1
|
Xia Q, Zhou M, Jiao K, Li B, Guo L, Wang L, Li J. Recent Advances in DNA-Templated Protein Patterning. SMALL METHODS 2025:e2401835. [PMID: 39895184 DOI: 10.1002/smtd.202401835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/13/2025] [Indexed: 02/04/2025]
Abstract
In recent decades, the advancement of DNA nanotechnology enables precise nanoscale organization of diverse functional materials with DNA templates. Particularly, a variety of DNA-templated protein patterns are constructed as powerful tools for programming biomimetic protein complexes. In this review, recent progress in DNA-templated protein patterning, including cutting-edge methods for arranging proteins with DNA templates, and protein patterns across varying dimensions are briefly summarized. Representative applications in biological analysis and biomedicine are discussed. DNA-protein patterns with programmable dynamics, which hold promise in precision diagnosis and therapeutics are highlighted. Finally, current challenges and opportunities in the fabrication and application of DNA-templated protein pattering are discussed.
Collapse
Affiliation(s)
- Qinglin Xia
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mo Zhou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai, 201210, China
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Bin Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
Mei X, Yang Z, Wang X, Shi A, Blanchard J, Elahi F, Kang H, Orive G, Zhang YS. Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization. LAB ON A CHIP 2025. [PMID: 39775452 DOI: 10.1039/d4lc00280f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels. This issue underscores the vital role of the human vascular system in sustaining cellular functions, facilitating nutrient exchange, and removing metabolic waste products. In response to this challenge, new approaches have been explored. Microfluidic devices, emulating natural blood vessels, serve as valuable tools for investigating angiogenesis and allowing the formation of microvascular networks. In parallel, bioprinting technologies enable precise placement of cells and biomaterials, culminating in vascular structures that closely resemble the native vessels. To this end, the synergy of microfluidics and bioprinting has further opened up exciting possibilities in vascularization, encompassing innovations such as microfluidic bioprinting. These advancements hold great promise in regenerative medicine, facilitating the creation of functional tissues for applications ranging from transplantation to disease modeling and drug testing. This review explores the potentially transformative impact of microfluidic and bioprinting technologies on vascularization strategies within the scope of tissue engineering.
Collapse
Affiliation(s)
- Xuan Mei
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Ziyi Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- School of Biological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Xiran Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA 92161, USA
| | - Alan Shi
- Brookline High School, Brookline, MA 02445, USA
| | - Joel Blanchard
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fanny Elahi
- Departments of Neurology, Neuroscience, and Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
- College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, 01007, Spain
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Xiao Y, Yang S, Sun Y, Sah RL, Wang J, Han C. Nanoscale Morphologies on the Surface of Substrates/Scaffolds Enhance Chondrogenic Differentiation of Stem Cells: A Systematic Review of the Literature. Int J Nanomedicine 2024; 19:12743-12768. [PMID: 39634196 PMCID: PMC11615010 DOI: 10.2147/ijn.s492020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Nanoscale morphologies on the surface of substrates/scaffolds have gained considerable attention in cartilage tissue engineering for their potential to improve chondrogenic differentiation and cartilage regeneration outcomes by mimicking the topographical and biophysical properties of the extracellular matrix (ECM). To evaluate the influence of nanoscale surface morphologies on chondrogenic differentiation of stem cells and discuss available strategies, we systematically searched evidence according to the PRISMA guidelines on PubMed, Embase, Web of Science, and Cochrane (until April 2024) and registered on the OSF (osf.io/3kvdb). The inclusion criteria were (in vitro) studies reporting the chondrogenic differentiation outcomes of nanoscale morphologies on the surface of substrates/scaffolds. The risk of bias (RoB) was assessed using the JBI-adapted quasi-experimental study assessment tool. Out of 1530 retrieved articles, 14 studies met the inclusion criteria. The evidence suggests that nanoholes, nanogrills, nanoparticles with a diameter of 10-40nm, nanotubes with a diameter of 70-100nm, nanopillars with a height of 127-330nm, and hexagonal nanostructures with a periodicity of 302-733nm on the surface of substrates/scaffolds result in better cell adhesion, growth, and chondrogenic differentiation of stem cells compared to the smooth/unpatterned ones through increasing integrin expression. Large nanoparticles with 300-1200nm diameter promote pre-chondrogenic cellular aggregation. The synergistic effects of the surface nanoscale topography and other environmental physical characteristics, such as matrix stiffness, also play important in the chondrogenic differentiation of stem cells. The RoB was low in 86% (12/14) of studies and high in 14% (2/14). Our study demonstrates that nanomorphologies with specific controlled properties engineered on the surface of substrates/scaffolds enhance stem cells' chondrogenic differentiation, which may benefit cartilage regeneration. However, given the variability in experimental designs and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Yi Xiao
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
- Department of Head and Neck, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, 510060, People’s Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California–San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California–San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Chunshan Han
- Thoracic Surgery Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
4
|
Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N, Sugandhi VV, Paudel KR, Ingle RG. Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery. Pharmaceutics 2024; 16:1398. [PMID: 39598522 PMCID: PMC11597228 DOI: 10.3390/pharmaceutics16111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 11/29/2024] Open
Abstract
Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery. Recent advancements have improved safety and efficacy, offering sustained and controlled drug delivery for conditions like age-related macular degeneration and glaucoma. While promising, challenges such as regulatory barriers and long-term biocompatibility persist. Overcoming these through interdisciplinary research is crucial. Ultimately, microneedle drug delivery presents a revolutionary method with the potential to significantly enhance ocular disease treatment, marking a new era in eye care.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India;
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Sopan N. Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India;
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Vrashabh V. Sugandhi
- College of Pharmacy & Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University)—DMIHER, Wardha 442107, India
| |
Collapse
|
5
|
Fan D, Wang D, Zhang J, Fu X, Yan X, Wang D, Qin A, Han T, Tang BZ. Cobalt-Catalyzed Cascade C-H Activation/Annulation Polymerizations toward Diversified and Multifunctional Sulfur-Containing Fused Heterocyclic Polymers. J Am Chem Soc 2024; 146:17270-17284. [PMID: 38863213 DOI: 10.1021/jacs.4c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Transition-metal-catalyzed C-H activation has greatly benefited the synthesis and development of functional polymer materials, and the construction of multifunctional fused (hetero)cyclic polymers via novel C-H activation-based polyannulations has emerged as a charming but challenging area in recent years. Herein, we report the first cobalt(III)-catalyzed cascade C-H activation/annulation polymerization (CAAP) approach that can efficiently transform readily available aryl thioamides and internal diynes into multifunctional sulfur-containing fused heterocyclic (SFH) polymers. Within merely 3 h, a series of SFH polymers bearing complex and multisubstituted S,N-doped polycyclic units are facilely and efficiently produced with high molecular weights (absolute Mn up to 220400) in excellent yields (up to 99%), which are hard to achieve by traditional methods. The intermediate-terminated SFH polymer can be used as a reactive macromonomer to controllably extend or modify polymer main chains. The structural diversity can be further enriched through facile S-oxidation and N-methylation reactions of the SFH polymers. Benefiting from the unique structures, the obtained polymers exhibit excellent solution processability, high thermal and morphological stability, efficient and readily tunable aggregate-state fluorescence, stimuli-responsive properties, and high and UV-modulatable refractive indices of up to 1.8464 at 632.8 nm. These properties allow the SFH polymers to be potentially applied in diverse fields, including metal ion detection, photodynamic killing of cancer cells, fluorescent photopatterning, and gradient-index optical materials.
Collapse
Affiliation(s)
- Dongyang Fan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jie Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xueke Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
6
|
Lee U, Kim H, Oh DK, Lee N, Park J, Park J, Son H, Noh H, Rho J, Ok JG. Azimuthal rotation-controlled nanoinscribing for continuous patterning of period- and shape-tunable asymmetric nanogratings. MICROSYSTEMS & NANOENGINEERING 2024; 10:60. [PMID: 38736716 PMCID: PMC11088629 DOI: 10.1038/s41378-024-00687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
We present an azimuthal-rotation-controlled dynamic nanoinscribing (ARC-DNI) process for continuous and scalable fabrication of asymmetric nanograting structures with tunable periods and shape profiles. A sliced edge of a nanograting mold, which typically has a rectangular grating profile, slides over a polymeric substrate to induce its burr-free plastic deformation into a linear nanopattern. During this continuous nanoinscribing process, the "azimuthal angle," that is, the angle between the moving direction of the polymeric substrate and the mold's grating line orientation, can be controlled to tailor the period, geometrical shape, and profile of the inscribed nanopatterns. By modulating the azimuthal angle, along with other important ARC-DNI parameters such as temperature, force, and inscribing speed, we demonstrate that the mold-opening profile and temperature- and time-dependent viscoelastic polymer reflow can be controlled to fabricate asymmetric, blazed, and slanted nanogratings that have diverse geometrical profiles such as trapezoidal, triangular, and parallelogrammatic. Finally, period- and profile-tunable ARC-DNI can be utilized for the practical fabrication of diverse optical devices, as is exemplified by asymmetric diffractive optical elements in this study.
Collapse
Affiliation(s)
- Useung Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
- Present Address: Department of Mechanical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Hyein Kim
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Dong Kyo Oh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
| | - Nayeong Lee
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Jonggab Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Jaewon Park
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Hyunji Son
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Hyunchan Noh
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
- Present Address: Research Team, Hyundai Motor Group, 150 Hyundaiyeonguso-ro, Hwaseong-si, Gyeonggi 18280 Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673 Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673 Republic of Korea
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| |
Collapse
|
7
|
Park H, Hwang J, Lee J, Kang DJ. Rapid Electrohydrodynamic-Driven Pattern Replication over a Large Area via Ultrahigh Voltage Pulses. ACS NANO 2023; 17:22456-22466. [PMID: 37939012 DOI: 10.1021/acsnano.3c05413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Despite the prospects of electrohydrodynamic instability patterning (EHIP), poor process parameter controllability is a significant challenge in uniform large-scale nanopatterning. Herein, we introduce a EHIP process using an ultrahigh electric field (>108 V/m) to effectively accelerate the pattern growth evolution. Owing to the strong dependence on a temporal parameter (1/τm) of the field strength, our method not only reduces the completion time of pattern growth but also overcomes critical parametric restrictions on the pattern replication, thereby enhancing the replicated pattern quality in three dimensions. The pattern can be uniformly replicated over the entire film surface even without a perfectly uniform air gap, which has been severely difficult in the conventional method. To further demonstrate how straightforward yet versatile our approach is, we applied our EHIP approach to successfully replicate the densely packed nanostructures of cicada wings.
Collapse
Affiliation(s)
- Hyunje Park
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jaeseok Hwang
- Wonik IPS Semiconductor Research Center, 75, Jinwisandan-ro, Jinwi-myeon, Pyeongtaek-si, Gyeonggi-do 17709, Republic of Korea
| | - Jaejong Lee
- Korea Institute of Machinery and Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Dae Joon Kang
- Department of Physics, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
8
|
Darkwah WK, Appiagyei AB, Puplampu JB. Transforming the Petroleum Industry through Catalytic Oxidation Reactions vis-à-vis Preceramic Polymer Catalyst Supports. ACS OMEGA 2023; 8:34215-34234. [PMID: 37780012 PMCID: PMC10536879 DOI: 10.1021/acsomega.2c07562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/21/2023] [Indexed: 10/03/2023]
Abstract
Preceramic polymers, for instance, are used in a variety of chemical processing industries and applications. In this contribution, we report on the catalytic oxidation reactions generated using preceramic polymer catalyst supports. Also, we report the full knowledge of the use of the remarkable catalytic oxidation, and the excellent structures of these preceramic polymer catalyst supports are revealed. This finding, on the other hand, focuses on the functionality and efficacy of future applications of catalytic oxidation of preceramic polymer nanocrystals for energy and environmental treatment. The aim is to design future implementations that can address potential environmental impacts associated with fuel production, particularly in downstream petroleum industry processes. As a result, these materials are being considered as viable candidates for environmentally friendly applications such as refined fuel production and related environmental treatment.
Collapse
Affiliation(s)
- Williams Kweku Darkwah
- School
of Chemical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052 NSW, Australia
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| | - Alfred Bekoe Appiagyei
- Department
of Chemical and Biological Engineering, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Joshua B. Puplampu
- Department
of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast 4P48+59H, Ghana
| |
Collapse
|
9
|
Kamranikia K, Dominici S, Keller M, Kube N, Mougin K, Spangenberg A. Very High-Aspect-Ratio Polymeric Micropillars Made by Two-Photon Polymerization. MICROMACHINES 2023; 14:1602. [PMID: 37630138 PMCID: PMC10456646 DOI: 10.3390/mi14081602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Polymeric micropillars with a high-aspect-ratio (HAR) are of interest for a wide range of applications, including drug delivery and the micro-electro-mechanical field. While molding is the most common method for fabricating HAR microstructures, it is affected by challenges related to demolding the final structure. In this study, we present very HAR micropillars using two-photon polymerization (TPP), an established technique for creating complex 3D microstructures. Polymeric micropillars with HARs fabricated by TPP often shrink and collapse during the development process. This is due to the lack of mechanical stability of micropillars against capillary forces primarily acting during the fabrication process when the solvent evaporates. Here, we report different parameters that have been optimized to overcome the capillary force. These include surface modification of the substrate, fabrication parameters such as laser power, exposure time, the pitch distance between the pillars, and the length of the pillars. On account of adopting these techniques, we were able to fabricate micropillars with a very HAR up to 80.
Collapse
Affiliation(s)
- Keynaz Kamranikia
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS-UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France; (K.K.); (S.D.); (M.K.); (N.K.); (K.M.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Sébastien Dominici
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS-UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France; (K.K.); (S.D.); (M.K.); (N.K.); (K.M.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Marc Keller
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS-UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France; (K.K.); (S.D.); (M.K.); (N.K.); (K.M.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Niklas Kube
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS-UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France; (K.K.); (S.D.); (M.K.); (N.K.); (K.M.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Karine Mougin
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS-UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France; (K.K.); (S.D.); (M.K.); (N.K.); (K.M.)
- Université de Strasbourg, 67000 Strasbourg, France
| | - Arnaud Spangenberg
- Institut de Science des Matériaux de Mulhouse (IS2M), CNRS-UMR 7361, Université de Haute-Alsace, 15 rue Jean Starcky, 68057 Mulhouse, France; (K.K.); (S.D.); (M.K.); (N.K.); (K.M.)
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
10
|
Wang X, Yan X, Du J, Ji B, Jalal Inanlu M, Min Q, Miljkovic N. Spreading dynamics of microdroplets on nanostructured surfaces. J Colloid Interface Sci 2023; 635:221-230. [PMID: 36592502 DOI: 10.1016/j.jcis.2022.12.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Droplet spreading governs various daily phenomena and industrial processes. Insights about microdroplet spreading are limited due to experimental difficulties arising from microdroplet manipulation and substrate wettability control. For droplet sizes approaching the capillary length scale, the gravitational force plays an important role in spreading. In contrast, capillary and viscous forces dominate as the droplet size reduces to smaller length scales. We hypothesize that the dynamic spreading behavior of microdroplets whose radius is far lower than the capillary length differs substantially from established and well understood dynamics. EXPERIMENTS To systematically investigate the spreading dynamics of microdroplets, we develop contact-initiated wetting techniques combined with structuring-independent wettability control to achieve microdroplet (<500 μm) spreading on arbitrary surfaces while eliminating parasitic pinning effects (pining force ∼ 0) and initial impact momentum effects (Weber number ∼ 0). FINDINGS Our experiments reveal that the capillary-driven initial spreading of microdroplets is shorter, with significantly reduced oscillation dampening, when compared to millimeter-scale droplets. Furthermore, spreading along with capillary wave propagation results in coupling between the spreading velocity and dynamic contact angle at the contact line. These findings, along with our proposed microdroplet manipulation platform, may find application in microscale heat transfer, advanced manufacturing, and aerosol transmission studies.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, China
| | - Xiao Yan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Jiayu Du
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, China
| | - Bingqiang Ji
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mohammad Jalal Inanlu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qi Min
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, China.
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
11
|
Nordin AN, Abd Manaf A. Design and fabrication technologies for microfluidic sensors. MICROFLUIDIC BIOSENSORS 2023:41-85. [DOI: 10.1016/b978-0-12-823846-2.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Liu X, Tan H, Rigoni C, Hartikainen T, Asghar N, van Dijken S, Timonen JVI, Peng B, Ikkala O. Magnetic field-driven particle assembly and jamming for bistable memory and response plasticity. SCIENCE ADVANCES 2022; 8:eadc9394. [PMID: 36367936 PMCID: PMC9651856 DOI: 10.1126/sciadv.adc9394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Unlike classic synthetic stimulus-responsive and shape-memory materials, which remain limited to fixed responses, the responses of living systems dynamically adapt based on the repetition, intensity, and history of stimuli. Such plasticity is ubiquitous in biology, which is profoundly linked to memory and learning. Concepts thereof are searched for rudimentary forms of "intelligent materials." Here, we show plasticity of electroconductivity in soft ferromagnetic nickel colloidal supraparticles with spiny surfaces, assembling/disassembling to granular conducting micropillars between two electrodes driven by magnetic field B. Colloidal jamming leads to conduction hysteresis and bistable memory upon increasing and subsequently decreasing B. Abrupt B changes induce larger conduction changes than gradual B-changes. Periodic B pulsing drives to frequency-dependent facilitation or suppression of conductivity compared to exposing the same constant field. The concepts allow remotely controlled switching plasticity, illustrated by a rudimentary device. More generally, we foresee adaptive functional materials inspired by response plasticity and learning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Peng
- Corresponding author. (B.P.); (O.I.)
| | | |
Collapse
|
13
|
Hager R, Forsich C, Duchoslav J, Burgstaller C, Stifter D, Weghuber J, Lanzerstorfer P. Microcontact Printing of Biomolecules on Various Polymeric Substrates: Limitations and Applicability for Fluorescence Microscopy and Subcellular Micropatterning Assays. ACS APPLIED POLYMER MATERIALS 2022; 4:6887-6896. [PMID: 36277174 PMCID: PMC9578008 DOI: 10.1021/acsapm.2c00834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Polymeric materials play an emerging role in biosensing interfaces. Within this regard, polymers can serve as a superior surface for binding and printing of biomolecules. In this study, we characterized 11 different polymer foils [cyclic olefin polymer (COP), cyclic olefin copolymer (COC), polymethylmethacrylate (PMMA), DI-Acetate, Lumirror 4001, Melinex 506, Melinex ST 504, polyamide 6, polyethersulfone, polyether ether ketone, and polyimide] to test for the applicability for surface functionalization, biomolecule micropatterning, and fluorescence microscopy approaches. Pristine polymer foils were characterized via UV-vis spectroscopy. Functional groups were introduced by plasma activation and epoxysilane-coating. Polymer modification was evaluated by water contact angle measurement and X-ray photoelectron spectroscopy. Protein micropatterns were fabricated using microcontact printing. Functionalized substrates were characterized via fluorescence contrast measurements using epifluorescence and total internal reflection fluorescence microscopy. Results showed that all polymer substrates could be chemically modified with epoxide functional groups, as indicated by reduced water contact angles compared to untreated surfaces. However, transmission and refractive index measurements revealed differences in important optical parameters, which was further proved by fluorescence contrast measurements of printed biomolecules. COC, COP, and PMMA were identified as the most promising alternatives to commonly used glass coverslips, which also showed superior applicability in subcellular micropatterning experiments.
Collapse
Affiliation(s)
- Roland Hager
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Christian Forsich
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| | - Jiri Duchoslav
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Christoph Burgstaller
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- Transfercenter
für Kunststofftechnik GmbH, 4600 Wels, Austria
| | - David Stifter
- Center
for Surface and Nanoanalytics (ZONA), Johannes
Kepler University Linz, 4040 Linz, Austria
| | - Julian Weghuber
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
- FFoQSI—Austrian
Competence Center for Feed and Food Quality, 3430 Tulln, Austria
| | - Peter Lanzerstorfer
- School
of Engineering, University of Applied Sciences
Upper Austria, 4600 Wels, Austria
| |
Collapse
|
14
|
Meteling HJ, Bosse F, Schlichter L, Tyler BJ, Arlinghaus HF, Ravoo BJ. Versatile Surface Patterning with Low Molecular Weight Photoswitches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203245. [PMID: 35971144 DOI: 10.1002/smll.202203245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Surface patterning of functional materials is a key technology in various fields such as microelectronics, optics, and photonics. In micro- and nanofabrication, polymers are frequently employed either as photoreactive or thermoresponsive resists that enable further fabrication steps, or as functional adlayers in electronic and optical devices. In this article, a method is presented for imprint lithography using low molecular weight arylazoisoxazoles photoswitches instead of polymer resists. These photoswitches exhibit a rapid and reversible solid-to-liquid phase transition upon photo-isomerization at room temperature, making them highly suitable for reversible surface functionalization at ambient conditions. Beyond photo-induced imprint lithography with multiple write-and-erase cycles, prospective applications as patterned matrix for nanoparticles and etch resist on gold surfaces are demonstrated.
Collapse
Affiliation(s)
- Henning J Meteling
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Florian Bosse
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Lisa Schlichter
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Bonnie J Tyler
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| |
Collapse
|
15
|
Li S, Coffinier Y, Lagadec C, Cleri F, Nishiguchi K, Fujiwara A, Fujii T, Kim SH, Clément N. Redox-labelled electrochemical aptasensors with nanosupported cancer cells. Biosens Bioelectron 2022; 216:114643. [PMID: 36030742 DOI: 10.1016/j.bios.2022.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
The transfer of redox-labelled bioelectrochemical sensors from proteins to cells is not straightforward because of the cell downward force issue on the surface of the sensors. In this paper, 20-nm-thick nanopillars are introduced to overcome this issue, in a well-controlled manner. We show on both molecular dynamics simulations and experiments that suspending cells a few nanometers above an electrode surface enables redox-labelled tethered DNA aptamer probes to move freely, while remaining at an interaction distance from a target membrane protein, i. e. epithelial cell adhesion molecule (EpCAM), which is typically overexpressed in cancer cells. By this nanopillar configuration, the interaction of aptamer with cancer cells is clearly observable, with 13 cells as the lower limit of detection. Nanoconfinement induced by the gap between the electrode surface and the cell membrane appears to improve the limit of detection and to lower the melting temperature of DNA aptamer hairpins, offering an additional degree of freedom to optimize molecular recognition mechanisms. This novel nanosupported electrochemical DNA cell sensor scheme including Brownian-fluctuating redox species opens new opportunities for the design of all-electrical sensors using redox-labelled probes.
Collapse
Affiliation(s)
- S Li
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan.
| | - Y Coffinier
- IEMN, CNRS UMR8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq Cedex, 59652, France
| | - C Lagadec
- Univ. Lille, CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - F Cleri
- IEMN, CNRS UMR8520, Univ. Lille Avenue Poincaré, BP 60069, Villeneuve D'Ascq Cedex, 59652, France
| | - K Nishiguchi
- NTT Basic Research Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi-shi, 243-0198, Japan
| | - A Fujiwara
- NTT Basic Research Laboratories, NTT Corporation, 3-1, Morinosato-Wakamiya, Atsugi-shi, 243-0198, Japan
| | - T Fujii
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan
| | - S-H Kim
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan
| | - N Clément
- IIS, LIMMS/CNRS-IIS IRL2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku Tokyo, 153-8505, Japan.
| |
Collapse
|
16
|
Li W, Kitagawa D, Kobatake S, Bekyarova E, Bardeen CJ. Patterning submicron photomechanical features into single diarylethene crystals using electron beam lithography. NANOSCALE HORIZONS 2022; 7:1065-1072. [PMID: 35788624 DOI: 10.1039/d2nh00205a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lithography methods are commonly used to create structures in inorganic semiconductors like silicon but have not been widely applied to organic crystals. In this work, electron beam lithography (EBL) is used to pattern structures into single organic photomechanical crystals composed of 1,2-bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene. The electron beam creates amorphous regions of decomposed molecules, while the reactivity of the unexposed crystal regions is preserved under a removable Au coating. Exposure of the patterned crystal to 365 nm light causes ridges of amorphous material to increase in height by 30-70%. This height increase can be reversed by visible light exposure and undergo multiple cycles. The reversible surface morphology changes are strong enough to rupture a sheet of graphene placed on top of the patterned crystal. Surprisingly, the change in dimensions of the EBL features is an order of magnitude larger than the changes in overall crystal dimensions as deduced from X-ray diffraction experiments and microscopy observations. A dynamic extrusion model is presented to explain how nanoscale features imprinted into single crystals can amplify molecular-level photomechanical changes. This work demonstrates the capability of EBL methods to produce sub-micron structural features on single photomechanical crystals, providing a new route to monolithic light-powered actuator devices.
Collapse
Affiliation(s)
- Wangxiang Li
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| | - Daichi Kitagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Seiya Kobatake
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Elena Bekyarova
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.
| |
Collapse
|
17
|
Müllers S, Florea-Hüring M, von Vacano B, Bruchmann B, Rühe J. Hairy surfaces by cold drawing leading to dense lawns of high aspect ratio hairs. Sci Rep 2022; 12:9952. [PMID: 35705571 PMCID: PMC9200784 DOI: 10.1038/s41598-022-13419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
The surfaces of many organisms are covered with hairs, which are essential for their survival in a complex environment. The generation of artificial hairy surfaces from polymer materials has proven to be challenging as it requires the generation of structures with very high aspect ratios (AR). We report on a technique for the fabrication of surfaces covered with dense layers of very high AR nanoscale polymer hairs. To this, templates having pores with diameters of several hundred nanometers are filled with a polymer melt by capillary action. The polymer is then allowed to cool and the template is mechanically removed. Depending on the conditions employed, the formed structures can be a simple replica of the pore, or the polymer is deformed very strongly by cold drawing to yield in long hairs, with hair densities significantly up to 6,6 × 108 hairs/cm2 at AR of much higher than 200. The mechanism of hair formation is attributed to a delicate balance between the adhesion forces of the polymer in the pore and the yield force acting on it during mechanically demolding. We demonstrate how with very little effort and within a timescale of seconds unique topographies can be obtained, which can dramatically tailor the wetting properties of common polymers.
Collapse
Affiliation(s)
- Stefan Müllers
- Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Mara Florea-Hüring
- Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Bernhard von Vacano
- BASF SE, Advanced Materials and Systems Research, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Bernd Bruchmann
- BASF SE, Advanced Materials and Systems Research, Carl-Bosch-Strasse 38, 67056, Ludwigshafen, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering-IMTEK, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.
- livMatS@Freiburg Institute for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
18
|
Wei W, Li M, Chen Y. Flexible Broadband Light Absorbers with a Superhydrophobic Surface Fabricated by Ultraviolet-assisted Nanoimprint Lithography. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Fan L, Cao K, Hu H, Ma J, Peng Q, Li X, Huang Y, Yang J. Low‐dielectric silylbutylene‐benzocyclobutene resin with photoactive silacyclobutane groups via acyclic diene metathesis polymerization. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Fan
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
- School of National Defense Science and Technology Southwest University of Science and Technology Mianyang China
| | - Ke Cao
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
| | - Huan Hu
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
| | - Jiajun Ma
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
| | - Qiuxia Peng
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
| | - Xian Li
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
| | - Yawen Huang
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
| | - Junxiao Yang
- State Key Laboratory of Environmental‐friendly Energy Materials School of Material Science and Engineering, Southwest University of Science and Technology Mianyang China
| |
Collapse
|
20
|
Xiao Y, Zhang J, Fang B, Zhao X, Hao N. Acoustics-Actuated Microrobots. MICROMACHINES 2022; 13:481. [PMID: 35334771 PMCID: PMC8949854 DOI: 10.3390/mi13030481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Microrobots can operate in tiny areas that traditional bulk robots cannot reach. The combination of acoustic actuation with microrobots extensively expands the application areas of microrobots due to their desirable miniaturization, flexibility, and biocompatibility features. Herein, an overview of the research and development of acoustics-actuated microrobots is provided. We first introduce the currently established manufacturing methods (3D printing and photolithography). Then, according to their different working principles, we divide acoustics-actuated microrobots into three categories including bubble propulsion, sharp-edge propulsion, and in-situ microrotor. Next, we summarize their established applications from targeted drug delivery to microfluidics operation to microsurgery. Finally, we illustrate current challenges and future perspectives to guide research in this field. This work not only gives a comprehensive overview of the latest technology of acoustics-actuated microrobots, but also provides an in-depth understanding of acoustic actuation for inspiring the next generation of advanced robotic devices.
Collapse
Affiliation(s)
- Yaxuan Xiao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Jinhua Zhang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Bin Fang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Xiong Zhao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Nanjing Hao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| |
Collapse
|
21
|
Lee DH, Yun GT, Doo G, Yuk S, Guim H, Kim Y, Jung WB, Jung HT, Kim HT. Hierarchical Wrinkle-Structured Catalyst Layer/Membrane Interface for Ultralow Pt-Loading Polymer Electrolyte Membrane Fuel Cells (PEMFCs). NANO LETTERS 2022; 22:1174-1182. [PMID: 35073103 DOI: 10.1021/acs.nanolett.1c04354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The optimal architecture of three-dimensional (3D) interface between a polymer electrolyte membrane (PEM) and catalyst layer (CL) is one of the most important issues to improve PEM fuel cells' (PEMFCs) performance. Here, we report the fabrication of hierarchical wrinkled PEM/CL interface over a large area. We fabricated the hierarchical wrinkles on a multiscale from nanometers to micrometers by bottom-up-based facile, scalable, and simple method. Notably, it allows one to go beyond the limit of the catalyst utilization by extremely enlarged interfacial area. The resulting hierarchical wrinkled PEM/CL displays a dramatically increased electrochemically active surface area (ECSA) and power performance by the enhancement factors of 89% and 67% compared with those of flat interface, which is one of the best enhancements compared to previous PEMFCs. We believe the scalability of hierarchical wrinkled interface can be exploited to design advanced 3D interfaces for high-performance PEMFCs even with ultralow Pt-loading.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geun-Tae Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gisu Doo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongmin Yuk
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hwanuk Guim
- Division of Electron Microscopic Research, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Yesol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo-Bin Jung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Tak Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Advanced Battery Center, KAIST Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Chen ZH, Wang XY, Tang Y. Reversible complexation mediated polymerization: an emerging type of organocatalytically controlled radical polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00120a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reversible complexation mediated polymerization (RCMP) was developed as a new class of controlled radical polymerization (CRP) using organic catalysts. In particular, photo-RCMP is among the simplest, cheapest, and most robust photoinduced CRPs.
Collapse
Affiliation(s)
- Zhi-Hao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
23
|
Goun A, Frederick E, Er AO, Bernasek SL, Rabitz H. Deprotonation of Phenol linked to a silicon dioxide surface using Adaptive Feedback Laser Control with a Heterodyne Detected Sum Frequency Generation Signal. Phys Chem Chem Phys 2022; 24:19443-19451. [DOI: 10.1039/d1cp05613a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of laser-controlled surface reactions has been limited by the lack of decisive methods for detecting evolving changes in the surface chemistry. In this work, we demonstrate successful laser...
Collapse
|
24
|
Kourti D, Kanioura A, Chatzichristidi M, Beltsios KG, Kakabakos SE, Petrou PS. Photopatternable materials for guided cell adhesion and growth. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Fan L, Peng Q, Yuan W, Li X, Hu H, Ma J, Huang Y, Yang J. UV-curable low dielectric siloxane-benzocyclobutene resins via introducing carbosilane groups. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Gu T, Meesrisom A, Luo Y, Dinh QN, Lin S, Yang M, Sharma A, Tang R, Zhang J, Jia Z, Millner PD, Pearlstein AJ, Zhang B. Listeria monocytogenes biofilm formation as affected by stainless steel surface topography and coating composition. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Soliman AIA, Wu CT, Utsunomiya T, Ichii T, Sugimura H. Controlled Growth of Organosilane Micropatterns on Hydrophilic and Hydrophobic Surfaces Templated by Vacuum Ultraviolet Photolithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13932-13940. [PMID: 34780193 DOI: 10.1021/acs.langmuir.1c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this report, micropatterns of (3-aminopropyl)trimethoxysilane (APTMS) were developed on hydrophilic and hydrophobic surfaces after patterning using 172 nm vacuum ultraviolet (VUV) photolithography. Self-assembled monolayers (SAMs) formed on Si substrates through UV hydrosilylation of 1-hexadecene (HD) and 10-undecenoic acid (UDA) were used as hydrophilic and hydrophobic surfaces, respectively. For templating the HD- and UDA-SAMs, the VUV light was exposed to HD- and UDA-SAMs from the slits of photomasks in atmospheric and evacuated environments, respectively. Various oxygenated groups were generated at the exposed domains of HD-SAM, while the COOH groups were trimmed from the irradiated domains of UDA-SAM. The APTMS molecules were immobilized on the domains that were terminated by oxygenated groups after chemical vapor deposition (CVD). The thicknesses of the developed APTMS micropatterns increased significantly by raising the CVD temperature and in the presence of ambient air in the CVD Teflon container as well. The increase in thicknesses was ascribed to the formation of APTMS multilayers, which were mediated by H3N+ ions. Also, the developed APTMS micropatterns on the UDA-SAM patterned by VUV light irradiation in a high-vacuum environment (HV-VUV) were thicker than those on the VUV/(O) patterned HD-SAM due to the presence of inactive oxygenated groups at the surface of VUV/(O)-terminated domains of HD-SAM such as COO-C and C-O-C groups. The presence of water or ambient air facilitated the silane coupling between the silyl groups with the oxygenated and amino groups The combination of VUV photolithography and the CVD method with control of the conditions would enable us to control the thicknesses and shapes of the developed APTMS micropatterns. These findings illustrate the applicability of VUV photolithography for templating hydrophobic and hydrophobic surfaces toward the development of organosilane architectures, which can be feasible for several applications.
Collapse
Affiliation(s)
- Ahmed I A Soliman
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Cheng-Tse Wu
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Toru Utsunomiya
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Takashi Ichii
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hiroyuki Sugimura
- Department of Materials Science and Engineering, Kyoto University, Yoshida-hommachi, Sakyo-Ku, Kyoto 606-8501, Japan
| |
Collapse
|
28
|
Photo masking via breaking alkyl C Se bond of selenium-containing maleimide polymers by ultraviolet light. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Wang L, Jiao L, Pang S, Yan P, Wang X, Qiu T. The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. MICROMACHINES 2021; 12:mi12080990. [PMID: 34442612 PMCID: PMC8398368 DOI: 10.3390/mi12080990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/02/2023]
Abstract
Coronary artery disease (CAD) is the leading killer of humans worldwide. Bioresorbable polymeric stents have attracted a great deal of interest because they can treat CAD without producing long-term complications. Bioresorbable polymeric stents (BMSs) have undergone a sustainable revolution in terms of material processing, mechanical performance, biodegradability and manufacture techniques. Biodegradable polymers and copolymers have been widely studied as potential material candidates for bioresorbable stents. It is a great challenge to find a reasonable balance between the mechanical properties and degradation behavior of bioresorbable polymeric stents. Surface modification and drug-coating methods are generally used to improve biocompatibility and drug loading performance, which are decisive factors for the safety and efficacy of bioresorbable stents. Traditional stent manufacture techniques include etching, micro-electro discharge machining, electroforming, die-casting and laser cutting. The rapid development of 3D printing has brought continuous innovation and the wide application of biodegradable materials, which provides a novel technique for the additive manufacture of bioresorbable stents. This review aims to describe the problems regarding and the achievements of biodegradable stents from their birth to the present and discuss potential difficulties and challenges in the future.
Collapse
Affiliation(s)
- Liang Wang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Li Jiao
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Shuoshuo Pang
- School of Mechanical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.W.); (S.P.)
| | - Pei Yan
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Xibin Wang
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
| | - Tianyang Qiu
- Key Laboratory of Fundamental Science for Advanced Machining Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing 100081, China; (L.J.); (P.Y.); (X.W.)
- Correspondence:
| |
Collapse
|
30
|
Liao Y, Li W, Zhan Z, Duan H, Liu P, Chen Y, Wang Z. 3D-Printed Complex Microstructures with a Self-Sacrificial Structure Enabled by Grayscale Polymerization and Ultrasonic Treatment. ACS OMEGA 2021; 6:18281-18288. [PMID: 34308059 PMCID: PMC8296550 DOI: 10.1021/acsomega.1c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Complex three-dimensional (3D) microstructures are attracting more and more attention in many applications such as microelectromechanical systems, biomedical engineering, new materials, new energy, environmental protection, and wearable electronics. However, fabricating complex 3D microstructures by 3D printing techniques, especially those with long suspended structures, needs to introduce additional supporting structures, which are difficult to be removed. Here, we propose a simple method in which the supporting structures can be easily removed by optimizing their size and the grayscale value working with ultrasonic treatment in ethanol solution. The 3D microstructures and the supporting structures made of the same insoluble materials are fabricated simultaneously by using a projection microstereolithography system with a dynamic mask. The results demonstrate that the supporting structures play a key role in the fabrication of the long suspended structures while they can be easily removed. The removal time decreases with the increase in the height of the supporting microstructures, and the breaking force and shearing force of the supporting structures increase with the increase in their grayscale and the diameter. In addition, theory and the multiphysics simulation validate that the stress concentration at the top and the bottom of the supporting structures due to the cavitation from ultrasonic vibration dominates the removal of the supporting structures. Finally, a tree-like structure is precisely fabricated by using our method. The present study provides a new way for the removal of the supporting structures for 3D printed suspended microstructures.
Collapse
|
31
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
32
|
Sahoo RK, Singh H, Thakur K, Gupta U, Goyal AK. Theranostic Applications of Nanomaterials in the Field of Cardiovascular Diseases. Curr Pharm Des 2021; 28:91-103. [PMID: 34218771 DOI: 10.2174/1381612827666210701154305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
A large percentage of people are being exposed to mortality due to cardiovascular diseases. Convention approaches have not provided satisfactory outcomes in the management of these diseases. To overcome the limitations of conventional approaches, nanomaterials like nanoparticles, nanotubes, micelles, lipid based nanocarriers, dendrimers, carbon based nano-formulations represent the new aspect of diagnosis and treatment of cardiovascular diseases. The unique inherent properties of the nanomaterials are the major reasons for their rapidly growing demand in the field of medicine. Profound knowledge in the field of nanotechnology and biomedicine is needed for the notable translation of nanomaterials into theranostic cardiovascular applications. In this review, the authors have summarized different nanomaterials which are being extensively used to diagnose and treat the diseases such as coronary heart disease, myocardial infarction, atherosclerosis, stroke and thrombosis.
Collapse
Affiliation(s)
- Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Himani Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Kamlesh Thakur
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Amit K Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| |
Collapse
|
33
|
Fruncillo S, Su X, Liu H, Wong LS. Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens 2021; 6:2002-2024. [PMID: 33829765 PMCID: PMC8240091 DOI: 10.1021/acssensors.0c02704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since the early 2000s, extensive research has been performed to address numerous challenges in biochip and biosensor fabrication in order to use them for various biomedical applications. These biochips and biosensor devices either integrate biological elements (e.g., DNA, proteins or cells) in the fabrication processes or experience post fabrication of biofunctionalization for different downstream applications, including sensing, diagnostics, drug screening, and therapy. Scalable lithographic techniques that are well established in the semiconductor industry are now being harnessed for large-scale production of such devices, with additional development to meet the demand of precise deposition of various biological elements on device substrates with retained biological activities and precisely specified topography. In this review, the lithographic methods that are capable of large-scale and mass fabrication of biochips and biosensors will be discussed. In particular, those allowing patterning of large areas from 10 cm2 to m2, maintaining cost effectiveness, high throughput (>100 cm2 h-1), high resolution (from micrometer down to nanometer scale), accuracy, and reproducibility. This review will compare various fabrication technologies and comment on their resolution limit and throughput, and how they can be related to the device performance, including sensitivity, detection limit, reproducibility, and robustness.
Collapse
Affiliation(s)
- Silvia Fruncillo
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, Block S8, Level 3, 3 Science Drive, Singapore 117543, Singapore
| | - Hong Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
34
|
Yang X, Zhong Z. A novel technique to fabricate magnetic polydimethylsiloxane micropillar. J Appl Polym Sci 2021. [DOI: 10.1002/app.50460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoming Yang
- School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore
| | - Zhaowei Zhong
- School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore
| |
Collapse
|
35
|
Xu D, Mo J, Xie X, Hu N. In-Cell Nanoelectronics: Opening the Door to Intracellular Electrophysiology. NANO-MICRO LETTERS 2021; 13:127. [PMID: 34138366 PMCID: PMC8124030 DOI: 10.1007/s40820-021-00655-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 05/07/2023]
Abstract
Establishing a reliable electrophysiological recording platform is crucial for cardiology and neuroscience research. Noninvasive and label-free planar multitransistors and multielectrode arrays are conducive to perform the large-scale cellular electrical activity recordings, but the signal attenuation limits these extracellular devices to record subthreshold activities. In recent decade, in-cell nanoelectronics have been rapidly developed to open the door to intracellular electrophysiology. With the unique three-dimensional nanotopography and advanced penetration strategies, high-throughput and high-fidelity action potential like signal recordings is expected to be realized. This review summarizes in-cell nanoelectronics from versatile nano-biointerfaces, penetration strategies, active/passive nanodevices, systematically analyses the applications in electrogenic cells and especially evaluates the influence of nanodevices on the high-quality intracellular electrophysiological signals. Further, the opportunities, challenges and broad prospects of in-cell nanoelectronics are prospected, expecting to promote the development of in-cell electrophysiological platforms to meet the demand of theoretical investigation and clinical application.
Collapse
Affiliation(s)
- Dongxin Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, People's Republic of China.
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
36
|
Pandey A, Maity S, Murmu K, Middya S, Bandyopadhyay D, Gooh Pattader PS. Self-organization of random copolymers to nanopatterns by localized e-beam dosing. NANOTECHNOLOGY 2021; 32:285302. [PMID: 33761481 DOI: 10.1088/1361-6528/abf197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Strategic electron beam (e-beam) irradiation on the surface of an ultrathin (<100 nm) film of polystyrene-poly(methyl methacrylate) (PS-PMMA) random copolymer followed by solvent annealing stimulates a special variety of dewetting, leading to large-area hierarchical nanoscale patterns. For this purpose, initially, a negative (positive) tone of resist PS (PMMA) under weak e-beam exposure is exploited to produce an array of sites composed of cross-linked PS (chain-scissioned PMMA). Subsequently, annealing with the help of a developer solvent engenders dewetted patterns in the exposed zones where PMMA blocks are confined by the blocks of cross-linked PS. The e-beam dosage was systematically varied from 180μC cm-2to 10 000μC cm-2to explore the tone reversal behavior of PMMA on the dewetted patterns. Remarkably, at relatively higher e-beam dosing, both PMMA and PS blocks act as negative tones in the exposed zone. In contrast, the chain scission of PMMA in the periphery of the exposed regions due to scattered secondary electrons caused confined dewetting upon solvent annealing. Such occurrences eventually lead to pattern miniaturization an order of magnitude greater than with conventional thermal or solvent vapor annealed dewetting. Selective removal of PMMA blocks of RCP using a suitable solvent provided an additional 50% reduction in the size of the dewetted features.
Collapse
Affiliation(s)
- Ankur Pandey
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Surjendu Maity
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kaniska Murmu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sagnik Middya
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
37
|
Latiyan S, Suneet K, Jain S. Magneto-conducting multifunctional Janus microbots for intracellular delivery of biomolecules. J Tissue Eng Regen Med 2021; 15:625-633. [PMID: 33847076 DOI: 10.1002/term.3199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/04/2020] [Accepted: 04/05/2021] [Indexed: 11/08/2022]
Abstract
Although several advances have been made in the field of medicine during the last few decades, yet targeted delivery of biomolecules is still a significant challenge. Thus, the present study illustrates the fabrication of dual nature magneto-conducting Fe3 O4 -SU8 derived carbon-based Janus microbots that could deliver biomolecules efficiently inside cells. These microsystems possess dual properties, that is, the half part is magneto-conducting, and another half is only conducting for sufficing the therapeutic payloads efficiently under electromagnetic stimulations. These microbots are intrinsically fluorescent, which can help to trace them intracellularly without using any dye. UV photolithography was employed to design these low aspect ratio microbots (feature size ∼2.5 μm diameter and 3.7 μm length) for attaining better control over locomotion with minimum magnetic field intensity. Interestingly, Janus microbots achieved a higher speed in the electric field (44 µm/s) as compared to the magnetic field (18 µm/s). Moreover, in vitro studies show a higher microbots uptake by HeLa cells in the presence of an external electric field as compared to without electrical field stimulation.
Collapse
Affiliation(s)
- Sachin Latiyan
- Centre Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Kaushik Suneet
- Centre Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Shilpee Jain
- Centre Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
38
|
Monney B, Hess-Dunning AE, Gloth P, Capadona JR, Weder C. Mechanically adaptive implants fabricated with poly(2-hydroxyethyl methacrylate)-based negative photoresists. J Mater Chem B 2021; 8:6357-6365. [PMID: 32555874 DOI: 10.1039/d0tb00980f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neural implants that are based on mechanically adaptive polymers (MAPs) and soften upon insertion into the body have previously been demonstrated to elicit a reduced chronic tissue response than more rigid devices fabricated from silicon or metals, but their processability has been limited. Here we report a negative photoresist approach towards physiologically responsive MAPs. We exploited this framework to create cross-linked terpolymers of 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate and 2-ethylhexyl methacrylate by photolithographic processes. Our systematic investigation of this platform afforded an optimized composition that exhibits a storage modulus E' of 1.8 GPa in the dry state. Upon exposure to simulated physiological conditions the material swells slightly (21% w/w) leading to a reduction of E' to 2 MPa. The large modulus change is mainly caused by plasticization, which shifts the glass transition from above to below 37 °C. Single shank probes fabricated by photolithography could readily be implanted into a brain-mimicking gel without buckling and viability studies with microglial cells show that the materials display excellent biocompatibility.
Collapse
Affiliation(s)
- Baptiste Monney
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| | - Allison E Hess-Dunning
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Paul Gloth
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
39
|
Pandey A, Murmu K, Gooh Pattader PS. Non-equilibrium thermal annealing of a polymer blend in bilayer settings for complex micro/nano-patterning. RSC Adv 2021; 11:10183-10193. [PMID: 35423522 PMCID: PMC8695700 DOI: 10.1039/d1ra00017a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/26/2021] [Indexed: 01/30/2023] Open
Abstract
Micro phase separation in a thin film of a polymer blend leads to interesting patterns on different substrates. A plethora of studies in this field discussed the effect of the surface energy of the underlying tethered polymer brush or substrate on the final morphology of the polymer blend. The conventional process toward the final morphology is rather slow. Here, aiming fast lithography, we induce the kinetically driven morphological evolution by rapid thermal annealing (RTA) of the polymer blend of polystyrene (PS) and polymethylmethacrylate (PMMA) in bilayer settings at a very high temperature. The underlying film consists of untethered constituent homopolymers or their blend or random-co-polymer (RCP). Apart from the phase inversion of the blend on the PS homopolymer, a rich morphology of the blend on the RCP underlayer is uncovered with systematic investigation of the film using sequential washing with selective solvents. The dissolution characteristics and the thermal stability of the constituent polymers corroborated the observation. Based on the understanding of the morphological evolution, fabrication of a complex shaped micro/nano-pattern with multiple length scales is demonstrated using this blend/RCP system. This study shows a novel methodology for easy fabrication of hierarchical small length scale complex structures.
Collapse
Affiliation(s)
- Ankur Pandey
- Department of Chemical Engineering, Indian Institute of Technology Guwahati 781039 India
| | - Kaniska Murmu
- Department of Chemical Engineering, Indian Institute of Technology Guwahati 781039 India
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering, Indian Institute of Technology Guwahati 781039 India
- Center for Nanotechnology, Indian Institute of Technology Guwahati 781039 India
| |
Collapse
|
40
|
Pinming C, Wongwiriyapan W, Rattanamai S, Ketama N, Treetong A, Ikuno T, Tumcharern G, Klamchuen A. Carbon nanotube/polydimethylsiloxane composite micropillar arrays using non-lithographic silicon nanowires as a template for performance enhancement of triboelectric nanogenerators. NANOTECHNOLOGY 2021; 32:095303. [PMID: 33203810 DOI: 10.1088/1361-6528/abcb7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanotube/polydimethylsiloxane composite micropillar (CNT/PDMS MP) arrays were successfully fabricated using non-lithographic silicon nanowire (SiNW) arrays as a template for performance enhancement of triboelectric nanogenerators (TENG). The CNT/PDMS MP arrays were obtained by pouring CNT/PDMS composites on the SiNW arrays and peeled off. Surface topology of CNT/PDMS composites directly depends on morphology of SiNW arrays, which can be varied by the etching time of the typical metal-assisted chemical etching process. The micropatterned CNT/PDMS composites was mostly depicted to the SiNW array template pattern when the morphologies of the SiNW were optimized with a length of approximately 10 mm. Next, the CNT/PDMS MP arrays were utilized as a triboelectric layer of TENGs, generating the maximum output voltage of 22.84 ± 0.85 V, enabling an approximately 18-fold improvement in an electrical output compared to the flat PDMS-based TENG. The performance enhancement of TENGs based on CNT/PDMS MP arrays are attributed to synergic effects of (1) an enhancement of electrostatic induction by CNT composites, increasing dielectric constant, and (2) an enhancement of electrification by surface texturing using non-lithographic pattern and CNT composites.
Collapse
Affiliation(s)
- Chinathun Pinming
- College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Winadda Wongwiriyapan
- College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Songsak Rattanamai
- College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Nathakreat Ketama
- College of Nanotechnology, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Takashi Ikuno
- Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
| | - Gamolwan Tumcharern
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
41
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
42
|
Zandi Shafagh R, Shen JX, Youhanna S, Guo W, Lauschke VM, van der Wijngaart W, Haraldsson T. Facile Nanoimprinting of Robust High-Aspect-Ratio Nanostructures for Human Cell Biomechanics. ACS APPLIED BIO MATERIALS 2020; 3:8757-8767. [PMID: 35019647 DOI: 10.1021/acsabm.0c01087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-aspect-ratio and hierarchically nanostructured surfaces are common in nature. Synthetic variants are of interest for their specific chemical, mechanic, electric, photonic, or biologic properties but are cumbersome in fabrication or suffer from structural collapse. Here, we replicated and directly biofunctionalized robust, large-area, and high-aspect-ratio nanostructures by nanoimprint lithography of an off-stoichiometric thiol-ene-epoxy polymer. We structured-in a single-step process-dense arrays of pillars with a diameter as low as 100 nm and an aspect ratio of 7.2; holes with a diameter of 70 nm and an aspect ratio of >20; and complex hierarchically layered structures, all with minimal collapse and defectivity. We show that the nanopillar arrays alter mechanosensing of human hepatic cells and provide precise spatial control of cell attachment. We speculate that our results can enable the widespread use of high-aspect-ratio nanotopograhy applications in mechanics, optics, and biomedicine.
Collapse
Affiliation(s)
- Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.,Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Weijin Guo
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Tommy Haraldsson
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
43
|
Lee H, Chae S, Yi A, Kim HJ. Hydrophobic stretchable polydimethylsiloxane films with wrinkle patterns prepared via a metal‐assisted chemical etching process using a Si master mold. J Appl Polym Sci 2020. [DOI: 10.1002/app.50398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hanbin Lee
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| | - Sangmin Chae
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| | - Ahra Yi
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| | - Hyo Jung Kim
- School of Chemical Engineering Pusan National University Busan Republic of Korea
| |
Collapse
|
44
|
Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnol Adv 2020; 43:107586. [DOI: 10.1016/j.biotechadv.2020.107586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
45
|
Gupta T, Strelcov E, Holland G, Schumacher J, Yang Y, Esch MB, Aksyuk V, Zeller P, Amati M, Gregoratti L, Kolmakov A. Electron and X-ray Focused Beam-Induced Cross-Linking in Liquids: Toward Rapid Continuous 3D Nanoprinting and Interfacing using Soft Materials. ACS NANO 2020; 14:12982-12992. [PMID: 32935540 PMCID: PMC7986474 DOI: 10.1021/acsnano.0c04266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiphoton polymer cross-linking evolves as the core process behind high-resolution additive microfabrication with soft materials for implantable/wearable electronics, tissue engineering, microrobotics, biosensing, drug delivery, etc. Electrons and soft X-rays, in principle, can offer even higher resolution and printing rates. However, these powerful lithographic tools are difficult to apply to vacuum incompatible liquid precursor solutions used in continuous additive fabrication. In this work, using biocompatible hydrogel as a model soft material, we demonstrate high-resolution in-liquid polymer cross-linking using scanning electron and X-ray microscopes. The approach augments the existing solid-state electron/X-ray lithography and beam-induced deposition techniques with a wider class of possible chemical reactions, precursors, and functionalities. We discuss the focused beam cross-linking mechanism, the factors affecting the ultimate feature size, and layer-by-layer printing possibilities. The potential of this technology is demonstrated on a few practically important applications such as in-liquid encapsulation of nanoparticles for plasmonic sensing and interfacing of viable cells with hydrogel electrodes.
Collapse
Affiliation(s)
- Tanya Gupta
- NIST, Gaithersburg, MD 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | - Evgheni Strelcov
- NIST, Gaithersburg, MD 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yang B, Yu M, Yu H. Azopolymer-Based Nanoimprint Lithography: Recent Developments in Methodology and Applications. Chempluschem 2020; 85:2166-2176. [PMID: 32959995 DOI: 10.1002/cplu.202000495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/30/2020] [Indexed: 12/20/2022]
Abstract
Nanofabrication on soft polymeric surfaces is an essential process in many fields, for example, chip manufacturing, microfluidics, high efficiency solar cells, and anticounterfeiting. In order to achieve these applications, various nanofabrication methods have been explored. Among them, nanoimprint lithography (NIL) has drawn worldwide attention because of its cheap and fast processability. In this minireview, an overview of azopolymer-based NIL is provided. Since their discovery, azopolymers have demonstrated versatile photoresponsive characteristics due to their unique physical and chemical properties that originate from the photoisomerization of azobenzene chromophores. As such, two aspects are reported in this minireview. On the one hand, various azopolymers showing photofluidization and photoswitchable glass transition temperatures have been developed, thus facilitating methodological advancements in NIL. On the other hand, these on-demand NIL methods provide greater opportunities for azopolymer-based applications, such as templating of optics, directional photo-manipulation of nanopatterns, and micro photo-actuators. Also the challenges are discussed that remain in this field.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Material Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry, and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Mingming Yu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Haifeng Yu
- Department of Material Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry, and Physics of Ministry of Education, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
47
|
The Efficiency of UV Picosecond Laser Processing in the Shaping of Surface Structures on Elastomers. Polymers (Basel) 2020; 12:polym12092041. [PMID: 32911674 PMCID: PMC7569905 DOI: 10.3390/polym12092041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 01/13/2023] Open
Abstract
Elastomers are used as construction materials in numerous industries, and in particular the biomedical industry, mechatronics, electronics, the automotive industry, and chemical devices. The paper presents the results of tests involving the effects of microprocessing of elastomeric materials using a UV laser emitting picosecond pulses. In particular, it presents an analysis of the influence of the parameters of processing on its efficiency. The paper provides a recommendation of the most advantageous processing parameters for materials such as polyurethane and silicone (MVQ). The authors see prospects for the use of the developed technology in the techniques of sealing and microfluidisation. The final part of the paper presents examples of surface structures generated on elements made of artificial materials and the results of tests involving reduction of friction resistance of sealing rings in a pneumatic actuator.
Collapse
|
48
|
Tajmoradi Z, Roghani-Mamaqani H, Salami-Kalajahi M. Stimuli-transition of hydrophobicity/hydrophilicity in o-nitrobenzyl ester-containing multi-responsive copolymers: Application in patterning and droplet stabilization in heterogeneous media. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Guo J, Jian J, Wang D, Zhang X. Controlling amplified spontaneous emission of quantum dots by polymerized nanostructure interfaces. OPTICS LETTERS 2020; 45:4385-4388. [PMID: 32796964 DOI: 10.1364/ol.396264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We report a new polymer/colloidal-quantum-dot (CQD) film with a nanostructured interface, which is fabricated through a template-assisted photopolymerization method, toward the use of amplified spontaneous emission. It is experimentally demonstrated that the amplified spontaneous emission of CQDs is able to be manipulated by changing the nanostructured polymeric interface with a weak scattering ability. The dependences of emission wavelength and threshold on the size of the nanostructure and CQD layer thickness are investigated.
Collapse
|
50
|
Li X, Mo J, Fang J, Xu D, Yang C, Zhang M, Li H, Xie X, Hu N, Liu F. Vertical nanowire array-based biosensors: device design strategies and biomedical applications. J Mater Chem B 2020; 8:7609-7632. [PMID: 32744274 DOI: 10.1039/d0tb00990c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biosensors have been extensively studied in the areas of biology, electronics, chemistry, biotechnology, medicine, and various engineering fields. The interdisciplinarity creates an ideal platform for scientists to analyze biological species and chemical materials in a direct, efficient, and sensitive manner; this is expected to revolutionize the life sciences, basic medicine, and the healthcare industry. To carry out high-performance biosensing, nanoprobes - with specific nanoscale properties - have been proposed for ultrasensitive and in situ monitoring/detection of tracer biomolecules, cellular behavior, cellular microenvironments, and electrophysiological activity. Here, we review the development of vertical nanowire (VNW) array-based devices for the effective collection of biomedical information at the molecular level, extracellular level, and intracellular level. In particular, we summarize VNW-based technologies in the aspects of detecting biochemical information, cellular information, and bioelectrical information, all of which facilitate the understanding of fundamental biology and development of therapeutic techniques. Finally, we present a conclusion and prospects for the development of VNW platforms in practical biomedical applications, and we identify the challenges and opportunities for VNW-based biosensor systems in future biological research.
Collapse
Affiliation(s)
- Xiangling Li
- The First Affiliated Hospital of Sun Yat-Sen University, School of Biomedical Engineering, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|