1
|
Balint R, Boajă IP. Assisted phytoextraction as a nature-based solution for the sustainable remediation of metal(loid)-contaminated soils. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2003-2022. [PMID: 38441364 DOI: 10.1002/ieam.4907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 10/18/2024]
Abstract
Soil contamination is a significant environmental issue that poses a threat to human health and the ecosystems. Conventional remediation techniques, such as excavation and landfilling, are often expensive, disruptive, and unsustainable. As a result, there has been growing interest in developing sustainable remediation strategies that are cost-effective, environmentally friendly, and socially acceptable. One such solution is phytoextraction: a nature-based approach that uses the abilities of hyperaccumulator plants to uptake and accumulate metals and metalloids (potentially toxic elements [PTE]) without signs of toxicity. Once harvested, plant biomass can be treated to reduce its volume and weight by combustion, thus obtaining bioenergy, and the ashes can be used for the recovery of metals or in the construction industry. However, phytoextraction has shown variable effectiveness due to soil conditions and plant species specificity, which has led researchers to develop additional approaches known as assisted phytoextraction to enhance its success. Assisted phytoextraction is a remediation strategy based on modifying certain plant traits or using different materials to increase metal uptake or bioavailability. This review article provides a practical and up-to-date overview of established strategies and the latest scientific advancements in assisted phytoextraction. Our focus is on improving plant performance and optimizing the uptake, tolerance, and accumulation of PTE, as well as the accessibility of these contaminants. While we highlight the advantages of using hyperaccumulator plants for assisted phytoextraction, we also address the challenges and limitations associated with this approach. Factors such as soil pH, nutrient availability, and the presence of other contaminants can affect its efficiency. Furthermore, the real-world challenges of implementing phytoextraction on a large scale are discussed and strategies to modify plant traits for successful phytoremediation are presented. By exploring established strategies and the latest scientific developments in assisted phytoextraction, this review provides valuable guidance for optimizing a sustainable, nature-based technology. Integr Environ Assess Manag 2024;20:2003-2022. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Iustina Popescu Boajă
- Geological Institute of Romania, Bucharest, Romania
- National University of Science and Technlogy Politehnica, Bucharest, Romania
| |
Collapse
|
2
|
Qiao Y, Lin Z, Li L, Jiang W, Ge J, Chen J, Lu L, Tian S. Serendipita indica Drives Sulfur-Related Microbiota in Enhancing Growth of Hyperaccumulator Sedum alfredii and Facilitating Soil Cadmium Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14726-14739. [PMID: 39116417 DOI: 10.1021/acs.est.4c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Endophytic fungus Serendipita indica can bolster plant growth and confer protection against various biotic and abiotic stresses. However, S. indica-reshaped rhizosphere microecology interactions and root-soil interface processes in situ at the submicrometer scale remain poorly understood. We combined amplicon sequencing and high-resolution nano X-ray fluorescence (nano-XRF) imaging of the root-soil interface to reveal cadmium (Cd) rhizosphere processes. S. indica can successfully colonize the roots of Sedum alfredii Hance, which induces a remarkable increase in shoot biomass by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that S. indica colonization altered the Cd distribution in the rhizosphere and facilitated the proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot. Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable network structure after the S. indica inoculation. Keystone species were strongly associated with growth promotion and Cd absorption. For example, Comamonadaceae are closely related to the organic acid cycle and S bioavailability, which could facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could release auxin and boost plant biomass. In summary, we construct a mutualism system for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.
Collapse
Affiliation(s)
- Yabei Qiao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhi Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - Luxi Li
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Wei Jiang
- Xianghu Laboratory, Biotechnology Institute, Hangzhou 311231, P. R. China
| | - Jun Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
3
|
Ohnuki T. [Chemical Species Change of Radionuclides by Microorganisms: Effects of Exudated Siderophores]. YAKUGAKU ZASSHI 2024; 144:651-657. [PMID: 38825474 DOI: 10.1248/yakushi.23-00197-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Microbial exudates including siderophore, which changes chemical species of actinides and lanthanides. We have investigated effects of desferrioxamine B (DFOB; one of the siderophores) and siderophore-like organic molecules (SLOM) on the adsorption of lanthanides by microbial cells, aluminium oxide (Al2O3), and manganese (Mn) oxides. When DFOB was present, the distribution coefficients of cerium (Ce) were measured to be lower than those of neighboring elements of lanthanum (La) and praseodymium (Pr) (Negative anomaly of Ce adsorption). Even though initial oxidation state of Ce in the solution was III, that was changed to IV after the addition of DFOB, indicating that Ce(III) was oxidized by forming complex with DFOB. When lanthanides were adsorbed by biogenic Mn(IV) oxides, negative anomaly of Ce adsorption was observed in the sorption in alkaline solution. Ce(III) was oxidized to forme the complexes of Ce(IV) with SLOM in the solution. These results show that siderophore possesses high performance of oxidation of Ce(III) to Ce(IV) during association, affectiong the adsorption behavior of Ce. After Fukushima accident, radioactive Cs accumulation by Eleutherococcus sciadophylloides (Koshiabura) caused by the dissolution of Fe from soil around the roots, that was dominated by siderophore releasing microorganisms (SB). These SBs may enhance dissolution of iron (Fe) and uranium (U) phases in the nuclear fuel debris formed in the nuclear reactors in Fukushima Daiichi nuclear power plant. Thus, in the interaction between microorganisms and radionuclides, SLOMs discharged by microorganisms are deeply involved in the chemical state change of radionuclides.
Collapse
Affiliation(s)
- Toshihiko Ohnuki
- Institute of Human Culture Studies, Otsuma Women's University
- Institute of Innovative Research, Tokyo Institute of Technology
| |
Collapse
|
4
|
Garraud J, Plihon H, Capiaux H, Le Guern C, Mench M, Lebeau T. Drivers to improve metal(loid) phytoextraction with a focus on microbial degradation of dissolved organic matter in soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:63-81. [PMID: 37303191 DOI: 10.1080/15226514.2023.2221740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioaugmentation of soils can increase the mobilization of metal(loid)s from the soil-bearing phases. However, once desorbed, these metal(loid)s are mostly complexed to the dissolved organic matter (DOM) in the soil solution, which can restrict their availability to plants (roots mainly taking up the free forms) and then the phytoextraction performances. Firstly the main drivers influencing phytoextraction are reminded, then the review focuses on the DOM role. After having reminding the origin, the chemical structure and the lability of DOM, the pool of stable DOM (the most abundant in the soil) most involved in the complexation of metal(loid)s is addressed in particular by focusing on carboxylic and/or phenolic groups and factors controlling metal(loid) complexation with DOM. Finally, this review addresses the ability of microorganisms to degrade metal(loid)-DOM complexes as an additional lever for increasing the pool of free metal(loid) ions, and then phytoextraction performances, and details the origin of microorganisms and how they are selected. The development of innovative processes including the use of these DOM-degrading microorganisms is proposed in perspectives.
Collapse
Affiliation(s)
- Justine Garraud
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hélène Plihon
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hervé Capiaux
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | | | | | - Thierry Lebeau
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| |
Collapse
|
5
|
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1653. [PMID: 37111876 PMCID: PMC10141480 DOI: 10.3390/plants12081653] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths and weaknesses, and the effects of microorganisms on metallophytes and plant endophytes resistant to trace elements (TEs) were summarised and described in this manuscript. Prospectively, bio-combined phytoremediation with microorganisms appears to be an ideal, economically viable and environmentally sound solution. The novelty of the work is the description of the potential of "green roofs" to contribute to the capture and accumulation of many metal-bearing and suspended dust and other toxic compounds resulting from anthropopressure. Attention was drawn to the great potential of using phytoremediation on less contaminated soils located along traffic routes and urban parks and green spaces. It also focused on the supportive treatments for phytoremediation using genetic engineering, sorbents, phytohormones, microbiota, microalgae or nanoparticles and highlighted the important role of energy crops in phytoremediation. Perceptions of phytoremediation on different continents are also presented, and new international perspectives are presented. Further development of phytoremediation requires much more funding and increased interdisciplinary research in this direction.
Collapse
Affiliation(s)
- Agnieszka Mocek-Płóciniak
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Justyna Mencel
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Wiktor Zakrzewski
- Regional Chemical and Agricultural Station in Poznan, Sieradzka 29, 60-163 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
6
|
Shah SSH, Azhar M, Nadeem F, Ali MA, Khan MN, Ahmad I, Khurshid MY, Hasnain M, Ali Z, Shaheen AAAA. Enhancements in yield, agronomic, and zinc recovery efficiencies of rice-wheat system through bioactive zinc coated urea application in Aridisols. PLoS One 2023; 18:e0282615. [PMID: 36893144 PMCID: PMC9997952 DOI: 10.1371/journal.pone.0282615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Zinc (Zn) deficiency and source-dependent Zn fertilization to achieve optimum Zn levels in rice and wheat grains remain global concern for human nutrition, especially in developing countries. To-date, little is known about the effectiveness of bioactive Zn-coated urea (BAZU) to enhance the concentration, uptake, and recovery of Zn in relation to agronomic efficiency in paddy and wheat grains. RESULTS Field experiments were carried out during 2020-21 on the rice-wheat system at Lahore, Faisalabad, Sahiwal, and Multan, Punjab, Pakistan using four treatments viz.T1 (Urea 46% N @ 185 kg ha-1 + zero Zn), T2 (Urea 46% N @ 185 kg ha-1 + ZnSO4 33% Zn @ 15 kg ha-1), T3 (BAZU 42% N @ 103 kg ha-1 + Urea 46% N @ 62 kg ha-1 + 1% bioactive Zn @ 1.03 kg ha-1) and T4 (BAZU 42% N @ 125 kg ha-1 + Urea 46% N @ 62 kg ha-1 + 1% bioactive Zn @ 1.25 kg ha-1) in quadruplicate under Randomized Complete Block Design. Paddy yield was increased by 13, 11, 12, and 11% whereas wheat grain yield was enhanced by 12, 11, 11, and 10% under T4 at Multan, Faisalabad, Sahiwal, and Lahore, respectively, compared to T1. Similarly, paddy Zn concentration was increased by 58, 67, 65 and 77% (32.4, 30.7, 31.1, and 34.1 mg kg-1) in rice whereas grain Zn concentration was increased by 90, 87, 96 and 97% (46.2, 43.9, 46.7 and 44.9 mg kg-1) in wheat by the application of BAZU (T4) at Multan, Faisalabad, Sahiwal, and Lahore, respectively, in comparison to T1. Zinc recovery was about 9-fold and 11-fold higher in paddy and wheat grains, respectively, under BAZU (T4) treatment relative to T2 while, the agronomic efficiency was enhanced up to 130% and 141% in rice and wheat respectively as compared to T2. CONCLUSION Thus, T4 application at the rate of 125 kg ha-1 could prove effective in enhancing the rice paddy and wheat grain yield along with their Zn biofortification (∼34 mg kg-1 and ∼47 mg kg-1, respectively) through increased agronomic and Zn recovery efficiencies, the underlying physiological and molecular mechanisms of which can be further explored in future.
Collapse
Affiliation(s)
| | - Muhammad Azhar
- Department of Agronomy, Engro Fertilizers Ltd., Lahore, Pakistan
| | - Faisal Nadeem
- Department of Soil Science, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Naeem Khan
- Directorate General Soil Survey of Punjab, Agriculture Department, Lahore, Pakistan
| | - Ijaz Ahmad
- Department of Agronomy, Engro Fertilizers Ltd., Lahore, Pakistan
| | | | - Muhammad Hasnain
- Department of Agronomy, Engro Fertilizers Ltd., Lahore, Pakistan
| | - Zeeshan Ali
- Department of Agronomy, Engro Fertilizers Ltd., Lahore, Pakistan
| | | |
Collapse
|
7
|
Doyama K, Haruma T, Hishiyama S, Kato A, Masuya H, Yamaji K. Isoavenaciol and 7-hydroxy-isoavenaciol: Zn-chelating metallophores produced by root-endophytic Pezicula ericae in a Zn-accumulating plant, Aucuba japonica. PHYTOCHEMISTRY 2023; 206:113547. [PMID: 36481311 DOI: 10.1016/j.phytochem.2022.113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Metallophores are low-molecular-weight compounds capable of chelating heavy metals, which have recently been reported to alleviate heavy metal stress in plants. We isolated two undescribed compounds as Zn-chelating metallophores from the culture broth of the root endophytic Pezicula ericae w12-25, which was collected from a Zn-accumulating plant, Aucuba japonica Thunb. These two compounds were determined to be (3aS,4S,6aR)-3a-hydroxy-3-methylene-4-octyldihydrofuro[3,4-b]furan-2,6(3H,4H)-dione and (3S,3aS,4S,6aR)-3a-hydroxy-3-(hydroxymethyl)-4-octyldihydrofuro[3,4-b]furan-2,6(3H,4H)-dione using spectroscopic methods (HRMS, 1H and 13C NMR, and 2D NMR) and X-ray crystallography, respectively. The two compounds, classified as furofurandiones, were named isoavenaciol and 7-hydroxy-isoavenaciol. After the hydrolysis of the lactone moiety, isoavenaciol would release the carboxyl group to show Zn-chelating activity. Their antifungal activities were confirmed using Cladosporium herbarum (AHU9262).
Collapse
Affiliation(s)
- Kohei Doyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 3058572, Japan
| | - Toshikatsu Haruma
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 0608628, Japan
| | - Shojiro Hishiyama
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, 1, Matsunosato, Tsukuba, Ibaraki, 3058687, Japan
| | - Atsushi Kato
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, 1, Matsunosato, Tsukuba, Ibaraki, 3058687, Japan
| | - Hayato Masuya
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, 1, Matsunosato, Tsukuba, Ibaraki, 3058687, Japan
| | - Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 3058572, Japan.
| |
Collapse
|
8
|
Cleophas FN, Zahari NZ, Murugayah P, Rahim SA, Mohd Yatim AN. Phytoremediation: A Novel Approach of Bast Fiber Plants (Hemp, Kenaf, Jute and Flax) for Heavy Metals Decontamination in Soil-Review. TOXICS 2022; 11:5. [PMID: 36668731 PMCID: PMC9864374 DOI: 10.3390/toxics11010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal pollution in the environment is a major concern for humans as it is non-biodegradable and can have a lot of effects on the environment, humans as well as plants. At present, a solution to this problem is suggested in terms of a new, innovative and eco-friendly technology known as phytoremediation. Bast fiber plants are typically non-edible crops that have a short life cycle. It is one of the significant crops that has attracted interest for many industrial uses because of its constant fiber supply and ease of maintenance. Due to its low maintenance requirements with minimum economic investment, bast fiber plants have been widely used in phytoremediation. Nevertheless, these plants have the ability to extract metals from the soil through their deep roots, combined with their commercial prospects, making them an ideal candidate as a profit-yielding crop for phytoremediation purposes. Therefore, a comprehensive review is needed for a better understanding of the morphology and phytoremediation mechanism of four commonly bast fiber plants, such as hemp (Cannabis sativa), kenaf (Hibiscus cannabinus), jute (Corchorus olitorius) and Flax (Linum usitatissimum). This review article summarizes the existing research on the phytoremediation potential of these plants grown in different toxic pollutants such as Lead (Pb), Cadmium (Cd) and Zinc (Zn). This work also discusses several aids including natural and chemical amendments to improve phytoremediation. The role of these amendments in the bioavailability of contaminants, their uptake, translocation and bioaccumulation, as well as their effect on plant growth and development, has been highlighted in this paper. This paper helps in identifying, comparing and addressing the recent achievements of bast fiber plants for the phytoremediation of heavy metals in contaminated soil.
Collapse
Affiliation(s)
- Fera Nony Cleophas
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
- Small Islands Research Center, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nur Zaida Zahari
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
- Small Islands Research Center, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Pavitra Murugayah
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Sahibin Abd Rahim
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| | - Ahmad Norazhar Mohd Yatim
- Environmental Science Programme, Faculty of Science & Natural Resources, Universiti Malaysia Sabah, UMS Road, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
9
|
Pandey AK, Zorić L, Sun T, Karanović D, Fang P, Borišev M, Wu X, Luković J, Xu P. The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant-Rhizosphere Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2554. [PMID: 36235420 PMCID: PMC9572132 DOI: 10.3390/plants11192554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization, urbanization, and mine tailings runoff are the main sources of heavy metal contamination of agricultural land, which has become one of the major constraints to crop growth and productivity. Finding appropriate solutions to protect plants and agricultural land from heavy metal pollution/harmful effects is important for sustainable development. Phytoremediation and plant growth-promoting rhizobacteria (PGPR) are promising methods for this purpose, which both heavily rely on an appropriate understanding of the anatomical structure of plants. Specialized anatomical features, such as those of epidermis and endodermis and changes in the root vascular tissue, are often associated with heavy metal tolerance in legumes. This review emphasizes the uptake and transport of heavy metals by legume plants that can be used to enhance soil detoxification by phytoremediation processes. Moreover, the review also focuses on the role of rhizospheric organisms in the facilitation of heavy metal uptake, the various mechanisms of enhancing the availability of heavy metals in the rhizosphere, the genetic diversity, and the microbial genera involved in these processes. The information presented here can be exploited for improving the growth and productivity of legume plants in metal-prone soils.
Collapse
Affiliation(s)
- Arun K. Pandey
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lana Zorić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Dunja Karanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Xinyang Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Jadranka Luković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
10
|
Singh J, Singh AV, Upadhayay VK, Khan A, Chandra R. Prolific contribution of Pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions. World J Microbiol Biotechnol 2022; 38:227. [PMID: 36136176 DOI: 10.1007/s11274-022-03411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
The current study aimed to characterize the contribution of bacterium CP17 in zinc (Zn) biofortification in wheat under saline and non-saline conditions. This bacterial strain effectively solubilized Zn and tolerated up to 20% NaCl concentration. The Zn-solubilization potential was also quantified using AAS in a liquid broth supplemented with zinc oxide and zinc carbonate at various NaCl concentrations. Lowering the pH of liquid broth and analyzing a wide range of organic acids (thioacetic acid, glutamic acid, carboxylic acid, propionic acid, and so on) using UPLC-MS provided mechanistic insight for zinc solubilization. This strain was also shown to possess plant probiotic characteristics like phosphate solubilization, production of siderophore, indole acetic acid (IAA), exopolysaccharide (EPS), ACC deaminase, and ammonia. CP17 was identified as a Pseudomonas protegens based on the 16S rRNA gene analysis. In addition, the amplified product of the ACC deaminase producing gene (acdS) provided a molecular indication of the strain's endurance towards stress. The towel paper assay confirmed that the inoculation of Pseudomonas protegens CP17 significantly increased wheat seedlings' germination, growth, and biomass under different NaCl concentrations (0 mM, 100 mM, and 150 mM). Afterward, In situ pot experiment study was designed with the inoculation of Pseudomonas protegens in wheat under saline and non-saline conditions. The harvested wheat plants showed an elevated pattern of zinc content in the grain (i.e. 24.33 and 29.33mg/kg), straw (i.e. 45.73 and 50.23mg/kg) and soil (i.e. 0.978 and 1.32mg/kg) under saline and non-saline conditions, respectively and shown significant improvement over control. The results of the pot study revealed the amelioration in plant health, yield and uptake of available zinc from rhizospheric soil to straw and grain, along with enhanced dehydrogenase and phosphatase activities of rhizospheric soil under saline and non-saline conditions. This study supports the integrative role of Pseudomonas protegens CP17 as a bioinoculant for the efficacious strategy of zinc biofortification and growth promotion in wheat and ensures sustainable nutrient quality production under salinity stress.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Ajay Veer Singh
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India.
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Amir Khan
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| | - Ramesh Chandra
- Department of Soil Science, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, 263145, Pantnagar (U. S. Nagar), Uttarakhand, India
| |
Collapse
|
11
|
Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153144. [PMID: 35038542 DOI: 10.1016/j.scitotenv.2022.153144] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/15/2023]
Abstract
Siderophores are small molecular weight iron scavengers that are mainly produced by bacteria, fungi, and plants. Recently, they have attracted increasing attention because of their potential role in environmental bioremediation. Although siderophores are generally considered to exhibit high specificity for iron, they have also been reported to bind to various metal and metalloid ions. This unique ability allows siderophores to solubilise and mobilise heavy metals and metalloids from soil, thereby facilitating their bioremediation. In addition, because of their redox nature, they can mediate the production of reactive oxygen species (ROS), and thus promote the biodegradation of organic contaminants. The aim of this review is to summarise the existing knowledge on the developed strategies of siderophore-assisted bioremediation of metals, metalloids, and organic contaminants. Additionally, this review also includes the biosynthesis and classification of microbial and plant siderophores.
Collapse
Affiliation(s)
- Zuzana Roskova
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Radek Skarohlid
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
12
|
Gayathiri E, Prakash P, Selvam K, Awasthi MK, Gobinath R, Karri RR, Ragunathan MG, Jayanthi J, Mani V, Poudineh MA, Chang SW, Ravindran B. Plant microbe based remediation approaches in dye removal: A review. Bioengineered 2022; 13:7798-7828. [PMID: 35294324 PMCID: PMC9208495 DOI: 10.1080/21655979.2022.2049100] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Increased industrialization demand using synthetic dyes in the newspaper, cosmetics, textiles, food, and leather industries. As a consequence, harmful chemicals from dye industries are released into water reservoirs with numerous structural components of synthetic dyes, which are hazardous to the ecosystem, plants and humans. The discharge of synthetic dye into various aquatic environments has a detrimental effect on the balance and integrity of ecological systems. Moreover, numerous inorganic dyes exhibit tolerance to degradation and repair by natural and conventional processes. So, the present condition requires the development of efficient and effective waste management systems that do not exacerbate environmental stress or endanger other living forms. Numerous biological systems, including microbes and plants, have been studied for their ability to metabolize dyestuffs. To minimize environmental impact, bioremediation uses endophytic bacteria, which are plant beneficial bacteria that dwell within plants and may improve plant development in both normal and stressful environments. Moreover, Phytoremediation is suitable for treating dye contaminants produced from a wide range of sources. This review article proves a comprehensive evaluation of the most frequently utilized plant and microbes as dye removal technologies from dye-containing industrial effluents. Furthermore, this study examines current existing technologies and proposes a more efficient, cost-effective method for dye removal and decolorization on a big scale. This study also aims to focus on advanced degradation techniques combined with biological approaches, well regarded as extremely effective treatments for recalcitrant wastewater, with the greatest industrial potential.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai - 600 042, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem636011, India
| | - Kuppusamy Selvam
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem636011, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi712100, PRChina
| | | | - Rama Rao Karri
- Faculty of Engineering, University Teknologi, Brunei, Asia
| | | | - Jayaprakash Jayanthi
- Department of Advanced Zoology and Biotechnology, Guru Nanak College, Chennai, India
| | - Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju54874, Korea
| | | | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon16227, Republic of Korea
| |
Collapse
|
13
|
Lin Y, Zhang Y, Liang X, Duan R, Yang L, Du Y, Wu L, Huang J, Xiang G, Bai J, Zhen Y. Assessment of rhizosphere bacterial diversity and composition in a metal hyperaccumulator (
Boehmeria nivea
) and a non‐accumulator (
Artemisia annua
) in an antimony mine. J Appl Microbiol 2022; 132:3432-3443. [DOI: 10.1111/jam.15486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yuxiang Lin
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yaqi Zhang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Xin Liang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Renyan Duan
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Li Yang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yihuan Du
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Lianfu Wu
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province Anqing Normal University Anqing Anhui China
| | - Jiacheng Huang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Guohong Xiang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Jing Bai
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yu Zhen
- College of Agriculture and Biotechnology Loudi Hunan China
| |
Collapse
|
14
|
Ali MA, Naeem F, Tariq N, Ahmed I, Imran A. Bioactive Nutrient Fortified Fertilizer: A Novel Hybrid Approach for the Enrichment of Wheat Grains With Zinc. FRONTIERS IN PLANT SCIENCE 2021; 12:743378. [PMID: 35003150 PMCID: PMC8733721 DOI: 10.3389/fpls.2021.743378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/15/2021] [Indexed: 05/29/2023]
Abstract
Zinc (Zn) is a critical micronutrient that synergizes nutrient use efficiency, and improves plant growth and human health. Low Zn bioavailability in soils affects produce quality and agricultural productivity worldwide ultimately inducing deficiency in humans and animals. Zn deficiency is a leading cause of malnutrition in underdeveloped countries where a widespread population depends upon staple cereals for daily intake of calories. Modern cereal cultivars are inherently low in Zn, eventually, plants need to be enriched with soil application of ZnSO4, but due to higher fixation losses, it becomes an inefficient source. Rhizosphere microbiome contains Zn-solubilizing bacteria (ZSB) that improve Zn bioavailability, thus increase the root function, Zn uptake, and plant growth. Niha Corp developed a hybrid process of bioactive nutrient fortified fertilizer (BNFF), which has been used to formulate Zabardast Urea (ZU) by coating bioactive Zn (BAZ) and ZSB on urea. Data obtained for 15 wheat varieties from 119 farmer field demonstration plots and eight replicated trials on 42 locations across multi-environment conditions conclude that ZU significantly improved the plant biomass and yield by 12% over non-Zn control and produced grains with 57 μg/g Zn contents, which can meet a major part of the recommended dietary allowance (RDA) of humans. The study recommends that this microbe-mediated hybrid invention (ZU) is a feasible approach to boost Zn bioavailability and Zn use efficiency, with enhanced yield and quality that may contribute to improve human health. To the best of our knowledge, this is the first wide-scale field testing of Zn enrichment in the grains of bread wheat using an innovative BNFF Urea Z technology.
Collapse
Affiliation(s)
| | | | | | - Ijaz Ahmed
- Engro Fertilizers Ltd., Lahore, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering-Campus-Pakistan Institute for Engineering and Applied Sciences (NIBGE-C-PIEAS), Faisalabad, Pakistan
| |
Collapse
|
15
|
Madline A, Benidire L, Boularbah A. Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67185-67202. [PMID: 34247350 DOI: 10.1007/s11356-021-15168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an eco-friendly method for rehabilitation of mine tailing. Some heavy metals and salt-tolerant plant growth-promoting rhizobacteria (PGPR) could be beneficial in alleviating soil salinity and heavy metal stress during plant growth. The aim of this work is to select PGPR that could be used in phytoremediation process. Twenty-nine rhizobacteria are examined for their ability to grow at increasing concentrations of NaCl, Zn, Pb, Cu, and Cd. The results showed that seventeen rhizobacteria displayed high salinity and metal tolerance up to 100 g L-1 of NaCl, 5 mM of Cd, 9 mM of Pb, 10 mM of Zn, and 6 mM of Cu. Moreover, almost all tested bacteria maintained their PGP traits under 10% of NaCl and multi-metal stress. Based on seedling bioassay under metallic and salt stress, using Peganum harmala L. and Lactuca sativa L., beneficial effects of seed inoculation with bacterial consortia (Mesorhizobium tamadayense, Enterobacter xiangfangensis, Pseudomonas azotifigens, and Streptomyces caelestis) have been observed in terms of root and shoot elongation. Our results show that the stress-tolerant consortium used has a great potential to sustain plants establishment in heavily disturbed soils.
Collapse
Affiliation(s)
- Atika Madline
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Leila Benidire
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Ali Boularbah
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco.
- Center of Excellence for Soil and Africa Research in Africa, AgroBioSciences, Mohammed VI Polytechnique - University Lot 660, Hay Moulay Rachid, Ben Guerir, Morocco.
- Université Cadi Ayyad, Ecole Supérieure de Technologie, El Kelâa des Sraghna, Morocco.
| |
Collapse
|
16
|
Xie Y, Bu H, Feng Q, Wassie M, Amee M, Jiang Y, Bi Y, Hu L, Chen L. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. ENVIRONMENTAL RESEARCH 2021; 200:111730. [PMID: 34293315 DOI: 10.1016/j.envres.2021.111730] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.
Collapse
Affiliation(s)
- Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heshen Bu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Qijia Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maurice Amee
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jiang
- Public Laboratory Platform, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yufang Bi
- China National Bamboo Research Center, Hangzhou, 310058, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
17
|
Chen YG, He XLS, Huang JH, Luo R, Ge HZ, Wołowicz A, Wawrzkiewicz M, Gładysz-Płaska A, Li B, Yu QX, Kołodyńska D, Lv GY, Chen SH. Impacts of heavy metals and medicinal crops on ecological systems, environmental pollution, cultivation, and production processes in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112336. [PMID: 34044310 DOI: 10.1016/j.ecoenv.2021.112336] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are widely distributed in the environment due to the natural processes and anthropogenic human activities. Their migration into no contaminated areas contributing towards pollution of the ecosystems e.g. soils, plants, water and air. It is recognized that heavy metals due to their toxicity, long persistence in nature can accumulate in the trophic chain and cause organism dysfunction. Although the popularity of herbal medicine is rapidly increasing all over the world heavy metal toxicity has a great impact and importance on herbal plants and consequently affects the quality of herbal raw materials, herbal extracts, the safety and marketability of drugs. Effective control of heavy metal content in herbal plants using in pharmaceutical and food industries has become indispensable. Therefore, this review describes various important factors such as ecological and environmental pollution, cultivation and harvest of herbal plants and manufacturing processes which effects on the quality of herbal plants and then on Chinese herbal medicines which influence human health. This review also proposes possible management strategies to recover environmental sustainability and medication safety. About 276 published studies (1988-2021) are reviewed in this paper.
Collapse
Affiliation(s)
- Yi-Gong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Xing-Li-Shang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Jia-Hui Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Hong-Zhang Ge
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Anna Wołowicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Agnieszka Gładysz-Płaska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China
| | - Qiao-Xian Yu
- Zhejiang Senyu Co., Ltd, No. 8 Wanmao Road, Choujiang Street, Yiwu City, Zhejiang Province, China
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, M. Curie Sklodowska Sq. 2, 20-031 Lublin, Poland.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
18
|
Martos S, Busoms S, Pérez-Martín L, Llugany M, Cabot C, Poschenrieder C. Identifying the Specific Root Microbiome of the Hyperaccumulator Noccaea brachypetala Growing in Non-metalliferous Soils. Front Microbiol 2021; 12:639997. [PMID: 34054748 PMCID: PMC8160108 DOI: 10.3389/fmicb.2021.639997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Noccaea brachypetala is a close relative of Noccaea caerulescens, a model plant species used in metal hyperaccumulation studies. In a previous survey in the Catalan Pyrenees, we found two occidental and two oriental N. brachypetala populations growing on non-metalliferous soils, with accumulated high concentrations of Cd and Zn. Our hypothesis was that the microbiome companion of the plant roots may influence the ability of these plants to absorb metals. We performed high-throughput sequencing of the bacterial and fungal communities in the rhizosphere soil and rhizoplane fractions. The rhizobiomes and shoot ionomes of N. brachypetala plants were analyzed along with those from other non-hyperaccumulator Brassicaceae species found at the same sampling locations. The analyses revealed that microbiome richness and relative abundance tended to increase in N. brachypetala plants compared to non-hyperaccumulator species, regardless of plant location. We confirmed that the root compartment is a key factor in describing the community composition linked to the cohabiting Brassicaceae species, and the rhizoplane fraction contained the specific and rare taxa associated with each species. N. brachypetala plants harbored a similar relative abundance of fungi compared to the other plant hosts, but there was a notable reduction in some specific taxa. Additionally, we observed an enrichment in the hyperaccumulator rhizoplane of previously described metal-tolerant bacteria and bacteria involved in nitrogen cycling. The bacteria involved in the nitrogen cycle could contribute indirectly to the hyperaccumulator phenotype by improving soil quality and fertility. Our results indicate that N. brachypetala captures a particular prokaryotic community from the soil. This particular prokaryotic community may benefit the extraction of metal ions and/or improve plant nutrition. Our research identified satellite groups associated with the root niche of a hyperaccumulator plant that may assist in improving biological strategies in heavy metal remediation.
Collapse
Affiliation(s)
- Soledad Martos
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sílvia Busoms
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Pérez-Martín
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Catalina Cabot
- Department of Biology, Universitat de les Illes Balears, Palma, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
19
|
Delgado-González CR, Madariaga-Navarrete A, Fernández-Cortés JM, Islas-Pelcastre M, Oza G, Iqbal HMN, Sharma A. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5215. [PMID: 34068925 PMCID: PMC8157233 DOI: 10.3390/ijerph18105215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Potable and good-quality drinking water availability is a serious global concern, since several pollution sources significantly contribute to low water quality. Amongst these pollution sources, several are releasing an array of hazardous agents into various environmental and water matrices. Unfortunately, there are not very many ecologically friendly systems available to treat the contaminated environment exclusively. Consequently, heavy metal water contamination leads to many diseases in humans, such as cardiopulmonary diseases and cytotoxicity, among others. To solve this problem, there are a plethora of emerging technologies that play an important role in defining treatment strategies. Phytoremediation, the usage of plants to remove contaminants, is a technology that has been widely used to remediate pollution in soils, with particular reference to toxic elements. Thus, hydroponic systems coupled with bioremediation for the removal of water contaminants have shown great relevance. In this review, we addressed several studies that support the development of phytoremediation systems in water. We cover the importance of applied science and environmental engineering to generate sustainable strategies to improve water quality. In this context, the phytoremediation capabilities of different plant species and possible obstacles that phytoremediation systems may encounter are discussed with suitable examples by comparing different mechanistic processes. According to the presented data, there are a wide range of plant species with water phytoremediation potential that need to be studied from a multidisciplinary perspective to make water phytoremediation a viable method.
Collapse
Affiliation(s)
- Cristián Raziel Delgado-González
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Alfredo Madariaga-Navarrete
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - José Miguel Fernández-Cortés
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| | - Margarita Islas-Pelcastre
- Área Académica de Ciencias Agrícolas y Forestales, Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Tulancingo 43600, Mexico; (C.R.D.-G.); (A.M.-N.); (M.I.-P.)
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico, Pedro Escobedo 76703, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Ashutosh Sharma
- Centre of Bioengineering, School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo 76130, Mexico;
| |
Collapse
|
20
|
Ważny R, Rozpądek P, Domka A, Jędrzejczyk RJ, Nosek M, Hubalewska-Mazgaj M, Lichtscheidl I, Kidd P, Turnau K. The effect of endophytic fungi on growth and nickel accumulation in Noccaea hyperaccumulators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144666. [PMID: 33736318 DOI: 10.1016/j.scitotenv.2020.144666] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 05/05/2023]
Abstract
The role of endophytic fungi isolated from different populations of European Ni hyperaccumulators was investigated in regard to the microorganisms' ability to enhance the hyperaccumulation of Ni in Noccaea caerulescens. Effects of particular species of endophytic fungi on adaptation of N. caerulescens to excess Ni were tested by co-cultivation with single strains of the fungi. Seven of these had a positive effect on plant biomass production, whereas two of the tested species inhibited plant growth; biomass production of inoculated plants was significantly different compared to non-inoculated control. Inoculation with six fungal strains: Embellisia thlaspis, Pyrenochaeta cava, Phomopsis columnaris, Plectosphaerella cucumerina, Cladosporium cladosporioides and Alternaria sp. stimulated the plant to uptake and accumulate more Ni in both roots and shoots, compared to non-inoculated control. P. columnaris was isolated from all plant species sampled. Strains isolated from Noccaea caerulescens and Noccaea goesingensis increased Ni root and shoot accumulation of their native hosts (compared to non-inoculated control). Inoculation of different populations of Noccaea with P. columnaris of foreign origin did not cause its host to accumulate more Ni, with the exception of the Ni-unadapted ecotype of N. goesingensis. Inoculation with P. columnaris from N. caerulescens significantly improved Ni uptake, but the effect of the fungus was not as prominent as in the case of N. caerulescens. By comparing the transcriptomes of N. caerulescens and N. goesingensis from Flatz inoculated with P. columnaris, we showed that enhanced uptake and accumulation of Ni in the plants is accompanied by an upregulation of several genes mainly involved in plant stress protection and metal uptake and compartmentation.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland.
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387 Kraków, Poland
| | - Michał Nosek
- Institute of Biology, Pedagogical University, Podchorążych 2, 30-084 Kraków, Poland
| | | | - Irene Lichtscheidl
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, Austria
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia, Consejo Superior de Investigaciones Científicas (CSIC), Av. de Vigo, 15705 Santiago de Compostela, Spain
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
21
|
Ferrarini A, Fracasso A, Spini G, Fornasier F, Taskin E, Fontanella MC, Beone GM, Amaducci S, Puglisi E. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Front Microbiol 2021; 12:645893. [PMID: 33959108 PMCID: PMC8096354 DOI: 10.3389/fmicb.2021.645893] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We assessed the effects of EDTA and selected plant growth-promoting rhizobacteria (PGPR) on the phytoremediation of soils and sediments historically contaminated by Cr, Ni, and Cu. A total of 42 bacterial strains resistant to these heavy metals (HMs) were isolated and screened for PGP traits and metal bioaccumulation, and two Enterobacter spp. strains were finally selected. Phytoremediation pot experiments of 2 months duration were carried out with hemp (Cannabis sativa L.) and giant reed (Arundo donax L.) grown on soils and sediments respectively, comparing in both cases the effects of bioaugmentation with a single PGPR and EDTA addition on plant and root growth, plant HM uptake, HM leaching, as well as the changes that occurred in soil microbial communities (structure, biomass, and activity). Good removal percentages on a dry mass basis of Cr (0.4%), Ni (0.6%), and Cu (0.9%) were observed in giant reed while negligible values (<100‰) in hemp. In giant reed, HMs accumulated differentially in plant (rhizomes > > roots > leaves > stems) with largest quantities in rhizomes (Cr 0.6, Ni 3.7, and Cu 2.2 g plant–1). EDTA increased Ni and Cu translocation to aerial parts in both crops, despite that in sediments high HM concentrations in leachates were measured. PGPR did not impact fine root diameter distribution of both crops compared with control while EDTA negatively affected root diameter class length (DCL) distribution. Under HM contamination, giant reed roots become shorter (from 5.2 to 2.3 mm cm–3) while hemp roots become shorter and thickened from 0.13 to 0.26 mm. A consistent indirect effect of HM levels on the soil microbiome (diversity and activity) mediated by plant response (root DCL distribution) was observed. Multivariate analysis of bacterial diversity and activity revealed not only significant effects of plant and soil type (rhizosphere vs. bulk) but also a clear and similar differentiation of communities between control, EDTA, and PGPR treatments. We propose root DCL distribution as a key plant trait to understand detrimental effect of HMs on microbial communities. Positive evidence of the soil-microbe-plant interactions occurring when bioaugmentation with PGPR is associated with deep-rooting perennial crops makes this combination preferable over the one with chelating agents. Such knowledge might help to yield better bioaugmented bioremediation results in contaminated sites.
Collapse
Affiliation(s)
- Andrea Ferrarini
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giulia Spini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Flavio Fornasier
- CREA - Centro Viticoltura ed Enologia, Gorizia, Italy.,SOLIOMICS srl, Udine, Italy
| | - Eren Taskin
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Maria Chiara Fontanella
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gian Maria Beone
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
22
|
Sharma P, Pandey AK, Udayan A, Kumar S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124750. [PMID: 33517048 DOI: 10.1016/j.biortech.2021.124750] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 05/22/2023]
Abstract
This review illustrated the role of metal-binding proteins (MBPs) and microbial interaction in assisting the phytoremediation of industrial wastewater polluted with heavy metals. MBPs are used to increase the accumulation and tolerance of metals by microorganisms via binding protein synthesis. Microbes have various protection mechanisms to heavy metals stress like compartmentalization, exclusion, complexity rendering, and the synthesis of binding proteins. MBPs include phytochelatins, metallothioneins, Cd-binding peptides (CdBPs), cysteines (gcgcpcgcg) (CP), and histidines (ghhphg)2 (HP). In comparison with other physico-chemical methods, phytoremediation is an eco-friendly and safe method for the society. The present review concentrated on the efficiency of phytoremediation strategies for the use of MBPs and microbe-assisted approaches.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Ashutosh Kumar Pandey
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
23
|
Production and Implication of Bio-Activated Organic Fertilizer Enriched with Zinc-Solubilizing Bacteria to Boost up Maize (Zea mays L.) Production and Biofortification under Two Cropping Seasons. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bio-activated organic fertilizers (BOZ) were produced by enriching the zinc oxide (ZnO)-orange peel waste composite with Zn solubilizing bacteria (ZSB: Bacillus sp. AZ6) in various formulations (BOZ1 (9:1), BOZ2 (8:2), BOZ3 (7:3) and BOZ4 (6:4)). The produced BOZs, along with ZnO, ZnSO4, ZSB were applied to maize crop (Zea mays L.) under field conditions in two different cropping season and the growth, yield, physiology, plant Zn contents and quality of maize were investigated. Results revealed significant variation in the aforementioned parameters with the applied amendments. The BOZ4 performed outclass by exhibiting the highest plant growth, yield, physiology, Zn contents, and quality. On average, an increase of 53%, 49%, 19%, 22%, 10%, 4%, and 30% in plant height was noticed with BOZ4 application over control, ZnO, ZnSO4, BOZ1, BOZ2, BOZ3, and ZSB, respectively. BOZ4 enhanced the dry shoot-biomass 46% than control. Likewise, the photosynthetic rate, transpiration rate, stomatal conductance, chlorophyll contents, carotenoids, and carbonic anhydrase activity were increased by 47%, 42%, 45%, 57%, 17%, and 44%, respectively, under BOZ4 over control in both cropping seasons. However, BOZ4 reduced the electrolyte leakage by 38% as compared to control in both cropping seasons. BOZ4 increased the Zn contents of grain and shoot by 46% and 52%, respectively, while reduced the phytate contents by 73% as compared to control. Application of BOZ4 revealed highest average fat (4.79%), crude protein (12.86%), dry matter (92.03%), fiber (2.87%), gluten (11.925%) and mineral (1.53%) contents, as compared to control. In general, the impact of cropping seasons on maize growth, yield, physiology, Zn contents, and quality were non-significant (with few exceptions). Thus, bio-activation of ZnO with ZSB could serve as an efficient and economical strategy for boosting up the growth, yield, physiological, and quality parameters of maize under field conditions.
Collapse
|
24
|
Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB, Berta G. A review on global metal accumulators-mechanism, enhancement, commercial application, and research trend. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26449-26471. [PMID: 31363977 DOI: 10.1007/s11356-019-05992-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 05/07/2023]
Abstract
The biosphere is polluted with metals due to burning of fossil fuels, pesticides, fertilizers, and mining. The metals interfere with soil conservations such as contaminating aqueous waste streams and groundwater, and the evidence of this has been recorded since 1900. Heavy metals also impact human health; therefore, the emancipation of the environment from these environmental pollutants is critical. Traditionally, techniques to remove these metals include soil washing, removal, and excavation. Metal-accumulating plants could be utilized to remove these metal pollutants which would be an alternative option that would simultaneously benefit commercially and at the same time clean the environment from these pollutants. Commercial application of pollutant metals includes biofortification, phytomining, phytoremediation, and intercropping. This review discusses about the metal-accumulating plants, mechanism of metal accumulation, enhancement of metal accumulation, potential commercial applications, research trends, and research progress to enhance the metal accumulation, benefits, and limitations of metal accumulators. The review identified that the metal accumulator plants only survive in low or medium polluted environments with heavy metals. Also, more research is required about metal accumulators in terms of genetics, breeding potential, agronomics, and the disease spectrum. Moreover, metal accumulators' ability to uptake metals need to be optimized by enhancing metal transportation, transformation, tolerance to toxicity, and volatilization in the plant. This review would benefit the industries and environment management authorities as it provides up-to-date research information about the metal accumulators, limitation of the technology, and what could be done to improve the metal enhancement in the future.
Collapse
Affiliation(s)
- Aishath Naila
- Research Centre, Central Administration, The Maldives National University (MNU), Rahdhebai Hingun, Machangoalhi, 20371, Male, Maldives
| | - Gerrit Meerdink
- Food Science and Technology Unit, Department of Chemical Engineering, University of the West Indies, - St. Augustine Campus, St. Augustine, Trinidad & Tobago
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Sydney, Australia
| | - Ahmad Z Sulaiman
- Faculty of Bio-Engineering and Technology, Universiti Malaysia Kelantan (UMK), Campus Jeli, Beg Berkunci No. 100, 17600, Kelantan Darul Naim, Jeli, Malaysia
| | - Azilah B Ajit
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
26
|
Ren XM, Guo SJ, Tian W, Chen Y, Han H, Chen E, Li BL, Li YY, Chen ZJ. Effects of Plant Growth-Promoting Bacteria (PGPB) Inoculation on the Growth, Antioxidant Activity, Cu Uptake, and Bacterial Community Structure of Rape ( Brassica napus L.) Grown in Cu-Contaminated Agricultural Soil. Front Microbiol 2019; 10:1455. [PMID: 31316489 PMCID: PMC6610483 DOI: 10.3389/fmicb.2019.01455] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Previous analyses of plant growth-promoting bacteria (PGPB) combined with the remediation of heavy metal pollution in soil have largely been performed under potting or greenhouse conditions, and in situ remediation experiments under field conditions have rarely been reported. In this study, the effects of the metal-resistant PGPB Microbacterium oxydans JYC17, Pseudomonas thivervalensis Y1-3-9, and Burkholderia cepacia J62 on soil Cu pollution under rape remediation were studied in the farmland surrounding the Nanjing Jiuhuashan copper mining region in China. Following inoculation treatment for 50 days, the biomasses of the rape inoculated with strains JYC17, Y1-3-9, and J62 increased, and the total amounts of Cu uptake increased by 113.38, 66.26, and 67.91%, respectively, the translocation factor (TF) of rape inoculated with J62 was 0.85, a significant increase of 70.68%, thus improving the Cu remediation efficiency of the rape. Y1-3-9 and J62 affected the bioavailability of Cu in the soil, and the water-soluble Cu contents were increased by 10.13 and 41.77%, respectively, compared with the control. The antioxidant activities in the rape leaves showed that the tested bacteria increased the contents of antioxidant non-enzymatic substances, including ascorbic acid (ASA) and glutathione (GSH), which were increased by 40.24-91.22% and 9.89-17.67%, respectively, thereby reducing the oxidative stress caused by heavy metals and the contents of thiobarbituric acid-reactive substances (TBARS) and peroxidase (POD). PCR-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the effects of the tested bacteria on the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere soil of the rape. The sequencing results of the DGGE bands indicated that the tested bacteria colonized the endosphere and rhizosphere, and they became an important component of the cultivation-dependent bacteria. The canonical correspondence analysis (CCA) of the DGGE profile and similarity cluster analysis showed that the tested bacteria affected the cultivation-dependent and cultivation-independent bacterial communities in the root endosphere and rhizosphere. In this experiment, the effects and mechanisms of the combined plant-microbe remediation under field conditions were preliminarily studied, and the results are expected to provide a theoretical basis for future combined remediation experiments.
Collapse
Affiliation(s)
- Xue-Min Ren
- Innovation Center of Water Security for Water Source Region of Mid-Route Project of South-North Water Diversion of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Shi-Jun Guo
- School of Life Sciences and Technology, Nanyang Normal University, Nanyang, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, China
| | - Yan Chen
- School of Life Sciences and Technology, Nanyang Normal University, Nanyang, China
| | - Hui Han
- Innovation Center of Water Security for Water Source Region of Mid-Route Project of South-North Water Diversion of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - E. Chen
- Gansu Province Environmental Monitoring Centre, Lanzhou, China
| | - Bai-Lian Li
- Innovation Center of Water Security for Water Source Region of Mid-Route Project of South-North Water Diversion of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Ecological Complexity and Modelling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Yu-Ying Li
- Innovation Center of Water Security for Water Source Region of Mid-Route Project of South-North Water Diversion of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Zhao-Jin Chen
- Innovation Center of Water Security for Water Source Region of Mid-Route Project of South-North Water Diversion of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
27
|
Mishra R, Datta SP, Annapurna K, Meena MC, Dwivedi BS, Golui D, Bandyopadhyay K. Enhancing the effectiveness of zinc, cadmium, and lead phytoextraction in polluted soils by using amendments and microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17224-17235. [PMID: 31012068 DOI: 10.1007/s11356-019-05143-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/08/2019] [Indexed: 05/22/2023]
Abstract
For remediating polluted soils, phytoextraction of metals received considerable attention in recent years, although slow removal of metals remained a major constraint in this approach. We, therefore, studied the effect of selected organic and inorganic amendments on the solubility of zinc (Zn), cadmium (Cd), and lead (Pb) in polluted soil and enhancing the efficacy of phytoextraction of these metals by Indian mustard (Brassica juncea cv. Pusa Vijay). For this purpose, a greenhouse experiment was conducted using a metal-polluted soil to evaluate the effect of amendments, viz. green manure (T2), EDTA (T3), sulfur (S)+S oxidizing bacteria (Thiobacillus spp.) (T4), metal-solubilizing bacteria (Pseudomonas spp.) (T5), and green manure + metal-solubilizing bacteria (T6), on solubility and bioavailability of Zn, Cd, and Pb. Distribution of metals in different soil fractions revealed that Cd content in water soluble + exchangeable fraction increased to the extent of 34.1, 523, 133, 123, and 75.8% in T2, T3, T4, T5, and T6 treatments, respectively, over control (T1). Cadmium concentrations in soil solution as extracted by Rhizon sampler were recorded as 3.78, 88.1, 11.2, 6.29, and 4.27 μg L-1in T2, T3, T4, T5, and T6, respectively, whereas soil solution concentration of Cd in T1 was 0.99 μg L-1. Activities of Cd (pCd2+) in Baker soil extract were 12.2, 10.9, 6.72, 7.74, 7.67, and 7.05 for T1, T2, T3, T4, T5, and T6, respectively. Cadmium contents in shoot were recorded as 2.74, 3.12, 4.03, 4.55, 4.68, and 4.63 mg kg-1 in T1, T2, T3, T4, T5, and T6 treatments, respectively. Similar trend in Zn and Pb content with different magnitude was also observed across the different amendments. Cadmium uptake by shoot of mustard was enhanced to the extent of 125, 62.5, 175, 175, and 212% grown on T2-, T3-, T4-, T5-, and T6-treated soil, respectively, over T1. By and large, free ion activity of metals as measured by Baker soil test proved to be the most effective index for predicting Zn, Cd, and Pb content in shoot of mustard, followed by EDTA and DTPA. Among the metal fractions, only water soluble + exchangeable metal contributed positively towards plant uptake, which explained the variation in shoot Zn, Cd, and Pb content to the extent of 74, 81, and 87%, respectively, along with other soil metal fractions. Risk to human health for intake of metals through the consumption of leafy vegetable (mustard) grown on polluted soil in terms of hazard quotient (HQ) ranged from 0.64 to 1.10 for Cd and 0.11 to 0.34 for Pb, thus rendering mustard unfit for the human consumption. Novelty of the study mainly consisted of the use of natural means and microorganisms for enhancing solubility of metals in soil with the ultimate aim of hastening the phytoremediation.
Collapse
Affiliation(s)
- Rahul Mishra
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India.
| | - Kannepalli Annapurna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Mahesh Chand Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Brahma Swaroop Dwivedi
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| | - Kalikinkar Bandyopadhyay
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012, India
| |
Collapse
|
28
|
Rostami S, Azhdarpoor A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A review. CHEMOSPHERE 2019; 220:818-827. [PMID: 30612051 DOI: 10.1016/j.chemosphere.2018.12.203] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/25/2018] [Accepted: 12/30/2018] [Indexed: 05/08/2023]
Abstract
Soil contamination is one of the most important environmental problems around the world. The transfer of organic contaminants and heavy metals to the food chain is a major threat to human health. Purging these contaminants often involves a lot of energy and complex engineering processes. Phytoremediation technology can be used in various environments, such as water, soil, and air, to reduce or eliminate different contaminants. The major mechanisms involved in phytoremediation include plant extraction, rhizofiltration, plant evaporation, plant stabilization, plant decomposition, and rhizosphere degradation. The efficiency of phytoremediation can be increased through using chelating and acidifying agents, applying electric current in the soil, using organic chemicals and fertilizers, planting transgenic plants, using bacteria, and applying plant growth regulators. Recently, the use of plant growth regulators has been investigated as a suitable method for improving the efficacy of phytoremediation. Effective plant growth regulators to improve phytoremediation include auxins, gibberellins, cytokinins, and salicylic acid. The activity of these materials depends on their concentration, environmental factors that affect their absorption, and the physiological state of the plant. Using these materials increases the biomass of the plant and reduces the negative effects of the presence of contaminants in the plant. The present study aimed to review the latest studies performed on the improvement of phytoremediation using plant growth regulators and their mechanisms.
Collapse
Affiliation(s)
- Saeid Rostami
- Environmental Health, Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abooalfazl Azhdarpoor
- Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
29
|
Lopez S, Goux X, Echevarria G, Calusinska M, Morel JL, Benizri E. Community diversity and potential functions of rhizosphere-associated bacteria of nickel hyperaccumulators found in Albania. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:237-249. [PMID: 30445325 DOI: 10.1016/j.scitotenv.2018.11.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/25/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Ultramafic (i.e. serpentine) soils are widespread in the Balkans and particularly in Albania. They account for a large part of plant endemism in that region and host several hyperaccumulator species, which are characterized by leaf nickel concentrations frequently above 1%. This rich nickel hyperaccumulating flora could serve as candidate to be used in phytoextraction and agromining. Despite recent interest in metal hyperaccumulating plants and agromining, very few studies have investigated the bacterial diversity and the influence of environmental factors on microbial gene profiles in the rhizosphere of hyperaccumulator plants growing on ultramafic soils. Because rhizospheric bacteria could be crucial to the success of phytoremediation, we studied a total of 48 nickel-hyperaccumulating plants which were sampled from four species that are widespread in Albania: Noccaea ochroleuca, Odontarrhena smolikana, O. rigida and O. chalcidica. All samples were taken from the ultramafic regions of Librazhd and Pogradec in eastern Albania in October 2015. Our study shows that Proteobacteria, Actinobacteria and Acidobacteria dominated the soil bacterial communities. Of these three phyla, only Proteobacteria was relatively abundant. This study underlines the influence of soil Cation Exchange Capacity on the bacterial community's diversity and structure. Based on the predicted metagenomes, the genes belonging to amino acid, lipid and carbohydrate metabolisms were identified as major gene families. Our study sheds some light on our understanding of how bacterial communities are structured within and affect the rhizosphere of hyperaccumulator plants from ultramafic soils in Albania.
Collapse
Affiliation(s)
- Séverine Lopez
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Xavier Goux
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Guillaume Echevarria
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Magdalena Calusinska
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Jean Louis Morel
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France
| | - Emile Benizri
- Université de Lorraine, INRA, Laboratoire Sols et Environnement, 54000 Nancy, France.
| |
Collapse
|
30
|
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01448-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Ma M, Du H, Sun T, An S, Yang G, Wang D. Characteristics of archaea and bacteria in rice rhizosphere along a mercury gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1640-1651. [PMID: 30054090 DOI: 10.1016/j.scitotenv.2018.07.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
Several strains of archaea have the ability to methylate or resist mercury (Hg), and the paddy field is regarded to be conducive to Hg methylation. However, our knowledge of Hg-methylating or Hg-resistant archaea in paddy soils is very limited so far. Therefore, the distribution of archaea and bacteria in the rhizosphere (RS) and bulk soil (BS) of the rice growing in Xiushan Hg-mining area of southwest China was investigated. Bacterial and archaeal 16S rRNA gene amplicon sequencing of the rice rhizosphere along the Hg gradient was conducted. THg concentrations in RS were significantly higher than that in BS at site S1 and S2, while MeHg concentrations in RS was always higher than that in BS, except S6. Bacterial species richness estimates were much higher than that in archaea. The bacterial α-diversity in high-Hg sites was significant higher than that in low-Hg sites based on ACE and Shannon indices. At the genus level, Thiobacillus, Xanthomonas, Defluviicoccus and Candidatus Nitrosoarchaeum were significantly more abundant in the rhizosphere of high-Hg sites, which meant that strains in these genera might play important roles in response to Hg stress. Hg-methylating archaea in the paddy field could potentially be affiliated to strains in Methanosarcina, but further evidence need to be found. The results provide reference to understand archaeal rhizosphere community along an Hg gradient paddy soils.
Collapse
Affiliation(s)
- Ming Ma
- College of Resources and Environment, Southwest University, Chongqing 400715, China; School of Environment, Jinan University, Guangzhou 510632, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Research Center of Bioenergy and Bioremediation, Southwest University, Chongqing 400715, China
| | - Tao Sun
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Siwei An
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Guang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
32
|
Asad SA, Farooq M, Afzal A, West H. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. CHEMOSPHERE 2019; 217:925-941. [PMID: 30586789 DOI: 10.1016/j.chemosphere.2018.11.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/01/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Heavy metal contamination in the environment is a global threat which accelerated after the industrial revolution. Remediation of these noxious elements has been widely investigated and multifarious technologies have been practiced for many decades. Phytoremediation has attracted much attention from researchers. Under this technology, heavy metal hyperaccumulator plants have been extensively employed to extract extraordinary concentrations of heavy metals but slow growth, limited biomass and stresses caused by heavy metals imperil the efficiency of hyperaccumulators. Plant growth promoting rhizobacteria (PGPR) can help overcome/lessen heavy metal-induced adversities. PGPR produce several metabolites, including growth hormones, siderophores and organic acids, which aid in solubilization and provision of essential nutrients (e.g. Fe and Mg) to the plant. Hyperaccumulator plants may be employed to remediate metal contaminated sites. Use of PGPR to enhance growth of hyperaccumulator plant species may enhance their metal accumulating capacity by increasing metal availability and also by alleviating plant stress induced by the heavy metals. Combined use of hyperaccumulator plants and PGPR may prove to be a cost effective and environmentally friendly technology to clean heavy metal contaminated sites on a sustainable basis. This review discusses the current status of PGPR in improving the growth and development of hyperaccumulator plants growing in metal contaminated environments. The mechanisms used by these rhizosphere bacteria in increasing the availability of heavy metals to plants and coping with heavy metal stresses are also described.
Collapse
Affiliation(s)
- Saeed Ahmad Asad
- Centre for Climate Research and Development, COMSATS University, Park Road, Chak Shahzad Islamabad 45550, Pakistan.
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman; Department of Agronomy, University of Agriculture Faisalabad, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University Mansehra, Mansehra, Pakistan
| | - Helen West
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
33
|
Singh RP, Jha PN. Priming with ACC-utilizing bacterium attenuated copper toxicity, improved oxidative stress tolerance, and increased phytoextraction capacity in wheat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33755-33767. [PMID: 30276698 DOI: 10.1007/s11356-018-3022-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
The major challenges for the plants growing in metal-contaminated soils are deficiency of nutrients, biomass reduction, and severe oxidative damages in the presence of heavy metals. In this regard, our aim was to overcome these challenges through the use of efficient microbial strains in metal-polluted soils and to assess its/their physiological and biochemical effects. In the current study, a copper (Cu)-resistant bacterium was isolated from the rhizospheric soil of 'Ziziphus nummularia' and evaluated for its ability to promote the wheat growth under the gradient stress of copper. Based on 16S rRNA gene sequencing, the isolate was identified as Pantoea sp. Among the plant growth promoting tests, the isolate showed the production of indole acetic acid, solubilization of inorganic phosphate, and ACC deaminase activity. Also, the isolate showed resistance to many heavy metals and antibiotics and increased the water-soluble copper in solution. The results of pot studies showed that bacterial application promoted various growth parameters of wheat plants and also enhanced the Cu uptake of wheat from the Cu-amended soil. The results showed that enhancement of Cu stress (100 to 300 mg kg-1) resulted in a decrease in various compatible solutes such as proline, total soluble sugars, and total protein content, and increase in the level of malondialdehyde (MDA), latter of which is the indicator of oxidative stress. Bacterial treatment markedly increased the proline, soluble sugar, total protein content, and decreased the MDA content under Cu stress. In addition, bacterial inoculation significantly alleviated the harmful effect of metal toxicity by decreasing the activation of ROS molecules including superoxide (O2-) and hydrogen peroxide (H2O2). The activation of various antioxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) was noted following bacterial inoculation under Cu stress. Therefore, the present study demonstrates the potential of the isolate Pantoea sp. ZNP-5 to improve the growth and phytoextraction of metal from the metal-polluted soil through the polyphasic mechanism of action.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Biological Science, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Prabhat Nath Jha
- Department of Biological Science, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
34
|
Borymski S, Cycoń M, Beckmann M, Mur LAJ, Piotrowska-Seget Z. Plant Species and Heavy Metals Affect Biodiversity of Microbial Communities Associated With Metal-Tolerant Plants in Metalliferous Soils. Front Microbiol 2018; 9:1425. [PMID: 30061867 PMCID: PMC6054959 DOI: 10.3389/fmicb.2018.01425] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
We here assess the biodiversity of the rhizosphere microbial communities of metal-tolerant plant species Arabidopsis arenosa, Arabidopsis halleri, Deschampsia caespitosa, and Silene vulgaris when growing on various heavy metal polluted sites. Our broad-spectrum analyses included counts for total and metal-tolerant culturable bacteria, assessments of microbial community structure by phospholipid fatty acid (PLFA) profiling and community-level analysis based on BIOLOG-CLPP to indicate functional diversity. The genetic-biochemical diversity was also measured by denaturing gradient gel electrophoresis (PCR-DGGE) and metabolomic analysis (HPLC-MS). Different rhizospheres showed distinctive profiles of microbial traits, which also differed significantly from bulk soil, indicating an influence from sampling site as well as plant species. However, total bacterial counts and PCR-DGGE profiles were most affected by the plants, whereas sampling site-connected variability was predominant for the PLFA profiles and an interaction of both factors for BIOLOG-CLPP. Correlations were also observed between pH, total and bioavailable Cd or Zn and measured microbial traits. Thus, both plant species and heavy-metals were shown to be major determinants of microbial community structure and function.
Collapse
Affiliation(s)
- Sławomir Borymski
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Sosnowiec, Poland
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
35
|
Khan N, Bano A. Effects of exogenously applied salicylic acid and putrescine alone and in combination with rhizobacteria on the phytoremediation of heavy metals and chickpea growth in sandy soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:405-414. [PMID: 28933563 DOI: 10.1080/15226514.2017.1381940] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present attempt was made to study the role of exogenously applied salicylic acid (SA) and putrescine (Put) on the phytoremediation of heavy metals and on the growth parameters of chickpea grown in sandy soil. The SA and Put were applied alone as well as in combination with plant growth promoting rhizobacteria (PGPR). The PGPRs, isolated from the rhizosphere of chickpea, were characterized on the basis of colony morphology and biochemical traits through gram staining, catalase and oxidase tests, and identified by 16S-rRNA gene sequencing as Bacillus subtilis, Bacillus thuringiensis and Bacillus megaterium. The chickpea seeds were soaked in 24 h old fresh cultures of isolates for 2-3 h prior to sowing. The growth regulators (PGRs), SA and Put (150 mg/L), were applied to the seedlings as foliar spray at three-leaf stage. The result revealed that plants treated with SA and Put alone or in combination with PGPRs, significantly enhanced the accumulation of heavy metals in plant shoot. PGPR induces Ni accumulation in sensitive variety and Pb in both the varieties, the PGR in combination augment the bioremediation effects of PGPR and both sensitive and tolerant variety showed significant accumulation of Ni, Cd, and Pb. SA was more effective in accumulating Ni and Cd whereas, significant accumulation of Pb was recorded in Put. PGPRs further augmented the PGRs induced accumulation of heavy metals and macronutrients in chickpea shoot and in rhizosphere. SA increased the proline content of tolerant variety while decreasing the lipid peroxidation and proline content of the sensitive variety but decreased the stimulating effect of PGPR in proline production. Interactive effects of PGPR and PGRs are recommended for inducing phytoremediation in chickpea plants under drought stress.
Collapse
Affiliation(s)
- Naeem Khan
- a Phytohormone lab, Department of Plant Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - Asghari Bano
- b Department of Biosciences , University of Wah , Wah Cantt , Pakistan
| |
Collapse
|
36
|
Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:311-320. [PMID: 29053368 DOI: 10.1080/15226514.2017.1381939] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In a greenhouse experiment, five ornamental plants, Osmanthus fragrans (OF), Ligustrum vicaryi L. (LV), Cinnamomum camphora (CC), Loropetalum chinense var. rubrum (LC), and Euonymus japonicas cv. Aureo-mar (EJ), were studied for the ability to phytostabilization for Cd-contaminated soil. The results showed that these five ornamental plants can grow normally when the soil Cd content is less than 24.6 mg·kg-1. Cd was mainly deposited in the roots of OF, LV, LC and EJ which have grown in Cd-contaminated soils, and the maximum Cd contents reached 15.76, 19.09, 20.59 and 32.91 mg·kg-1, respectively. For CC, Cd was mainly distributed in the shoots and the maximum Cd content in stems and leaves were 12.5 and 10.71 mg·kg-1, however, the total amount of Cd in stems and leaves was similar with the other ornamental plants. The enzymatic activities in Cd-contaminated soil were benefited from the five tested ornamental plants remediation. Soil urease and sucrase activities were improved, while dehydrogenase activity was depressed. Meanwhile, the soil microbial community was slightly influenced when soil Cd content is less than 24.6 mg·kg-1 under five ornamental plants remediation. The results further suggested that ornamental plants could be promising candidates for phytostabilization of Cd-contaminated soil.
Collapse
Affiliation(s)
- Peng Zeng
- a Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University , Changsha , China
| | - Zhaohui Guo
- a Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University , Changsha , China
| | - Xia Cao
- a Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University , Changsha , China
| | - Xiyuan Xiao
- a Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University , Changsha , China
| | - Yanan Liu
- a Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University , Changsha , China
| | - Lei Shi
- a Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University , Changsha , China
| |
Collapse
|
37
|
Burges A, Alkorta I, Epelde L, Garbisu C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:384-397. [PMID: 28862473 DOI: 10.1080/15226514.2017.1365340] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Since the emergence of phytoremediation, much research has focused on its development for (i) the removal of metals from soil and/or (ii) the reduction of metal bioavailability, mobility, and ecotoxicity in soil. Here, we review the lights and shades of the two main strategies (i.e., phytoextraction and phytostabilization) currently used for the phytoremediation of metal contaminated soils, irrespective of the level of such contamination. Both strategies face limitations to become successful at commercial scale and, then, often generate skepticism regarding their usefulness. Recent innovative approaches and paradigms are gradually establishing these phytoremediation strategies as suitable options for the management of metal contaminated soils. The combination of these phytotechnologies with a sustainable and profitable site use (a strategy called phytomanagement) grants value to the many benefits that can be obtained during the phytoremediation of metal contaminated sites, such as, for instance, the restoration of important ecosystem services, e.g. nutrient cycling, carbon storage, water flow regulation, erosion control, water purification, fertility maintenance, etc.
Collapse
Affiliation(s)
- Aritz Burges
- a Department of Conservation of Natural Resources , NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, Soil Microbial Ecology Group , Derio , Spain
| | - Itziar Alkorta
- b Department of Biochemistry and Molecular Biology , BIOFISIKA Institute (CSIC-UPV/EHU), University of the Basque Country , Bilbao , Spain
| | - Lur Epelde
- a Department of Conservation of Natural Resources , NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, Soil Microbial Ecology Group , Derio , Spain
| | - Carlos Garbisu
- a Department of Conservation of Natural Resources , NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, Soil Microbial Ecology Group , Derio , Spain
| |
Collapse
|
38
|
Sun R, Sun Q, Wang R, Cao L. Cadmium accumulation and main rhizosphere characteristics of seven French marigold (Tagetes patula L.) cultivars. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1171-1178. [PMID: 29053351 DOI: 10.1080/15226514.2017.1375894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study was conducted to determine Cd accumulation and Cd fraction in the rhizosphere soil of seven Tagetes patula cultivars (Little Hero Orange, Durango Yellow, Janie Yellow Bright, Lucifer Yellow, Hero Flame, Hongyun Red, Konghuang Yellow). T. patula cultivars showed strong tolerance and accumulation to Cd. The highest Cd concentration (273.77 mg kg-1) in shoots was observed in Little Hero Orange when treated with Cd100. For most cultivars, Cd treatments significantly affected rhizosphere pH values, but had a slight effect on dissolved organic carbon (DOC). pH were negatively correlated with Cd accumulation and Cd percentages in the exchangeable fraction in the rhizosphere soil of Little Hero Orange, Durango Yellow, and Konghuang Yellow. No significant correlation was observed between DOC, Cd accumulation and Cd percentage in the exchangeable fraction in the rhizosphere soil, except for Konghuang Yellow. The results suggested that pH might be related to Cd bioavailability and their uptake by T. patula. Among seven cultivars, Little Hero Orange showed the greatest pH decrease, highest shoot Cd accumulation and Cd percentage in the exchangeable fraction, suggesting the difference in pH responses to Cd levels among T. patula might be responsible for their different ability of Cd activation.
Collapse
Affiliation(s)
- Ruilian Sun
- a Environment Research Institute, Shandong University , Jinan , China
| | - Qianqian Sun
- a Environment Research Institute, Shandong University , Jinan , China
- b School of Life Sciences, Shandong University , Jinan , China
| | - Renqing Wang
- a Environment Research Institute, Shandong University , Jinan , China
- b School of Life Sciences, Shandong University , Jinan , China
| | - Lidong Cao
- a Environment Research Institute, Shandong University , Jinan , China
- b School of Life Sciences, Shandong University , Jinan , China
| |
Collapse
|
39
|
The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:175-191. [PMID: 28843189 DOI: 10.1016/j.ecoenv.2017.08.032] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/29/2017] [Accepted: 08/14/2017] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Tehran, Iran.
| |
Collapse
|
41
|
Złoch M, Kowalkowski T, Tyburski J, Hrynkiewicz K. Modeling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. in the soils with different speciation of heavy metals. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:1150-1164. [PMID: 28532161 DOI: 10.1080/15226514.2017.1328396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioaugmentation of soils with selected microorganisms during phytoextraction can be the key solution for successful bioremediation and should be accurately calculated for different physicochemical soil properties and heavy metal availability to guarantee the universality of this method. Equally important is the development of an accurate prediction tool to manage phytoremediation process. The main objective of this study was to evaluate the role of three metallotolerant siderophore-producing Streptomyces sp. B1-B3 strains in the phytoremediation of heavy metals with the use of S. dasyclados L. growing in four metalliferrous soils as well as modeling the efficiency of this process based on physicochemical and microbiological properties of the soils using artificial neural network (ANN) analysis. The bacterial inoculation of plants significantly stimulated plant biomass and reduced oxidative stress. Moreover, the bacteria affected the speciation of heavy metals and finally their mobility, thereby enhancing the uptake and bioaccumulation of Zn, Cd, and Pb in the biomass. The best capacity for phytoextraction was noted for strain B1, which had the highest siderophore secretion ability. Finally, ANN model permitted to predict efficiency of phytoextraction based on both the physicochemical properties of the soils and the activity of the soil microbiota with high precision.
Collapse
Affiliation(s)
- Michał Złoch
- a Department of Microbiology , Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Torun , Poland
- b Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
- d Interdisciplinary Centre of Modern Technologies , Nicolaus Copernicus University , Torun , Poland
| | - Tomasz Kowalkowski
- b Department of Environmental Chemistry and Bioanalytics , Faculty of Chemistry, Nicolaus Copernicus University , Torun , Poland
- d Interdisciplinary Centre of Modern Technologies , Nicolaus Copernicus University , Torun , Poland
| | - Jarosław Tyburski
- c Plant Physiology and Biotechnology , Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Torun , Poland
- d Interdisciplinary Centre of Modern Technologies , Nicolaus Copernicus University , Torun , Poland
| | - Katarzyna Hrynkiewicz
- a Department of Microbiology , Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Torun , Poland
- d Interdisciplinary Centre of Modern Technologies , Nicolaus Copernicus University , Torun , Poland
| |
Collapse
|
42
|
Biswas JK, Mondal M, Rinklebe J, Sarkar SK, Chaudhuri P, Rai M, Shaheen SM, Song H, Rizwan M. Multi-metal resistance and plant growth promotion potential of a wastewater bacterium Pseudomonas aeruginosa and its synergistic benefits. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:1583-1593. [PMID: 28397062 DOI: 10.1007/s10653-017-9950-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Water and soil pollution by toxic heavy metals (HMs) is increasing globally because of increase in population, industrialization and urbanization. It is a burning problem for the public, scientists, academicians and politicians how to tackle the toxic contaminants which jeopardize the environment. One possible solution for pollution abatement is a bioremediation-effective and innovative technology that uses biological systems for treatment of contaminants. Many bacteria synthesize indole-3-acetic acid (IAA) which is a product of L-tryptophan metabolism and belongs to the auxin class of plant growth-promoting hormone. The present study aimed at assessing the resistance pattern of wastewater bacteria against multiple HMs and plant growth promotion activity associated with IAA. A Gram-negative bacterial strain Pseudomonas aeruginosa KUJM was isolated from Kalyani Sewage Treatment Plant. This strain showed the potential to tolerate multiple contaminations such as As(III) (50 mM), As(V) (800 mM), Cd (8 mM), Co (18 mM), Cu (7 mM), Cr (2.5 mM), Ni (3 mM) and Zn (14 mM). The capability of IAA production at different tryptophan concentration (1, 2, 5 and 10 mg mL-1) was determined, and seed germination-enhancing potential was also estimated on lentil (Lens culinaris). Such type of HM-resistant, IAA-producing and seed germination-enhancing P. aeruginosa KUJM offer great promise as inoculants to promote plant growth in the presence of toxic HMs, as well as plant inoculant systems useful for phytoremediation of polluted soils. Hence, P. aeruginosa KUJM finds significant applications in HM-contaminated poor agricultural field as well as in bioremediation of HM-contaminated wastewater system.
Collapse
Affiliation(s)
- Jayanta Kumar Biswas
- Pollution, Ecotoxicology and Ecotechnology Research Unit, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India.
- International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, 741235, India.
| | - Monojit Mondal
- Pollution, Ecotoxicology and Ecotechnology Research Unit, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Environment and Energy, Sejong University, 98 Gunja-dong, Gwnagjin-gu, Seoul, 143-747, South Korea
| | - Santosh Kumar Sarkar
- Department of Marine Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 11, 700019, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 11, 700019, India
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, 444602, India
| | - Sabry M Shaheen
- Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, 33 516, Egypt
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 98 Gunja-dong, Gwnagjin-gu, Seoul, 143-747, South Korea
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
43
|
Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Appl Microbiol Biotechnol 2017; 101:7961-7976. [PMID: 28894921 DOI: 10.1007/s00253-017-8469-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/08/2017] [Accepted: 07/30/2017] [Indexed: 01/27/2023]
Abstract
Interactions between roots and microbes affect plant's resistance to abiotic stress. However, the structural and functional variation of root-associated microbiomes and their effects on metal accumulation in hyperaccumulators remain poorly understood. Here, we characterize the root-associated microbiota of a hyperaccumulating (HP) and a non-hyperaccumulating (NHP) genotype of Sedum alfredii by 16S ribosomal RNA gene profiling. We show that distinct microbiomes are observed in four spatially separable compartments: the bulk soil, rhizosphere, rhizoplane, and endosphere. Both the rhizosphere and rhizoplane were preferentially colonized by Proteobacteria, and the endosphere by Actinobacteria. The rhizosphere and endophytic microbiomes were dominated by the family of Sphingomonadaceae and Streptomycetaceae, respectively, which benefited for their survival and adaptation. The bacterial α-diversity decreases along the spatial gradient from the rhizosphere to the endosphere. Soil type and compartment were strongest determinants of root-associated community variation, and host genotype explained a small, but significant amount of variation. The enrichment of Bacteroidetes and depletion of Firmicutes and Planctomycetes in the HP endosphere compared with that of the NHP genotype may affect metal hyperaccumulation. Program PICRUSt predicted moderate functional differences in bacterial consortia across rhizocompartments and soil types. The functional categories involved in membrane transporters (specifically ATP-binding cassette transporters) and energy metabolism were overrepresented in endosphere of HP in comparison with NHP genotypes. Taken together, our study reveals substantial variation in structure and function of microbiomes colonizing different compartments, with the endophytic microbiota potentially playing an important role in heavy metal hyperaccumulation.
Collapse
|
44
|
Bahadur A, Ahmad R, Afzal A, Feng H, Suthar V, Batool A, Khan A, Mahmood-Ul-Hassan M. The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). CHEMOSPHERE 2017; 179:112-119. [PMID: 28364646 DOI: 10.1016/j.chemosphere.2017.03.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Chromium contamination of agronomic soil has to turn into a serious global problem. This research was pointed to assess the effects of three Cr-tolerant rhizobacteria (SS1, SS3, and SS6) on sunflower growth and heavy metal uptake under Cr smog i.e. 20, 30 and 40 ppm using K2Cr2O7. Root promotion assay and pot experiment were conducted to investigate and evaluate the effects of Cr tolerance rhizobacteria and Cr accumulation capacity of sunflower. From root promotion assay non-significant variation was observed in the root length between SS1 and SS3 compared with un-inoculated whereas SS6 enhanced the root length in the absence and presence of chromium. In addition, inoculation with rhizobacteria alleviated the Cr concentration and endorsed plant growth by enhancing Cr accumulation in sunflower. At different Cr levels, the Cr concentration in shoot was improved by each rhizobacterium though their difference was non-significant with each other, while the percentage increase was half as the Cr level doubled. Different rhizobacterium inoculation significantly (P < 0.05) affected the physiological and morphological characteristics of sunflower and increased the plant height, stem diameter, head diameter, grain yield, oil content of seeds, and total biomass, and among them, SS6 observed best followed by SS1 and SS3 comparing with un-inoculated. Our study illustrates an assessment about Cr-tolerant bacteria and their influences and recommends that these bacteria can effectively be used for crop improvement which provides a potential approach for Cr phytoremediation.
Collapse
Affiliation(s)
- Ali Bahadur
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Rizwan Ahmad
- Land Resources Research Institute, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Aftab Afzal
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptation, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Vishandas Suthar
- Plant Physiology/ Chemistry Section, Central Cotton Research Institute, Sakrand, Nawabshah, Sindh, Pakistan
| | - Asfa Batool
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Aman Khan
- Department of Botany, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan; School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
45
|
Ruangdech T, Wongphatcharachai M, Staley C, Sadowsky MJ, Sajjaphan K. Influence of heavy metals on rhizosphere microbial communities of Siam weed ( Chromolaena odorata (L.)) using a 16S rRNA gene amplicon sequencing approach. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.anres.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Rosenfeld CE, Chaney RL, Tappero RV, Martínez CE. Microscale Investigations of Soil Heterogeneity: Impacts on Zinc Retention and Uptake in Zinc-Contaminated Soils. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:373-383. [PMID: 28380570 DOI: 10.2134/jeq2016.05.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and to the strength and stability of solid-phase associations. We combined physical density separation with synchrotron-based microspectroscopy to reduce solid-phase complexity and to study Zn speciation in field-contaminated soils. We also investigated Zn uptake in two Zn-hyperaccumulating ecotypes of (Ganges and Prayon). Soils were either moderately contaminated (500-800 mg Zn kg via contaminated biosolids application) or grossly enriched (26,000 mg Zn kg via geogenic enrichment). Soils were separated using sodium polytungstate into three fractions: light fraction (LF) (<1.6 g cm), medium fraction (MF) (1.6-2.8 g cm), and heavy fraction (HF) (>2.8 g cm). Approximately 45% of the total Zn was associated with MF in biosolids-contaminated soils. From these data, we infer redistribution to the MF after biosolids application because Zn in biosolids is principally associated with HF and LF. Our results suggest that increasing proportions of HF-associated Zn in soils may be related to greater relative Zn removal by Zn hyperaccumulating plants. Using density fractions enabled assessment of Zn speciation on a microscale despite incomplete fractionation. Analyzing both density fractions and whole soils revealed certain phases (e.g., ZnS, Zn coprecipitated with Fe oxides) that were not obvious in all analyses, indicating multiple views of the same soils enable a more complete understanding of Zn speciation.
Collapse
|
47
|
Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:170-185. [PMID: 28167031 DOI: 10.1016/j.plantsci.2016.11.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 05/22/2023]
Abstract
Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed.
Collapse
Affiliation(s)
- Karen E Gerhardt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Perry D Gerwing
- Earthmaster Environmental Strategies Inc., Calgary, AB, Canada
| | - Bruce M Greenberg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
48
|
Yamaji K, Watanabe Y, Masuya H, Shigeto A, Yui H, Haruma T. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration. PLoS One 2016; 11:e0169089. [PMID: 28030648 PMCID: PMC5193448 DOI: 10.1371/journal.pone.0169089] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.
Collapse
Affiliation(s)
- Keiko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yumiko Watanabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hayato Masuya
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Arisa Shigeto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Yui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshikatsu Haruma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
49
|
Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S, Shafiq S, Kanwal N, Ali F, Nasir IA. Rhizobacteria and phytoremediation of heavy metals. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/21622515.2016.1259358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mahrukh Zubair
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mehak Shakir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Noshaba Rani
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Neelam Fatima
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Safana Farooq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sijjil Shafiq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Naila Kanwal
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fawad Ali
- Institute of Plant Science, Southern Cross University, Lismore 2480, Australia
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
50
|
Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator. Sci Rep 2016; 6:36067. [PMID: 27805014 PMCID: PMC5090975 DOI: 10.1038/srep36067] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/10/2016] [Indexed: 11/17/2022] Open
Abstract
Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.
Collapse
|