1
|
Zhu L, Bossi R, Carvalho PN, Rigét FF, Christensen JH, Weihe P, Bonefeld-Jørgensen EC, Vorkamp K. Suspect and non-target screening of chemicals of emerging Arctic concern in biota, air and human serum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124605. [PMID: 39053798 DOI: 10.1016/j.envpol.2024.124605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Contaminants of emerging concern receive increasing attention in the Arctic environment. The aim of this study was to screen for chemicals of emerging Arctic concern (CEACs) in different types of Arctic samples including biota, air and human serum. We used a combination of gas chromatography (GC) and liquid chromatography (LC) with high resolution mass spectrometry (HRMS) for suspect and non-target screening (NTS). Suspect screening of 25 CEACs was based on published in-silico approaches for the identification of CEACs and revealed tetrabromophthalic anhydride (TBPA) in pilot whale and air, albeit with low detection frequencies (17 and 33%, respectively). An NTS workflow detected 49, 42, 31 and 30 compounds in pilot whale, ringed seal, air, and human serum, respectively, at confidence level 2 and 3. Although legacy POPs still dominated the samples, 64 CEACs were tentatively identified and further assessed for persistence (P), bioaccumulation (B), mobility (M), toxicity (T), and long-range transport potential (LRTP). While four PBT compounds were identified, 37 PMT substances dominated among these 64 compounds. Our study indicated that many chemicals of potential risk might be present in Arctic samples and would benefit from confirmation and further studies of their transport to and accumulation in the Arctic environment.
Collapse
Affiliation(s)
- Linyan Zhu
- Department of Environmental Science, Aarhus University, Denmark
| | - Rossana Bossi
- Department of Environmental Science, Aarhus University, Denmark
| | | | - Frank F Rigét
- Department of Ecoscience, Aarhus University, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Pál Weihe
- Department of Research, National Hospital of the Faroe Islands, Faroe Islands; Centre for Health Sciences, University of the Faroe Islands, Faroe Islands
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Center for Health Research, Institute of Nursing and Health Science, University of Greenland, Greenland
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Denmark.
| |
Collapse
|
2
|
Wang Y, Jin Q, Lin H, Xu X, Leung KMY, Kannan K, He Y. A review of liquid crystal monomers (LCMs) as emerging contaminants: Environmental occurrences, emissions, exposure routes and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135894. [PMID: 39303619 DOI: 10.1016/j.jhazmat.2024.135894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The widespread occurrence of liquid crystal monomers (LCMs) in the environment has raised concerns about their persistence, bioaccumulation, and toxicity (PBT). Here we review the lifecycle of environmental LCMs, focusing on their occurrences, emission sources, human exposure routes, and toxicity. Industrial emissions from Liquid Crystal Display (LCD) manufacturing and e-waste recycling are the primary point sources of LCMs. In addition, emissions from LCD products, air conditioning units, wastewater treatment plants, and landfills contribute to environmental occurrence of LCMs as secondary sources. Dietary routes were identified as the primary exposure pathways to humans. E-waste dismantling workers and infants/children are vulnerable populations to LCMs exposure. Exposure to LCMs has been shown to potentially induce oxidative stress, metabolic disorders, and endocrine disruption. Accumulation of LCMs in the brain and liver tissues of exposed animals highlights the need for toxicokinetic studies.
Collapse
Affiliation(s)
- Yulin Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Huiju Lin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Xiaotong Xu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Kenneth M Y Leung
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, USA; Department of Environmental Health Sciences, State University of New York at Albany, Albany, NY 12237, USA
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
3
|
Zhang Y, Gao L, Ai Q, Liu Y, Qiao L, Cheng X, Li J, Zhang L, Lyu B, Zheng M, Wu Y. Screening for compounds with bioaccumulation potential in breast milk using their retention behavior in two-dimensional gas chromatography. ENVIRONMENT INTERNATIONAL 2024; 190:108911. [PMID: 39067189 DOI: 10.1016/j.envint.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Discovery of emerging pollutants in breast milk will be helpful for understanding the hazards to human health. However, it is difficult to identify key compounds among thousands present in complex samples. In this study, a method for screening compounds with bioaccumulation potential was developed. The method can decrease the number of compounds needing structural identification because the partitioning properties of bioaccumulative compounds can be mapped onto GC×GC chromatograms through their retention behaviors. Twenty pooled samples from seven provinces in China were analyzed. 1,286 compounds with bioaccumulation potential were selected from over 3,000 compounds. Sixty-two compounds, including aromatic compounds, phthalates, and phenolics etc., were identified with a high level of confidence and then quantified. Among them, twenty-seven compounds were found for the first time in breast milk. Three phthalate plasticizers and two phenolic antioxidants were found in significantly higher concentrations than other compounds. A toxicological priority index approach was applied to prioritize the compounds considering their concentrations, detection frequencies and eight toxic effects. The prioritization indicated that 13 compounds, including bis(2-ethylhexyl) phthalate, dibutyl phthalate, 1,3-di-tert-butylbenzene, phenanthrene, 2,6-di-tert-butyl-1,4-benzoquinone, 2,4-di-tert-butylphenol, and others, showed higher health risks. Meanwhile, some compounds with high risk for a particular toxic effect, such as benzothiazole and geranylacetone, were still noteworthy. This study is important for assessing the risks of human exposure to organic compounds.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Qiao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China.
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| |
Collapse
|
4
|
Luarte T, Hirmas-Olivares A, Höfer J, Giesecke R, Mestre M, Guajardo-Leiva S, Castro-Nallar E, Pérez-Parada A, Chiang G, Lohmann R, Dachs J, Nash SB, Pulgar J, Pozo K, Přibylová PP, Martiník J, Galbán-Malagón C. Occurrence and diffusive air-seawater exchanges of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in Fildes Bay, King George Island, Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168323. [PMID: 37949125 DOI: 10.1016/j.scitotenv.2023.168323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
We report the levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in seawater and air, and the air-sea dynamics through diffusive exchange analysis in Fildes Bay, King George Island, Antarctica, between November 2019 and January 30, 2020. Hexachlorobenzene (HCB) was the most abundant compound in both air and seawater with concentrations around 39 ± 2.1 pg m-3 and 3.2 ± 2.4 pg L-1 respectively. The most abundant PCB congener was PCB 11, with a mean of 3.16 ± 3.7 pg m-3 in air and 2.0 ± 1.1 pg L-1 in seawater. The fugacity gradient estimated for the OCP compounds indicate a predominance of net atmospheric deposition for HCB, α-HCH, γ-HCH, 4,4'-DDT, 4,4'-DDE and close to equilibrium for the PeCB compound. The observed deposition of some OCs may be driven by high biodegradation rates and/or settling fluxes decreasing the concentration of these compounds in surface waters, which is supported by the capacity of microbial consortium to degrade some of these compounds. The estimated fugacity gradients for PCBs showed differences between congeners, with net volatilization predominating for PCB-9, a trend close to equilibrium for PCB congeners 11, 28, 52, 101, 118, 138, and 153, and deposition for PCB 180. Snow amplification may play an important role for less hydrophobic PCBs, with volatilization predominating after snow/glacier melting. As hydrophobicity increases, the biological pump decreases the concentration of PCBs in seawater, reversing the fugacity gradient to atmospheric deposition. This study highlights the potential impacts of climate change, through glacier retreat, on the biogeochemistry of POPs, remobilizing those compounds previously trapped within the cryosphere which in turn will transform the Antarctic cryosphere into a secondary source of the more volatile POPs in coastal areas, influenced by snow and ice melting.
Collapse
Affiliation(s)
- Thais Luarte
- Programa de Doctorado en Medicina de la Conservación, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| | - Andrea Hirmas-Olivares
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile
| | - Juan Höfer
- Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Ricardo Giesecke
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, Valdivia, Chile
| | - Mireia Mestre
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain; Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Chile
| | - Sergio Guajardo-Leiva
- Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Eduardo Castro-Nallar
- Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile; Centro de Ecología Integrativa, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Andrés Pérez-Parada
- Departamento de Desarrollo Tecnológico, Centro Universitario Regional del Este (CURE), Universidad de la República, Ruta 9 y Ruta 15, Rocha 27000, Uruguay
| | - Gustavo Chiang
- Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Investigación para Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, Barcelona, Catalunya 08034, Spain
| | - Susan Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - José Pulgar
- Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile
| | - Karla Pozo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile; Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Petra P Přibylová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jakub Martiník
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago 8580745, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| |
Collapse
|
5
|
Li X, Anderson JSM, Jobst KJ. Bioaccumulative chemicals are either too hard or too soft: Conceptual density functional theory as a screening tool for emerging pollutants. ENVIRONMENT INTERNATIONAL 2024; 183:108388. [PMID: 38159370 DOI: 10.1016/j.envint.2023.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Conceptual density functional theory (CDFT) descriptors were computed to predict the environmental fate of approximately 6,000 widely used industrial chemicals. CDFT descriptors aligned with a molecule's possible bioaccumulation mechanism, i.e., soft chemicals are lipophilic, whereas hard chemicals may bioaccumulate by other mechanisms such as protein binding. The results have provided us with a new "rule of thumb" to guide risk assessment of chemical hazards: suspected persistent organic pollutants are either too hard (η > 0.40 hartree) or too soft (α > 200 Å3). This offers a novel approach to environmental risk assessment using two fundamental properties of a molecule.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Canada A1C 5S7
| | - James S M Anderson
- Institute of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico 04510.
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, Canada A1C 5S7.
| |
Collapse
|
6
|
Ruan T, Li P, Wang H, Li T, Jiang G. Identification and Prioritization of Environmental Organic Pollutants: From an Analytical and Toxicological Perspective. Chem Rev 2023; 123:10584-10640. [PMID: 37531601 DOI: 10.1021/acs.chemrev.3c00056] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Exposure to environmental organic pollutants has triggered significant ecological impacts and adverse health outcomes, which have been received substantial and increasing attention. The contribution of unidentified chemical components is considered as the most significant knowledge gap in understanding the combined effects of pollutant mixtures. To address this issue, remarkable analytical breakthroughs have recently been made. In this review, the basic principles on recognition of environmental organic pollutants are overviewed. Complementary analytical methodologies (i.e., quantitative structure-activity relationship prediction, mass spectrometric nontarget screening, and effect-directed analysis) and experimental platforms are briefly described. The stages of technique development and/or essential parts of the analytical workflow for each of the methodologies are then reviewed. Finally, plausible technique paths and applications of the future nontarget screening methods, interdisciplinary techniques for achieving toxicant identification, and burgeoning strategies on risk assessment of chemical cocktails are discussed.
Collapse
Affiliation(s)
- Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
8
|
Breivik K, McLachlan MS, Wania F. The Emissions Fractions Approach to Assessing the Long-Range Transport Potential of Organic Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11983-11990. [PMID: 35951418 PMCID: PMC9454247 DOI: 10.1021/acs.est.2c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The assessment of long-range transport potential (LRTP) is enshrined in several frameworks for chemical regulation such as the Stockholm Convention. Screening for LRTP is commonly done with the OECD Pov and LRTP Screening Tool employing two metrics, characteristic travel distance (CTD) and transfer efficiency (TE). Here we introduce a set of three alternative metrics and implement them in the Tool's model. Each metric is expressed as a fraction of the emissions in a source region. The three metrics quantify the extent to which the chemical (i) reaches a remote region (dispersion, ϕ1), (ii) is transferred to surface media in the remote region (transfer, ϕ2), and (iii) accumulates in these surface media (accumulation, ϕ3). In contrast to CTD and TE, the emissions fractions metrics can integrate transport via water and air, enabling comprehensive LRTP assessment. Furthermore, since there is a coherent relationship between the three metrics, the new approach provides quantitative mechanistic insight into different phenomena determining LRTP. Finally, the accumulation metric, ϕ3, allows assessment of LRTP in the context of the Stockholm Convention, where the ability of a chemical to elicit adverse effects in surface media is decisive. We conclude that the emission fractions approach has the potential to reduce the risk of false positives/negatives in LRTP assessments.
Collapse
Affiliation(s)
- Knut Breivik
- Norwegian
Institute for Air Research, P.O. Box
100, NO-2027 Kjeller, Norway
- Department
of Chemistry, University of Oslo, P.O. Box 1033, NO-0315 Oslo, Norway
| | - Michael S. McLachlan
- Department
of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
9
|
Xie Z, Zhang P, Wu Z, Zhang S, Wei L, Mi L, Kuester A, Gandrass J, Ebinghaus R, Yang R, Wang Z, Mi W. Legacy and emerging organic contaminants in the polar regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155376. [PMID: 35461927 DOI: 10.1016/j.scitotenv.2022.155376] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The presence of numerous emerging organic contaminants (EOCs) and remobilization of legacy persistent organic pollutants (POPs) in polar regions have become significant concerns of the scientific communities, public groups and stakeholders. This work reviews the occurrences of EOCs and POPs and their long-range environmental transport (LRET) processes via atmosphere and ocean currents from continental sources to polar regions. Concentrations of classic POPs have been systematically monitored in air at several Arctic stations and showed seasonal variations and declining trends. These chemicals were also the major POPs reported in the Antarctica, while their concentrations were lower than those in the Arctic, illustrating the combination of remoteness and lack of potential local sources for the Antarctica. EOCs were investigated in air, water, snow, ice and organisms in the Arctic. Data in the Antarctica are rare. Reemission of legacy POPs and EOCs accumulated in glaciers, sea ice and snow may alter the concentrations and amplify their effects in polar regions. Thus, future research will need to understand the various biogeochemical and geophysical processes under climate change and anthropogenic pressures.
Collapse
Affiliation(s)
- Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany.
| | - Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zilan Wu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuang Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Anette Kuester
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21025, Germany
| |
Collapse
|
10
|
Su H, Ren K, Li R, Li J, Gao Z, Hu G, Fu P, Su G. Suspect Screening of Liquid Crystal Monomers (LCMs) in Sediment Using an Established Database Covering 1173 LCMs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8061-8070. [PMID: 35594146 DOI: 10.1021/acs.est.2c01130] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies have suggested that liquid crystal monomers (LCMs) are emerging contaminants in the environment, and knowledge of this class of substances is very rare. Here, we reviewed existing LCM-related documents, i.e., publications and patents, and established a database involving 1173 LCMs. These 1173 LCMs were further calculated for their physicochemical properties, i.e., persistence (P), bioaccumulation (B), long-range transport potential (LRTP), and Arctic contamination and bioaccumulation potential (ACBAP). We found that 476 out of them were P&B chemicals (99% of them were halogenated), and 320 of them could have ACBAP properties (67% of them were halogenated). This LCM database was further applied for suspect screening of LCMs in n = 33 sediment samples by use of gas chromatography coupled to quadrupole time-of-flight mass spectrometry (GC-QTOF/MS). We tentatively identified 26 LCM formulas, which could have 43 chemical structures. Two out of these 43 suspect LCM candidates, 1-butoxy-2,3-difluoro-4-(4-propylcyclohexyl) benzene (3cH4OdFP) and 1-ethoxy-2,3-difluoro-4-(4-pentyl cyclohexyl) benzene (5cH2OdFP), were fully confirmed by a comparison of unique GC and MS characteristics with their authentic standards. Overall, our present study expanded the previous LCM database from 362 to 1173, and 1173 LCMs in this database were calculated for their physicochemical properties. Meanwhile, taking n = 33 sediment samples as an exercise, we successfully developed a suspect screening strategy tailored for LCMs, and this strategy could have promising potential to be extended to other environmental matrices.
Collapse
Affiliation(s)
- Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Rongrong Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhanqi Gao
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, P. R. China
| | - Guanjiu Hu
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Environmental Monitoring Center, Nanjing 210019, P. R. China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, P.R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
11
|
Luarte T, Tucca F, Nimptsch J, Woelfl S, Casas G, Dachs J, Chiang G, Pozo K, Barra R, Galbán-Malagón C. Occurrence and air-water diffusive exchange legacy persistent organic pollutants in an oligotrophic north Patagonian lake. ENVIRONMENTAL RESEARCH 2022; 204:112042. [PMID: 34555404 DOI: 10.1016/j.envres.2021.112042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence and diffusive air-water exchange of POPs in Panguipulli Lake (39°42'S-72°13'W), an oligotrophic lake located in northern Patagonia (Chile), were determined. Air and water samples were collected between March and August 2017 (autumn-winter) and analyzed for concentrations of OCPs (α-HCH, β-HCH, γ-HCH and HCB) and PCBs (PCB-28,-52,-101,-118,-153,-158,-180) using gas chromatography coupled with an electron capture detector. The direction of air-water exchange direction was evaluated using a fugacity approach (ƒw ƒa-1), and net diffusive exchange fluxes (FAW, ng m-2 d-1) were also estimated. Total ∑4OCP levels in air ranged from 0.31 to 37 pg m-3, with a maximum for β-HCH, while Σ7PCB levels ranged from 3.05 to 43 pg m-3. The most abundant congener was PCB-153, accounting for 60% of the total PCBs in air. Surface water ∑4OCPs measured in this study ranged from 1.01 to 3.9 pg L-1, with γ-HCH predominating, while surface water Σ7PCB levels ranged from 0.32 to 24 pg L-1, with PCB-101, PCB-118, and PCB-153 presenting the highest levels. Diffusive air-water exchanges of HCB, α-HCH, γ-HCH and PCBs in the form of volatilization from the lake to air predominated; in contrast, for β-HCH net deposition dominated during the sampling period. Estimates suggested faster microbial degradation in the dissolved phase compared to atmospheric degradation for all analyzed POPs. Overall, these results could indicate that the oligotrophic lakes of northern Patagonia act as a secondary source of atmospheric POPs, mainly PCBs and some OCPs. This study is a first attempt to understand the occurrence of POPs in air and water, as well as their dynamics in oligotrophic lakes in the southern hemisphere.
Collapse
Affiliation(s)
- Thais Luarte
- Departamento de Ciencias Biológicas, Facultad Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile; Programa de Doctorado en Medicina de La Conservación, Facultad Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile; GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile
| | - Felipe Tucca
- Instituto Tecnológico Del Salmón (INTESAL de SalmonChile), Av. Juan Soler Manfredini 41, Of. 1802, Puerto Montt, Chile.
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Casilla 567, Chile
| | - Stefan Woelfl
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Casilla 567, Chile
| | - Gemma Casas
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Gustavo Chiang
- Departamento de Ciencias Biológicas, Facultad Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Karla Pozo
- RECETOX, Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Bío Bío, Chile
| | - Ricardo Barra
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, 4070386, Chile
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Santiago, Chile.
| |
Collapse
|
12
|
Sun X, Zhang X, Wang L, Li Y, Muir DCG, Zeng EY. Towards a better understanding of deep convolutional neural network processes for recognizing organic chemicals of environmental concern. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126746. [PMID: 34388923 DOI: 10.1016/j.jhazmat.2021.126746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Deep convolutional neural network (DCNN) has proved to be a promising tool for identifying organic chemicals of environmental concern. However, the uncertainty associated with DCNN predictions remains to be quantified. The training process contains many random configurations, including dataset segmentation, input sequences, and initial weight, etc. Moreover, the DCNN working mechanism is non-linear and opaque. To increase confidence to use this novel approach, persistent, bioaccumulative, and toxic substances (PBTs) were utilized as representative chemicals of environmental concern to estimate the prediction uncertainty under five distinguished datasets and ten different molecular descriptor (MD) arrangements with 111,852 chemicals and 2424 available MDs. An internal correlation coefficient test indicated that the prediction confidence reached 0.98 when a mean of 50 DCNNs' predictions was used instead of a sing DCNN prediction. A threshold for PBT categorization was determined by considering costs between false-negative and false-positive predictions. As revealed by the guided backpropagation-class activation mapping (GBP-CAM) saliency images, only 12% of all selected MDs were activated by DCNN and influenced decision-making process. However, the activated MDs not only varied among chemical classes but also shifted with different DCNNs. Principal component analysis indicated that 2424 MDs could transform into 370 orthogonal variables. Both results suggest that redundancy exists among selected MDs. Yet, DCNN was found to adapt to redundant data by focusing on the most important information for better prediction performance.
Collapse
Affiliation(s)
- Xiangfei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Luyao Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yuanxin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Derek C G Muir
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
13
|
Li X, Chevez T, De Silva AO, Muir DCG, Kleywegt S, Simpson A, Simpson MJ, Jobst KJ. Which of the (Mixed) Halogenated n-Alkanes Are Likely To Be Persistent Organic Pollutants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15912-15920. [PMID: 34802231 DOI: 10.1021/acs.est.1c05465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Short-chain polychlorinated n-alkanes are ubiquitous industrial chemicals widely recognized as persistent organic pollutants. They represent only a small fraction of the 184,600 elemental compositions (C10-25) and the myriad isomers of all possible (mixed) halogenated n-alkanes (PXAs). This study prioritizes the PXAs on the basis of their potential to persist, bioaccumulate, and undergo long-range transport guided by quantitative structure-property relationships (QSPRs), density functional theory (DFT), chemical fate models, and partitioning space. The QSPR results narrow the list to 966 elemental compositions, of which 352 (23 Br, 83 Cl/F, 119 Br/Cl, and 127 Br/F) are likely constituents of substances used as lubricants, plasticizers, and flame retardants. Complementary DFT calculations suggest that an additional 1367 elemental compositions characterized by a greater number of carbon and fluorine atoms but fewer chlorine and bromine atoms may also pose a risk. The results of this study underline the urgent need to identify and monitor these suspected pollutants, most appropriately using mass spectrometry. We estimate that the resolving power required to distinguish ∼74% of the prioritized elemental compositions from the most likely interferents, i.e., chlorinated alkanes, is approximately 60,000 (full width at half-maximum). This indicates that accurate identification of the PXAs is achievable using most high-resolution mass spectrometers.
Collapse
Affiliation(s)
- Xiaolei Li
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Tannia Chevez
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Amila O De Silva
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Andre Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Departments of Chemistry and Physical & Environmental Sciences, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
14
|
Arctic Freshwater Environment Altered by the Accumulation of Commonly Determined and Potentially New POPs. WATER 2021. [DOI: 10.3390/w13131739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chemical composition of Arctic freshwater ecosystems depends on several factors. They include characteristics of the surrounding landscape, its lithology, geomorphology, vegetation, and hydrological features, as well as accumulation of anthropogenic pollution. In the Arctic, the problem of environmental contamination is widespread. That is why research on lakes and river catchments in terms of their chemical composition has enjoyed increasing interest among scientists worldwide. The freshwater reservoirs of the Arctic are fragile and particularly vulnerable to the uptake of pollutants that become trapped in the water and sediments for an extended period. This review summarises selected studies of freshwater bodies in the Arctic to highlight the problem of the accumulation of pollutants in these reservoirs. Moreover, it emphasises the possible negative impact of chemical pollutants on both animal and human health.
Collapse
|
15
|
Martin JW. Revisiting old lessons from classic literature on persistent global pollutants : This article belongs to Ambio's 50th Anniversary Collection. Theme: Environmental contaminants. AMBIO 2021; 50:534-538. [PMID: 33464461 PMCID: PMC7814521 DOI: 10.1007/s13280-020-01413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 05/06/2023]
Abstract
Looking back 50 years at classic literature was a reminder of inspiring discoveries and clever theories that were formative to the field of environmental chemistry, but also of the irreparable costs that persistent global pollutants have had on ecosystems and human society. In my view, these three papers have greatly impacted contemporary science and influenced development of policies that have limited the spread of hazardous contaminants. At the same time, a sobering reality is that reversing decades of past pollution has proven impossible in our lifetime, and global trends are dire for both legacy and emerging contaminants. Lessons in these papers are clear to most environmental scientists, but I argue have not resulted in adequate investment in infrastructure or manpower to enable systematic unbiased searching for pollutants as proposed by Sören Jensen in 1972. Acknowledging that the costs of new global contaminants will be too high, we must incentivize safer chemicals and their sustainable use, increase international exchange of lists of chemicals in commerce, and coordinate international efforts in nontarget screening to identify new contaminants before they circulate the world.
Collapse
Affiliation(s)
- Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
16
|
Nishimuta K, Ueno D, Takahashi S, Kuwae M, Kadokami K, Miyawaki T, Matsukami H, Kuramochi H, Higuchi T, Koga Y, Matsumoto H, Ryuda N, Miyamoto H, Haraguchi T, Sakai SI. Use of comprehensive target analysis for determination of contaminants of emerging concern in a sediment core collected from Beppu Bay, Japan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115587. [PMID: 33261969 DOI: 10.1016/j.envpol.2020.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
In recent years, concern about the release of anthropogenic organic micropollutants referred to as contaminants of emerging concern (CECs) has been growing. The objective of this study was to find potential CECs by means of an analytical screening method referred to as comprehensive target analysis with an automated identification and quantification system (CTA-AIQS), which uses gas and liquid chromatography combined with mass spectrometry (GC-MS and LC-QTOF-MS). We used CTA-AIQS to analyze samples from a sediment core collected in Beppu Bay, Japan. With this method, we detected 80 compounds in the samples and CTA-AIQA could work to useful tool to find CECs in environmental media. Among the detected chemicals, three PAHs (anthracene, chrysene, and fluoranthene) and tris(isopropylphenyl)phosphate (TIPPP) isomers were found to increase in concentration with decreasing sediment depth. We quantified TIPPP isomers in the samples by means of targeted analysis using LC-MS/MS for confirmation. The concentration profiles, combined with previous reports indicating persistent, bioaccumulative, and toxic properties, suggest that these chemicals can be categorized as potential CECs in marine environments.
Collapse
Affiliation(s)
- Kou Nishimuta
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Daisuke Ueno
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Japan.
| | - Shin Takahashi
- Graduate School of Agriculture, Ehime University, Japan; Center for Marine Environmental Studies, Ehime University, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies, Ehime University, Japan
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Japan
| | | | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Japan
| | - Hidetoshi Kuramochi
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Japan
| | - Taiki Higuchi
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Yuki Koga
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Hideaki Matsumoto
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Noriko Ryuda
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Hideki Miyamoto
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Japan
| | - Tomokazu Haraguchi
- Graduate School of Agriculture, Saga University, Saga, 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Japan
| | - Shin-Ichi Sakai
- Environment Preservation Research Center, Kyoto University, Japan
| |
Collapse
|
17
|
Chynel M, Munschy C, Bely N, Héas-Moisan K, Pollono C, Jaquemet S. Legacy and emerging organic contaminants in two sympatric shark species from Reunion Island (Southwest Indian Ocean): Levels, profiles and maternal transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141807. [PMID: 33181997 DOI: 10.1016/j.scitotenv.2020.141807] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The contamination of tiger sharks (Galeocerdo cuvier) and bull sharks (Carcharhinus leucas) by legacy persistent organic pollutants (POPs) and emerging organic contaminants was investigated in specimens from Reunion Island (Southwest Indian Ocean) in 2018 and 2019. Contamination levels were determined in the muscle of adult individuals of both sexes in relation to biological and trophic parameters. Maternal transfer was additionally investigated in one set of embryos in each species. Polychlorinated biphenyl (PCB), organochlorinated pesticide (OCP) and perfluoroalkylated substance (PFAS) concentrations were 2597 ± 2969, 785 ± 966 and 267 ± 194 pg g-1 ww, respectively, in bull sharks, and 339 ± 270, 1025 ± 946 and 144 ± 53 pg g-1 ww in tiger sharks. The results highlighted higher PCB contamination, and by the heavier congeners, in adult bull sharks versus tiger sharks. The significant differences found in PCB profiles and concentrations suggest that the two species are exposed to different contamination sources. As bull sharks rely on a more coastal habitat for feeding, their higher contamination by PCBs suggests the occurrence of local PCB sources. DDT concentrations were similar in both species, suggesting a more homogeneous contamination on the scale of the Southwest Indian Ocean. Female bull sharks showed lower OCP and PCB concentrations than males, while this trend was not observed in tiger sharks. The ratio of chlorinated contaminants in muscle between the mother and her embryos was related to molecule hydrophobicity in bull shark but not in tiger shark, suggesting that shark mode of gestation, known to be different in the two species, is a key driver of organic contaminant maternal transfer. Finally, the results show that organic contaminant levels in the studied species were lower than those of other shark species in the Southern Hemisphere, related to the limited urbanization and industrialization of Reunion Island.
Collapse
Affiliation(s)
- M Chynel
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France.
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - S Jaquemet
- Université de La Réunion, UMR 9220 ENTROPIE (Université de La Réunion-CNRS-IRD), Avenue René Cassin CS 92003, 97744 Saint-Denis Cedex 9, Ile de La Réunion, France
| |
Collapse
|
18
|
Muz M, Escher BI, Jahnke A. Bioavailable Environmental Pollutant Patterns in Sediments from Passive Equilibrium Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15861-15871. [PMID: 33213151 DOI: 10.1021/acs.est.0c05537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sediment-associated risks depend on the bioavailable fraction of organic chemicals and cannot be comprehended by their total concentrations. The present study investigated contamination patterns of bioavailable chemicals in sediments from various sites around the globe by using passive equilibrium sampling. The extracts had been characterized previously for mixture effects by in vitro reporter gene assays and were in this study analyzed using gas chromatography-high resolution mass spectrometry for 121 chemicals including both legacy and emerging contaminants. The spatial distribution of the detected chemicals revealed distinct contamination patterns among sampling sites. We identified compounds in common at the different sites but most contaminant mixtures were site-specific. The mixture effects of the detected chemicals were predicted with a mixture toxicity model from effect concentrations of bioactive single chemicals and detected concentrations, applying a joint model for concentration addition and independent action. The predicted mixture effects were dominated by polycyclic aromatic hydrocarbons, and among the chemicals with available effect data, 17% elicited oxidative stress response and 18% activated the arylhydrocarbon receptor. Except for two sites in Sweden, where 11 and 38% of the observed oxidative stress response were explained by the detected chemicals, less than 10% of effects in both biological end points were explained. These results provide a comprehensive investigation of bioavailable contamination patterns of sediments and may serve as an example of employing passive equilibrium sampling as a monitoring technique to integrate the risk of bioavailable sediment-associated chemicals in aquatic environments.
Collapse
Affiliation(s)
- Melis Muz
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Effect Directed Analysis, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Annika Jahnke
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Ecological Chemistry, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
19
|
Endo S, Hammer J. Predicting Partition Coefficients of Short-Chain Chlorinated Paraffin Congeners by COSMO-RS-Trained Fragment Contribution Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15162-15169. [PMID: 33207873 DOI: 10.1021/acs.est.0c06506] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) are highly complex mixtures of polychlorinated n-alkanes with differing chain lengths and chlorination patterns. Knowledge on physicochemical properties of individual congeners is limited but needed to understand their environmental fate and potential risks. This work used a sophisticated but time-demanding quantum chemically based method COSMO-RS and a fast-running fragment contribution approach to enable prediction of partition coefficients for a large number of short-chain chlorinated paraffin (SCCP) congeners. Fragment contribution models (FCMs) were developed using molecular fragments with a length of up to C4 in CP molecules as explanatory variables and COSMO-RS-calculated partition coefficients as training data. The resulting FCMs could quickly provide COSMO-RS predictions for octanol-water (Kow), air-water (Kaw), and octanol-air (Koa) partition coefficients of SCCP congeners with an accuracy of 0.1-0.3 log units root-mean-squared errors. The FCM predictions for Kow agreed with experimental values for individual constitutional isomers within 1 log unit. The distribution of partition coefficients for each SCCP congener group was computed, which successfully reproduced experimental log Kow ranges of industrial CP mixtures. As an application of the developed FCMs, the predicted Kaw and Koa were plotted to evaluate the bioaccumulation potential of each SCCP congener group.
Collapse
Affiliation(s)
- Satoshi Endo
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| | - Jort Hammer
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES), Onogawa 16-2, 305-8506 Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Zhang X, Saini A, Hao C, Harner T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Sun X, Zhang X, Muir DCG, Zeng EY. Identification of Potential PBT/POP-Like Chemicals by a Deep Learning Approach Based on 2D Structural Features. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8221-8231. [PMID: 32484664 DOI: 10.1021/acs.est.0c01437] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying potential persistent organic pollutants (POPs) and persistent, bioaccumulative, and toxic (PBT) substances from industrial chemical inventories are essential for chemical risk assessment, management, and pollution control. Inspired by the connections between chemical structures and their properties, a deep convolutional neural network (DCNN) model was developed to screen potential PBT/POP-like chemicals. For each chemical, a two-dimensional molecular descriptor representation matrix based on 2424 molecular descriptors was used as the model input. The DCNN model was trained via a supervised learning algorithm with 1306 PBT/POP-like chemicals and 9990 chemicals currently known as non-POPs/PBTs. The model can achieve an average prediction accuracy of 95.3 ± 0.6% and an F-measurement of 79.3 ± 2.5% for PBT/POP-like chemicals (positive samples only) on external data sets. The DCNN model was further evaluated with 52 experimentally determined PBT chemicals in the REACH PBT assessment list and correctly recognized 47 chemicals as PBT/non-PBT chemicals. The DCNN model yielded a total of 4011 suspected PBT/POP like chemicals from 58 079 chemicals merged from five published industrial chemical lists. The proportions of PBT/POP-like substances in the chemical inventories were 6.9-7.8%, higher than a previous estimate of 3-5%. Although additional PBT/POP chemicals were identified, no new family of PBT/POP-like chemicals was observed.
Collapse
Affiliation(s)
- Xiangfei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xianming Zhang
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario Canada, M1C 1A4
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario Canada L7S 1A
| | - Derek C G Muir
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario Canada L7S 1A
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou 510632, China
| |
Collapse
|
22
|
Zhang X, Sun X, Jiang R, Zeng EY, Sunderland EM, Muir DCG. Screening New Persistent and Bioaccumulative Organics in China's Inventory of Industrial Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7398-7408. [PMID: 32422038 DOI: 10.1021/acs.est.0c01898] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over a third of the world's annual chemical production and sales occur in China. Thus, knowledge of the properties of the substances produced and emitted there is important from a global perspective. The chemical Inventory of Existing Chemical Substances of China (IECSC) lists over 45 000 chemicals. When compared to the North American and European chemical inventories, 6916 substances were found to be unique to the IECSC. We retrieved structural information for 14 938 organic chemicals in the IECSC and determined their overall environmental persistence , bioaccumulation factor (BAF), and long-range transport potential (transfer efficiency) using in silico approaches with the goal of identifying new chemicals with properties that might lead to global contamination issues. Overall, 10% of the 14 938 chemicals were unique to the IECSC and their environmental persistence and BAF were statistically higher than the values for the rest of the IECSC chemicals. We prioritized 27 neutral organic compounds predicted to have prolonged environmental persistence, and high potential for bioaccumulation and long-range transport when compared with polychlorinated biphenyls as a benchmark. We also identified 69 organofluorine compounds with three or more perfluorinated moieties, unique to the IECSC. Screening approaches and results from this study help to identify and prioritize those to be considered in further environmental modeling and monitoring assessments.
Collapse
Affiliation(s)
- Xianming Zhang
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge Massachusetts 02138, United States
| | - Xiangfei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge Massachusetts 02138, United States
| | - Derek C G Muir
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario L7S 1A1 Canada
| |
Collapse
|
23
|
Jobst KJ, Arora A, Pollitt KG, Sled JG. Dried blood spots for the identification of bio-accumulating organic compounds: current challenges and future perspectives. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020; 15:66-73. [PMID: 33073071 PMCID: PMC7560987 DOI: 10.1016/j.coesh.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The exposome is a concept that underlines the critical relationship between health and environmental exposures, including environmental toxicants. Currently, most environmental exposures that contribute to the exposome have not been characterized. Dried-blood spots (DBS) offer a cost-effective, reliable approach to characterize the blood exposome, which consists of diverse endogenous and exogenous chemicals, including persistent and bioaccumulating organic compounds. Current challenges involve prioritizing the identification by state-of-the-art mass spectrometry of likely up to tens of thousands of compounds present in blood; characterizing substances that represent a mixture of myriad constituent compounds; and detecting trace level contaminants, especially in quantity-limited matrices like DBS. This contribution reviews recent trends in DBS analysis of chemical pollutants and highlights the need for continued research in analytical chemistry to advance the field of exposomics.
Collapse
Affiliation(s)
- Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 283 Prince Phillip Drive, St. John's A1B 3X7 Canada
| | - Anmol Arora
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, 06520 USA
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
| | - Krystal Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, 06520 USA
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto M5G 1L7, Canada
| |
Collapse
|
24
|
Gibson JC. Emerging persistent chemicals in human biomonitoring for populations in the Arctic: A Canadian perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134538. [PMID: 31791748 DOI: 10.1016/j.scitotenv.2019.134538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The future of human biomonitoring in the Arctic will be influenced by the presence of emerging persistent chemicals. Many modelling studies have attempted to predict which contaminants will be of concern next in the Arctic based on chemical and physical properties as well as known risk factors from existing Arctic contaminants of concern. An amalgamated list of emerging persistent chemicals identified through predictive modelling cross referenced with Arctic wildlife monitoring results provides a basis upon which to prioritize future human biomonitoring in the Arctic. Persistent chemicals identified by this analysis are those in common across models (i.e., HCCPD, PCTP, 1,3,5-triBB, 1,2,4,5-tetrachlorobenzene, hexaBDE, pentabromochlorocyclohexane) and those both identified by models and found in Artic biota (e.g., PFNA, PFUnDA, PFDA, PFTrDA, HCBD, HBCDD, PCA, PFDoDA, BTBPE, PCNB, Endosulfan, etc.). Tracking the appearance of new chemicals in environmental monitoring will allow human biomonitoring to keep pace with emerging issues.
Collapse
Affiliation(s)
- Jennifer C Gibson
- Environmental Health Science and Research Bureau, Health Canada, AL4908D, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada.
| |
Collapse
|
25
|
Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2575-2584. [PMID: 31968937 DOI: 10.1021/acs.est.9b06379] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemicals, while bringing benefits to society, may be released during their lifecycles and possibly cause harm to humans and ecosystems. Chemical pollution has been mentioned as one of the planetary boundaries within which humanity can safely operate, but is not comprehensively understood. Here, 22 chemical inventories from 19 countries and regions are analyzed to achieve a first comprehensive overview of chemicals on the market as an essential first step toward a global understanding of chemical pollution. Over 350 000 chemicals and mixtures of chemicals have been registered for production and use, up to three times as many as previously estimated and with substantial differences across countries/regions. A noteworthy finding is that the identities of many chemicals remain publicly unknown because they are claimed as confidential (over 50 000) or ambiguously described (up to 70 000). Coordinated efforts by all stakeholders including scientists from different disciplines are urgently needed, with (new) areas of interest and opportunities highlighted here.
Collapse
Affiliation(s)
- Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland, ORCID: 0000-0001-9914-7659
| | - Glen W Walker
- Department of the Environment and Energy, Australian Government, General Post Office Box 787, Canberra, Australian Capital Territory 2601, Australia
| | - Derek C G Muir
- Environment & Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario Canada, ORCID: 0000-0001-6631-9776
| | | |
Collapse
|
26
|
Kim S, Hong S, Lee J, Kim T, Yoon SJ, Lee J, Choi K, Kwon BO, Giesy JP, Khim JS. Long-term trends of persistent toxic substances and potential toxicities in sediments along the west coast of South Korea. MARINE POLLUTION BULLETIN 2020; 151:110821. [PMID: 32056614 DOI: 10.1016/j.marpolbul.2019.110821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
For decades, in response to industrialization and urbanization, environmental qualities of estuarine and coastal areas of the west coast of Korea have been deteriorating. Long-term changes in concentrations of persistent toxic substances (PTSs) in sediments, including PAHs, styrene oligomers, nonylphenols, and metals and their potential toxicities via AhR- and ER-mediated potencies, and bioluminescent bacterial inhibition, were investigated. Long-term monitoring in five estuarine and coastal areas (2010-2018; 10 sites) showed that concentrations of PAHs and nonylphenols in sediments have declined while concentrations of some metals, Cd, Cr, and Hg have increased. Similarly, AhR-mediated potencies in sediments have declined, but inhibitions of bioluminescent bacteria have increased. Concentrations of sedimentary PAHs and AhR-mediated potencies were significantly (p < 0.01) and positively correlated. Sources of PAHs from combustion have been gradually declining while inputs from vehicle exhaust by-products have been increasing. Overall, this study brought our attention a balanced regulation in chemical-specific manner.
Collapse
Affiliation(s)
- Seonju Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Joon Yoon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmin Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungsik Choi
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76706, United States; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
27
|
Zhang X, Di Lorenzo RA, Helm PA, Reiner EJ, Howard PH, Muir DCG, Sled JG, Jobst KJ. Compositional space: A guide for environmental chemists on the identification of persistent and bioaccumulative organics using mass spectrometry. ENVIRONMENT INTERNATIONAL 2019; 132:104808. [PMID: 31182229 PMCID: PMC6754779 DOI: 10.1016/j.envint.2019.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 05/11/2023]
Abstract
Since 2001, twenty-eight halogenated groups of persistent organic pollutants (POPs) have been banned or restricted by the Stockholm Convention. Identifying new POPs among the hundreds of thousands of anthropogenic chemicals is a major challenge that is increasingly being met by state-of-the-art mass spectrometry (MS). The first step to identification of a contaminant molecule (M) is the determination of the type and number of its constituent elements, viz. its elemental composition, from mass-to-charge (m/z) measurements and ratios of isotopic peaks (M + 1, M + 2 etc.). Not every combination of elements is possible. Boundaries exist in compositional space that divides feasible and improbable compositions as well as different chemical classes. This study explores the compositional space boundaries of persistent and bioaccumulative organics. A set of ~305,134 compounds (PubChem) was used to visualize the compositional space occupied by F, Cl, and Br compounds, as defined by m/z and isotope ratios. Persistent bioaccumulative organics, identified by in silico screening of 22,049 commercial chemicals, reside in more constrained regions characterized by a higher degree of halogenation. In contrast, boundaries surrounding non-halogenated chemicals could not be defined. Finally, a script tool (R code) was developed to select potential POPs from high resolution MS data. When applied to household dust (SRM 2585), this approach resulted in the discovery of previously unknown chlorofluoro flame retardants.
Collapse
Affiliation(s)
- Xianming Zhang
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Robert A Di Lorenzo
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
| | - Paul A Helm
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Eric J Reiner
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada
| | - Philip H Howard
- SRC, Environmental Science Center, 6502 Round Pond Road, North Syracuse, New York, United States of America
| | - Derek C G Muir
- Canada Centre for Inland Waters, Environment and Climate Change Canada, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, 25 Orde Street, Toronto M5T 3H7, Canada
| | - Karl J Jobst
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Road, Toronto M9P 3V6, Canada; Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton L8S 4M1, Canada.
| |
Collapse
|
28
|
Gao X, Huang P, Huang Q, Rao K, Lu Z, Xu Y, Gabrielsen GW, Hallanger I, Ma M, Wang Z. Organophosphorus flame retardants and persistent, bioaccumulative, and toxic contaminants in Arctic seawaters: On-board passive sampling coupled with target and non-target analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:1-10. [PMID: 31301531 DOI: 10.1016/j.envpol.2019.06.094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/01/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
Organic pollutants in the Arctic seas have been of concern to many researchers; however, the vast dynamic marine water poses challenges to their comprehensive monitoring within appropriate spatial and temporal scales in the Arctic. In this study, on-board passive sampling of organic pollutants using a self-developed device coupled with triolein-embedded cellulose acetate membranes (TECAMs) was performed during an Arctic cruise. The TECAM extracts were used for target analysis of organophosphorus flame retardants (PFRs), and non-target screening of persistent, bioaccumulative, and toxic (PBT) contaminants using two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS). Sixteen chemicals were screened out as PBT contaminants from the 1500 features in the non-target analysis and further identified. Consequently, two chlorinated PFRs (tris(chloroisopropyl)phosphate and tris(1,3-dichloroisopropyl)phosphate) and four PBT contaminants (4-tert-butylphenol, 2-isopropylnaphthalene, 1,1,3-trimethyl-3-phenylindane, and 1-phenylnonan-1-one) were accurately quantified, with the temporally and spatially integrated concentrations ranging from 0.83 ng L-1 to 20.82 ng L-1 in the seawaters. Sources and transport of the contaminants were studied, and ocean current transport (West Spitsbergen Current, WSC) and local sources (human settlement, Arctic oil exploitation, and petroleum fuel emissions) were found to contribute to the presence of the different contaminants. Finally, annual transport fluxes of the contaminants from the North Atlantic to the Arctic Ocean by WSC were estimated, and the results indicate that their hazard to the Arctic should be concerned.
Collapse
Affiliation(s)
- Xiaozhong Gao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhibo Lu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | | | | | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
29
|
Lu L, Chang J, Chang Y, Ma J. Fluorinated diiodine alkanes exert developmental toxicity on embryo-larval stages of zebrafish strain AB via regulating the expression of the specific endocrine-related genes. J Appl Toxicol 2019; 39:1691-1700. [PMID: 31423618 DOI: 10.1002/jat.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/06/2022]
Abstract
Fluorinated diiodine alkanes (FDIAs) are environmental pollutants, including octafluoro-1,4-diiodobutane (PFBDI), hexadecafluoro-1,8-diiodooctane (PFODI) and dodecafluoro-1,6-diiodohexane (PFHxDI). They showed an estrogenic effect in in vitro studies. However, little information is currently available regarding the toxicity of FDIAs in in vivo studies. Zebrafish (Danio rerio) is a vertebrate animal model that is increasingly used for toxicity and efficacy screening as well as for assessing the toxicity and safety of novel compounds, pollutants and pharmaceuticals. In the present study, we investigated the developmental toxicity of FDIAs (PFBDI, PFHxDI and PFODI) and the specific endocrine-related gene expression in zebrafish embryos. The results revealed that all three FDIAs showed developmental toxicity on zebrafish embryos. The half-maximal effective concentration values for PFBDI, PFHxDI and PFODI were 0.89 ± 0.07, 0.53 ± 0.04 and 0.04 ± 0.007 mm, respectively. PFHxDI exhibited the highest developmental toxicity compared with the other FDIAs. In addition, all three FDIAs significantly upregulated the expression of estrogen receptor (esr)1 and cytochrome P450 (CYP) 19b (CYP19b), but did not significantly affect the expression of esr2b, CYP17 and CYP19a in zebrafish. The upregulation effect of PFHxDI was greater than the effect of PFBDI and PFODI. This study furthers our knowledge on the effects of FDIAs on the developmental toxicity and the specific endocrine-related gene expression in the embryo-larval stages of zebrafish. Our results provided a preliminary insight into the toxicity of FDIAs in zebrafish, which will be of great relevance regarding future studies on FDIAs in the environment.
Collapse
Affiliation(s)
- Liang Lu
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jia Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yan Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Jing Ma
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Lu L, Chang J, Qiu Y, Chang Y, Ma J. Estrogenic effects of fluorinated diiodine alkanes in MCF-7 cells, H295R cells and zebrafish embryo assays. J Appl Toxicol 2019; 39:945-954. [PMID: 30834569 DOI: 10.1002/jat.3783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 11/09/2022]
Abstract
Fluorinated diiodine alkanes (FDIAs), important industrial intermediates in the synthesis of various perfluorinated compounds, which are distributed widely in wildlife and humans. Recent studies showed that FDIAs had in vitro estrogenic effects. However, to date, little information is available regarding the in vivo estrogenic effects of FDIAs and the mechanisms are unclear. In this study, a combination of in vitro and in vivo assays was used to investigate the estrogenic effects of FDIAs. We tested the in vitro estrogenic effects and estrogen receptor-related gene expression via MCF-7 cell assay. The hormone level of estradiol and the expression of estrogenic synthesis genes were measured in the H295R cell assay. Finally, the in vivo effects of FDIAs on development and estrogen-related gene expression were assessed in the zebrafish embryos assay. The results demonstrated that FDIAs could exhibit estrogenic activity through inducing cell proliferation (1.6-6.7-fold of the control) and estrogen receptor alpha gene expression (1.07-1.39-fold of the control), altering estradiol production (1.14-1.22-fold of the control) and the major estrogenic synthesis gene expression of CYP19 (1.22-1.31-fold of the control), disrupting the estrogen-related genes (esr1 and cyp19b) levels in zebrafish (1.52-2.99-fold and 2.95-5.00-fold of the control for esr1 and cyp19b, respectively). The current findings indicated the potential estrogenic effects of FDIAs and provided novel information for human risk assessment.
Collapse
Affiliation(s)
- Liang Lu
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jia Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Yunliang Qiu
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Yan Chang
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jing Ma
- National Shanghai Center for New Drug Safety Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| |
Collapse
|
31
|
Liber Y, Mourier B, Marchand P, Bichon E, Perrodin Y, Bedell JP. Past and recent state of sediment contamination by persistent organic pollutants (POPs) in the Rhône River: Overview of ecotoxicological implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1037-1046. [PMID: 30235589 DOI: 10.1016/j.scitotenv.2018.07.340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Twenty-one sediment samples were taken from five dated sediment cores collected along the Rhône River from 2008 to 2011. A total of 17 polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), 7 polychlorinated biphenyls (PCBs), 8 polybrominated diphenyl ethers (PBDEs), 3 polybrominated biphenyls (PBBs), 3 hexabromocyclododecanes (HBCD) and 31 organochlorine pesticides (OCPs) were investigated to provide information on deposition dynamics in time and space, but also regarding the ecotoxicological risks associated with these contaminants. Median concentrations of total PBDEs are nine times lower than the levels of total PCBs along the entire studied stretch of the Rhône River. The results show that total PBDEs concentrations range from 0.06 to 239 μg·kg-1 DW with a median value of 3.81 μg·kg-1 DW and a maximum concentration measured in the years 2000s. These maximum concentrations are identical to those measured for total PCBs at the end of the 1990s, but show a different pattern of distribution. Abnormal dichlorodiphenyltrichloroethane (DDT) levels were also detected in the downstream section of the river, with a peak concentration of 147.5 μg·kg-1 DW measured at the GEC site from 2005 onwards. Analyses of the enantiomeric fractions reveal a fresh input resulting from a technical formulation. Sediments from the core sampled at the most downstream site (GEC) are found to be highly toxic to organisms living nearby, particularly because of the total PCDD/Fs, DDE and DDT levels. In addition, based on available sediment quality guidelines, there may be a potential bioaccumulation risk for humans not only for these three compounds of concern but also for total PCBs and 7 out of the 8 analysed PBDEs.
Collapse
Affiliation(s)
- Yohan Liber
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Brice Mourier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France.
| | - Philippe Marchand
- LUNAM Université, Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), UMR INRA 1329, F-44307 Nantes, France
| | - Emmanuelle Bichon
- LUNAM Université, Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), UMR INRA 1329, F-44307 Nantes, France
| | - Yves Perrodin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Jean-Philippe Bedell
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
32
|
Liu Y, Richardson ES, Derocher AE, Lunn NJ, Lehmler HJ, Li X, Zhang Y, Cui JY, Cheng L, Martin JW. Hundreds of Unrecognized Halogenated Contaminants Discovered in Polar Bear Serum. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanna Liu
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G 2G3 Canada
| | - Evan S. Richardson
- Wildlife Research Division, Science and Technology Branch; Environment and Climate Change Canada; Government of Canada; Winnipeg Manitoba R3C 4W2 Canada
| | - Andrew E. Derocher
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| | - Nicholas J. Lunn
- Wildlife Research Division, Science and Technology Branch; Environment and Climate Change Canada; Edmonton Alberta T6G 2E9 Canada
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health; College of Public Health; University of Iowa; Iowa City IA 52242-5000 USA
| | - Xueshu Li
- Department of Occupational and Environmental Health; College of Public Health; University of Iowa; Iowa City IA 52242-5000 USA
| | - Yifeng Zhang
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G 2G3 Canada
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences; University of Washington; Seattle WA 98105-6099 USA
| | - Lihua Cheng
- Department of Environmental & Occupational Health Sciences; University of Washington; Seattle WA 98105-6099 USA
| | - Jonathan W. Martin
- Division of Analytical and Environmental Toxicology; Department of Laboratory Medicine and Pathology; University of Alberta; Edmonton Alberta T6G 2G3 Canada
- Science for Life Laboratory; Department of Environmental Science and Analytical Chemistry; Stockholm University; 10691 Stockholm Sweden
| |
Collapse
|
33
|
Liu Y, Richardson ES, Derocher AE, Lunn NJ, Lehmler HJ, Li X, Zhang Y, Yue Cui J, Cheng L, Martin JW. Hundreds of Unrecognized Halogenated Contaminants Discovered in Polar Bear Serum. Angew Chem Int Ed Engl 2018; 57:16401-16406. [PMID: 30376612 PMCID: PMC6394828 DOI: 10.1002/anie.201809906] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/11/2018] [Indexed: 11/06/2022]
Abstract
Exposure of polar bears (Ursus maritimus) to persistent organic pollutants was discovered in the 1970s, but recent evidence suggests the presence of unknown toxic chemicals in their blood. Protein and phospholipid depleted serum was stirred with polyethersulfone capillaries to extract a broad range of analytes, and nontarget mass spectrometry with "fragmentation flagging" was used for detection. Hundreds of analytes were discovered belonging to 13 classes, including novel polychlorinated biphenyl (PCB) metabolites and many fluorinated or chlorinated substances not previously detected. All analytes were detected in the oldest (mid-1980s) archived polar bear serum from Hudson Bay and Beaufort Sea, and all fluorinated classes showed increasing trends. A mouse experiment confirmed the novel PCB metabolites, suggesting that these could be widespread in mammals. Historical exposure and toxic risk has been underestimated, and these halogenated contaminants pose uncertain risks to this threatened species.
Collapse
Affiliation(s)
- Yanna Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Evan S. Richardson
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Government of Canada, Winnipeg, Manitoba, R3C 4W2, Canada
| | - Andrew E. Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Nicholas J. Lunn
- Wildlife Research Division, Science and Technology Branch, Environment and Climate Change Canada, Edmonton, Alberta, T6G 2E9, Canada
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242-5000, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242-5000, USA
| | - Yifeng Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98105-6099, USA
| | - Lihua Cheng
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, 98105-6099, USA
| | - Jonathan W. Martin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
- Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
34
|
Schulze S, Sättler D, Neumann M, Arp HPH, Reemtsma T, Berger U. Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:1122-1128. [PMID: 29996409 DOI: 10.1016/j.scitotenv.2017.12.305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 06/08/2023]
Abstract
Organic chemicals that are persistent and mobile in the aquatic environment exhibit a hazard to contaminate drinking water resources. In this study an emission score model was developed to rank the potential of substances registered under the REACH legislation to be emitted into the environment. It was applied to a list of 2167 REACH registered substances that were previously identified to be persistent and mobile organic chemicals (PMOCs) in groundwater or to be hydrolyzed to form transformation products fulfilling the PMOC criteria. The emission score model is based on the tonnage placed on the European market and on seven emission-related use characteristics (high release to environment, wide dispersive use, intermediate use, closed system use, professional use, consumer use, and substance in article), reported in the companies' registrations under REACH. Applying the model resulted in a list of 1110 substances (936 PMOCs and 174 precursors to PMOCs) that were estimated to be released into the environment, while 1054 substances had indicators of negligible environmental emissions and 3 substances could not be evaluated due to severe data gaps. The 936 PMOCs and the 174 precursors were ranked in two lists with regard to their emission potential. The model was shown to be fit for purpose in terms of suggesting and prioritizing substances for scientific investigations with a focus on environmental water quality. Though targeted for PMOCs, the presented scoring system is illustrative of how REACH registration data can be used to assess the emission potential of various substances.
Collapse
Affiliation(s)
- Stefanie Schulze
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Daniel Sättler
- Section IV 2.3 Chemicals, German Environment Agency - UBA, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Michael Neumann
- Section IV 2.3 Chemicals, German Environment Agency - UBA, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute - NGI, Postboks 3930 Ullevål Stadion, 0806 Oslo, Norway
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Urs Berger
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
35
|
Guo J, Stubbings WA, Romanak K, Nguyen LV, Jantunen L, Melymuk L, Arrandale V, Diamond ML, Venier M. Alternative Flame Retardant, 2,4,6-Tris(2,4,6-tribromophenoxy)-1,3,5-triazine, in an E-waste Recycling Facility and House Dust in North America. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3599-3607. [PMID: 29509415 DOI: 10.1021/acs.est.7b06139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A high molecular weight compound, 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ), was detected during the analysis of brominated flame retardants in dust samples collected from an electrical and electronic waste (e-waste) recycling facility in Ontario, Canada. Gas chromatography coupled with both high-resolution and low-resolution mass spectrometry (MS) was used to determine TTBP-TAZ's chemical structure and concentrations. To date, TTBP-TAZ has only been detected in plastic casings of electrical and electronic equipment and house dust from The Netherlands. Here we report on the concentrations of TTBP-TAZ in selected samples from North America: e-waste dust ( n = 7) and air ( n = 4), residential dust ( n = 30), and selected outdoor air ( n = 146), precipitation ( n = 19), sediment ( n = 11) and water ( n = 2) samples from the Great Lakes environment. TTBP-TAZ was detected in all the e-waste dust and air samples, and in 70% of residential dust samples. The median concentrations of TTBP-TAZ in these three types of samples were 5540 ng/g, 5.75 ng/m3 and 6.76 ng/g, respectively. The flame retardants 2,4,6-tribromophenol, tris(2,3-dibromopropyl) isocyanurate, and 3,3',5,5'-tetrabromobisphenol A bis(2,3-dibromopropyl) ether, BDE-47 and BDE-209 were also measured for comparison. None of these other flame retardants concentrations was significantly correlated with those of TTBP-TAZ in any of the sample types suggesting different sources. TTBP-TAZ was not detected in any of the outdoor environmental samples, which may relate to its application history and physicochemical properties. This is the first report of TTBP-TAZ in North America.
Collapse
Affiliation(s)
- Jiehong Guo
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - William A Stubbings
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Kevin Romanak
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| | - Linh V Nguyen
- Department of Physical and Environmental Science , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - Liisa Jantunen
- Air Quality Processes Research Section , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
- Department of Earth Sciences , University of Toronto , Toronto , Ontario M5S 3B1 , Canada
| | - Lisa Melymuk
- Research Centre for Toxic Compounds in the Environment (RECETOX) , Masaryk University , Kamenice 753/5, pavilion A29 , 62500 Brno , Czech Republic
| | - Victoria Arrandale
- Dalla Lana School of Public Health , University of Toronto , Toronto , Ontario M5G 1X3 , Canada
- Occupational Cancer Research Centre , Cancer Care Ontario , Ontario M5G 2L3 , Canada
| | - Miriam L Diamond
- Department of Physical and Environmental Science , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
- Department of Earth Sciences , University of Toronto , Toronto , Ontario M5S 3B1 , Canada
- Dalla Lana School of Public Health , University of Toronto , Toronto , Ontario M5G 1X3 , Canada
| | - Marta Venier
- School of Public and Environmental Affairs , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
36
|
Galbán-Malagón CJ, Hernán G, Abad E, Dachs J. Persistent organic pollutants in krill from the Bellingshausen, South Scotia, and Weddell Seas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1487-1495. [PMID: 28898957 DOI: 10.1016/j.scitotenv.2017.08.108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Abstract
Persistent organic pollutants (POPs) reach Antarctica through atmospheric transport, oceanic currents, and to minor extent, by migratory animals. The Southern Ocean is a net sink for many POPs, with a key contribution of the settling fluxes of POPs bound to organic matter (biological pump). However, little is known about POP transfer through the food web in the Southern Ocean and Antarctic waters, where krill is an important ecological node. In this study, we assessed the occurrence of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in Antarctic krill (Euphausia superba) from the Bellingshausen, South Scotia and Weddell Seas around the Antarctic Peninsula. The concentrations of PCDD/Fs, PBDEs and PCBs in krill showed a large variability and the average were higher (generally within a factor 3) than those previously reported for eastern Antarctica. This result highlights regional differences related to atmospheric transport and deposition, and also probable regional sources due to human activities. Bioaccumulation and biomagnification factors for PCBs in krill were estimated using previously reported phytoplankton and seawater concentrations for this region. These suggested a near water-krill equilibrium for PCBs, which was not observed for water-phytoplankton partitioning. The estimated removal settling fluxes of PCBs due to the biological pump were several orders of magnitude higher than the estimated fluxes of PCBs transferred from phytoplankton to krill.
Collapse
Affiliation(s)
- Cristóbal J Galbán-Malagón
- Departmento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile; Fundación MERI, Av. Kennedy 5682, Vitacura, Santiago, Chile.
| | - Gema Hernán
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain; Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA-CSIC-UIB), Esporles, Illes Balears, Spain
| | - Esteban Abad
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| |
Collapse
|
37
|
Reppas-Chrysovitsinos E, Sobek A, MacLeod M. In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:134-146. [PMID: 29285590 PMCID: PMC5775374 DOI: 10.1007/s00128-017-2253-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 05/25/2023]
Abstract
Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundary threats proposed seven chemical hazard profiles that are distinct from the POP and vPvB profiles. We previously defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that correspond to two profiles of chemicals that are planetary boundary threats. Here, we extend our method to screen a database of chemicals consisting of 8648 substances produced within the OECD countries. We propose a new scoring scheme to disentangle the POP, vPvB, APC and WPC profiles by focusing on the spatial range of exposure potential, discuss the relationship between high exposure hazard and elemental composition of chemicals, and identify chemicals with high exposure hazard potential.
Collapse
Affiliation(s)
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691, Stockholm, Sweden
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
38
|
Chibwe L, Davie-Martin CL, Aitken MD, Hoh E, Massey Simonich SL. Identification of polar transformation products and high molecular weight polycyclic aromatic hydrocarbons (PAHs) in contaminated soil following bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1099-1107. [PMID: 28511355 DOI: 10.1016/j.scitotenv.2017.04.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Bioremediation is a technique commonly used to reduce the toxicity associated with polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. However, the efficacy of bioremedial applications is evaluated based on the removal of a subset of parent (or unsubstituted) PAHs and does not incorporate toxic polar transformation products or the more mutagenic high molecular weight PAHs (MW≥302amu or MW302-PAHs). Previously, an effects-directed analysis approach was used to assess the effect of bioremediation on the toxicity of a coal tar-contaminated soil. Increased genotoxicity and developmental toxicity was measured postbioremedation in the more polar soil extract fractions, as compared to the less polar fractions where the targeted PAHs eluted, and could not be attributed to the 88 target PAHs analyzed for (including selected oxygen-containing PAHs). In this study, comprehensive two-dimensional gas chromatography time-of-flight and liquid chromatography quadrupole time-of-flight mass spectrometry were used to characterize transformation products in the soil extract fractions identified as toxic, previously. Additionally, the degradation of 12MW302-PAHs, picene (MW=278) and coronene (MW=300) were evaluated following bioremediation. Non-targeted analysis resulted in the tentative identification of 10 peaks with increased intensity postbioremediation (based on mass spectral library matching and fragmentation patterns from >5000 candidate peaks in the soil extracts). Several of these compounds contained oxygen, suggesting they would be relatively polar. MW302-PAHs were not significantly degraded during bioremediation, suggesting that the carcinogenic potential associated with these PAHs might remain unchanged. The results of this study suggest that polar transformation products, and MW302-PAHs, should be considered for realistic risk assessment of bioremediated soils.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cleo L Davie-Martin
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, United States; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Staci L Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
39
|
Han T, Wu MH, Zang C, Sun R, Tang L, Liu N, Lei JQ, Shao HY, Gu JZ, Xu G. Hexabromocyclododecane and tetrabromobisphenol A in tree bark from different functional areas of Shanghai, China: levels and spatial distributions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1346-1354. [PMID: 28892110 DOI: 10.1039/c7em00275k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The concentrations and spatial distributions of hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA) were measured in tree bark from different functional areas of Shanghai. ΣHBCDD (sum of α-, β-, and γ-HBCDD) concentrations ranged from 1.2 × 102 to 6.6 × 103 ng g-1 lw (median 5.7 × 102 ng g-1 lw) and TBBPA concentrations ranged from 48 to 7.2 × 104 ng g-1 lw (median 2.8 × 102 ng g-1 lw). The concentrations of ΣHBCDD and TBBPA all followed the order of industrial areas > commercial areas > residential areas. The mean percentage of α-HBCDD in bark samples (44%) from Shanghai was higher than that in technical HBCDD products, but comparable with that in air. The concentrations of TBBPA and individual HBCDD diastereoisomers between industrial areas and commercial areas were correlated. Based on the concentrations of HBCDD in the bark, the corresponding atmospheric HBCDD concentrations were estimated. Compared with the published data for HBCDD in urban air, the estimated atmospheric HBCDD concentrations in Shanghai had a relatively high level, and more attention should be paid to the pollution status of HBCDD in Shanghai.
Collapse
Affiliation(s)
- Tao Han
- Institute of Applied Radiation of Shanghai, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ruan T, Jiang G. Analytical methodology for identification of novel per- and polyfluoroalkyl substances in the environment. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Arp HPH, Brown TN, Berger U, Hale SE. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017. [PMID: 28628174 DOI: 10.1039/c7em00158d] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log Doc < 4.5 between pH 4-10 (where Doc is the organic carbon-water distribution coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest PMOC ranking (half-life > 40 days, log Doc < 1.0 between pH 4-10). Only 9% of neutral substances received the highest PMOC ranking, compared to 30% of ionizable compounds and 44% of ionic compounds. Predicted hydrolysis products for all REACH parents (contributing 5043 additional structures) were found to have higher PMOC rankings than their parents, due to increased mobility but not persistence. The fewest experimental data available were for ionic compounds; therefore, their ranking is more uncertain than neutral and ionizable compounds. The most sensitive parameter for the PMOC ranking was freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.
Collapse
Affiliation(s)
- H P H Arp
- Norwegian Geotechnical Institute, Postboks 3930 Ullevål Stadion, NO-0806 Oslo, Norway.
| | | | | | | |
Collapse
|
42
|
Rankin GO, Tyree C, Pope D, Tate J, Racine C, Anestis DK, Brown KC, Dial M, Valentovic MA. Role of Free Radicals and Biotransformation in Trichloronitrobenzene-Induced Nephrotoxicity In Vitro. Int J Mol Sci 2017; 18:ijms18061165. [PMID: 28561793 PMCID: PMC5485989 DOI: 10.3390/ijms18061165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 11/25/2022] Open
Abstract
This study determined the comparative nephrotoxic potential of four trichloronitrobenzenes (TCNBs) (2,3,4-; 2,4,5-; 2,4,6-; and 3,4,5-TCNB) and explored the effects of antioxidants and biotransformation inhibitors on TCNB-induced cytotoxicity in isolated renal cortical cells (IRCC) from male Fischer 344 rats. IRCC were incubated with a TCNB up to 1.0 mM for 15–120 min. Pretreatment with an antioxidant or cytochrome P450 (CYP), flavin monooxygenase (FMO), or peroxidase inhibitor was used in some experiments. Among the four TCNBs, the order of decreasing nephrotoxic potential was approximately 3,4,5- > 2,4,6- > 2,3,4- > 2,4,5-TCNB. The four TCNBs exhibited a similar profile of attenuation of cytotoxicity in response to antioxidant pretreatments. 2,3,4- and 3,4,5-TCNB cytotoxicity was attenuated by most of the biotransformation inhibitors tested, 2,4,5-TCNB cytotoxicity was only inhibited by isoniazid (CYP 2E1 inhibitor), and 2,4,6-TCNB-induced cytotoxicity was inhibited by one CYP inhibitor, one FMO inhibitor, and one peroxidase inhibitor. All of the CYP specific inhibitors tested offered some attenuation of 3,4,5-TCNB cytotoxicity. These results indicate that 3,4,5-TCNB is the most potent nephrotoxicant, free radicals play a role in the TCNB cytotoxicity, and the role of biotransformation in TCNB nephrotoxicity in vitro is variable and dependent on the position of the chloro groups.
Collapse
Affiliation(s)
- Gary O Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Connor Tyree
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Deborah Pope
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Jordan Tate
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Christopher Racine
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Dianne K Anestis
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Mason Dial
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
43
|
Villa S, Migliorati S, Monti GS, Holoubek I, Vighi M. Risk of POP mixtures on the Arctic food chain. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1181-1192. [PMID: 28054401 DOI: 10.1002/etc.3671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/07/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
The exposure of the Arctic ecosystem to persistent organic pollutants (POPs) was assessed through a review of literature data. Concentrations of 19 chemicals or congeneric groups were estimated for the highest levels of the Arctic food chain (Arctic cod, ringed seals, and polar bears). The ecotoxicological risk for seals, bears, and bear cubs was estimated by applying the concentration addition (CA) concept. The risk of POP mixtures was very low in seals. By contrast, the risk was 2 orders of magnitude higher than the risk threshold for adult polar bears and even more (3 orders of magnitude above the threshold) for bear cubs fed with contaminated milk. Based on the temporal trends available for many of the chemicals, the temporal trend of the mixture risk for bear cubs was calculated. Relative to the 1980s, a decrease in risk from the POP mixture is evident, mainly because of international control measures. However, the composition of the mixture substantially changes, and the contribution of new POPs (particularly perfluorooctane sulfonate) increases. These results support the effectiveness of control measures, such as those promulgated in the Stockholm Convention, as well as the urgent need for their implementation for new and emerging POPs. Environ Toxicol Chem 2017;36:1181-1192. © 2017 SETAC.
Collapse
Affiliation(s)
- Sara Villa
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milano, Italy
| | - Sonia Migliorati
- Department of Economics, Management, and Statistics, University of Milano Bicocca, Milano, Italy
| | - Gianna Serafina Monti
- Department of Economics, Management, and Statistics, University of Milano Bicocca, Milano, Italy
| | - Ivan Holoubek
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Brno, Czech Republic
| | - Marco Vighi
- Department of Earth and Environmental Sciences, University of Milano Bicocca, Milano, Italy
- Madrid Institute for Advanced Studies in Water (IMDEA Water), Madrid, Spain
| |
Collapse
|
44
|
Wang Y, Wu X, Zhao H, Xie Q, Hou M, Zhang Q, Du J, Chen J. Characterization of PBDEs and novel brominated flame retardants in seawater near a coastal mariculture area of the Bohai Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1446-1452. [PMID: 28024741 DOI: 10.1016/j.scitotenv.2016.12.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The concentrations and distributions of PBDEs and novel brominated flame retardants (NBFRs) in dissolved phase of surface seawater near a coastal mariculture area of the Bohai Sea were investigated. The total concentrations of PBDE and NBFRs were in the range of 15.4-65.5 and 2.12-13.6ng/L, respectively. The highest concentration was discovered in the water near an anchorage ground, whereas concentrations in water samples from offshore cage-culture area were not elevated. Relatively high concentrations of BDE28, 99, and 100 were discovered in the medium range of distance from shore, where is the path of tidal or coastal current. This suggested that inputs from ships or through tidal current rather than mariculture activities may be the main sources of BFRs in this area. BDE209, BDE47, hexabromobenzene (HBB), and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) were the most abundant BFR congeners. Relatively high proportions of these BFRs may originate from discharge of wastewater nearby or degradation from higher brominated PBDEs. No correlations were found between BFR concentrations and water dissolved organic carbon, suggesting that concentrations and distributions of BFRs in this area were source-dependent. The relatively high concentrations in this study emphasized the importance of monitoring and managing BFR contaminations in mariculture areas of China.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaowei Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minmin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiaonan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Juan Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
45
|
Cariou R, Omer E, Léon A, Dervilly-Pinel G, Le Bizec B. Screening halogenated environmental contaminants in biota based on isotopic pattern and mass defect provided by high resolution mass spectrometry profiling. Anal Chim Acta 2016; 936:130-8. [DOI: 10.1016/j.aca.2016.06.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
|
46
|
Binnington MJ, Curren MS, Quinn CL, Armitage JM, Arnot JA, Chan HM, Wania F. Mechanistic polychlorinated biphenyl exposure modeling of mothers in the Canadian Arctic: the challenge of reliably establishing dietary composition. ENVIRONMENT INTERNATIONAL 2016; 92-93:256-268. [PMID: 27115916 DOI: 10.1016/j.envint.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Traditional food (TF) consumption represents the main route of persistent organic pollutant (POP) exposure for indigenous Arctic Canadians. Ongoing dietary transitions away from TFs and toward imported foods (IFs) may contribute to decreasing POP exposures observed in these groups. METHODS To explore this issue, we combined the global fate and transport model GloboPOP and the human food chain bioaccumulation model ACC-Human Arctic to simulate polychlorinated biphenyl (PCB) exposure in two indigenous Arctic Canadian communities from the Inuvik region, Northwest Territories and Baffin region, Nunavut. Using dietary survey information from initial (1996-98) and follow-up (2005-07) biomonitoring campaigns in Inuvik and Baffin, we simulated PCB exposures (PCB-118, -138, -153, and -180) for each individual study participant and also whole study populations. RESULTS TF intake rates, particularly of marine mammals (MMs), were the most important predictors of modeled PCB exposure, while TF consumption did not associate consistently with measured PCB exposures. Further, reported mean TF intake increased from baseline to follow-up in both Inuvik (from 8 to 183gd(-1)) and Baffin (from 60 to 134gd(-1)), opposing both the expected dietary transition direction and the observed decrease in human PCB exposures in these communities (ΣPCB Inuvik: from 43 to 29ngglipid(-1), ΣPCB Baffin: from 213 to 82ngglipid(-1)). However dietary questionnaire data are frequently subject to numerous biases (e.g., recall, recency, confirmation), and thus casts doubt on the usefulness of these data. CONCLUSIONS Ultimately, our model's capability to reproduce historic PCB exposure data in these two groups was highly sensitive to TF intake, further underscoring the importance of accurate TF consumption reporting, and clarification of the role of dietary transitions in future POP biomonitoring of indigenous Arctic populations.
Collapse
Affiliation(s)
- Matthew J Binnington
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Meredith S Curren
- Environmental Health Science and Research Bureau, Health Canada, 4908D - 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada
| | - Cristina L Quinn
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - James M Armitage
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Jon A Arnot
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada; ARC Arnot Research & Consulting, 36 Sproat Avenue, Toronto, Ontario M4M 1W4, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, 30 Marie-Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
47
|
|
48
|
Ortiz-Almirall X, Pena-Abaurrea M, Jobst K, Reiner E. Nontargeted Analysis of Persistent Organic Pollutants by Mass Spectrometry and GC×GC. APPLICATIONS OF TIME-OF-FLIGHT AND ORBITRAP MASS SPECTROMETRY IN ENVIRONMENTAL, FOOD, DOPING, AND FORENSIC ANALYSIS 2016. [DOI: 10.1016/bs.coac.2016.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
49
|
Kee YL, Mukherjee S, Pariatamby A. Effective remediation of phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate in farm effluent using Guar gum--A plant based biopolymer. CHEMOSPHERE 2015; 136:111-117. [PMID: 25966329 DOI: 10.1016/j.chemosphere.2015.04.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/07/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
This study was carried out to evaluate the efficiency of Guar gum in removing Persistent Organic Pollutants (POPs), viz. phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate (DEHP), from farm effluent. The removal efficiency was compared with alum. The results indicated that 4.0 mg L(-1) of Guar gum at pH 7 could remove 99.70% and 99.99% of phenol,2,4-bis(1,1-dimethylethyl) and DEHP, respectively. Box Behnken design was used for optimization of the operating parameters for optimal POPs removal. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy studies were conducted on the flocs. SEM micrographs showed numerous void spaces in the flocs produced by Guar gum as opposed to those produced by alum. This indicated why Guar gum was more effective in capturing and removal of suspended particles and POPs as compared to alum. FTIR spectra indicated a shift in the bonding of functional groups in the flocs produced by Guar gum as compared to raw Guar gum powder signifying chemical attachment of the organics present in the effluent to the coagulant resulting in their removal. Guar gum is highly recommended as a substitute to chemical coagulant in treating POPs due to its non-toxic and biodegradable characteristics.
Collapse
Affiliation(s)
- Yang Ling Kee
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sumona Mukherjee
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Agamuthu Pariatamby
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Gerbersdorf SU, Cimatoribus C, Class H, Engesser KH, Helbich S, Hollert H, Lange C, Kranert M, Metzger J, Nowak W, Seiler TB, Steger K, Steinmetz H, Wieprecht S. Anthropogenic Trace Compounds (ATCs) in aquatic habitats - research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. ENVIRONMENT INTERNATIONAL 2015; 79:85-105. [PMID: 25801101 DOI: 10.1016/j.envint.2015.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 05/05/2023]
Abstract
Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity. We highlight the progressing sensitivity of chemical analytics and the challenges in harmonization of sampling protocols and methods, as well as the need for ATC indicator substances to enable cross-national valid monitoring routine. Secondly, the status quo in ecotoxicology is described to advocate for a better implementation of long-term tests, to address toxicity on community and environmental as well as on human-health levels, and to adapt various test levels and endpoints. Moreover, we discuss potential sources of ATCs and the current removal efficiency of wastewater treatment plants (WWTPs) to indicate the most effective places and elimination strategies. Knowledge gaps in transport and/or detainment of ATCs through their passage in surface waters and groundwaters are further emphasized in relation to their physico-chemical properties, abiotic conditions and biological interactions in order to highlight fundamental research needs. Finally, we demonstrate the importance and remaining challenges of an appropriate ATC risk assessment since this will greatly assist in identifying the most urgent calls for action, in selecting the most promising measures, and in evaluating the success of implemented management strategies.
Collapse
Affiliation(s)
- Sabine U Gerbersdorf
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany.
| | - Carla Cimatoribus
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Holger Class
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Karl-H Engesser
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Steffen Helbich
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China
| | - Claudia Lange
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Martin Kranert
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Jörg Metzger
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany; University of Applied Sciences Esslingen, Kanalstrasse 3, 73728 Esslingen, Germany
| | - Wolfgang Nowak
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Thomas-Benjamin Seiler
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kristin Steger
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Heidrun Steinmetz
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany
| | - Silke Wieprecht
- Institute for Modelling Hydraulic and Environmental Systems, University of Stuttgart, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| |
Collapse
|