions with Ca2+ and membranes. Subsequent in vitro and in silico data demonstrated that the chimera exhibits a higher affinity for phospholipids than WT Syt-1. We conclude that the affinity of synaptotagmin for the plasma membrane, and the rate at which it releases the membrane, contribute in important ways to the rate of fusion pore expansion.
Collapse
Affiliation(s)
- Mounir Bendahmane
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Kevin P. Bohannon
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Mazdak M. Bradberry
- Department of Neuroscience, Howard Hughes Medical Institute. University of Wisconsin–Madison, Madison, WI 53705
| | - Tejeshwar C. Rao
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Nara L. Chon
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217
| | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217
| | - Edwin R. Chapman
- Department of Neuroscience, Howard Hughes Medical Institute. University of Wisconsin–Madison, Madison, WI 53705
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
11
|
Lo JH, Chen TT. Production of bioactive recombinant human Eb-peptide of pro-IGF-I and identification of binding components from the plasma membrane of human breast cancer cells (MDA-MB-231). Exp Cell Res 2017; 362:235-243. [PMID: 29191552 DOI: 10.1016/j.yexcr.2017.11.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 01/12/2023]
Abstract
E-peptide of the pro-Insulin-like growth factor-I (pro-IGF-I) is produced from pre-pro-IGF-I by proteolytic cleavage in the post-translational processing. The human Eb-peptide (hEb-peptide), derived from the E domain of pro-IGF-IB isoform, is a bioactive molecule whose exact physiological role remains elusive. Accumulated evidence reported from our laboratory indicated that hEb-peptide possesses activity against multiple hallmark characteristics of solid tumor in different cancer cell types. In human breast carcinoma cells (MDA-MB-231), it was demonstrated that hEb-peptide can promote cell attachment to substratum, inhibit colony formation in a semisolid medium, reduce cancer cell invasion, and inhibit cancer-induced angiogenesis. Like the action of other peptide hormones, these cellular responses triggered by hEb may be initiated through binding to a receptor molecule residing on the surface of the cell. Our laboratory and the others have previously provided evidence demonstrating the existence of hEb-peptide specific binding components residing on the cell membrane. In this study, we report the isolation and identification of eight protein molecules bound reversibly with hEb-peptide from the membrane preparation of MDA-MB-231 cells. Some of the identified proteins are known to be present at cell surface and function as receptors while the others are not. The functions of these molecules reveal strong correlation with the demonstrated activities of hEb-peptide on MDA-MB-231cells, suggesting hEb-peptide activity on cancer cells might be mediated by these molecules.
Collapse
Affiliation(s)
- Jay H Lo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
12
|
Guo T, Duan Z, Chen J, Xie C, Wang Y, Chen P, Wang X. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I. PeerJ 2017; 5:e2973. [PMID: 28194317 PMCID: PMC5301975 DOI: 10.7717/peerj.2973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/05/2022] Open
Abstract
Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches.
Collapse
Affiliation(s)
- Tianyao Guo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Zhigui Duan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Chunliang Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Ping Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University , Changsha , Hunan , P. R. of China
| |
Collapse
|
13
|
The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun 2016; 7:12961. [PMID: 27666821 PMCID: PMC5052689 DOI: 10.1038/ncomms12961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) binding to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces Ca2+ signalling, a mechanism that is implicated in various human cancers. In this study, we investigated the role of NNK-mediated Ca2+ signalling in lung cancer formation. We show significant overexpression of insulin-like growth factors (IGFs) in association with IGF-1R activation in human preneoplastic lung lesions in smokers. NNK induces voltage-dependent calcium channel (VDCC)-intervened calcium influx in airway epithelial cells, resulting in a rapid IGF2 secretion via the regulated pathway and thus IGF-1R activation. Silencing nAChR, α1 subunit of L-type VDCC, or various vesicular trafficking curators, including synaptotagmins and Rabs, or blockade of nAChR/VDCC-mediated Ca2+ influx significantly suppresses NNK-induced IGF2 exocytosis, transformation and tumorigenesis of lung epithelial cells. Publicly available database reveals inverse correlation between use of calcium channel blockers and lung cancer diagnosis. Our data indicate that NNK disrupts the regulated pathway of IGF2 exocytosis and promotes lung tumorigenesis. The binding of tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) to nicotinic acetylcholine receptors (nAChRs) induces calcium signalling. Here the authors show that NKK-induced calcium influx in airway epithelial cells triggers IGF2 secretion and tumourigenesis.
Collapse
|
14
|
Zhang MD, Barde S, Szodorai E, Josephson A, Mitsios N, Watanabe M, Attems J, Lubec G, Kovács GG, Uhlén M, Mulder J, Harkany T, Hökfelt T. Comparative anatomical distribution of neuronal calcium-binding protein (NECAB) 1 and -2 in rodent and human spinal cord. Brain Struct Funct 2016; 221:3803-23. [DOI: 10.1007/s00429-016-1191-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022]
|
15
|
Neuronal calcium-binding proteins 1/2 localize to dorsal root ganglia and excitatory spinal neurons and are regulated by nerve injury. Proc Natl Acad Sci U S A 2014; 111:E1149-58. [PMID: 24616509 DOI: 10.1073/pnas.1402318111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neuronal calcium (Ca(2+))-binding proteins 1 and 2 (NECAB1/2) are members of the phylogenetically conserved EF-hand Ca(2+)-binding protein superfamily. To date, NECABs have been explored only to a limited extent and, so far, not at all at the spinal level. Here, we describe the distribution, phenotype, and nerve injury-induced regulation of NECAB1/NECAB2 in mouse dorsal root ganglia (DRGs) and spinal cord. In DRGs, NECAB1/2 are expressed in around 70% of mainly small- and medium-sized neurons. Many colocalize with calcitonin gene-related peptide and isolectin B4, and thus represent nociceptors. NECAB1/2 neurons are much more abundant in DRGs than the Ca(2+)-binding proteins (parvalbumin, calbindin, calretinin, and secretagogin) studied to date. In the spinal cord, the NECAB1/2 distribution is mainly complementary. NECAB1 labels interneurons and a plexus of processes in superficial layers of the dorsal horn, commissural neurons in the intermediate area, and motor neurons in the ventral horn. Using CLARITY, a novel, bilaterally connected neuronal system with dendrites that embrace the dorsal columns like palisades is observed. NECAB2 is present in cell bodies and presynaptic boutons across the spinal cord. In the dorsal horn, most NECAB1/2 neurons are glutamatergic. Both NECAB1/2 are transported into dorsal roots and peripheral nerves. Peripheral nerve injury reduces NECAB2, but not NECAB1, expression in DRG neurons. Our study identifies NECAB1/2 as abundant Ca(2+)-binding proteins in pain-related DRG neurons and a variety of spinal systems, providing molecular markers for known and unknown neuron populations of mechanosensory and pain circuits in the spinal cord.
Collapse
|
16
|
Cheadle L, Biederer T. The novel synaptogenic protein Farp1 links postsynaptic cytoskeletal dynamics and transsynaptic organization. ACTA ACUST UNITED AC 2012; 199:985-1001. [PMID: 23209303 PMCID: PMC3518221 DOI: 10.1083/jcb.201205041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synaptic adhesion organizes synapses, yet the signaling pathways that drive and integrate synapse development remain incompletely understood. We screened for regulators of these processes by proteomically analyzing synaptic membranes lacking the synaptogenic adhesion molecule SynCAM 1. This identified FERM, Rho/ArhGEF, and Pleckstrin domain protein 1 (Farp1) as strongly reduced in SynCAM 1 knockout mice. Farp1 regulates dendritic filopodial dynamics in immature neurons, indicating roles in synapse formation. Later in development, Farp1 is postsynaptic and its 4.1 protein/ezrin/radixin/moesin (FERM) domain binds SynCAM 1, assembling a synaptic complex. Farp1 increases synapse number and modulates spine morphology, and SynCAM 1 requires Farp1 for promoting spines. In turn, SynCAM 1 loss reduces the ability of Farp1 to elevate spine density. Mechanistically, Farp1 activates the GTPase Rac1 in spines downstream of SynCAM 1 clustering, and promotes F-actin assembly. Farp1 furthermore triggers a retrograde signal regulating active zone composition via SynCAM 1. These results reveal a postsynaptic signaling pathway that engages transsynaptic interactions to coordinate synapse development.
Collapse
Affiliation(s)
- Lucas Cheadle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
17
|
Abstract
Inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD) is a multisystem degenerative disorder caused by mutations in the valosin-containing protein (VCP) gene. How missense mutations in this abundant, ubiquitously expressed, multifunctional protein lead to the degeneration of disparate tissues is unclear. VCP participates in diverse cellular functions by associating with an expanding collection of substrates and cofactors that dictate its functionality. In this issue of the JCI, Wang and colleagues have further expanded the VCP interactome by identifying neurofibromin-1 (NF1) as a novel VCP interactor in the CNS. IBMPFD-associated mutations disrupt binding of VCP to NF1, resulting in reduced synaptogenesis. Thus, aberrant interactions between VCP and NF1 may explain the dementia phenotype and cognitive delay observed in patients with IBMPFD and neurofibromatosis type 1.
Collapse
Affiliation(s)
- Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
18
|
Ferrari R, Hardy J, Momeni P. Frontotemporal dementia: from Mendelian genetics towards genome wide association studies. J Mol Neurosci 2011; 45:500-15. [PMID: 21898125 DOI: 10.1007/s12031-011-9635-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration is the most common cause of dementia of non-Alzheimer's type worldwide. It manifests, clinically, with behavioural changes and language impairment and is pathologically associated with tau- or ubiquitin-positive inclusions detected in neurons and glial cells of the frontal and temporal lobes in the brain. Genetic variations in the microtubule-associated protein tau and progranulin genes explain almost 50% of familial cases, whilst variations in TAR DNA-binding protein, charged multivescicular body protein 2B, valosin-containing protein and fused in sarcoma genes contribute to <5% of cases. The rapidly developing investigative techniques available to geneticists such as genome-wide association studies, whole-exome sequencing and, soon, whole-genome sequencing promise to contribute to the unravelling of the genetic architecture of this complex disease and, in the future, to the development of more sensitive, accurate and effective diagnostic and treatment measures.
Collapse
Affiliation(s)
- Raffaele Ferrari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, 3601 4th St. STOP 9410, Lubbock, TX 79430, USA.
| | | | | |
Collapse
|
19
|
Saw NMN, Kang SYA, Parsaud L, Han GA, Jiang T, Grzegorczyk K, Surkont M, Sun-Wada GH, Wada Y, Li L, Sugita S. Vacuolar H(+)-ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage. Mol Biol Cell 2011; 22:3394-409. [PMID: 21795392 PMCID: PMC3172264 DOI: 10.1091/mbc.e11-02-0155] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, although they might not be as critical for exocytosis as recently proposed. The Vo sector of the vacuolar H+-ATPase is a multisubunit complex that forms a proteolipid pore. Among the four isoforms (a1–a4) of subunit Voa, the isoform(s) critical for secretory vesicle acidification have yet to be identified. An independent function of Voa1 in exocytosis has been suggested. Here we investigate the function of Voa isoforms in secretory vesicle acidification and exocytosis by using neurosecretory PC12 cells. Fluorescence-tagged and endogenous Voa1 are primarily localized on secretory vesicles, whereas fluorescence-tagged Voa2 and Voa3 are enriched on the Golgi and early endosomes, respectively. To elucidate the functional roles of Voa1 and Voa2, we engineered PC12 cells in which Voa1, Voa2, or both are stably down-regulated. Our results reveal significant reductions in the acidification and transmitter uptake/storage of dense-core vesicles by knockdown of Voa1 and more dramatically of Voa1/Voa2 but not of Voa2. Overexpressing knockdown-resistant Voa1 suppresses the acidification defect caused by the Voa1/Voa2 knockdown. Unexpectedly, Ca2+-dependent peptide secretion is largely unaffected in Voa1 or Voa1/Voa2 knockdown cells. Our data demonstrate that Voa1 and Voa2 cooperatively regulate the acidification and transmitter uptake/storage of dense-core vesicles, whereas they might not be as critical for exocytosis as recently proposed.
Collapse
Affiliation(s)
- Ner Mu Nar Saw
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sharma M, Burré J, Südhof TC. CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 2010; 13:30-9. [PMID: 21151134 DOI: 10.1038/ncb2131] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/28/2010] [Indexed: 12/26/2022]
Abstract
A neuron forms thousands of presynaptic nerve terminals on its axons, far removed from the cell body. The protein CSPα resides in presynaptic terminals, where it forms a chaperone complex with Hsc70 and SGT. Deletion of CSPα results in massive neurodegeneration that impairs survival in mice and flies. In CSPα-knockout mice, levels of presynaptic SNARE complexes and the SNARE protein SNAP-25 are reduced, suggesting that CSPα may chaperone SNARE proteins, which catalyse synaptic vesicle fusion. Here, we show that the CSPα-Hsc70-SGT complex binds directly to monomeric SNAP-25 to prevent its aggregation, enabling SNARE-complex formation. Deletion of CSPα produces an abnormal SNAP-25 conformer that inhibits SNARE-complex formation, and is subject to ubiquitylation and proteasomal degradation. Even in wild-type mouse terminals, SNAP-25 degradation is regulated by synaptic activity; this degradation is decreased by CSPα overexpression, and enhanced by CSPα deletion. Thus, SNAP-25 function is maintained during rapid SNARE cycles by equilibrium between CSPα-dependent chaperoning and ubiquitin-dependent degradation, revealing unique protein quality-control machinery within the presynaptic compartment.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Molecular and Cellular Physiology, Stanford University, SIM1, 265 Campus Drive, Palo Alto, CA 94304-5453, USA.
| | | | | |
Collapse
|
21
|
Tavaré R, Torres Martin De Rosales R, Blower PJ, Mullen GED. Efficient site-specific radiolabeling of a modified C2A domain of synaptotagmin I with [99mTc(CO)3]+: a new radiopharmaceutical for imaging cell death. Bioconjug Chem 2010; 20:2071-81. [PMID: 19874007 DOI: 10.1021/bc900160j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the design and synthesis of a new Tc-99m labeled bioconjugate for cell-death imaging, based on C2A, the phosphatidylserine (PS)-binding domain of rat synaptotagmin I. Since several lysine residues in this protein are critical for PS binding, we engineered a new protein, C2AcH, to include the C-terminal sequence CKLAAALEHHHHHH, incorporating a free cysteine (for site-specific covalent modification) and a hexahistidine tag (for site-specific radiolabeling with [99mTc(CO)3(OH2)3]+). We also engineered a second derivative, C2Ac, in which the C-terminal sequence included only the C-terminal cysteine. These proteins were characterized by electrospray mass spectrometry, SDS/PAGE, and size exclusion chromatography and radiolabeled with [99mTc(CO)3(OH2)3]+. Conjugates of the proteins with the rhenium analogue [Re(CO)3(OH2)3]+ were also synthesized. Site-specific labeling was confirmed by performing a tryptic digest of rhenium tricarbonyl-labeled C2AcH, and only peptides containing the His-tag contained the [Re(CO)3]+. The labeled proteins were tested for binding to red blood cells (RBC) with exposed PS in a calcium dependent manner. Labeling 100 microg of C2AcH with [99mTc(CO)3(OH2)3]+ at 37 degrees C for 30 min gave a radiochemical yield of > 96%. However, C2AcH that had first been conjugated with fluorescein maleimide or iodoacetamide via the Cys residue gave only 50% and 83% radiochemical yield, respectively, after incubation for 30 min at 37 degrees C. Serum stability results indicated that >95% of radiolabeled C2AcH remained stable for at least 18 h at 37 degrees C. Site-specifically labeled C2AcH exhibited calcium-dependent binding to the PS on the RBC, whereas a nonspecifically modified derivative, C2AcH-B, in which lysines had been modified with benzyloxycarbonyloxy, did not. We conclude that (i) the combination of Cys and a His-tag greatly enhances the rate and efficiency of labeling with [99mTc(CO)3(OH2)3]+ compared to either the His-tag or the Cys alone, and this sequence deserves further evaluation as a radiolabeling tag; (ii) non-site-specific modification of C2A via lysine residues impairs target binding affinity; (iii) 99mTc-C2AcH has excellent radiolabeling, stability and PS binding characteristics and warrants in vivo evaluation as a cell-death imaging agent.
Collapse
Affiliation(s)
- Richard Tavaré
- Division of Imaging Sciences, King's College London, St. Thomas' Hospital, London SE17EH, United Kingdom
| | | | | | | |
Collapse
|
22
|
Sephton CF, Good SK, Atkin S, Dewey CM, Mayer P, Herz J, Yu G. TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 2009; 285:6826-34. [PMID: 20040602 DOI: 10.1074/jbc.m109.061846] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
TDP-43 is a DNA/RNA-binding protein implicated in multiple steps of transcriptional and post-transcriptional regulation of gene expression. Alteration of this multifunctional protein is associated with a number of neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration with ubiquitin positive inclusions. Whereas a pathological link to neurodegenerative disorders has been established, the cellular and physiological functions of TDP-43 remain unknown. In this study, we show that TDP-43 is a nuclear protein with persistent high-level expression during embryonic development and with progressively decreased protein levels during postnatal development. In mice where the TDP-43 gene (Tardbp) was disrupted using a gene trap that carries a beta-galactosidase marker gene, heterozygous (Tardbp(+/-)) mice are fertile and healthy, but intercrosses of Tardbp(+/-) mice yielded no viable homozygotic null (Tardbp(-/-)) mice. Indeed, Tardbp(-/-) embryos die between 3.5 and 8.5 days of development. Tardbp(-/-) blastocysts grown in cell culture display abnormal expansion of their inner cell mass. The pattern of beta-galactosidase staining at E9.5 Tardbp(+/-) embryos is predominantly restricted to the neuroepithelium and remains prominent in neural progenitors at E10.5-12.5. TDP-43 is detected in spinal cord progenitors and in differentiated motor neurons as well as in the dorsal root ganglia at E12.5. Beta-galactosidase staining of tissues from adult Tardbp(+/-) mice shows widespread expression of TDP-43, including prominent levels in various regions of the central nervous system afflicted in neurodegenerative disorders. These results indicate that TDP-43 is developmentally regulated and indispensible for early embryonic development.
Collapse
Affiliation(s)
- Chantelle F Sephton
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ciruela F, Albergaria C, Soriano A, Cuffí L, Carbonell L, Sánchez S, Gandía J, Fernández-Dueñas V. Adenosine receptors interacting proteins (ARIPs): Behind the biology of adenosine signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:9-20. [PMID: 19883624 DOI: 10.1016/j.bbamem.2009.10.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/26/2009] [Accepted: 10/27/2009] [Indexed: 01/18/2023]
Abstract
Adenosine is a well known neuromodulator in the central nervous system. As a consequence, adenosine can be beneficial in certain disorders and adenosine receptors will be potential targets for therapy in a variety of diseases. Adenosine receptors are G protein-coupled receptors, and are also expressed in a large variety of cells and tissues. Using these receptors as a paradigm of G protein-coupled receptors, the present review focus on how protein-protein interactions might contribute to neurotransmitter/neuromodulator regulation, based on the fact that accessory proteins impinge on the receptor/G protein interaction and therefore modulate receptor functioning. Besides affecting receptor signaling, these accessory components also play a key role in receptor trafficking, internalization and desensitization, as it will be reviewed here. In conclusion, the finding of an increasing number of adenosine receptors interacting proteins, and specially the molecular and functional integration of these accessory proteins into receptorsomes, will open new perspectives in the understanding of particular disorders where these receptors have been proved to be involved.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina-Bellvitge, Pavelló de Govern, Universitat de Barcelona, 08907 L'Hospitalet del Llobregat, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Han L, Jiang T, Han GA, Malintan NT, Xie L, Wang L, Tse FW, Gaisano HY, Collins BM, Meunier FA, Sugita S. Rescue of Munc18-1 and -2 double knockdown reveals the essential functions of interaction between Munc18 and closed syntaxin in PC12 cells. Mol Biol Cell 2009; 20:4962-75. [PMID: 19812250 DOI: 10.1091/mbc.e09-08-0712] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Munc18-1 binds to syntaxin-1A via two distinct sites referred to as the "closed" conformation and N terminus binding. The latter has been shown to stimulate soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated exocytosis, whereas the former is believed to be inhibitory or dispensable. To precisely define the contributions of each binding mode, we have engineered Munc18-1/-2 double knockdown neurosecretory cells and show that not only syntaxin-1A and -1B but also syntaxin-2 and -3 are significantly reduced as a result of Munc18-1 and -2 knockdown. Syntaxin-1 was mislocalized and the regulated secretion was abolished. We next examined the abilities of Munc18-1 mutants to rescue the defective phenotypes. Mutation (K46E/E59K) of Munc18-1 that selectively prevents binding to closed syntaxin-1 was unable to restore syntaxin-1 expression, localization, or secretion. In contrast, mutations (F115E/E132A) of Munc18-1 that selectively impair binding to the syntaxin-1 N terminus could still rescue the defective phenotypes. Our results indicate that Munc18-1 and -2 act in concert to support the expression of a broad range of syntaxins and to deliver syntaxin-1 to the plasma membrane. Our studies also indicate that the binding to the closed conformation of syntaxin is essential for Munc18-1 stimulatory action, whereas the binding to syntaxin N terminus plays a more limited role in neurosecretory cells.
Collapse
Affiliation(s)
- Liping Han
- Division of Fundamental Neurobiology, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Canela L, Fernández-Dueñas V, Albergaria C, Watanabe M, Lluís C, Mallol J, Canela EI, Franco R, Luján R, Ciruela F. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function. J Neurochem 2009; 111:555-67. [DOI: 10.1111/j.1471-4159.2009.06348.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget's disease of the bone and fronto-temporal dementia. Neuromuscul Disord 2009; 19:308-15. [PMID: 19380227 DOI: 10.1016/j.nmd.2009.01.009] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/15/2008] [Accepted: 01/18/2009] [Indexed: 01/18/2023]
Abstract
Mutations in valosin-containing protein (VCP) cause inclusion body myopathy (IBM) associated with Paget's disease of the bone (PDB) and fronto-temporal dementia (FTD) or IBMPFD. Although IBMPFD is a multisystem disorder, muscle weakness is the presenting symptom in greater than half of patients and an isolated symptom in 30%. Patients with the full spectrum of the disease make up only 12% of those affected; therefore it is important to consider and recognize IBMPFD in a neuromuscular clinic. The current review describes the skeletal muscle phenotype and common muscle histochemical features in IBMPFD. In addition to myopathic features; vacuolar changes and tubulofilamentous inclusions are found in a subset of patients. The most consistent findings are VCP, ubiquitin and TAR DNA-binding protein 43 (TDP-43) positive inclusions. VCP is a ubiquitously expressed multifunctional protein that is a member of the AAA+ (ATPase associated with various activities) protein family. It has been implicated in multiple cellular functions ranging from organelle biogenesis to protein degradation. Although the role of VCP in skeletal muscle is currently unknown, it is clear that VCP mutations lead to the accumulation of ubiquitinated inclusions and protein aggregates in patient tissue, transgenic animals and in vitro systems. We suggest that IBMPFD is novel type of protein surplus myopathy. Instead of accumulating a poorly degraded and aggregated mutant protein as seen in some myofibrillar and nemaline myopathies, VCP mutations disrupt its normal role in protein homeostasis resulting in the accumulation of ubiquitinated and aggregated proteins that are deleterious to skeletal muscle.
Collapse
Affiliation(s)
- Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | | | | |
Collapse
|
27
|
Arunachalam L, Han L, Tassew NG, He Y, Wang L, Xie L, Fujita Y, Kwan E, Davletov B, Monnier PP, Gaisano HY, Sugita S. Munc18-1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 cells. Mol Biol Cell 2008; 19:722-34. [PMID: 18077557 PMCID: PMC2230596 DOI: 10.1091/mbc.e07-07-0662] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/31/2007] [Accepted: 11/29/2007] [Indexed: 11/11/2022] Open
Abstract
Although Munc18-1 was originally identified as a syntaxin1-interacting protein, the physiological significance of this interaction remains unclear. In fact, recent studies of Munc18-1 mutants have suggested that Munc18-1 plays a critical role for docking of secretory vesicles, independent of syntaxin1 regulation. Here we investigated the role of Munc18-1 in syntaxin1 localization by generating stable neuroendocrine cell lines in which Munc18-1 was strongly down-regulated. In these cells, the secretion capability, as well as the docking of dense-core vesicles, was significantly reduced. More importantly, not only was the expression level of syntaxin1 reduced, but the localization of syntaxin1 at the plasma membrane was also severely perturbed. The mislocalized syntaxin1 resided primarily in the perinuclear region of the cells, in which it was highly colocalized with Secretogranin II, a marker protein for dense-core vesicles. In contrast, the expression level and the plasma membrane localization of SNAP-25 were not affected. Furthermore, the syntaxin1 localization and the secretion capability were restored upon transfection-mediated reintroduction of Munc18-1. Our results indicate that endogenous Munc18-1 plays a critical role for the plasma membrane localization of syntaxin1 in neuroendocrine cells and therefore necessitates the interpretation of Munc18-1 mutant phenotypes to be in terms of mislocalized syntaxin1.
Collapse
Affiliation(s)
| | - Liping Han
- *Division of Fundamental Neurobiology and
- Departments of Physiology and
| | - Nardos G. Tassew
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Yu He
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | - Li Wang
- *Division of Fundamental Neurobiology and
| | - Li Xie
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | | | - Edwin Kwan
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | - Bazbek Davletov
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | - Philippe P. Monnier
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
- Departments of Physiology and
| | - Herbert Y. Gaisano
- *Division of Fundamental Neurobiology and
- Departments of Physiology and
- Medicine, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada; and
| | - Shuzo Sugita
- *Division of Fundamental Neurobiology and
- Departments of Physiology and
| |
Collapse
|
28
|
Abstract
Synapses are asymmetric cell junctions with precisely juxtaposed presynaptic and postsynaptic sides. Transsynaptic adhesion complexes are thought to organize developing synapses. The molecular composition of these complexes, however, remains incompletely understood, precluding us from understanding how adhesion across the synaptic cleft guides synapse development. Here, we define two immunoglobulin superfamily members, SynCAM 1 and 2, that are expressed in neurons in the developing brain and localize to excitatory and inhibitory synapses. They function as cell adhesion molecules and assemble with each other across the synaptic cleft into a specific, transsynaptic SynCAM 1/2 complex. Additionally, SynCAM 1 and 2 promote functional synapses as they increase the number of active presynaptic terminals and enhance excitatory neurotransmission. The interaction of SynCAM 1 and 2 is affected by glycosylation, indicating regulation of this adhesion complex by posttranslational modification. The SynCAM 1/2 complex is representative for the highly defined adhesive patterns of this protein family, the four members of which are expressed in neurons in divergent expression profiles. SynCAMs 1, 2, and 3 each can bind themselves, yet preferentially assemble into specific, heterophilic complexes as shown for the synaptic SynCAM 1/2 interaction and a second complex comprising SynCAM 3 and 4. Our results define SynCAM proteins as components of novel heterophilic transsynaptic adhesion complexes that set up asymmetric interactions, with SynCAM proteins contributing to synapse organization and function.
Collapse
|
29
|
Canela L, Luján R, Lluís C, Burgueño J, Mallol J, Canela EI, Franco R, Ciruela F. The neuronal Ca2+-binding protein 2 (NECAB2) interacts with the adenosine A2A receptor and modulates the cell surface expression and function of the receptor. Mol Cell Neurosci 2007; 36:1-12. [PMID: 17689978 DOI: 10.1016/j.mcn.2007.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/08/2007] [Accepted: 05/22/2007] [Indexed: 11/20/2022] Open
Abstract
Heptaspanning membrane also known as G protein-coupled receptors (GPCR) do interact with a variety of intracellular proteins whose function is regulate receptor traffic and/or signaling. Using a yeast two-hybrid screen, NECAB2, a neuronal calcium binding protein, was identified as a binding partner for the adenosine A(2A) receptor (A(2A)R) interacting with its C-terminal domain. Co-localization, co-immunoprecipitation and pull-down experiments showed a close and specific interaction between A(2A)R and NECAB2 in both transfected HEK-293 cells and also in rat striatum. Immunoelectron microscopy detection of NECAB2 and A(2A)R in the rat striatopallidal structures indicated that both proteins are co-distributed in the same glutamatergic nerve terminals. The interaction of NECAB2 with A(2A)R modulated the cell surface expression, the ligand-dependent internalization and the receptor-mediated activation of the MAPK pathway. Overall, these results show that A(2A)R interacts with NECAB2 in striatal neurones co-expressing the two proteins and that the interaction is relevant for A(2A)R function.
Collapse
Affiliation(s)
- Laia Canela
- Institut d'Investigacions Biomèdiques August Pi i Sunyer and Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Monterrat C, Grise F, Benassy MN, Hémar A, Lang J. The calcium-sensing protein synaptotagmin 7 is expressed on different endosomal compartments in endocrine, neuroendocrine cells or neurons but not on large dense core vesicles. Histochem Cell Biol 2007; 127:625-32. [PMID: 17277932 DOI: 10.1007/s00418-007-0271-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2007] [Indexed: 11/24/2022]
Abstract
Synaptotagmin (syt) isoforms function as calcium sensor in post-Golgi transport although the precise transport step and compartment(s) concerned are still not fully resolved. As syt7 has been proposed to operate in lysosomal exocytosis and in exocytosis of large dense core vesicles (LDCVs), we have addressed the distribution of endogenous syt7 in insulin-secreting cells. These cells express different syt7 isoforms comparable to neurons. According to subcellular fractionation and quantitative confocal immunocytochemistry, syt7 is not found on LDCVs or on synaptic-like microvesicles but colocalizes with Rab7 on endosomes and to structures near to or at the plasma membrane. Similarly, endogenous syt7 was absent from LDCVs in pheochromocytoma PC12 cells. In contrast, syt7 localised to lysosomes in both, PC12 cells and hippocampal neurons. In conclusion, endogenous syt7 shows a wider distribution than previously reported but does not qualify as vesicular calcium sensor in SLMV or LDCV exocytosis according to its localisation.
Collapse
Affiliation(s)
- Carole Monterrat
- Institut Européen de Chimie et Biologie, Université de Bordeaux 1, JE 2390, 33607, Pessac/Bordeaux, France
| | | | | | | | | |
Collapse
|
31
|
DeLaBarre B, Christianson JC, Kopito RR, Brunger AT. Central pore residues mediate the p97/VCP activity required for ERAD. Mol Cell 2006; 22:451-62. [PMID: 16713576 DOI: 10.1016/j.molcel.2006.03.036] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/06/2006] [Accepted: 03/31/2006] [Indexed: 11/29/2022]
Abstract
The AAA-ATPase p97/VCP facilitates protein dislocation during endoplasmic reticulum-associated degradation (ERAD). To understand how p97/VCP accomplishes dislocation, a series of point mutants was made to disrupt distinguishing structural features of its central pore. Mutants were evaluated in vitro for ATPase activity in the presence and absence of synaptotagmin I (SytI) and in vivo for ability to process the ERAD substrate TCRalpha. Synaptotagmin induces a 4-fold increase in the ATPase activity of wild-type p97/VCP (p97/VCP(wt)), but not in mutants that showed an ERAD impairment. Mass spectrometry of crosslinked synaptotagmin . p97/VCP revealed interactions near Trp551 and Phe552. Additionally, His317, Arg586, and Arg599 were found to be essential for substrate interaction and ERAD. Except His317, which serves as an interaction nexus, these residues all lie on prominent loops within the D2 pore. These data support a model of substrate dislocation facilitated by interactions with p97/VCP's D2 pore.
Collapse
Affiliation(s)
- Byron DeLaBarre
- Howard Hughes Medical Institute, Stanford University, JH Clark Center E300-C, California 94305, USA
| | | | | | | |
Collapse
|
32
|
Abstract
We have recently proposed a mechanism to describe secretion, a fundamental process in all cells. That hypothesis, called porocytosis, embodies all available data and encompasses both forms of secretion, i.e., vesicular and constitutive. The current accepted view of exocytotic secretion involves the physical fusion of vesicle and plasma membranes; however, that hypothesized mechanism does not fit all available physiological data. Energetics of apposed lipid bilayers do not favor unfacilitated fusion. We consider that calcium ions (e.g., 10(-4) to 10(-3) M calcium in microdomains when elevated for 1 ms or less), whose mobility is restricted in space and time, establish salt bridges among adjacent lipid molecules. This establishes transient pores that span both the vesicle and plasma membrane lipid bilayers; the diameter of this transient pore would be approximately 1 nm (the diameter of a single lipid molecule). The lifetime of the transient pore is completely dependent on the duration of sufficient calcium ion levels. This places the porocytosis hypothesis for secretion squarely in the realm of the physical and physical chemical interactions of calcium and phospholipids and places mass action as the driving force for release of secretory material. The porocytosis hypothesis that we propose satisfies all of the observations and provides a framework to integrate our combined knowledge of vesicular and constitutive secretion.
Collapse
Affiliation(s)
- Robert B Silver
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | |
Collapse
|
33
|
Dreveny I, Pye VE, Beuron F, Briggs LC, Isaacson RL, Matthews SJ, McKeown C, Yuan X, Zhang X, Freemont PS. p97 and close encounters of every kind: a brief review. Biochem Soc Trans 2005; 32:715-20. [PMID: 15493996 DOI: 10.1042/bst0320715] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AAA (ATPase associated with various cellular activities) ATPase, p97, is a hexameric protein of chaperone-like function, which has been reported to interact with a number of proteins of seemingly unrelated functions. For the first time, we report a classification of these proteins and aim to elucidate any common structural or functional features they may share. The interactors are grouped into those containing ubiquitin regulatory X domains, which presumably bind to p97 in the same way as the p47 adaptor, and into non-ubiquitin regulatory X domain proteins of different functional subgroups that may employ a different mode of interaction (assuming they also bind directly to p97 and are not experimental artifacts). Future studies will show whether interacting proteins direct p97 to different cellular pathways or a common one and structural elucidation of these interactions will be crucial in understanding these underlying functions.
Collapse
Affiliation(s)
- I Dreveny
- Department of Biological Sciences, Centre for Structural Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Several members of the synaptotagmin (syt) family of vesicle proteins have been proposed to act as Ca2+ sensors on synaptic vesicles. The mechanism by which calcium activates this class of proteins has been the subject of controversy, yet relatively few detailed biophysical studies have been reported on how isoforms other than syt I respond to divalent metal ions. Here, we report a series of studies on the response of syt II to a wide range of metal ions. Analytical ultracentrifugation studies demonstrate that Ca2+ induces protein dimerization upon exposure to 5 mM Ca2+. Whereas Ba2+, Mg2+, or Sr2+ do not potentiate self-association as strongly as Ca2+, Pb2+ triggers self-association of syt II at concentrations as low as 10 microM. Partial proteolysis studies suggest that the various divalent metals cause different changes in the conformation of the protein. The high calcium concentrations required for self-association of syt II suggest that the oligomerized state of this protein is not a critical intermediate in vesicle fusion; however, low-affinity calcium sites on syt II may play a critical role in buffering calcium at the presynaptic active zone. In addition, the high propensity of lead to oligomerize syt II offers a possible molecular explanation for how lead interferes with calcium-evoked neurotransmitter release.
Collapse
Affiliation(s)
- Ricardo A García
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
35
|
Rancour DM, Park S, Knight SD, Bednarek SY. Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of arabidopsis CDC48. J Biol Chem 2004; 279:54264-74. [PMID: 15498773 DOI: 10.1074/jbc.m405498200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p97/CDC48 is a highly abundant hexameric AAA-ATPase that functions as a molecular chaperone in numerous diverse cellular activities. We have identified an Arabidopsis UBX domain-containing protein, PUX1, which functions to regulate the oligomeric structure of the Arabidopsis homolog of p97/CDC48, AtCDC48, as well as mammalian p97. PUX1 is a soluble protein that co-fractionates with non-hexameric AtCDC48 and physically interacts with AtCDC48 in vivo. Binding of PUX1 to AtCDC48 is mediated through the UBX-containing C-terminal domain. However, disassembly of the chaperone is dependent upon the N-terminal domain of PUX1. These findings provide evidence that the assembly and disassembly of the hexameric p97/CDC48 complex is a dynamic process. This new unexpected level of regulation for p97/CDC48 was demonstrated to be critical in vivo as pux1 loss-of-function mutants display accelerated growth relative to wild-type plants. These results suggest a role for AtCDC48 and PUX1 in regulating plant growth.
Collapse
Affiliation(s)
- David M Rancour
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
36
|
Rickman C, Craxton M, Osborne S, Davletov B. Comparative analysis of tandem C2 domains from the mammalian synaptotagmin family. Biochem J 2004; 378:681-6. [PMID: 14713287 PMCID: PMC1223993 DOI: 10.1042/bj20031407] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 10/30/2003] [Accepted: 11/12/2003] [Indexed: 11/17/2022]
Abstract
Intracellular membrane traffic is governed by a conserved set of proteins, including Syts (synaptotagmins). The mammalian Syt family includes 15 isoforms. Syts are membrane proteins that possess tandem C2 domains (C2AB) implicated in calcium-dependent phospholipid binding. We performed a pair-wise amino acid sequence comparison, together with functional studies of rat Syt C2ABs, to examine common and divergent properties within the mammalian family. Sequence analysis indicates three different C2AB classes, the members of which share a high degree of sequence similarity. All the other C2ABs are highly divergent in sequence. Nearly half of the Syt family does not exhibit calcium/phospholipid binding in comparison to Syt I, the major brain isoform. Syts do, however, possess a more conserved function, namely calcium-independent binding to target SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) heterodimers. All tested isoforms, except Syt XII and Syt XIII, bound the target SNARE heterodimer comprising syntaxin 1 and SNAP-25 (25 kDa synaptosome-associated protein). Our present study suggests that many Syt isoforms can function in membrane trafficking to interact with the target SNARE heterodimer on the pathway to calcium-triggered membrane fusion.
Collapse
Affiliation(s)
- Colin Rickman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
37
|
Shin OH, Maximov A, Lim BK, Rizo J, Südhof TC. Unexpected Ca2+-binding properties of synaptotagmin 9. Proc Natl Acad Sci U S A 2004; 101:2554-9. [PMID: 14983047 PMCID: PMC356988 DOI: 10.1073/pnas.0308477100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin 1 (Syt 1) functions as an essential Ca2+ sensor for the fast but not slow component of Ca2+-triggered exocytosis. One hypothesis to account for this selective function, based on the close homology of Syt 1 with synaptotagmin 9 (Syt 9), is that these Syts are redundant for the slow but not the fast component of release. We now show, however, that Syt 9 has unique properties that set it apart from Syt 1. Different from Syt 1, endogenous Syt 9 does not associate Ca2+ dependently or independently with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) protein complexes, and the Syt 9 C2B domain does not form Ca2+/phospholipid complexes, whereas such complexes are essential for Syt 1 function. Nevertheless, the C2A domain of Syt 9 functions as a Ca2+-binding module, suggesting that Syts 1 and 9 are Ca2+ sensors with similar Ca2+-binding sequences but distinct properties that indicate nonoverlapping functions.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, Dallas, TX 75390-9111, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
N-Ethylmaleimide sensitive factor (NSF) and p97/valosin-containing protein (VCP) are distantly related members of the ATPases associated with a variety of cellular activities (AAA) family of proteins. While both proteins have been implied in cellular morphology changes involving membrane compartments or vesicles, more recent evidence seems to imply that NSF is primarily involved in the soluble NSF attachment receptor (SNARE)-mediated vesicle fusion by disassembling the SNARE complex whereas p97/VCP is primarily involved in the extraction of membrane proteins. These functional differences are now corroborated by major structural differences based on recent crystallographic and cryo-electron microscopy studies. This review discusses these recent findings.
Collapse
Affiliation(s)
- Axel T Brunger
- Howard Hughes Medical Institute, and Department of Molecular and Cellular Physiology, and Stanford Synchrotron Radiation Laboratory, Stanford University, James H. Clark Center E300-C, 318 Campus Drive, Stanford, CA 94305-5432, USA.
| | | |
Collapse
|
39
|
Evans JH, Gerber SH, Murray D, Leslie CC. The calcium binding loops of the cytosolic phospholipase A2 C2 domain specify targeting to Golgi and ER in live cells. Mol Biol Cell 2004; 15:371-83. [PMID: 13679516 PMCID: PMC307554 DOI: 10.1091/mbc.e03-05-0338] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 08/06/2003] [Accepted: 08/26/2003] [Indexed: 11/11/2022] Open
Abstract
Translocation of cytosolic phospholipase A2 (cPLA2) to Golgi and ER in response to intracellular calcium mobilization is regulated by its calcium-dependent lipid-binding, or C2, domain. Although well studied in vitro, the biochemical characteristics of the cPLA2C2 domain offer no predictive value in determining its intracellular targeting. To understand the molecular basis for cPLA2C2 targeting in vivo, the intracellular targets of the synaptotagmin 1 C2A (Syt1C2A) and protein kinase Calpha C2 (PKCalphaC2) domains were identified in Madin-Darby canine kidney cells and compared with that of hybrid C2 domains containing the calcium binding loops from cPLA2C2 on Syt1C2A and PKCalphaC2 domain backbones. In response to an intracellular calcium increase, PKCalphaC2 targeted plasma membrane regions rich in phosphatidylinositol-4,5-bisphosphate, and Syt1C2A displayed a biphasic targeting pattern, first targeting phosphatidylinositol-4,5-bisphosphate-rich regions in the plasma membrane and then the trans-Golgi network. In contrast, the Syt1C2A/cPLA2C2 and PKCalphaC2/cPLA2C2 hybrids targeted Golgi/ER and colocalized with cPLA2C2. The electrostatic properties of these hybrids suggested that the membrane binding mechanism was similar to cPLA2C2, but not PKCalphaC2 or Syt1C2A. These results suggest that primarily calcium binding loops 1 and 3 encode structural information specifying Golgi/ER targeting of cPLA2C2 and the hybrid domains.
Collapse
Affiliation(s)
- John H Evans
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
40
|
Nagahama M, Suzuki M, Hamada Y, Hatsuzawa K, Tani K, Yamamoto A, Tagaya M. SVIP is a novel VCP/p97-interacting protein whose expression causes cell vacuolation. Mol Biol Cell 2003; 14:262-73. [PMID: 12529442 PMCID: PMC140243 DOI: 10.1091/mbc.02-07-0115] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
VCP/p97 is involved in a variety of cellular processes, including membrane fusion and ubiquitin-dependent protein degradation. It has been suggested that adaptor proteins such as p47 and Ufd1p confer functional versatility to VCP/p97. To identify novel adaptors, we searched for proteins that interact specifically with VCP/p97 by using the yeast two-hybrid system, and discovered a novel VCP/p97-interacting protein named small VCP/p97-interacting protein (SVIP). Rat SVIP is a 76-amino acid protein that contains two putative coiled-coil regions, and potential myristoylation and palmitoylation sites at the N terminus. Binding experiments revealed that the N-terminal coiled-coil region of SVIP, and the N-terminal and subsequent ATP-binding regions (ND1 domain) of VCP/p97, interact with each other. SVIP and previously identified adaptors p47 and ufd1p interact with VCP/p97 in a mutually exclusive manner. Overexpression of full-length SVIP or a truncated mutant did not markedly affect the structure of the Golgi apparatus, but caused extensive cell vacuolation reminiscent of that seen upon the expression of VCP/p97 mutants or polyglutamine proteins in neuronal cells. The vacuoles seemed to be derived from endoplasmic reticulum membranes. These results together suggest that SVIP is a novel VCP/p97 adaptor whose function is related to the integrity of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Masami Nagahama
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Sugita S, Ho A, Südhof TC. NECABs: a family of neuronal Ca(2+)-binding proteins with an unusual domain structure and a restricted expression pattern. Neuroscience 2002; 112:51-63. [PMID: 12044471 DOI: 10.1016/s0306-4522(02)00063-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ca(2+)-signalling plays a major role in regulating all aspects of neuronal function. Different types of neurons exhibit characteristic differences in the responses to Ca(2+)-signals. Correlating with differences in Ca(2+)-response are expression patterns of Ca(2+)-binding proteins that often serve as markers for various types of neurons. For example, in the cerebral cortex the EF-hand Ca(2+)-binding proteins parvalbumin and calbindin are primarily expressed in inhibitory interneurons where they influence Ca(2+)-dependent responses. We have now identified a new family of proteins called NECABs (neuronal Ca(2+)-binding proteins). NECABs contain an N-terminal EF-hand domain that binds Ca(2+), but different from many other neuronal EF-hand Ca(2+)-binding proteins, only a single EF-hand domain is present. At the C-terminus, NECABs include a DUF176 motif, a bacterial domain of unknown function that was previously not observed in eukaryotes. In rat at least three closely related NECAB genes are expressed either primarily in brain (NECABs 1 and 2) or in brain and muscle (NECAB 3). Immunocytochemistry revealed that NECAB 1 is restricted to subsets of neurons. In cerebral cortex, NECAB 1 is highly and uniformly expressed only in layer 4 pyramidal neurons, whereas in hippocampus only inhibitory interneurons and CA2 pyramidal cells contain NECAB 1. In these neurons, NECAB 1 fills the entire cytoplasm similar to other EF-hand Ca(2+)-binding proteins, and is not concentrated in any particular subcellular compartment. We suggest that NECABs represent a novel family of regulatory Ca(2+)-binding proteins with an unusual domain structure and a limited expression in a subclass of neurons.
Collapse
Affiliation(s)
- S Sugita
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, 75235, USA
| | | | | |
Collapse
|
42
|
Moldrich RX, Apricó K, Diwakarla S, O'Shea RD, Beart PM. Astrocyte mGlu(2/3)-mediated cAMP potentiation is calcium sensitive: studies in murine neuronal and astrocyte cultures. Neuropharmacology 2002; 43:189-203. [PMID: 12213273 DOI: 10.1016/s0028-3908(02)00111-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Signal transduction mechanisms of group II metabotropic glutamate receptors (mGlu(2/3)) remains a matter of some controversy, therefore we sought to gain new insights into its regulation by studying cAMP production in cultured neurons and astrocytes, and by examining inter-relationships of mGlu(2/3)-induced signalling with cellular calcium and various signalling cascades. mGlu(2/3) agonists 2R,4R-4-aminopyrrolidine-2,4-dicarboxylic acid (2R,4R-APDC) and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) inhibited 10 microM forskolin-stimulated production of cAMP in murine cortical neurons, striatal neurons and forebrain astrocytes in the absence of extracellular Ca(2+). These agonists potentiated cAMP production in the presence of 1.8 mM Ca(2+) in astrocytes only. This potentiation was dependent on the extracellular Ca(2+) concentration (0.001-10 mM) and inhibited by the mGlu(2/3) antagonist LY341495 (1 microM), adenosine deaminase (1 U/ml) and the adenosine A(2A) receptor antagonist ZM241385 (1 microM). Pre-incubation with the phospholipase C (PLC) inhibitor U73122 (10 microM), L-type Ca(2+)-channel blockers nifedipine (1 microM) and nimodipine (1 microM), the calmodulin kinase II (CaMKII) inhibitor KN-62 (10 microM) or pertussis toxin (100 ng/ml) inhibited this potentiation. In the absence of 1.8 mM Ca(2+), thapsigargin (1 microM) facilitated the potentiation of cAMP production. Measurement of the Ca(2+)-binding dye Fluo-3/AM showed that, compared to Ca(2+)-free conditions, thapsigargin and 1.8 mM Ca(2+) elevated [Ca(2+)](i) in astrocytes; the latter effect being prevented by L-type Ca(2+)-channel blockers. Potentiation of cAMP production was also demonstrated when astrocytes were stimulated with the beta-adrenoceptor agonist isoprenaline (10 microM) in the presence of 1.8 mM Ca(2+), but not with the adenosine agonist NECA (10 microM) or the group I mGlu receptor agonist DHPG (100 microM). BaCl(2) (1.8 mM) in place of Ca(2+) did not facilitate forskolin-stimulated mGlu(2/3)-potentiation of cAMP. In short, this study in astrocytes demonstrates that under physiological Ca(2+) and adenylate cyclase stimulation an elevation of cAMP production is achieved that is mediated by PLC/IP(3)- and CaMKII-dependent pathways and results in the release of endogenous adenosine which acts at G(s) protein-coupled A(2A) receptors. These findings provide new insights into mGlu(2/3) signalling in astrocytes versus neurons, and which could determine the functional phenotypy of astrocytes under physiological and pathological conditions.
Collapse
Affiliation(s)
- Randal X Moldrich
- Department of Pharmacology, Monash University, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
43
|
Sugita S, Shin OH, Han W, Lao Y, Südhof TC. Synaptotagmins form a hierarchy of exocytotic Ca(2+) sensors with distinct Ca(2+) affinities. EMBO J 2002; 21:270-80. [PMID: 11823420 PMCID: PMC125835 DOI: 10.1093/emboj/21.3.270] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synaptotagmins constitute a large family of membrane proteins implicated in Ca(2+)-triggered exocytosis. Structurally similar synaptotagmins are differentially localized either to secretory vesicles or to plasma membranes, suggesting distinct functions. Using measurements of the Ca(2+) affinities of synaptotagmin C2-domains in a complex with phospholipids, we now show that different synaptotagmins exhibit distinct Ca(2+) affinities, with plasma membrane synaptotagmins binding Ca(2+) with a 5- to 10-fold higher affinity than vesicular synaptotagmins. To test whether these differences in Ca(2+) affinities are functionally important, we examined the effects of synaptotagmin C2-domains on Ca(2+)-triggered exocytosis in permeabilized PC12 cells. A precise correlation was observed between the apparent Ca(2+) affinities of synaptotagmins in the presence of phospholipids and their action in PC12 cell exocytosis. This was extended to PC12 cell exocytosis triggered by Sr(2+), which was also selectively affected by high-affinity C2-domains of synaptotagmins. Together, our results suggest that Ca(2+) triggering of exocytosis involves tandem Ca(2+) sensors provided by distinct plasma membrane and vesicular synaptotagmins. According to this hypothesis, plasma membrane synaptotagmins represent high-affinity Ca(2+) sensors involved in slow Ca(2+)-dependent exocytosis, whereas vesicular synaptotagmins function as low-affinity Ca(2+) sensors specialized for fast Ca(2+)-dependent exocytosis.
Collapse
Affiliation(s)
- Shuzo Sugita
- The Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
Present address: Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Canada Corresponding author e-mail:
| | | | | | | | - Thomas C. Südhof
- The Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
Present address: Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Canada Corresponding author e-mail:
| |
Collapse
|
44
|
Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Südhof TC, Neher E, Verhage M. Munc18-1 promotes large dense-core vesicle docking. Neuron 2001; 31:581-91. [PMID: 11545717 DOI: 10.1016/s0896-6273(01)00391-9] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Secretory vesicles dock at the plasma membrane before Ca(2+) triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was reduced 10-fold in mouse chromaffin cells lacking Munc18-1, but the kinetic properties of the remaining release, including single fusion events, were not different from controls. Concomitantly, mutant cells displayed a 10-fold reduction in morphologically docked LDCVs. Moreover, acute overexpression of Munc18-1 in bovine chromaffin cells increased the amount of releasable vesicles and accelerated vesicle supply. We conclude that Munc18-1 functions upstream of SNARE complex formation and promotes LDCV docking.
Collapse
Affiliation(s)
- T Voets
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Plasma membrane wounds are repaired by a mechanism involving Ca(2+)-regulated exocytosis. Elevation in intracellular [Ca(2+)] triggers fusion of lysosomes with the plasma membrane, a process regulated by the lysosomal synaptotagmin isoform Syt VII. Here, we show that Ca(2+)-regulated exocytosis of lysosomes is required for the repair of plasma membrane disruptions. Lysosomal exocytosis and membrane resealing are inhibited by the recombinant Syt VII C(2)A domain or anti-Syt VII C(2)A antibodies, or by antibodies against the cytosolic domain of Lamp-1, which specifically aggregate lysosomes. We further demonstrate that lysosomal exocytosis mediates the resealing of primary skin fibroblasts wounded during the contraction of collagen matrices. These findings reveal a fundamental, novel role for lysosomes: as Ca(2+)-regulated exocytic compartments responsible for plasma membrane repair.
Collapse
Affiliation(s)
- A Reddy
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
46
|
Abstract
Recent work has established that different geometric arrangements of calcium channels are found at different presynaptic terminals, leading to a wide spectrum of calcium signals for triggering neurotransmitter release. These calcium signals are apparently transduced by synaptotagmins - calcium-binding proteins found in synaptic vesicles. New biochemical results indicate that all synaptotagmins undergo calcium-dependent interactions with membrane lipids and a number of other presynaptic proteins, but which of these interactions is responsible for calcium-triggered transmitter release remains unclear.
Collapse
Affiliation(s)
- G J Augustine
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
47
|
Caler EV, Chakrabarti S, Fowler KT, Rao S, Andrews NW. The Exocytosis-regulatory protein synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J Exp Med 2001; 193:1097-104. [PMID: 11342594 PMCID: PMC2193425 DOI: 10.1084/jem.193.9.1097] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Accepted: 03/21/2001] [Indexed: 11/30/2022] Open
Abstract
The intracellular protozoan parasite Trypanosoma cruzi causes Chagas' disease, which affects millions of people in Latin America. T. cruzi enters a large number of cell types by an unusual mechanism that involves Ca(2+)-triggered fusion of lysosomes with the plasma membrane. Here we show that synaptotagmin VII (Syt VII), a ubiquitously expressed synaptotagmin isoform that regulates exocytosis of lysosomes, is localized on the membranes of intracellular vacuoles containing T. cruzi. Antibodies against the C(2)A domain of Syt VII or recombinant peptides including this domain inhibit cell entry by T. cruzi, but not by Toxoplasma gondii or Salmonella typhimurium. The C(2)A domains of other ubiquitously expressed synaptotagmin isoforms have no effect on T. cruzi invasion, and mutation of critical residues on Syt VII C(2)A abolish its inhibitory activity. These findings indicate that T. cruzi exploits the Syt VII-dependent, Ca(2+)-regulated lysosomal exocytic pathway for invading host cells.
Collapse
Affiliation(s)
- Elisabet V. Caler
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Sabyasachi Chakrabarti
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Kimberly T. Fowler
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Swathi Rao
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Norma W. Andrews
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
48
|
Sugita S, Han W, Butz S, Liu X, Fernández-Chacón R, Lao Y, Südhof TC. Synaptotagmin VII as a plasma membrane Ca(2+) sensor in exocytosis. Neuron 2001; 30:459-73. [PMID: 11395007 DOI: 10.1016/s0896-6273(01)00290-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synaptotagmins I and II are Ca(2+) binding proteins of synaptic vesicles essential for fast Ca(2+)-triggered neurotransmitter release. However, central synapses and neuroendocrine cells lacking these synaptotagmins still exhibit Ca(2+)-evoked exocytosis. We now propose that synaptotagmin VII functions as a plasma membrane Ca(2+) sensor in synaptic exocytosis complementary to vesicular synaptotagmins. We show that alternatively spliced forms of synaptotagmin VII are expressed in a developmentally regulated pattern in brain and are concentrated in presynaptic active zones of central synapses. In neuroendocrine PC12 cells, the C(2)A and C(2)B domains of synaptotagmin VII are potent inhibitors of Ca(2+)-dependent exocytosis, but only when they bind Ca(2+). Our data suggest that in synaptic vesicle exocytosis, distinct synaptotagmins function as independent Ca(2+) sensors on the two fusion partners, the plasma membrane (synaptotagmin VII) versus synaptic vesicles (synaptotagmins I and II).
Collapse
Affiliation(s)
- S Sugita
- Center for Basic Neuroscience, Department of Molecular Genetics and, Howard Hughes Medical Institute, The University of Texas Southwestern, Medical Center, 6000 Harry Hines Boulevard NA4.118, Dallas TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The fusion of intracellular vesicles with their target membranes is an essential feature of the compartmental structure of eukaryotic cells. This process requires proteins that dictate the targeting of a vesicle to the correct cellular location, mediate bilayer fusion and, in some systems, regulate the precise time at which fusion occurs. Recent biophysical and structural studies of these proteins have begun to provide a foundation for understanding their functions at a molecular level.
Collapse
Affiliation(s)
- K M Misura
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | |
Collapse
|
50
|
Gao Z, Reavey-Cantwell J, Young RA, Jegier P, Wolf BA. Synaptotagmin III/VII isoforms mediate Ca2+-induced insulin secretion in pancreatic islet beta -cells. J Biol Chem 2000; 275:36079-85. [PMID: 10938083 DOI: 10.1074/jbc.m004284200] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptotagmins (Syt) play important roles in Ca(2+)-induced neuroexocytosis. Insulin secretion of the pancreatic beta-cell is dependent on an increase in intracellular Ca(2+); however, Syt involvement in insulin exocytosis is poorly understood. Reverse transcriptase-polymerase chain reaction studies showed the presence of Syt isoforms III, IV, V, and VII in rat pancreatic islets, whereas Syt isoforms I, II, III, IV, V, VII, and VIII were present in insulin-secreting betaTC3 cell. Syt III and VII proteins were identified in rat islets and betaTC3 and RINm5F beta-cells by immunoblotting. Confocal microscopy showed that Syt III and VII co-localized with insulin-containing secretory granules. Two-fold overexpression of Syt III in RINm5F beta-cell (Syt III cell) was achieved by stable transfection, which conferred greater Ca(2+) sensitivity for exocytosis, and resulted in increased insulin secretion. Glyceraldehyde + carbachol-induced insulin secretion in Syt III cells was 2.5-fold higher than control empty vector cells, whereas potassium-induced secretion was 6-fold higher. In permeabilized Syt III cells, Ca(2+)-induced and mastoparan-induced insulin secretion was also increased. In Syt VII-overexpressing RINm5F beta-cells, there was amplification of carbachol-induced insulin secretion in intact cells and of Ca(2+)-induced and mastoparan-induced insulin secretion in permeabilized cells. In conclusion, Syt III/VII are located in insulin-containing secretory granules, and we suggest that Syt III/VII may be the Ca(2+) sensor or one of the Ca(2+) sensors for insulin exocytosis of the beta-cell.
Collapse
Affiliation(s)
- Z Gao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|