1
|
Ma X, Guo R, Song H, Wang J, Yang Z, Liang G, Peng C. Anaerobic and aerobic sequential process, a promising strategy for breaking the stagnate of biological reductive dechlorination-TCE bioremediation in the field application. CHEMOSPHERE 2025; 372:144106. [PMID: 39800327 DOI: 10.1016/j.chemosphere.2025.144106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process. Herein, the objectives of this review are (1) to discuss the reasons why it is difficult to completely reduce dechlorination; (2) to analyze the advantages and pathways of TCE complete detoxification through anaerobic/aerobic sequential degradation process; (3) to summarize the major bacteria and catalytic enzymes of the cDCE and VC oxidation process. This review will highlight the anaerobic/aerobic process in TCE biodegradation and increase understanding of the complete detoxification of chlorinated hydrocarbons.
Collapse
Affiliation(s)
- Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Runnan Guo
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Haokun Song
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zixuan Yang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gaolei Liang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
Gil-Villalba S, Palau J, Soder-Walz JM, Vallecillo MA, Corregidor J, Tirado A, Shouakar-Stash O, Guivernau M, Viñas M, Soler A, Rosell M. Use of isotopic (C, Cl) and molecular biology tools to assess biodegradation in a source area of chlorinated ethenes after biostimulation with Emulsified Vegetable Oil (EVO). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175351. [PMID: 39151619 DOI: 10.1016/j.scitotenv.2024.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Enhanced In Situ Bioremediation (EISB) using Emulsified Vegetable Oil (EVO) as a long-term electron donor has gained prominence for the treatment of groundwater contaminated with chlorinated ethenes (CEs). This study explores the potential of isotopic and molecular biology tools (MBT) to investigate the CEs (PCE, TCE and cis-DCE) bioremediation using EVO in a contaminated site. A multiple approach using C and Cl-CSIA, quantification of Dehalococcoides (Dhc) and specific reductive dechlorination (RD) gene population, and hydrochemical data in microcosm experiments and field samples was applied. Despite the high partitioning of CEs into the EVO phase, the carbon isotopic values of the remaining CEs fraction in the aqueous phase did not exhibit significant changes caused by phase partitioning in laboratory experiments. Both microcosm experiments and field data revealed a rapid RD of PCE and TCE, resulting in the transient accumulation of cis-DCE, which was slowly degraded to vinyl chloride (VC). These results agreed with the presence of Dhc populations and a shift to stronger reducing conditions in the field: i) RD functional genes (tceA, vcrA and bvcA) exhibited a trend to higher values and ii) a substantial increase in Dhc populations (up to 30% of the total bacterial populations) was observed over time. The dual-element isotope slope ΛC-Cl for RD of cis-DCE obtained from field data (ΛC - Cl = 5 ± 3) was similar to the one determined from the microcosm experiments under controlled anoxic conditions (ΛC - Cl = 4.9 ± 0.8). However, ΛC-Cl values differ from those reported so far for laboratory studies with Dhc strains and mixed cultures containing Dhc, i.e., between 8.3 and 17.8. This observation underscores the potential variety of reductive dehalogenases involved during cis-DCE RD and the importance of determining site-specific Λ and ɛ values in order to improve the identification and quantification of transformation processes in the field.
Collapse
Affiliation(s)
- Sergio Gil-Villalba
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain.
| | - Jordi Palau
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Jesica M Soder-Walz
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, Bellaterra, Spain
| | - Miguel A Vallecillo
- Environmental Resources Management Iberia SAU, Rambla de Catalunya 33, 08007 Barcelona, Spain
| | - Jordi Corregidor
- Environmental Resources Management Iberia SAU, Rambla de Catalunya 33, 08007 Barcelona, Spain
| | - Andrea Tirado
- Environmental Resources Management Iberia SAU, Rambla de Catalunya 33, 08007 Barcelona, Spain
| | | | - Miriam Guivernau
- Sustainability in Biosystems Programme, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Barcelona, Spain
| | - Marc Viñas
- Sustainability in Biosystems Programme, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, Caldes de Montbui, Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Monica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Ojo AO, Castillo J, Cason ED, Valverde A. Biodegradation of chloroethene compounds under microoxic conditions. Biotechnol Bioeng 2024; 121:1036-1049. [PMID: 38116701 DOI: 10.1002/bit.28630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
The biodegradation of chloroethene compounds under oxic and anoxic conditions is well established. However, the biological reactions that take place under microoxic conditions are unknown. Here, we report the biostimulated (BIOST: addition of lactate) and natural attenuated (NAT) degradation of chloroethene compounds under microoxic conditions by bacterial communities from chloroethene compounds-contaminated groundwater. The degradation of tetrachloroethene was significantly higher in NAT (15.14% on average) than in BIOST (10.13% on average) conditions at the end of the experiment (90 days). Sporomusa, Paracoccus, Sedimentibacter, Pseudomonas, and Desulfosporosinus were overrepresented in NAT and BIOST compared to the source groundwater. The NAT metagenome contains phenol hydrolase P1 oxygenase (dmpL), catechol-1,2-dioxygenase (catA), catechol-2,3-dioxygenases (dmpB, todE, and xylE) genes, which could be involved in the cometabolic degradation of chloroethene compounds; and chlorate reductase (clrA), that could be associated with partial reductive dechlorination of chloroethene compounds. Our data provide a better understanding of the bacterial communities, genes, and pathways potentially implicated in the reductive and cometabolic degradation of chloroethene compounds under microoxic conditions.
Collapse
Affiliation(s)
- Abidemi Oluranti Ojo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein, South Africa
| | - Julio Castillo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Errol Duncan Cason
- Department of Animal Sciences, University of the Free State, Bloemfontein, South Africa
| | - Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
4
|
Ji L, Zhang H, Ding W, Song R, Han Y, Yu H, Paneth P. Theoretical Kinetic Isotope Effects in Establishing the Precise Biodegradation Mechanisms of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4915-4929. [PMID: 36926881 DOI: 10.1021/acs.est.2c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Compound-specific isotope analysis (CSIA) for natural isotope ratios has been recognized as a promising tool to elucidate biodegradation pathways of organic pollutants by microbial enzymes by relating reported kinetic isotope effects (KIEs) to apparent KIEs (AKIEs) derived from bulk isotope fractionations (εbulk). However, for many environmental reactions, neither are the reference KIE ranges sufficiently narrow nor are the mechanisms elucidated to the point that rate-determining steps have been identified unequivocally. In this work, besides providing reference KIEs and rationalizing AKIEs, good relationships have been explained by DFT computations for diverse biodegradation pathways with known enzymatic models between the theoretical isotope fractionations (εbulk') from intrinsic KIEs on the rate-determining steps and the observed εbulk. (1) To confirm the mechanistic details of previously reported pathway-dependent CSIA, it includes isotope changes in MTBE biodegradation between hydroxylation by CYP450 and SN2 reaction by cobalamin-dependent methyltransferase, the regioselectivity of toluene biodegradation by CYP450, and the rate-determining step in toluene biodegradation by benzylsuccinate synthase. (2) To yield new fundamental insights into some unclear biodegradation pathways, it consists of the oxidative function of toluene dioxygenase in biodegradation of TCE, the epoxidation mode in biodegradation of TCE by toluene 4-monooxygenase, and the weighted average mechanism in biodegradation of cDCE by CYP450.
Collapse
Affiliation(s)
- Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Huanni Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Runqian Song
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ye Han
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
5
|
Buchner D, Martin PR, Scheckenbach J, Kümmel S, Gelman F, Haderlein SB. Expanding the calibration range of compound-specific chlorine isotope analysis by the preparation of a 37 Cl-enriched tetrachloroethylene. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9378. [PMID: 35975721 DOI: 10.1002/rcm.9378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The recent development of reliable GC/qMS methods for δ37 Cl compound-specific stable isotope analysis (CSIA) paves the way for dual carbon-chlorine isotope analysis of chlorinated ethenes and thus allows deeper insights into underlying transformation processes/mechanisms. A two-point calibration is indispensable for the precise and correct conversion of raw data to the international δ37 ClSMOC scale. The currently available calibration standards for tetrachloroethylene (PCE) span only a very narrow range from -2.52‰ (EIL2) to +0.29‰ (EIL1), which is considerably smaller than observed δ37 Cl isotope enrichment in (bio-)transformation studies (up to 12‰). METHODS We describe the preparation and evaluation of a new 37 Cl-enriched PCE standard to avoid bias in δ37 Cl CSIA arising from extrapolation beyond the calibration range. The preparation comprised: (i) partial PCE reduction by zero-valent zinc in a system of PCE, ethanol (initial volume ratio 3/5) and trace amounts of water followed by (ii) liquid-liquid extraction and (iii) a subsequent fractional distillation to purify the 37 Cl-enriched PCE. RESULTS The obtained PCE (PCEenriched ) showed a purity of 98.8% (mole fraction) and a δ37 ClSMOC value of +10.8 ± 0.5‰. The evaluation of an experimental dataset with and without extrapolation showed no significant variation. CONCLUSIONS The new PCE standard (PCEenriched ) expands the calibration range to 13.3‰ (previously 2.8‰) and thus prevents potential bias introduced by extrapolation beyond the calibration range.
Collapse
Affiliation(s)
- Daniel Buchner
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Philipp R Martin
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| | | | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | |
Collapse
|
6
|
Xing Z, Su X, Zhang X, Zhang L, Zhao T. Direct aerobic oxidation (DAO) of chlorinated aliphatic hydrocarbons: A review of key DAO bacteria, biometabolic pathways and in-situ bioremediation potential. ENVIRONMENT INTERNATIONAL 2022; 162:107165. [PMID: 35278801 DOI: 10.1016/j.envint.2022.107165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Contamination of aquifers and vadose zones with chlorinated aliphatic hydrocarbons (CAH) is a world-wide issue. Unlike other reactions, direct aerobic oxidation (DAO) of CAHs does not require growth substrates and avoids the generation of toxic by-products. Here, we critically review the current understanding of chlorinated aliphatic hydrocarbons-DAO and its application in bioreactors and at the field scale. According to reports on chlorinated aliphatic hydrocarbons-DAO bacteria, isolates mainly consisted of Methylobacterium and Proteobacterium. Chlorinated aliphatic hydrocarbons-DAO bacteria are characterized by tolerance to a high concentration of CAHs and highly efficient removal of CAHs. Trans-1,2-dichloroethylene (t-DCE) is easily transformed biomass for bacteria, followed by 1,2-dichloroethane (1,2-DCA), dichloromethane (DCM), vinyl chloride (VC) and cis-1,2-dichloroethylene (c-DCE). Significant differences in the maximum specific growth rates were observed with different CAHs and biometabolic pathways for DCM, 1,2-DCA, VC and c-DCE degradation have been successfully parsed. Detection of the functional genes etnC and etnE is useful for the determination of active VC DAO bacteria. Additionally, DAO bacteria have been successfully applied to CAHs in new types of bioreactors with satisfactory results. To the best of the authors' knowledge, only one study on DAO-CAHs was conducted in-situ and resulted in 99% CAH removal. Lastly, we put forward future development prospect of chlorinated aliphatic hydrocarbons-DAO.
Collapse
Affiliation(s)
- Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xia Su
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiaoping Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
7
|
Illy VD, Cohen GJV, Verardo E, Höhener P, Guiserix N, Atteia O. Using 1,1,1-Trichloroethane degradation data to understand NAPL dissolution and solute transport at real sites. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 245:103934. [PMID: 34922184 DOI: 10.1016/j.jconhyd.2021.103934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Analytical and numerical models describing the evolution of contaminant concentrations in the plume associated with the dissolution of NAPL source and degradation processes were presented in the literature. At real sites and particularly in complex aquifers like chalk, it is difficult to understand how the sources of contaminants evolve with time. 1,1,1-Trichloroethane (1,1,1-TCA) is one of the few compounds with a well-known hydrolysis constant, that can help to improve knowledge of the contaminant sources and transport rates of dissolved contaminants in groundwater by dating the spill. In this work, different scenarios that could explain the evolution of the concentrations of 1,1,1-TCA and its degradation product 1,1-Dichloroethene (1,1-DCE) at a real contaminated site were investigated by analytical and numerical modelling. The results show that (1) the peaks of concentration time series do not correspond to a single contamination event even in the case of a complex medium, (2) the multiphasic behavior of the concentration time series is dictated by the dissolution in a heterogeneous medium, and (3) the persistence of the concentrations can arise from a small residual organic phase or transport in dual domain medium.
Collapse
Affiliation(s)
- Valeureux D Illy
- EA 4592, Géoressources et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400 Talence, France; Renault SAS, 1 Allée du Golf, Guyancourt 78 280, France.
| | - Gregory J V Cohen
- EA 4592, Géoressources et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400 Talence, France
| | - Elicia Verardo
- EA 4592, Géoressources et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400 Talence, France
| | - Patrick Höhener
- Laboratoire de Chimie Environnementale-UMR 7376, Aix-Marseille Université-CNRS, 3 place Victor Hugo - Case 29, 13331 Marseille Cedex 3, France
| | | | - Olivier Atteia
- EA 4592, Géoressources et Environnement, Bordeaux INP, Université Bordeaux Montaigne, 1 Avenue Dr Schweitzer, 33400 Talence, France
| |
Collapse
|
8
|
Halloran LJS, Vakili F, Wanner P, Shouakar-Stash O, Hunkeler D. Sorption- and diffusion-induced isotopic fractionation in chloroethenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147826. [PMID: 34134359 DOI: 10.1016/j.scitotenv.2021.147826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Isotopic fractionation of groundwater contaminants can occur due to degradation, diffusion and sorption. Of these, only degradation has been extensively explored, yet diffusive isotopic fractionation (DIF) and sorptive isotopic fractionation (SIF) can have significant effects on the isotopic enrichment of groundwater contaminants. Understanding how to mathematically describe and model these processes is vital to the correct interpretation of compound-specific isotope analysis (CSIA) data in the field. Here, models for these physical fractionation processes are developed and described, including the definition of a sorption enrichment factor. These models are then implemented numerically using inverse and finite-element methods to investigate two scenarios, diffusion-sorption and diffusion-sorption-advection, that have been measured in the laboratory. Concentration, δ37Cl, and δ2H data from cis-dichloroethene (cDCE) and trichloroethene (TCE) are used as inputs to the models. Unknown transport parameters including diffusive fractionation exponents are determined from an inverse modelling approach. DIF is shown to have a stronger influence on chlorine isotopologues than on hydrogen isotopologues. For both cDCE and TCE, the sorption enrichment factor of chlorine is found to be negative while that of hydrogen is positive. The presented approach and results provide novel tools and insight into DIF and SIF and underline that these processes should be taken into account when using CSIA to assess contaminant fate.
Collapse
Affiliation(s)
- Landon J S Halloran
- Centre d'hydrogéologie et de géothermie (CHYN), Université de Neuchâtel, Neuchâtel, Switzerland.
| | - Fatemeh Vakili
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Philipp Wanner
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada; Isotope Tracer Technologies Inc., Waterloo, Ontario, Canada
| | - Daniel Hunkeler
- Centre d'hydrogéologie et de géothermie (CHYN), Université de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
9
|
Ebrahimbabaie P, Pichtel J. Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7710-7741. [PMID: 33403642 DOI: 10.1007/s11356-020-11598-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation. There is no optimally developed single technology; therefore, the possibility of using combined technologies for CVOC remediation, for example bioremediation integrated with reduction by nZVI, is presented. Some methods are still in the development stage. Advantages and disadvantages of each treatment strategy are provided. It is hoped that this paper can provide a basic framework for selection of successful CVOC remediation strategies.
Collapse
Affiliation(s)
- Parisa Ebrahimbabaie
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA
| | - John Pichtel
- Department of Environment, Geology, and Natural Resources, Ball State University, Muncie, IN, 47306, USA.
| |
Collapse
|
10
|
Wang X, Xin J, Yuan M, Zhao F. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review. WATER RESEARCH 2020; 183:116060. [PMID: 32750534 DOI: 10.1016/j.watres.2020.116060] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/01/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) have been frequently detected in aquifers in recent years. Owing to the bioaccumulation and toxicity of CAHs, it is essential to explore high-efficiency technologies for their complete dechlorination in groundwater. At present, the most widely used abiotic and biotic remediation technologies are based on zero-valent iron (ZVI) and functional anaerobic bacteria (FAB), respectively. However, the main obstacles to the full potential of both technologies in the field include their lowered efficiencies and increased economic costs due to the co-existence of a variety of natural electron acceptors in the environment, such as dissolved oxygen (DO), nitrate (NO3-), sulfate (SO42-), ferric iron (Fe (III)), bicarbonate (HCO3-), and even water, which compete for electrons with the target contaminants. Therefore, a clear understanding of the mechanisms governing electron competition and electron selectivity is significant for the accurate evaluation of the effectiveness of both technologies under natural hydrochemical conditions. We collected data from both abiotic and biotic CAH-remediation systems, summarized the dechlorination and undesired reactions in groundwater, discussed the characterization methods and general principles of electron competition, and described strategies to improve electron selectivity in both systems. Furthermore, we reviewed the emerging ZVI-FAB coupled system, which integrates abiotic and biotic processes to enhance dechlorination performance and electron utilization efficiency. Lastly, we propose future research needs to quantitatively understand the electron competition in abiotic, biotic, and coupled systems in more detail and to promote improved electron selectivity in groundwater remediation.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
11
|
Zimmermann J, Halloran LJS, Hunkeler D. Tracking chlorinated contaminants in the subsurface using compound-specific chlorine isotope analysis: A review of principles, current challenges and applications. CHEMOSPHERE 2020; 244:125476. [PMID: 31830644 DOI: 10.1016/j.chemosphere.2019.125476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Many chlorinated hydrocarbons have gained notoriety as persistent organic pollutants in the environment. Engineered and natural remediation efforts require a monitoring tool to track the progress of degradation processes. Compound-specific isotope analysis (CSIA) is a robust method to evaluate the origin and fate of contaminants in the environment and does not rely on concentration measurements. While carbon CSIA has established itself in the routine assessment of contaminated sites, studies incorporating chlorine isotopes have only recently become more common. Although some aspects of chlorine isotope analysis are more challenging than carbon isotope analysis, having additional isotopic data yields valuable information for contaminated site management. This review provides an overview of chlorine isotope fractionation of chlorinated contaminants in the subsurface by different processes and presents analytical techniques and unresolved challenges in chlorine isotope analysis. A summary of successful field applications illustrates the potential of using chlorine isotope data. Finally, approaches in modelling chlorine isotope fractionation due to degradation, diffusion, and sorption processes are discussed.
Collapse
Affiliation(s)
- Jeremy Zimmermann
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland.
| | - Landon J S Halloran
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
| |
Collapse
|
12
|
Gafni A, Gelman F, Ronen Z, Bernstein A. Variable carbon and chlorine isotope fractionation in TCE co-metabolic oxidation. CHEMOSPHERE 2020; 242:125130. [PMID: 31669996 DOI: 10.1016/j.chemosphere.2019.125130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Identifying co-metabolic TCE oxidation in polluted groundwater is challenging due to lack of indicative by-products. This challenge may theoretically be resolved if the oxidation process can be characterized by a distinct dual isotope enrichment. In this work, we aimed to explore the carbon and chlorine isotope effects associated with TCE oxidation by a variety of oxygenases. These included pure strains and enrichment cultures of methane, toluene and ammonia oxidizers, as well as experiments with crude extracts. Isotope effects determined for TCE oxidation by toluene and ammonia oxidizers were mostly in line with expected values for epoxidation mechanism (ϵ13C -11.0 ± 0.7 to -24.8 ± 0.2‰ and ϵ37Cl +0.9 ± 0.5 to +1.0 ± 0.4‰), whereas, the methanotrophs resulted in distinctively different isotope effects (ϵ13C -2.4 ± 0.4 to -3.4 ± 0.8‰ and ϵ37Cl -1.8 ± 0.2 to -2.9 ± 0.9‰). It is suggested that in TCE oxidation by methanotrophs, substrate binding rather than bond cleavage is rate limiting, leading to this unexpected isotope effect. On the environmental level, our results imply that the oxidative process can be differentiated if catalyzed by toluene and ammonia oxidizers or by methanotrophs. Additionally, the oxidative process can be distinguished from the reductive one. However, using dual isotope analysis in the field may result in an under-estimation of the overall co-metabolic process if methanotrophs are to be excluded due to low isotope effects.
Collapse
Affiliation(s)
- Almog Gafni
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Faina Gelman
- Geological Survey of Israel, 32 Yesha'ayahu Leibowitz St, Jerusalem, 9692100, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
13
|
Ojeda AS, Phillips E, Sherwood Lollar B. Multi-element (C, H, Cl, Br) stable isotope fractionation as a tool to investigate transformation processes for halogenated hydrocarbons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:567-582. [PMID: 31993605 DOI: 10.1039/c9em00498j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a powerful tool to evaluate transformation processes of halogenated compounds. Many halogenated hydrocarbons allow for multiple stable isotopic systems (C, H, Cl, Br) to be measured for a single compound. This has led to a large body of literature describing abiotic and biotic transformation pathways and reaction mechanisms for contaminants such as chlorinated alkenes and alkanes as well as brominated hydrocarbons. Here, the current literature is reviewed and a new compilation of Λ values for multi-isotopic systems for halogenated hydrocarbons is presented. Case studies of each compound class are discussed and thereby the current strengths of multi-element isotope analysis, continuing challenges, and gaps in our current knowledge are identified for practitioners of multi-element CSIA to address in the near future.
Collapse
Affiliation(s)
- Ann Sullivan Ojeda
- Department of Geosciences, Auburn University, Auburn, Alabama 36849, USA.
| | | | | |
Collapse
|
14
|
Büsing J, Buchner D, Behrens S, Haderlein SB. Deciphering the Variability of Stable Isotope (C, Cl) Fractionation of Tetrachloroethene Biotransformation by Desulfitobacterium strains Carrying Different Reductive Dehalogenases Enzymes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1593-1602. [PMID: 31880148 DOI: 10.1021/acs.est.9b05606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Kinetic isotope effects have been used successfully to prove and characterize organic contaminant transformation on various scales including field and laboratory studies. For tetrachloroethene (PCE) biotransformation, however, causes for the substantial variability of reported isotope enrichment factors (ε) are still not deciphered (εC = -0.4 to -19.0‰). Factors such as different reaction mechanisms and masking of isotope fractionation by either limited intracellular mass transfer or rate-limitations within the enzymatic multistep reaction are under discussion. This study evaluated the contribution of these factors to the magnitude of carbon and chlorine isotope fractionation of Desulfitobacterium strains harboring three different PCE-transforming enzymes (PCE-RdhA). Despite variable single element isotope fractionation (εC = -5.0 to -19.7‰; εCl = -1.9 to -6.3‰), similar slopes of dual element isotope plots (ΛC/Cl values of 2.4 ± 0.1 to 3.6 ± 0.1) suggest a common reaction mechanism for different PCE-RdhAs. Cell envelope properties of the Desulfitobacterium strains allowed to exclude masking effects due to PCE mass transfer limitation. Our results thus revealed that different rate-limiting steps (e.g., substrate channel diffusion) in the enzymatic multistep reactions of individual PCE-RdhAs rather than different reaction mechanisms determine the extent of PCE isotope fractionation in the Desulfitobacterium genus.
Collapse
Affiliation(s)
- Johannes Büsing
- Center for Applied Geoscience , University of Tübingen , 72074 Tübingen , Germany
| | - Daniel Buchner
- Center for Applied Geoscience , University of Tübingen , 72074 Tübingen , Germany
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Stefan B Haderlein
- Center for Applied Geoscience , University of Tübingen , 72074 Tübingen , Germany
| |
Collapse
|
15
|
Hydrochemical Conditions for Aerobic/Anaerobic Biodegradation of Chlorinated Ethenes—A Multi-Site Assessment. WATER 2020. [DOI: 10.3390/w12020322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A stall of cis-1,2-DCE and vinyl chloride (VC) is frequently observed during bioremediation of groundwater chloroethenes via reductive dechlorination. These chloroethenes may be oxidised by aerobic methanotrophs or ethenotrophs co-metabolically and/or metabolically. We assessed the potential for such oxidation at 12 sites (49 groundwater samples) using hydrochemical and molecular biological tools. Both ethenotroph (etnC and etnE) and methanotroph (mmoX and pmoA) functional genes were identified in 90% of samples, while reductive dehalogenase functional genes (vcrA and bvcA) were identified in 82%. All functional genes were simultaneously detected in 78% of samples, in actively biostimulated sites in 88% of samples. Correlation analysis revealed that cis-1,2-DCE concentration was positively correlated with vcrA, etnC and etnE, while VC concentration was correlated with etnC, etnE, vcrA and bvcA. However, feature selection based on random forest classification indicated a significant relationship for the vcrA in relation to cis-1,2-DCE, and vcrA, bvcA and etnE for VC and no prove of relationship between cis-1,2-DCE or VC and the methanotroph functional genes. Analysis of hydrochemical parameters indicated that aerobic oxidation of chloroethenes by ethenotrophs may take place under a range of redox conditions of aquifers and coincide with high ethene and VC concentrations.
Collapse
|
16
|
Murray AM, Ottosen CB, Maillard J, Holliger C, Johansen A, Brabæk L, Kristensen IL, Zimmermann J, Hunkeler D, Broholm MM. Chlorinated ethene plume evolution after source thermal remediation: Determination of degradation rates and mechanisms. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 227:103551. [PMID: 31526529 DOI: 10.1016/j.jconhyd.2019.103551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The extent, mechanism(s), and rate of chlorinated ethene degradation in a large tetrachloroethene (PCE) plume were investigated in an extensive sampling campaign. Multiple lines of evidence for this degradation were explored, including compound-specific isotope analysis (CSIA), dual C-Cl isotope analysis, and quantitative real-time polymerase chain reaction (qPCR) analysis targeting the genera Dehalococcoides and Dehalogenimonas and the genes vcrA, bvcA, and cerA. A decade prior to this sampling campaign, the plume source was thermally remediated by steam injection. This released dissolved organic carbon (DOC) that stimulated microbial activity and created reduced conditions within the plume. Based on an inclusive analysis of minor and major sampling campaigns since the initial site characterization, it was estimated that reduced conditions peaked 4 years after the remediation event. At the time of this study, 11 years after the remediation event, the redox conditions in the aquifer are returning to their original state. However, the DOC released from the remediated source zone matches levels measured 3 years prior and plume conditions are still suitable for biotic reductive dechlorination. Dehalococcoides spp., Dehalogenimonas spp., and vcrA, bvcA, and cerA reductive dehalogenase genes were detected close to the source, and suggest that complete, biotic PCE degradation occurs here. Further downgradient, qPCR analysis and enriched δ13C values for cis-dichloroethene (cDCE) suggest that cDCE is biodegraded in a sulfate-reducing zone in the plume. In the most downgradient portion of the plume, lower levels of specific degraders supported by dual C-Cl analysis indicate that the biodegradation occurs in combination with abiotic degradation. Additionally, 16S rRNA gene amplicon sequencing shows that organizational taxonomic units known to contain organohalide-respiring bacteria are relatively abundant throughout the plume. Hydraulic conductivity testing was also conducted, and local degradation rates for PCE and cDCE were determined at various locations throughout the plume. PCE degradation rates from sampling campaigns after the thermal remediation event range from 0.11 to 0.35 yr-1. PCE and cDCE degradation rates from the second to the third sampling campaigns ranged from 0.08 to 0.10 yr-1 and 0.01 to 0.07 yr-1, respectively. This is consistent with cDCE as the dominant daughter product in the majority of the plume and cDCE degradation as the time-limiting step. The extensive temporal and spatial analysis allowed for tracking the evolution of the plume and the lasting impact of the source remediation and illustrates that the multiple lines of evidence approach is essential to elucidate the primary degradation mechanisms in a plume of such size and complexity.
Collapse
Affiliation(s)
- Alexandra Marie Murray
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Cecilie B Ottosen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, ENAC-IIE, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lærke Brabæk
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Inge Lise Kristensen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Jeremy Zimmermann
- Centre for Hydrogeology & Geothermics (CHYN), University of Neuchatel, Rue Emile Argand 11, CH 2000 Neuchatel, Switzerland
| | - Daniel Hunkeler
- Centre for Hydrogeology & Geothermics (CHYN), University of Neuchatel, Rue Emile Argand 11, CH 2000 Neuchatel, Switzerland
| | - Mette M Broholm
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
17
|
Lihl C, Renpenning J, Kümmel S, Gelman F, Schürner HKV, Daubmeier M, Heckel B, Melsbach A, Bernstein A, Shouakar-Stash O, Gehre M, Elsner M. Toward Improved Accuracy in Chlorine Isotope Analysis: Synthesis Routes for In-House Standards and Characterization via Complementary Mass Spectrometry Methods. Anal Chem 2019; 91:12290-12297. [DOI: 10.1021/acs.analchem.9b02463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina Lihl
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Julian Renpenning
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Faina Gelman
- Geological Survey of Israel, 32 Yeshayahu Leibowitz Street, 9692100 Jerusalem, Israel
| | - Heide K. V. Schürner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Martina Daubmeier
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Benjamin Heckel
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377 München, Germany
| | - Aileen Melsbach
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, Ben-Gurion University of the Negev, 84990 Sede Boqer, Israel
| | - Orfan Shouakar-Stash
- Department of Earth Sciences, University of Waterloo, 200 University Avenue, Waterloo, Ontario, Canada N2L 3G1
| | - Matthias Gehre
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research − UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistraße 17, 81377 München, Germany
| |
Collapse
|
18
|
Lihl C, Douglas LM, Franke S, Pérez-de-Mora A, Meyer AH, Daubmeier M, Edwards EA, Nijenhuis I, Sherwood Lollar B, Elsner M. Mechanistic Dichotomy in Bacterial Trichloroethene Dechlorination Revealed by Carbon and Chlorine Isotope Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4245-4254. [PMID: 30857389 DOI: 10.1021/acs.est.8b06643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tetrachloroethene (PCE) and trichloroethene (TCE) are significant groundwater contaminants. Microbial reductive dehalogenation at contaminated sites can produce nontoxic ethene but often stops at toxic cis-1,2-dichloroethene ( cis-DCE) or vinyl chloride (VC). The magnitude of carbon relative to chlorine isotope effects (as expressed by ΛC/Cl, the slope of δ13C versus δ37Cl regressions) was recently recognized to reveal different reduction mechanisms with vitamin B12 as a model reactant for reductive dehalogenase activity. Large ΛC/Cl values for cis-DCE reflected cob(I)alamin addition followed by protonation, whereas smaller ΛC/Cl values for PCE evidenced cob(I)alamin addition followed by Cl- elimination. This study addressed dehalogenation in actual microorganisms and observed identical large ΛC/Cl values for cis-DCE (ΛC/Cl = 10.0 to 17.8) that contrasted with identical smaller ΛC/Cl for TCE and PCE (ΛC/Cl = 2.3 to 3.8). For TCE, the trend of small ΛC/Cl could even be reversed when mixed cultures were precultivated on VC or DCEs and subsequently confronted with TCE (ΛC/Cl = 9.0 to 18.2). This observation provides explicit evidence that substrate adaptation must have selected for reductive dehalogenases with different mechanistic motifs. The patterns of ΛC/Cl are consistent with practically all studies published to date, while the difference in reaction mechanisms offers a potential answer to the long-standing question of why bioremediation frequently stalls at cis-DCE.
Collapse
Affiliation(s)
- Christina Lihl
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Lisa M Douglas
- Department of Earth Sciences , University of Toronto , Toronto , Ontario M5S 3B5 , Canada
| | - Steffi Franke
- Department for Isotope Biogeochemistry , Helmholtz-Centre for Environmental Research, UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Alfredo Pérez-de-Mora
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Armin H Meyer
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Martina Daubmeier
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Ivonne Nijenhuis
- Department for Isotope Biogeochemistry , Helmholtz-Centre for Environmental Research, UFZ , Permoserstrasse 15 , 04318 Leipzig , Germany
| | | | - Martin Elsner
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
- Chair of Analytical Chemistry and Water Chemistry , Technical University of Munich , Marchioninistrasse 17 , 81377 Munich , Germany
| |
Collapse
|
19
|
Heckel B, Phillips E, Edwards E, Sherwood Lollar B, Elsner M, Manefield MJ, Lee M. Reductive Dehalogenation of Trichloromethane by Two Different Dehalobacter restrictus Strains Reveal Opposing Dual Element Isotope Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2332-2343. [PMID: 30726673 DOI: 10.1021/acs.est.8b03717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Trichloromethane (TCM) is a frequently detected and persistent groundwater contaminant. Recent studies have reported that two closely related Dehalobacter strains (UNSWDHB and CF) transform TCM to dichloromethane, with inconsistent carbon isotope effects (ε13CUNSWDHB = -4.3 ± 0.45‰; ε13CCF = -27.5 ± 0.9‰). This study uses dual element compound specific isotope analysis (C; Cl) to explore the underlying differences. TCM transformation experiments using strain CF revealed pronounced normal carbon and chlorine isotope effects (ε13CCF = -27.9 ± 1.7‰; ε37ClCF = -4.2 ± 0.2‰). In contrast, small carbon and unprecedented inverse chlorine isotope effects were observed for strain UNSWDHB (ε13CUNSWDHB = -3.1 ± 0.5‰; ε37ClUNSWDHB = 2.5 ± 0.3‰) leading to opposing dual element isotope slopes (λCF = 6.64 ± 0.14 vs λUNSWDHB = -1.20 ± 0.18). Isotope effects of strain CF were identical to experiments with TCM and Vitamin B12 (ε13CVitamin B12 = -26.0 ± 0.9‰, ε37ClVitamin B12 = -4.0 ± 0.2‰, λVitamin B12 = 6.46 ± 0.20). Comparison to previously reported isotope effects suggests outer-sphere-single-electron transfer or SN2 as possible underlying mechanisms. Cell suspension and cell free extract experiments with strain UNSWDHB were both unable to unmask the intrinsic KIE of the reductive dehalogenase (TmrA) suggesting that enzyme binding and/or mass-transfer into the periplasm were rate-limiting. Nondirected intermolecular interactions of TCM with cellular material were ruled out as reason for the inverse isotope effect by gas/water and gas/hexadecane partitioning experiments indicating specific, yet uncharacterized interactions must be operating prior to catalysis.
Collapse
Affiliation(s)
- Benjamin Heckel
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstr. 1 , 85764 Neuherberg , Germany
- Chair of Analytical Chemistry and Water Chemistry , Technical University of Munich , Marchioninistrasse 17 , D-81377 Munich , Germany
| | - Elizabeth Phillips
- Department of Earth Sciences 22 Russell St , University of Toronto , Toronto Ontario M5S 3B1 , Canada
| | - Elizabeth Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Barbara Sherwood Lollar
- Department of Earth Sciences 22 Russell St , University of Toronto , Toronto Ontario M5S 3B1 , Canada
| | - Martin Elsner
- Institute of Groundwater Ecology , Helmholtz Zentrum München , Ingolstädter Landstr. 1 , 85764 Neuherberg , Germany
- Chair of Analytical Chemistry and Water Chemistry , Technical University of Munich , Marchioninistrasse 17 , D-81377 Munich , Germany
| | - Michael J Manefield
- School of Civil and Environmental Engineering, Water Research Centre (WRC) , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Matthew Lee
- School of Civil and Environmental Engineering, Water Research Centre (WRC) , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
20
|
Vogel M, Nijenhuis I, Lloyd J, Boothman C, Pöritz M, Mackenzie K. Combined chemical and microbiological degradation of tetrachloroethene during the application of Carbo-Iron at a contaminated field site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1027-1036. [PMID: 30045527 DOI: 10.1016/j.scitotenv.2018.01.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
After the injection of Carbo-Iron® into an aquifer contaminated with tetrachloroethene (PCE), combined chemical and microbiological contaminant degradation processes were found in a long-term study of the field site in Lower Saxony (Germany). The applied composite material Carbo-Iron, which consists of colloidal activated carbon and embedded nanoscale zero-valent iron (ZVI) structures, functioned as intended: accumulating the pollutants and promoting their reductive dechlorination. Furthermore, the particles decreased the redox potential of the groundwater due to their reaction with oxygen and to the ZVI-corrosion-induced formation of molecular hydrogen up to 190 days after the injection, the latter promoting sulphate-reducing conditions. The emergence of cis-dichloroethene (cis-DCE), which was only found in trace quantities before the injection of Carbo-Iron, together with the presence of organisms related to Sulfospirillum multivorans, Desulfitobacterium spp. and Dehalococcoides mccartyi, indicate that Carbo-Iron is also able to support microbial degradation of PCE. However, cis-DCE did not accumulate in the present case study, although it is often observed at sites with active microbial dechlorination. The results of compound-specific isotope analysis in combination with pyrosequencing data suggested the oxidative degradation of cis-DCE by an organism related to Polaromonas sp. strain JS666. Consequently, the formation of the carcinogenic degradation intermediate vinyl chloride was circumvented. Overall, the moderate and slow change of environmental conditions mediated by Carbo-Iron not only supported organohalide-respiring bacteria, but also created the basis for a subsequent microbial oxidation step.
Collapse
Affiliation(s)
- Maria Vogel
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, D-04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, D-04318 Leipzig, Germany
| | - Jonathan Lloyd
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Christopher Boothman
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Marlén Pöritz
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, D-04318 Leipzig, Germany
| | - Katrin Mackenzie
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, D-04318 Leipzig, Germany.
| |
Collapse
|
21
|
Marchesi M, Alberti L, Shouakar-Stash O, Pietrini I, de Ferra F, Carpani G, Aravena R, Franzetti A, Stella T. 37Cl-compound specific isotope analysis and assessment of functional genes for monitoring monochlorobenzene (MCB) biodegradation under aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:784-793. [PMID: 29161603 DOI: 10.1016/j.scitotenv.2017.11.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
A laboratory approach was adopted in this study to explore the potential of 37Cl-CSIA in combination with 13C-CSIA and Biological Molecular Tools (BMTs) to estimate the occurrence of monochloroenzene (MCB) aerobic biodegradation. A new analytical method for 37Cl-CSIA of MCB was developed in this study. This methodology using a GC-IRMS allowed to determine δ37Cl values within an internal error of ±0.3‰. Samples from a heavily MCB contaminated site were collected and MCB aerobic biodegradation microcosms with indigenous cultures in natural and enhanced conditions were set up. The microcosms data show a negligible fractionation for 13C associated to MCB mass decrease of >95% over the incubation time. Conversely, an enrichment factor of -0.6±0.1‰ was estimated for 37Cl, which is a reflection of a secondary isotope effect. Moreover, the dual isotope approach showed a pattern for aerobic degradation which differ from the theoretical trend for reductive dehalogenation. Quantitative Polymerase Chain Reaction (qPCR) results showed a significant increase in todC gene copy number with respect to its initial levels for both natural attenuation and biostimulated microcosms, suggesting its involvement in the MCB aerobic degradation, whereas phe gene copy number increased only in the biostimulated ones. Indeed, 37Cl fractionation in combination with the dual carbon‑chlorine isotope approach and the todC gene copy number represent valuable indicators for a qualitative assessment of MCB aerobic biodegradation in the field.
Collapse
Affiliation(s)
- Massimo Marchesi
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Luca Alberti
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada; Isotope Tracer Technologies Inc., Waterloo N2V 1Z5, Ontario, Canada
| | - Ilaria Pietrini
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesca de Ferra
- Research Center for Non-Conventional Energy, Istituto Eni Donegani Environmental Technologies, via Maritano 26, 20097 San Donato Milanese, Milan, Italy
| | - Giovanna Carpani
- Research Center for Non-Conventional Energy, Istituto Eni Donegani Environmental Technologies, via Maritano 26, 20097 San Donato Milanese, Milan, Italy
| | - Ramon Aravena
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada
| | - Andrea Franzetti
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Tatiana Stella
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza, 1, 20126 Milan, Italy
| |
Collapse
|
22
|
Heckel B, McNeill K, Elsner M. Chlorinated Ethene Reactivity with Vitamin B12 Is Governed by Cobalamin Chloroethylcarbanions as Crossroads of Competing Pathways. ACS Catal 2018. [DOI: 10.1021/acscatal.7b02945] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Benjamin Heckel
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany
| |
Collapse
|
23
|
Schaefer CE, Lippincott DR, Klammler H, Hatfield K. Evidence of rock matrix back-diffusion and abiotic dechlorination using a field testing approach. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 209:33-41. [PMID: 29395375 DOI: 10.1016/j.jconhyd.2018.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
An in situ field demonstration was performed in fractured rock impacted with trichloroethene (TCE) and cis-1,2-dichloroethene (DCE) to assess the impacts of contaminant rebound after removing dissolved contaminants within hydraulically conductive fractures. Using a bedrock well pair spaced 2.4m apart, TCE and DCE were first flushed with water to create a decrease in dissolved contaminant concentrations. While hydraulically isolating the well pair from upgradient contaminant impacts, contaminant rebound then was observed between the well pair over 151days. The magnitude, but not trend, of TCE rebound was reasonably described by a matrix back-diffusion screening model that employed an effective diffusion coefficient and first-order abiotic TCE dechlorination rate constant that was based on bench-scale testing. Furthermore, a shift in the TCE:DCE ratio and carbon isotopic enrichment was observed during the rebound, suggesting that both biotic and abiotic dechlorination were occurring within the rock matrix. The isotopic data and back-diffusion model together served as a convincing argument that matrix back-diffusion was the mechanism responsible for the observed contaminant rebound. Results of this field demonstration highlight the importance and applicability of rock matrix parameters determined at the bench-scale, and suggest that carbon isotopic enrichment can be used as a line of evidence for abiotic dechlorination within rock matrices.
Collapse
Affiliation(s)
- Charles E Schaefer
- CDM Smith, 110 Fieldcrest Avenue, #8, 6(th) Floor, Edison, NJ 08837, United States.
| | | | - Harald Klammler
- Environmental School of Sustainable Infrastructure and Environment (ESSIE), University of Florida, 365 Weil Hall, Gainesville, FL 32611, United States
| | - Kirk Hatfield
- Environmental School of Sustainable Infrastructure and Environment (ESSIE), University of Florida, 365 Weil Hall, Gainesville, FL 32611, United States
| |
Collapse
|
24
|
Woods A, Kuntze K, Gelman F, Halicz L, Nijenhuis I. Variable dual carbon-bromine stable isotope fractionation during enzyme-catalyzed reductive dehalogenation of brominated ethenes. CHEMOSPHERE 2018; 190:211-217. [PMID: 28987410 DOI: 10.1016/j.chemosphere.2017.09.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
The potential of compound-specific stable isotope analysis (CSIA) to characterize biotransformation of brominated organic compounds (BOCs) was assessed and compared to chlorinated analogues. Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S catalyzed the dehalogenation of tribromoethene (TBE) to either vinyl bromide (VB) or ethene, respectively. Significantly lower isotope fractionation was observed for TBE dehalogenation by S. multivorans (εC = -1.3 ± 0.2‰) compared to D. hafniense (εC = -7.7 ± 1.5‰). However, higher fractionation was observed for dibromoethene (DBE) dehalogenation by S. multivorans (εC = -16.8 ± 1.8‰ and -21.2 ± 1.6‰ for trans- and cis-1,2- (DBE) respectively), compared to D. hafniense PCE-S (εC = -9.5 ± 1.2‰ and -14.5 ± 0.7‰ for trans-1,2-DBE and cis-1,2-DBE, respectively). Significant, but similar, bromine fractionation was observed for for S. multivorans (εBr = -0.53 ± 0.15‰, -1.03 ± 0.26‰, and -1.18 ± 0.13‰ for trans-1,2-DBE, cis-1,2-DBE and TBE, respectively) and D. hafniense PCE-S (εBr = -0.97 ± 0.28‰, -1.16 ± 0.36‰, and -1.34 ± 0.32‰ for cis-1,2-DBE, TBE and trans-1,2-DBE, respectively). Variable CBr dual-element slopes were estimated at Λ (εC/εBr) = 1.03 ± 0.2, 17.9 ± 5.8, and 29.9 ± 11.0 for S. multivorans debrominating TBE, cis-1,2-DBE and trans-1,2-DBE, respectively, and at 7.14 ± 1.6, 8.27 ± 3.7, and 8.92 ± 2.4 for D. hafniense PCE-S debrominating trans-1,2-DBE, TBE and cis-1,2-DBE, respectively. A high variability in isotope fractionation, which was substrate property related, was observed for S. multivorans but not D. hafniense, similar as observed for chlorinated ethenes, and may be due to rate-limiting steps preceding the bond-cleavage or differences in the reaction mechanism. Overall, significant isotope fractionation was observed and, therefore, CSIA can be applied to monitor the fate of brominated ethenes in the environment. Isotope effects differences, however, are not systematically comparable to chlorinated ethenes.
Collapse
Affiliation(s)
- Angela Woods
- Department for Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, D-04318, Leipzig, Germany
| | - Kevin Kuntze
- Department for Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, D-04318, Leipzig, Germany
| | - Faina Gelman
- Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem, 95501, Israel
| | - Ludwik Halicz
- Geological Survey of Israel, 30 Malkhe Israel St., Jerusalem, 95501, Israel; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Ivonne Nijenhuis
- Department for Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, D-04318, Leipzig, Germany.
| |
Collapse
|
25
|
Mundle SOC, Spain JC, Lacrampe-Couloume G, Nishino SF, Sherwood Lollar B. Branched pathways in the degradation of cDCE by cytochrome P450 in Polaromonas sp. JS666. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:99-105. [PMID: 28662431 DOI: 10.1016/j.scitotenv.2017.06.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Compound specific isotope analysis (CSIA) is widely used to monitor contaminant remediation in groundwater. CSIA-based approaches that use enrichment (ε) values to assess degradative processes rely on the assumption that the contaminant being investigated will have an ε value that is constant and specific to a catalytic pathway of a microorganism. Distinct ε values have been reported for aerobic degradation of cis-dichloroethene (cDCE), which has led to a number of proposed degradation mechanisms; however, cytochrome P450 catalyzed oxidation is the only biochemical mechanism that has been established in Polaromonas sp. JS666. Using CSIA we measured the ε values for microbial oxidation of cDCE (-18.8‰±1.5‰) and 1,2-dichloroethane (1,2-DCA) (-16.6‰±0.9‰) in wild-type JS666 and the oxidation of cDCE (-13.5‰±2.3‰) from a recombinant E. coli strain expressing the cytochrome P450 enzyme from JS666. This study supports the hypothesis that cytochrome P450 catalyzes the initial step in the degradation pathway of both cDCE and 1,2-DCA and provides evidence that a single enzyme can catalyze multiple pathways with different products and distinct ε values for a single substrate. Therefore, in cases where the products of the reaction cannot, or have not been characterized, caution must be used when employing ε values to interpret mechanisms, pathways, and their applications to environmental contaminant remediation.
Collapse
Affiliation(s)
- Scott O C Mundle
- Department of Earth Sciences, University of Toronto, 22 Russell St., Toronto, Ontario M5S 3B5, Canada; Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, ON N9B 3P4, Canada.
| | - Jim C Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, United States; Center for Environmental Diagnostics and Bioremediation, University of West Florida, Pensacola, FL 32514-5750, United States
| | - Georges Lacrampe-Couloume
- Department of Earth Sciences, University of Toronto, 22 Russell St., Toronto, Ontario M5S 3B5, Canada
| | - Shirley F Nishino
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, United States
| | - Barbara Sherwood Lollar
- Department of Earth Sciences, University of Toronto, 22 Russell St., Toronto, Ontario M5S 3B5, Canada
| |
Collapse
|
26
|
Doğan-Subaşı E, Elsner M, Qiu S, Cretnik S, Atashgahi S, Shouakar-Stash O, Boon N, Dejonghe W, Bastiaens L. Contrasting dual (C, Cl) isotope fractionation offers potential to distinguish reductive chloroethene transformation from breakdown by permanganate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:169-177. [PMID: 28431360 DOI: 10.1016/j.scitotenv.2017.03.292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors εC (‰), but starkly contrasting dual element isotope slopes Δδ13C/Δδ37Cl for permanganate oxidation (εC=-26‰±6‰, Δδ13C/Δδ37Cl≈-125±47) compared to reductive dechlorination (εC=-18‰±4‰, Δδ13C/Δδ37Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (εCl=+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (εCl=-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale.
Collapse
Affiliation(s)
- Eylem Doğan-Subaşı
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium; Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Shiran Qiu
- Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Stefan Cretnik
- Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Siavash Atashgahi
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - Orfan Shouakar-Stash
- Department of Earth Sciences, University of Waterloo, 200 University Avenue W., Waterloo, Ont. N2L 3G1, Canada
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Winnie Dejonghe
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.
| |
Collapse
|
27
|
Palau J, Shouakar-Stash O, Hatijah Mortan S, Yu R, Rosell M, Marco-Urrea E, Freedman DL, Aravena R, Soler A, Hunkeler D. Hydrogen Isotope Fractionation during the Biodegradation of 1,2-Dichloroethane: Potential for Pathway Identification Using a Multi-element (C, Cl, and H) Isotope Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10526-10535. [PMID: 28810730 DOI: 10.1021/acs.est.7b02906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Even though multi-element isotope fractionation patterns provide crucial information with which to identify contaminant degradation pathways in the field, those involving hydrogen are still lacking for many halogenated groundwater contaminants and degradation pathways. This study investigates for the first time hydrogen isotope fractionation during both aerobic and anaerobic biodegradation of 1,2-dichloroethane (1,2-DCA) using five microbial cultures. Transformation-associated isotope fractionation values (εbulkH) were -115 ± 18‰ (aerobic C-H bond oxidation), -34 ± 4‰ and -38 ± 4‰ (aerobic C-Cl bond cleavage via hydrolytic dehalogenation), and -57 ± 3‰ and -77 ± 9‰ (anaerobic C-Cl bond cleavage via reductive dihaloelimination). The dual-element C-H isotope approach (ΛC-H = Δδ2H/Δδ13C ≈ εbulkH/εbulkC, where Δδ2H and Δδ13C are changes in isotope ratios during degradation) resulted in clearly different ΛC-H values: 28 ± 4 (oxidation), 0.7 ± 0.1 and 0.9 ± 0.1 (hydrolytic dehalogenation), and 1.76 ± 0.05 and 3.5 ± 0.1 (dihaloelimination). This result highlights the potential of this approach to identify 1,2-DCA degradation pathways in the field. In addition, distinct trends were also observed in a multi- (i.e., Δδ2H versus Δδ37Cl versus Δδ13C) isotope plot, which opens further possibilities for pathway identification in future field studies. This is crucial information to understand the mechanisms controlling natural attenuation of 1,2-DCA and to design appropriate strategies to enhance biodegradation.
Collapse
Affiliation(s)
- Jordi Palau
- Centre for Hydrogeology and Geothermics, University of Neuchâtel , 2000 Neuchâtel, Switzerland
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona , Martí i Franquès s/n, 08028 Barcelona, Spain
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, and Hydrogeology Group (UPC-CSIC) , Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
- Isotope Tracer Technologies Inc. , Waterloo, Ontario N2 V 1Z5, Canada
| | - Siti Hatijah Mortan
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona , Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - Rong Yu
- Department of Environmental Engineering and Earth Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Monica Rosell
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona , Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona , Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Ramon Aravena
- Department of Earth and Environmental Sciences, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Albert Soler
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona , Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics, University of Neuchâtel , 2000 Neuchâtel, Switzerland
| |
Collapse
|
28
|
Heckel B, Cretnik S, Kliegman S, Shouakar-Stash O, McNeill K, Elsner M. Reductive Outer-Sphere Single Electron Transfer Is an Exception Rather than the Rule in Natural and Engineered Chlorinated Ethene Dehalogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9663-9673. [PMID: 28727446 DOI: 10.1021/acs.est.7b01447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorinated ethenes (CEs) such as perchloroethylene, trichloroethylene and dichloroethylene are notorious groundwater contaminants. Although reductive dehalogenation is key to their environmental and engineered degradation, underlying reaction mechanisms remain elusive. Outer-sphere reductive single electron transfer (OS-SET) has been proposed for such different processes as Vitamin B12-dependent biodegradation and zerovalent metal-mediated dehalogenation. Compound-specific isotope effect (13C/12C, 37Cl/35Cl) analysis offers a new opportunity to test these hypotheses. Defined OS-SET model reactants (CO2 radical anions, S2--doped graphene oxide in water) caused strong carbon (εC = -7.9‰ to -11.9‰), but negligible chlorine isotope effects (εCl = -0.12‰ to 0.04‰) in CEs. Greater chlorine isotope effects were observed in CHCl3 (εC = -7.7‰, εCl = -2.6‰), and in CEs when the exergonicity of C-Cl bond cleavage was reduced in an organic solvent (reaction with arene radical anions in glyme). Together, this points to dissociative OS-SET (SET to a σ* orbital concerted with C-Cl breakage) in alkanes compared to stepwise OS-SET (SET to a π* orbital followed by C-Cl cleavage) in ethenes. The nonexistent chlorine isotope effects of chlorinated ethenes in all aqueous OS-SET experiments contrast strongly with pronounced Cl isotope fractionation in all natural and engineered reductive dehalogenations reported to date suggesting that OS-SET is an exception rather than the rule in environmental transformations of chlorinated ethenes.
Collapse
Affiliation(s)
- Benjamin Heckel
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stefan Cretnik
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sarah Kliegman
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges , Claremont, California 91711, United States
| | - Orfan Shouakar-Stash
- Department of Earth Sciences, University of Waterloo , Waterloo, Ontario, Canada N2L 3G1
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich , CH-8092 Zurich, Switzerland
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich , Marchioninistrasse 17, D-81377 Munich, Germany
| |
Collapse
|
29
|
Van Breukelen BM, Thouement HAA, Stack PE, Vanderford M, Philp P, Kuder T. Modeling 3D-CSIA data: Carbon, chlorine, and hydrogen isotope fractionation during reductive dechlorination of TCE to ethene. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 204:79-89. [PMID: 28764859 DOI: 10.1016/j.jconhyd.2017.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Reactive transport modeling of multi-element, compound-specific isotope analysis (CSIA) data has great potential to quantify sequential microbial reductive dechlorination (SRD) and alternative pathways such as oxidation, in support of remediation of chlorinated solvents in groundwater. As a key step towards this goal, a model was developed that simulates simultaneous carbon, chlorine, and hydrogen isotope fractionation during SRD of trichloroethene, via cis-1,2-dichloroethene (and trans-DCE as minor pathway), and vinyl chloride to ethene, following Monod kinetics. A simple correction term for individual isotope/isotopologue rates avoided multi-element isotopologue modeling. The model was successfully validated with data from a mixed culture Dehalococcoides microcosm. Simulation of Cl-CSIA required incorporation of secondary kinetic isotope effects (SKIEs). Assuming a limited degree of intramolecular heterogeneity of δ37Cl in TCE decreased the magnitudes of SKIEs required at the non-reacting Cl positions, without compromising the goodness of model fit, whereas a good fit of a model involving intramolecular CCl bond competition required an unlikely degree of intramolecular heterogeneity. Simulation of H-CSIA required SKIEs in H atoms originally present in the reacting compounds, especially for TCE, together with imprints of strongly depleted δ2H during protonation in the products. Scenario modeling illustrates the potential of H-CSIA for source apportionment.
Collapse
Affiliation(s)
- Boris M Van Breukelen
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.
| | - Héloïse A A Thouement
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Philip E Stack
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Mindy Vanderford
- HydroGeoLogic, Inc., 4407 Jane St., Bellaire, TX 77401, United States
| | - Paul Philp
- School of Geology and Geophysics, University of Oklahoma, 100 E. Boyd Street, SEC 710, Norman, OK 73019, United States
| | - Tomasz Kuder
- School of Geology and Geophysics, University of Oklahoma, 100 E. Boyd Street, SEC 710, Norman, OK 73019, United States
| |
Collapse
|
30
|
Torrentó C, Palau J, Rodríguez-Fernández D, Heckel B, Meyer A, Domènech C, Rosell M, Soler A, Elsner M, Hunkeler D. Carbon and Chlorine Isotope Fractionation Patterns Associated with Different Engineered Chloroform Transformation Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6174-6184. [PMID: 28482655 DOI: 10.1021/acs.est.7b00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To use compound-specific isotope analysis for confidently assessing organic contaminant attenuation in the environment, isotope fractionation patterns associated with different transformation mechanisms must first be explored in laboratory experiments. To deliver this information for the common groundwater contaminant chloroform (CF), this study investigated for the first time both carbon and chlorine isotope fractionation for three different engineered reactions: oxidative C-H bond cleavage using heat-activated persulfate, transformation under alkaline conditions (pH ∼ 12) and reductive C-Cl bond cleavage by cast zerovalent iron, Fe(0). Carbon and chlorine isotope fractionation values were -8 ± 1‰ and -0.44 ± 0.06‰ for oxidation, -57 ± 5‰ and -4.4 ± 0.4‰ for alkaline hydrolysis (pH 11.84 ± 0.03), and -33 ± 11‰ and -3 ± 1‰ for dechlorination, respectively. Carbon and chlorine apparent kinetic isotope effects (AKIEs) were in general agreement with expected mechanisms (C-H bond cleavage in oxidation by persulfate, C-Cl bond cleavage in Fe(0)-mediated reductive dechlorination and E1CB elimination mechanism during alkaline hydrolysis) where a secondary AKIECl (1.00045 ± 0.00004) was observed for oxidation. The different dual carbon-chlorine (Δδ13C vs Δδ37Cl) isotope patterns for oxidation by thermally activated persulfate and alkaline hydrolysis (17 ± 2 and 13.0 ± 0.8, respectively) vs reductive dechlorination by Fe(0) (8 ± 2) establish a base to identify and quantify these CF degradation mechanisms in the field.
Collapse
Affiliation(s)
- Clara Torrentó
- Centre for Hydrogeology and Geothermics, Université de Neuchâtel , 2000 Neuchâtel, Switzerland
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí Franques s/n, Universitat de Barcelona (UB) , 08028 Barcelona, Spain
| | - Jordi Palau
- Centre for Hydrogeology and Geothermics, Université de Neuchâtel , 2000 Neuchâtel, Switzerland
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí Franques s/n, Universitat de Barcelona (UB) , 08028 Barcelona, Spain
| | - Diana Rodríguez-Fernández
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí Franques s/n, Universitat de Barcelona (UB) , 08028 Barcelona, Spain
| | - Benjamin Heckel
- Institute of Groundwater Ecology, Helmholtz Zentrum München , 85764 Neuherberg, Germany
| | - Armin Meyer
- Institute of Groundwater Ecology, Helmholtz Zentrum München , 85764 Neuherberg, Germany
| | - Cristina Domènech
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí Franques s/n, Universitat de Barcelona (UB) , 08028 Barcelona, Spain
| | - Mònica Rosell
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí Franques s/n, Universitat de Barcelona (UB) , 08028 Barcelona, Spain
| | - Albert Soler
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Martí Franques s/n, Universitat de Barcelona (UB) , 08028 Barcelona, Spain
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München , 85764 Neuherberg, Germany
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich , Marchioninistrasse 17, D-81377 Munich, Germany
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics, Université de Neuchâtel , 2000 Neuchâtel, Switzerland
| |
Collapse
|
31
|
Dolinová I, Štrojsová M, Černík M, Němeček J, Macháčková J, Ševců A. Microbial degradation of chloroethenes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13262-13283. [PMID: 28378313 DOI: 10.1007/s11356-017-8867-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/17/2017] [Indexed: 05/28/2023]
Abstract
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Collapse
Affiliation(s)
- Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Martina Štrojsová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jan Němeček
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jiřina Macháčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| |
Collapse
|
32
|
|
33
|
Ebert KA, Laskov C, Elsner M, Haderlein SB. Calibration bias of experimentally determined chlorine isotope enrichment factors: the need for a two-point calibration in compound-specific chlorine isotope analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:68-74. [PMID: 27689937 DOI: 10.1002/rcm.7752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE The recent development of compound-specific online chlorine isotope analysis (37 Cl-CSIA) methods has fostered dual chlorine-carbon isotope studies to gain better insights into sources and environmental transformation reactions of chlorinated ethenes. One-point and two-point calibration schemes are currently used to convert raw data to the international δ37 ClSMOC scale, but a critical evaluation of best practices to arrive at reliable δ37 ClSMOC signatures and enrichment factors was missing and is presented here. METHODS Aqueous solutions of neat perchloroethylene and trichloroethylene (TCE) and aqueous samples from a TCE biodegradation experiment with pure cultures of Desulfitobacterium hafniense Y51 were analysed for their chlorine isotope ratios using GC/qMS and GC/IRMS. The δ37 ClSMOC values were obtained using one-point and two-point calibration schemes. Chlorine isotope enrichment factors, εCl , were calculated using both approaches and the corresponding bias of δ37 ClSMOC values introduced by the different types of calibration was determined. RESULTS Different calibration methods resulted in significant differences (up to 30%) in both δ37 Cl signatures and εCl values. CONCLUSIONS Our results demonstrate that a two-point calibration together with comprehensive information on reference materials is indispensable and should become standard practice for reliable 37 Cl-CSIA of organic compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Karin A Ebert
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Christine Laskov
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Stefan B Haderlein
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074, Tübingen, Germany
| |
Collapse
|
34
|
Clark JA, Stotler RL, Frape SK, Illman WA. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer. GROUND WATER 2017; 55:88-99. [PMID: 27377471 DOI: 10.1111/gwat.12440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵCl /ϵC ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume.
Collapse
Affiliation(s)
- Justin A Clark
- Department of Earth & Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | | | - Shaun K Frape
- Department of Earth & Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Walter A Illman
- Department of Earth & Environmental Sciences, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
35
|
Höhener P. Simulating stable carbon and chlorine isotope ratios in dissolved chlorinated groundwater pollutants with BIOCHLOR-ISO. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 195:52-61. [PMID: 27894785 DOI: 10.1016/j.jconhyd.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/07/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
BIOCHLOR is a well-known simple tool for evaluating the transport of dissolved chlorinated solvents in groundwater, ideal for rapid screening and teaching. This work extends the BIOCHLOR model for the calculation of stable isotope ratios of carbon and chlorine isotopes in chloroethenes. An exact solution for the three-dimensional reactive transport of a chain of degrading compounds including sorption is provided in a spreadsheet and applied for modeling the transport of individual isotopes 12C, 13C, 35Cl, 37Cl from a constant source. The model can consider secondary isotope effects that can occur in the breaking of CCl bonds. The model is correctly reproducing results for δ13C and δ37Cl modeled by a previously published 1-D numerical model without secondary isotope effects, and is also reproducing results from a microcosm experiment with secondary chlorine isotope effects. Two applications of the model using field data from literature are further given and discussed. The new BIOCHLOR-ISO model is distributed as a spreadsheet (MS EXCEL) along with this publication.
Collapse
Affiliation(s)
- Patrick Höhener
- Aix Marseille Univ, CNRS UMR 7376, Laboratoire Chimie Environnement, 3 place Victor Hugo, F-13331 Marseille, France.
| |
Collapse
|
36
|
Nijenhuis I, Richnow HH. Stable isotope fractionation concepts for characterizing biotransformation of organohalides. Curr Opin Biotechnol 2016; 41:108-113. [DOI: 10.1016/j.copbio.2016.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022]
|
37
|
Badin A, Broholm MM, Jacobsen CS, Palau J, Dennis P, Hunkeler D. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 192:1-19. [PMID: 27318432 DOI: 10.1016/j.jconhyd.2016.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.
Collapse
Affiliation(s)
- Alice Badin
- University of Neuchâtel, Centre for Hydrogeology & Geothermics (CHYN), Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Mette M Broholm
- Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej, DTU B113, DK 2800 Kgs. Lyngby, Denmark
| | - Carsten S Jacobsen
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Ø. Voldgade 10, 1350 København K, Denmark
| | - Jordi Palau
- University of Neuchâtel, Centre for Hydrogeology & Geothermics (CHYN), Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| | - Philip Dennis
- SiREM, 130 Research Lane, Guelph, Ontario, N1G5G3, Canada
| | - Daniel Hunkeler
- University of Neuchâtel, Centre for Hydrogeology & Geothermics (CHYN), Rue Emile Argand 11, CH 2000 Neuchâtel, Switzerland
| |
Collapse
|
38
|
Xu BS, Lollar BS, Passeport E, Sleep BE. Diffusion related isotopic fractionation effects with one-dimensional advective-dispersive transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 550:200-208. [PMID: 26815297 DOI: 10.1016/j.scitotenv.2016.01.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be observable for common groundwater contaminants. Importantly, under most field conditions, Dmech/Deff≥10 is usually satisfied in the longitudinal direction, suggesting that DRIF is not likely to be observable in most groundwater systems in which contaminant transport is predominantly one-dimensional. Given the importance in the MDL it is recommended that MDL should always be explicitly reported in both modeling and field studies.
Collapse
Affiliation(s)
- Bruce S Xu
- Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada
| | - Barbara Sherwood Lollar
- Earth Sciences Department, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada
| | - Elodie Passeport
- Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada; Chemical Engineering and Applied Chemistry Department, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | - Brent E Sleep
- Civil Engineering Department, University of Toronto, 35 St George Street, Toronto, ON M5S 1A4, Canada.
| |
Collapse
|
39
|
Palau J, Jamin P, Badin A, Vanhecke N, Haerens B, Brouyère S, Hunkeler D. Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater. WATER RESEARCH 2016; 92:235-243. [PMID: 26874254 DOI: 10.1016/j.watres.2016.01.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
Compound-specific isotope analysis (CSIA) is a powerful tool to track contaminant fate in groundwater. However, the application of CSIA to chlorinated ethanes has received little attention so far. These compounds are toxic and prevalent groundwater contaminants of environmental concern. The high susceptibility of chlorinated ethanes like 1,1,1-trichloroethane (1,1,1-TCA) to be transformed via different competing pathways (biotic and abiotic) complicates the assessment of their fate in the subsurface. In this study, the use of a dual C-Cl isotope approach to identify the active degradation pathways of 1,1,1-TCA is evaluated for the first time in an aerobic aquifer impacted by 1,1,1-TCA and trichloroethylene (TCE) with concentrations of up to 20 mg/L and 3.4 mg/L, respectively. The reaction-specific dual carbon-chlorine (C-Cl) isotope trends determined in a recent laboratory study illustrated the potential of a dual isotope approach to identify contaminant degradation pathways of 1,1,1-TCA. Compared to the dual isotope slopes (Δδ(13)C/Δδ(37)Cl) previously determined in the laboratory for dehydrohalogenation/hydrolysis (DH/HY, 0.33 ± 0.04) and oxidation by persulfate (∞), the slope determined from field samples (0.6 ± 0.2, r(2) = 0.75) is closer to the one observed for DH/HY, pointing to DH/HY as the predominant degradation pathway of 1,1,1-TCA in the aquifer. The observed deviation could be explained by a minor contribution of additional degradation processes. This result, along with the little degradation of TCE determined from isotope measurements, confirmed that 1,1,1-TCA is the main source of the 1,1-dichlorethylene (1,1-DCE) detected in the aquifer with concentrations of up to 10 mg/L. This study demonstrates that a dual C-Cl isotope approach can strongly improve the qualitative and quantitative assessment of 1,1,1-TCA degradation processes in the field.
Collapse
Affiliation(s)
- Jordi Palau
- University of Neuchâtel, Centre for Hydrogeology and Geothermics (CHYN), Building UniMail, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland; Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Pierre Jamin
- University of Liège, Fac. Applied Sciences, Dpt ArGEnCo, Geo³-Hydrogeology and Environmental Geology, Building B52, 4000 Sart-Tilman, Belgium
| | - Alice Badin
- University of Neuchâtel, Centre for Hydrogeology and Geothermics (CHYN), Building UniMail, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | | | - Bruno Haerens
- AECOM, Maria-Theresiastraat 34A, 3000 Leuven, Belgium
| | - Serge Brouyère
- University of Liège, Fac. Applied Sciences, Dpt ArGEnCo, Geo³-Hydrogeology and Environmental Geology, Building B52, 4000 Sart-Tilman, Belgium
| | - Daniel Hunkeler
- University of Neuchâtel, Centre for Hydrogeology and Geothermics (CHYN), Building UniMail, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
40
|
Bioremediation of Hydrocarbons and Chlorinated Solvents in Groundwater: Characterisation, Design and Performance Assessment. SPRINGER PROTOCOLS HANDBOOKS 2016. [DOI: 10.1007/8623_2016_207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Audí-Miró C, Cretnik S, Torrentó C, Rosell M, Shouakar-Stash O, Otero N, Palau J, Elsner M, Soler A. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:747-754. [PMID: 26248540 DOI: 10.1016/j.jhazmat.2015.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/18/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using (13)C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element (13)C-(37)Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using (13)C-(37)Cl-(2)H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the (13)C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element (13)C-(37)Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. (2)H combined with (13)C and (37)Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ(2)H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.
Collapse
Affiliation(s)
- Carme Audí-Miró
- Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona, Spain.
| | - Stefan Cretnik
- Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Clara Torrentó
- Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona, Spain
| | - Mònica Rosell
- Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona, Spain
| | - Orfan Shouakar-Stash
- Department of Earth & Environmental Sciences, 200 University Ave. W, N2L 3G1 Waterloo, Ontario, Canada
| | - Neus Otero
- Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona, Spain
| | - Jordi Palau
- Université de Neuchâtel, CHYN - Centre d'Hydrogéologie, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Albert Soler
- Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona, Spain
| |
Collapse
|
42
|
Buchner D, Behrens S, Laskov C, Haderlein SB. Resiliency of Stable Isotope Fractionation (δ(13)C and δ(37)Cl) of Trichloroethene to Bacterial Growth Physiology and Expression of Key Enzymes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13230-13237. [PMID: 26505909 DOI: 10.1021/acs.est.5b02918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantification of in situ (bio)degradation using compound-specific isotope analysis requires a known and constant isotope enrichment factor (ε). Because reported isotope enrichment factors for microbial dehalogenation of chlorinated ethenes vary considerably we studied the potential effects of metabolic adaptation to TCE respiration on isotope fractionation (δ(13)C and δ(37)Cl) using a model organism (Desulfitobacterium hafniesne Y51), which only has one reductive dehalogenase (PceA). Cells grown on TCE for the first time showed exponential growth until 10(9) cells/mL. During exponential growth, the cell-normalized amount of PceA enzyme increased steadily in the presence of TCE (up to 21 pceA transcripts per cell) but not with alternative substrates (<1 pceA transcript per cell). Cultures initially transferred or subcultivated on TCE showed very similar isotope fractionation, both for carbon (εcarbon: -8.6‰ ± 0.3‰ or -8.8‰ ± 0.2‰) and chlorine (εchlorine: -2.7‰ ± 0.3‰) with little variation (0.7‰) for the different experimental conditions. Thus, TCE isotope fractionation by D. hafniense strain Y51 was affected by neither growth phase, pceA transcription, or translation, nor by PceA content per cell, suggesting that transport limitations did not affect isotope fractionation. Previously reported variable ε values for other organohalide-respiring bacteria might thus be attributed to different expression levels of their multiple reductive dehalogenases.
Collapse
Affiliation(s)
- Daniel Buchner
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , 72074 Tübingen, Germany
| | - Sebastian Behrens
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , 72074 Tübingen, Germany
| | - Christine Laskov
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , 72074 Tübingen, Germany
| | - Stefan B Haderlein
- Department of Geosciences, Center for Applied Geosciences, University of Tübingen , 72074 Tübingen, Germany
| |
Collapse
|
43
|
Höhener P, Elsner M, Eisenmann H, Atteia O. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes. JOURNAL OF CONTAMINANT HYDROLOGY 2015; 182:173-82. [PMID: 26407232 DOI: 10.1016/j.jconhyd.2015.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 05/22/2023]
Abstract
Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.
Collapse
Affiliation(s)
- Patrick Höhener
- Aix-Marseille Université-CNRS, Laboratoire Chimie Environnement FRE 3416, Marseille, France.
| | - Martin Elsner
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
44
|
Xu Y, He Y, Zhang Q, Xu J, Crowley D. Coupling between Pentachlorophenol Dechlorination and Soil Redox As Revealed by Stable Carbon Isotope, Microbial Community Structure, and Biogeochemical Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5425-5433. [PMID: 25853431 DOI: 10.1021/es505040c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carbon isotopic analysis and molecular-based methods were used in conjunction with geochemical data sets to assess the dechlorination of pentachlorophenol (PCP) when coupled to biogeochemical processes in a mangrove soil having no prior history of anthropogenic contamination. The PCP underwent 96% dechlorination in soil amended with acetate, compared to 21% dehalogenation in control soil. Carbon isotope analysis of residual PCP demonstrated an obvious enrichment of 13C (εC, -3.01±0.1%). Molecular and statistical analyses demonstrated that PCP dechlorination and Fe(III) reduction were synergistically combined electron-accepting processes. Microbial community analysis further suggested that enhanced dechlorination of PCP during Fe(III) reduction was mediated by members of the multifunctional family of Geobacteraceae. In contrast, PCP significantly suppressed the growth of SO4(2-) reducers, which, in turn, facilitated the production of CH4 by diversion of electrons from SO4(2-) reduction to methanogenesis. The integrated data regarding stoichiometric alterations in this study gives direct evidence showing PCP, Fe(III), and SO4(2-) reduction, and CH4 production are coupled microbial processes during changes in soil redox.
Collapse
Affiliation(s)
- Yan Xu
- †Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- †Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qian Zhang
- †Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jianming Xu
- †Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - David Crowley
- ‡Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
45
|
Kozell A, Yecheskel Y, Balaban N, Dror I, Halicz L, Ronen Z, Gelman F. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4433-4440. [PMID: 25723316 DOI: 10.1021/es504887d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.
Collapse
Affiliation(s)
- Anna Kozell
- †Geological Survey of Israel, 30 Malhei Israel Street, Jerusalem 95501, Israel
- ‡Department of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Yinon Yecheskel
- §Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Balaban
- ∥Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Sede Boqer 84990, Israel
| | - Ishai Dror
- §Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ludwik Halicz
- †Geological Survey of Israel, 30 Malhei Israel Street, Jerusalem 95501, Israel
- ⊥Biological and Chemical Research Centre, University of Warsaw, 02-089, Poland
| | - Zeev Ronen
- ∥Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Sede Boqer 84990, Israel
| | - Faina Gelman
- †Geological Survey of Israel, 30 Malhei Israel Street, Jerusalem 95501, Israel
| |
Collapse
|
46
|
Ratti M, Canonica S, McNeill K, Erickson PR, Bolotin J, Hofstetter TB. Isotope fractionation associated with the direct photolysis of 4-chloroaniline. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4263-4273. [PMID: 25719866 DOI: 10.1021/es505784a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Compound-specific isotope analysis is a useful approach to track transformations of many organic soil and water pollutants. Applications of CSIA to characterize photochemical processes, however, have hardly been explored. In this work, we systematically studied C and N isotope fractionation associated with the direct photolysis of 4-Cl-aniline used as a model compound for organic micropollutants that are known to degrade via photochemical processes. Laboratory experiments were carried out at an irradiation wavelength of 254 nm over the pH range 2.0 to 9.0 as well as in the presence of Cs(+) as a quencher of excited singlet 4-Cl-aniline at pH 7.0 and 9.0. We observed considerable variation of C and N isotope enrichment factors, ϵC and ϵN, between -1.2 ± 0.2‰ to -2.7 ± 0.2‰ for C and -0.6 ± 0.2‰ to -9.1 ± 1.6‰ for N, respectively, which could not be explained by the speciation of 4-Cl-aniline alone. In the presence of 1 M Cs(+), we found a marked increase of apparent (13)C-kinetic isotope effects ((13)C-AKIE) and decrease of 4-Cl-aniline fluorescence lifetimes. Our data suggest that variations of C and N isotope fractionation originate from heterolytic dechlorination of excited triplet and singlet states of 4-Cl-aniline. Linear correlations of (13)C-AKIE vs (15)N-AKIE were distinctly different for these two reaction pathways and may be explored further for the identification of photolytic aromatic dechlorination reactions.
Collapse
Affiliation(s)
- Marco Ratti
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| | - Silvio Canonica
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Kristopher McNeill
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| | - Paul R Erickson
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jakov Bolotin
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Thomas B Hofstetter
- †Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- ‡Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
47
|
Palau J, Shouakar-Stash O, Hunkeler D. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14400-14408. [PMID: 25379605 DOI: 10.1021/es504252z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.
Collapse
Affiliation(s)
- Jordi Palau
- Centre for Hydrogeology and Geothermics, University of Neuchâtel , Neuchâtel CH-2000, Switzerland
| | | | | |
Collapse
|
48
|
Palau J, Cretnik S, Shouakar-Stash O, Höche M, Elsner M, Hunkeler D. C and Cl isotope fractionation of 1,2-dichloroethane displays unique δ¹³C/δ³⁷Cl patterns for pathway identification and reveals surprising C-Cl bond involvement in microbial oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9430-9437. [PMID: 25010210 DOI: 10.1021/es5031917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study investigates dual element isotope fractionation during aerobic biodegradation of 1,2-dichloroethane (1,2-DCA) via oxidative cleavage of a C-H bond (Pseudomonas sp. strain DCA1) versus C-Cl bond cleavage by S(N)2 reaction (Xanthobacter autotrophicus GJ10 and Ancylobacter aquaticus AD20). Compound-specific chlorine isotope analysis of 1,2-DCA was performed for the first time, and isotope fractionation (ε(bulk)(Cl)) was determined by measurements of the same samples in three different laboratories using two gas chromatography-isotope ratio mass spectrometry systems and one gas chromatography-quadrupole mass spectrometry system. Strongly pathway-dependent slopes (Δδ13C/Δδ37Cl), 0.78 ± 0.03 (oxidation) and 7.7 ± 0.2 (S(N)2), delineate the potential of the dual isotope approach to identify 1,2-DCA degradation pathways in the field. In contrast to different ε(bulk)(C) values [-3.5 ± 0.1‰ (oxidation) and -31.9 ± 0.7 and -32.0 ± 0.9‰ (S(N)2)], the obtained ε(bulk)(Cl) values were surprisingly similar for the two pathways: -3.8 ± 0.2‰ (oxidation) and -4.2 ± 0.1 and -4.4 ± 0.2‰ (S(N)2). Apparent kinetic isotope effects (AKIEs) of 1.0070 ± 0.0002 (13C-AKIE, oxidation), 1.068 ± 0.001 (13C-AKIE, S(N)2), and 1.0087 ± 0.0002 (37Cl-AKIE, S(N)2) fell within expected ranges. In contrast, an unexpectedly large secondary 37Cl-AKIE of 1.0038 ± 0.0002 reveals a hitherto unrecognized involvement of C-Cl bonds in microbial C-H bond oxidation. Our two-dimensional isotope fractionation patterns allow for the first time reliable 1,2-DCA degradation pathway identification in the field, which unlocks the full potential of isotope applications for this important groundwater contaminant.
Collapse
Affiliation(s)
- Jordi Palau
- Centre for Hydrogeology and Geothermics, University of Neuchâtel , 2000 Neuchâtel, Switzerland
| | | | | | | | | | | |
Collapse
|
49
|
Badin A, Buttet G, Maillard J, Holliger C, Hunkeler D. Multiple dual C-Cl isotope patterns associated with reductive dechlorination of tetrachloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9179-9186. [PMID: 25000152 DOI: 10.1021/es500822d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Dual isotope slopes are increasingly used to identify transformation pathways of contaminants. We investigated if reductive dechlorination of tetrachloroethene (PCE) by consortia containing bacteria with different reductive dehalogenases (rdhA) genes can lead to variable dual C-Cl isotope slopes and if different slopes also occur in the field. Two bacterial enrichments harboring Sulfurospirillum spp. but different rdhA genes yielded two distinct δ(13)C to δ(37)Cl slopes of 2.7 ± 0.3 and 0.7 ± 0.2 despite a high similarity in gene sequences. This suggests that PCE reductive dechlorination could be catalyzed according to at least two distinct reaction mechanisms or that rate-limiting steps might vary. At two field sites, two distinct dual isotope slopes of 0.7 ± 0.3 and 3.5 ± 1.6 were obtained, each of which fits one of the laboratory slopes within the range of uncertainty. This study hence provides additional insight into multiple reaction mechanisms underlying PCE reductive dechlorination. It also demonstrates that caution is necessary if a dual isotope approach is used to differentiate between transformation pathways of chlorinated ethenes.
Collapse
Affiliation(s)
- Alice Badin
- Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel , Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Schmidt KR, Gaza S, Voropaev A, Ertl S, Tiehm A. Aerobic biodegradation of trichloroethene without auxiliary substrates. WATER RESEARCH 2014; 59:112-118. [PMID: 24793109 DOI: 10.1016/j.watres.2014.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/18/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
Trichloroethene (TCE) represents a priority pollutant and is among the most frequently detected contaminants in groundwater. The current bioremediation measures have certain drawbacks like e.g. the need for auxiliary substrates. Here, the aerobic biodegradation of TCE as the sole growth substrate is demonstrated. This new process of metabolic TCE degradation was first detected in groundwater samples. TCE degradation was stable in an enriched mixed bacterial culture in mineral salts medium for over five years and repeated transfers of the culture resulting in a 10(10) times dilution of the original groundwater. Aerobic TCE degradation resulted in stoichiometric chloride formation. Stable carbon isotope fractionation was observed providing a reliable analytical tool to assess this new biodegradation process at field sites. The results suggest that aerobic biodegradation of TCE without auxiliary substrate could be considered as an option for natural attenuation or engineered bioremediation of contaminated sites.
Collapse
Affiliation(s)
- Kathrin R Schmidt
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Sarah Gaza
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Andrey Voropaev
- Hydroisotop GmbH, Woelkestr. 9, 85301 Schweitenkirchen, Germany
| | - Siegmund Ertl
- Hydroisotop GmbH, Woelkestr. 9, 85301 Schweitenkirchen, Germany
| | - Andreas Tiehm
- Department of Environmental Biotechnology, Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| |
Collapse
|