1
|
Baygildiev T, Meijer J, Cenijn P, Riegel M, Arp HPH, Lamoree M, Hamers T. Identification of polar bioactive substances in the Upper Rhine using effect-directed analysis. WATER RESEARCH 2024; 268:122607. [PMID: 39454269 DOI: 10.1016/j.watres.2024.122607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Effect-Directed Analysis (EDA) was used to identify bioactive compounds in surface and well water from the Upper Rhine, and to evaluate their properties against the criteria set for Persistent, Mobile and Toxic (PMT) and very persistent and very mobile (vPvM) substances. A multi-layered solid-phase extraction was implemented to enrich a broad range of polar substances from the collected samples. The extracts were fractionated into 108 fractions and tested in the transthyretin (TTR)-binding assay measuring displacement of fluorescently labeled thyroxine (FITC-T4 TTR-binding assay) and the Aliivibrio fischeri bioluminescence (AFB) bioassay. Bioactive fractions guided the identification strategy using high-resolution mass spectrometry. Chemical features were systematically annotated using library databases and suspect lists, incorporating an automated assessment of the quality of each annotation. Based on this assessment, each chemical feature was assigned a specific identification confidence level. Identification of bioactive compounds was facilitated by using bioassay specific suspect lists that were extracted from an in-house developed database of positive and negative TTR-binding compounds and from a recently published database of active inhibitors of AFB. This resulted in the identification and confirmation of ten bioactive substances, including four evaluated as PMT and vPvM substances (diclofenac, trifloxystrobin acid, 6:2 FTSA and PFOA), and one as a potential PMT substance (4-aminoazobenzene). This study demonstrates the effectiveness of EDA in the identification of PMT/vPvM substances in the aquatic environment, facilitating their prioritization for comprehensive environmental risk assessment and possible regulation.
Collapse
Affiliation(s)
- Timur Baygildiev
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| | - Jeroen Meijer
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Peter Cenijn
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Marcel Riegel
- DVGW-Technologiezentrum Wasser, Karlsruher Strasse 84, 76139, Karlsruhe, Germany
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, NO-0806, Oslo, Norway; Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Li L, Gao F, Huang C, Hu J. Exposure levels and maternal transfer of emerging organophosphate flame retardants (OPFRs) in pregnant women: Comparison with traditional OPFRs. ENVIRONMENT INTERNATIONAL 2024; 191:108996. [PMID: 39241335 DOI: 10.1016/j.envint.2024.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Prenatal exposure to organophosphorus flame retardants (OPFRs) has been linked with adverse effects on reproductive health, and new OPFRs are continually emerging. In this study, emerging OPFRs, such as bis(2-ethylhexyl) phenyl phosphate (BEHPP), triamyl phosphate (TAP), tris(4-tert-butylphenyl) phosphate (T4tBPPP), oxydi-2,1-ethanediyl phosphoric acid tetrakis(2 chloro-1-methylethyl) ester (RDT905), cresyl diphenyl phosphate (CDP), and 2-isopropylphenyl diphenyl phosphate (2IPPDPP), were detected in 84 %, 100 %, 100 %, 52 %, 40 %, and 40 % of 25 decidua samples with average concentrations of 2.36, 6.21, 1.5, 2.6, 1.07, and 0.09 ng/g of dry weight (dw), respectively. Six of the aforementioned emerging OPFRs (BEHPP, T4tBPPP, RDT905, 2IPPDPP, CDP, and TAP) were simultaneously detected in paired chorionic villus samples, and their average concentrations were 11.3, 1.77, 3.64, 0.11, 0.58, and 3.34 ng/g, which were significantly higher than and positively correlated with those in decidua samples. The geometric mean concentration ratios between chorionic villus and decidua samples for BEHPP, T4tBPPP, RDT905, 2IPPDPP, CDP, and TAP were 4.02, 1.61, 1.73, 1.48, 0.82, and 0.69, respectively, consistent with transthyretin binding-dependent behavior. Prenatal exposure to such emerging OPFRs, especially for BEHPP with relatively high concentration and maternal transfer, is of high concern from the view of women's reproductive health.
Collapse
Affiliation(s)
- Linwan Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Chong Huang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Duffel MW, Lehmler HJ. Complex roles for sulfation in the toxicities of polychlorinated biphenyls. Crit Rev Toxicol 2024; 54:92-122. [PMID: 38363552 PMCID: PMC11067068 DOI: 10.1080/10408444.2024.2311270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic toxicants derived from legacy pollution sources and their formation as inadvertent byproducts of some current manufacturing processes. Metabolism of PCBs is often a critical component in their toxicity, and relevant metabolic pathways usually include their initial oxidation to form hydroxylated polychlorinated biphenyls (OH-PCBs). Subsequent sulfation of OH-PCBs was originally thought to be primarily a means of detoxication; however, there is strong evidence that it may also contribute to toxicities associated with PCBs and OH-PCBs. These contributions include either the direct interaction of PCB sulfates with receptors or their serving as a localized precursor for OH-PCBs. The formation of PCB sulfates is catalyzed by cytosolic sulfotransferases, and, when transported into the serum, these metabolites may be retained, taken up by other tissues, and subjected to hydrolysis catalyzed by intracellular sulfatase(s) to regenerate OH-PCBs. Dynamic cycling between PCB sulfates and OH-PCBs may lead to further metabolic activation of the resulting OH-PCBs. Ultimate toxic endpoints of such processes may include endocrine disruption, neurotoxicities, and many others that are associated with exposures to PCBs and OH-PCBs. This review highlights the current understanding of the complex roles that PCB sulfates can have in the toxicities of PCBs and OH-PCBs and research on the varied mechanisms that control these roles.
Collapse
Affiliation(s)
- Michael W. Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa, 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, Iowa, 52242, United States
| |
Collapse
|
4
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
5
|
Pocar P, Grieco V, Aidos L, Borromeo V. Endocrine-Disrupting Chemicals and Their Effects in Pet Dogs and Cats: An Overview. Animals (Basel) 2023; 13:ani13030378. [PMID: 36766267 PMCID: PMC9913107 DOI: 10.3390/ani13030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Over the past few decades, several pollutants classified as environmental endocrine-disrupting chemicals (EDCs) have become a matter of significant public health concern. Companion animals play a major role in human society, and pet ownership is substantially increasing worldwide. These intimate human-pet relationships imply sharing much of the same environment, thus including exposure to similar levels of EDCs in daily routine. Here, we review the current knowledge on the sources and routes of exposure to EDCs in domestic indoor and outdoor environments and discuss whether endocrine disruption is a health concern in pets. We summarize the phenomenon of endocrine disruption, providing examples of EDCs with a known impact on dog and cat health. Then, we propose an overview of the literature on the adverse effects of EDCs in domestic pets, with a special focus on the health of reproductive and thyroid systems. Finally, we explore the potential role of companion animals as unintentional sentinels of environmental exposure to EDCs and the implications for public health risk assessment in a "shared risk" scenario. Overall, this review supports the need for an integrated approach considering humans, animals, and the environment as a whole for a comprehensive assessment of the impact of EDCs on human and animal health.
Collapse
|
6
|
Mortensen ÅK, Verreault J, François A, Houde M, Giraudo M, Dam M, Jenssen BM. Flame retardants and their associations with thyroid hormone-related variables in northern fulmars from the Faroe Islands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150506. [PMID: 34601176 DOI: 10.1016/j.scitotenv.2021.150506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Flame retardants (FRs) are widely reported in tissues of seabirds including birds sampled from remote areas. There is evidence that FRs can disrupt the hypothalamic-pituitary-thyroid (HPT) axis in seabirds, although information is limited on thyroid-related mechanisms and effects. This study investigated the associations between concentrations of polybrominated diphenyl ethers (PBDEs) and other FRs, and changes in the HPT axis in northern fulmars (Fulmarus glacialis) from the Faroe Islands (North Atlantic). Plasma concentrations of thyroid hormones (THs), hepatic deiodinase type 1 (D1) activity, and transcription of selected TH-related genes in liver were used as markers of HPT axis changes. Liver concentrations of a certain PBDE congeners and other FRs including pentabromoethylbenzene (PBEB), dechlorane 602 (Dec-602), and dechlorane plus (DP) were associated with changes in thyroid status. Specifically, liver PBDE, PBEB and Dec-602 concentrations were associated with plasma TH levels (free thyroxine [FT4] and total triiodothyronine [TT3]). Liver DP concentrations were positively correlated with the TT4:FT4 ratios and mRNA levels of UDP-glucuronyltransferase-1, while those of PBEB were negatively associated with TT4:TT3 ratios and D1 activity. D1 activity was also positively associated with the tri-, tetra- and hexa-BDE congeners. Moreover, transcription of ABCC2, a hepatic TH transporter, was associated with certain liver PBDE concentrations. Although PBDEs and other FRs may be potential inhibitors of D1 activity, only a few of the targeted FRs had modest associations with hepatic D1 activity. Regardless, the relationships reported herein indicated that exposure to moderate levels of FRs can be associated with thyroid axis perturbation at the molecular/biochemical levels in this North Atlantic seabird species.
Collapse
Affiliation(s)
- Åse-Karen Mortensen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Anthony François
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Maria Dam
- IVF Evnaskyn, Fjosagoeta 2, FO-100 Torshavn, Faroe Islands
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
7
|
Wang MY, Zhang LF, Wu D, Cai YQ, Huang DM, Tian LL, Fang CL, Shi YF. Simulation experiment on OH-PCB being ingested through daily diet: Accumulation, transformation and distribution of hydroxylated-2, 2', 4, 5, 5'-pentachlorobiphenyl (OH-PCB101) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149891. [PMID: 34474296 DOI: 10.1016/j.scitotenv.2021.149891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 05/16/2023]
Abstract
Animals exposure to polychlorinated biphenyls (PCBs) may result in retention of hydroxylated PCBs (OH-PCBs). OH-PCBs can be accumulated in animals, including humans, through the transmission of food chain. However, there are few studies on the accumulation and metabolism of OH-PCBs exposed to the body through daily diet. Therefore, this study was conducted to investigate the fate of OH-PCBs after being ingested through dietary intake. By adding 3-OH-PCB101 and 4-OH-PCB101 to the edible tissue of crucian carp, which were used as raw materials to prepare mouse feed, with an exposure concentration of 2.5 μg/kg ww. The exposure experiment lasted for a total of 80 days. The blood, feces and 11 tissues of mice at different times were analyzed qualitatively and quantitatively. It was found that major OH-PCB101 were accumulated in intestine or excreted with feces. A small part was accumulated in heart, lung and spleen. For the first time that the conversion from OH-PCB101 to PCB101 in mice was discovered, which shows from another perspective that persistent organic pollutants are difficult to be completely degraded in the environment. 4-MeO-PCB101, 3-MeSO2-PCB101, and 4-MeSO2-PCB101 were also found in various tissues. The results of this study show that after OH-PCBs accumulated in animals re-enter the organism through the food chain, they can be metabolized again and may be reversely transformed into the parent compounds. The present research shed new light on simulating the metabolic transformation process of OH-PCBs exposed to mammals through ingestion of fish. Available data show that second-generation persistent organic pollutants in the environment still need to be continuously concerned.
Collapse
Affiliation(s)
- Meng-Yuan Wang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Long-Fei Zhang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Di Wu
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - You-Qiong Cai
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Dong-Mei Huang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Liang-Liang Tian
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Chang-Ling Fang
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China
| | - Yong-Fu Shi
- Fishery Products Quality Inspection and Test Centre (Shanghai), East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs of China, Shanghai 200090, China.
| |
Collapse
|
8
|
Perinatal effects of persistent organic pollutants on thyroid hormone concentration in placenta and breastmilk. Mol Aspects Med 2021; 87:100988. [PMID: 34238594 DOI: 10.1016/j.mam.2021.100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Thyroid hormones (TH) are known to play a critical role in regulating many biological processes including growth and development, energy homeostasis, thermogenesis, lipolysis and metabolism of cholesterol. Severe TH deficiency especially during fetal development results in cretinism, but can also lead to an imbalance in metabolism with, among others, an alteration in body weight composition. Over the past two decades, increasing evidence has shown that certain persistent organic pollutants (POP) can interfere with the endocrine system. These POP referred to as "endocrine disrupting chemicals" are widely present in the environment and populations are exposed globally. Moreover, epidemiological studies have shown that a particularly sensitive period is the pre- and postnatal time. Indeed, perinatal exposure to such chemicals could lead to the onset diseases in later life. It is known, that, maternal thyroid hormones are transported by the placenta to the fetus from 6 weeks of gestation and it seems that during the first trimester, and part of the second, the fetus is entirely dependent on maternal TH supply for its development. Interferences in the TH-network as a consequence of the exposure to such pollutants could cause variations in TH concentration. Only small changes in maternal thyroid hormone levels in early stages of pregnancy can influence fetal neurological and cardiovascular development, as well as according to recent studies, have effect on childhood body composition. With this review, we will report the most recent and important studies concerning the association between thyroid hormone concentration and POP levels measured during the perinatal period. We will mostly focus on the data recently reported on placenta and breastmilk as main sources for understanding the potential consequences of exposure. The possible link between exposure to pollutants, TH dysregulation and possible adverse outcome will also be briefly discussed. From our literature search, several studies support the hypothesis that pre- and postnatal exposure to different pollutants might play a role in causing variation in thyroid hormone concentration. However, few research papers have so far studied the relationship linking exposure to pollutants, TH concentration and possible health consequences. Therefore, this review highlights the need for further research in this direction.
Collapse
|
9
|
Ask AV, Jenssen BM, Tartu S, Angelier F, Chastel O, Gabrielsen GW. Per- and Polyfluoroalkyl Substances Are Positively Associated with Thyroid Hormones in an Arctic Seabird. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:820-831. [PMID: 33369782 DOI: 10.1002/etc.4978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are associated with several disrupted physiological and endocrine parameters. Regarding endocrine mechanisms, laboratory studies suggest that PFAS could disrupt the thyroid hormone system and alter circulating thyroid hormone concentrations. Thyroid hormones play a ubiquitous role-controlling thermoregulation, metabolism, and reproduction. However, evidence for disruption of thyroid hormones by PFAS remains scarce in wildlife. The present study investigated the associations between concentrations of PFAS, thyroid hormones, and body condition in an arctic seabird, the black-legged kittiwake (Rissa tridactyla). We collected blood from kittiwakes sampled in Svalbard, Norway (2013 and 2014). Plasma samples were analyzed for total thyroxine (TT4) and total triiodothyronine (TT3) concentrations; detected PFAS included branched and linear (lin) C8 perfluoroalkyl sulfonates (i.e., perfluoroctane sulfonate [PFOS]) and C9 -C14 perfluoroalkyl carboxylates (PFCAs). The dominant PFAS in the kittiwakes were linPFOS and C11 - and C13 -PFCAs. Generally, male kittiwakes had higher concentrations of PFAS than females. We observed positive correlations between linPFOS, C10 -PFCA, and TT4 in males, whereas in females C12-14 -PFCAs were positively correlated to TT3. Interestingly, we observed contrasted correlations between PFAS and body condition; the direction of the relationship was sex-dependent. Although these results show relationships between PFAS and circulating thyroid hormone concentrations in kittiwakes, the study design does not allow for concluding on causal relationships related to effects of PFAS on the thyroid hormone system. Future experimental research is required to quantify this impact of PFAS on the biology of kittiwakes. The apparently different associations among PFAS and body condition for males and females are puzzling, and more research is required. Environ Toxicol Chem 2021;40:820-831. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Amalie Vigdel Ask
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé, UMR 7372-CNRS, and Université de La Rochelle, Villiers-en-Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372-CNRS, and Université de La Rochelle, Villiers-en-Bois, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, UMR 7372-CNRS, and Université de La Rochelle, Villiers-en-Bois, France
| | | |
Collapse
|
10
|
Sun Y, Cui H, Li T, Tao S, Hu J, Wan Y. Protein-affinity guided identification of chlorinated paraffin components as ubiquitous chemicals. ENVIRONMENT INTERNATIONAL 2020; 145:106165. [PMID: 33053452 DOI: 10.1016/j.envint.2020.106165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Chlorinated paraffins (CPs) have been extensively examined to identify their components. Short-chain CPs with a carbon number of 10-13 have been strictly restricted or banned due to their addition to the list of Persistent Organic Pollutants in the world. However, more constituents with potential toxicities in these complicated mixtures are still unclear. In the present study, a purification method based on the protein affinity of thyroid hormone-related proteins (transthyretin and thyroid receptor) was established. The protein-based affinity extraction coupled with high-throughput scanning successfully discover a new group of chlorinated compounds (CP(O2)) in commercial CP mixtures. The CP(O2)s were purified from the commercial mixtures and identified to be chlorinated fatty acid methyl esters (CFAMEs) with a carbon chain length of 17-19 and 3-11 chlorines by a combination of liquid-liquid extraction, hydrolysis, Fourier transform infrared spectrometry and Orbitrap mass spectrometry. The newly identified CFAMEs were found to be ubiquitous in the environmental matrices, and concentration ratios of ∑CFAMEs/∑CPs ranged from 0.01 to 35 in air, soil and food samples. CFAMEs were also detected in blood samples of general populations, and accumulated in humans through dietary uptake. CFAMEs can compete with T4 for binding TTR with higher potencies than CPs, possibly leading to disruptions of thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Yibin Sun
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tong Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Nomiyama K, Tsujisawa Y, Ashida E, Yachimori S, Eguchi A, Iwata H, Tanabe S. Mother to Fetus Transfer of Hydroxylated Polychlorinated Biphenyl Congeners (OH-PCBs) in the Japanese Macaque ( Macaca fuscata): Extrapolation of Exposure Scenarios to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11386-11395. [PMID: 32786554 DOI: 10.1021/acs.est.0c01805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Prenatal hydroxylated polychlorinated biphenyls (OH-PCBs) exposure may disrupt fetal brain development during the critical period of thyroid hormone (TH) action. However, there are limited studies on the OH-PCB transfer to the fetal brain, particularly in primates. In this study, we selected the Japanese macaque (Macaca fuscata) as a model animal for the fetal transfer of OH-PCBs in humans and revealed OH-PCB concentrations and their relationships in maternal and fetal blood, liver, and brain. l-thyroxine (T4)-like OH-PCBs including 4OH-CB187, a major congener in humans, were found in high proportions in the blood, liver, brain, and placenta of pregnant Japanese macaques. OH-PCBs were detected in the fetal brain and liver in the first trimester, indicating their transfer to the brain in the early pregnancy stage. 4OH-CB187 and 4OH-CB202 were the major congeners found in fetal brain, indicating that these T4-like OH-PCBs are transported from maternal blood to the fetal brain via the placenta. These results indicate that further studies are needed on the effects of OH-PCBs on the developing fetal brain.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Yusuke Tsujisawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
- Shimadzu Techno-Research, INC., 1, Nishinokyo-Shimoaicho, Nakagyo-ku, Kyoto 604-8436 Japan
| | - Emiko Ashida
- Shikoku Institute of Natural History, 470-1, Shimobun-otu, Susaki, Kochi 785-0023, Japan
| | - Syuji Yachimori
- The Yokogurayama Natural Forest Museum. Ochi, 737-12 Ochi-hei, Ochi-cho, Kochi 781-1303, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-0022, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
12
|
Wang C, Zhu J, Zhang Z, Chen H, Ji M, Chen C, Hu Y, Yu Y, Xia R, Shen J, Gong X, Wang SL. Rno-miR-224-5p contributes to 2,2',4,4'-tetrabromodiphenyl ether-induced low triiodothyronine in rats by targeting deiodinases. CHEMOSPHERE 2020; 246:125774. [PMID: 31901531 DOI: 10.1016/j.chemosphere.2019.125774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Hypothyroidism is commonly associated with substantial adverse impacts on human health, and polybrominated diphenyl ether (PBDE), a kind of classic thyroid hormone disruptor, was speculated to be a potential environmental factor, but its effect on thyroxine metabolism has received little attention. In the present study, we investigated the role and mechanism of rno-miR-224-5p in deiodinase-mediated thyroxine metabolism in rats treated with 2,2',4,4'-tetrabromodiphenyl ether (BDE47), a predominant PBDE congener in humans. BDE47 decreased plasma triiodothyronine (T3) and thyroxine (T4) and increased reverse T3 (rT3) in the rats, and the expression of type 1 deiodinase (DIO1) and type 3 deiodinase (DIO3) increased in both the rats and H4-II-E cells. Rno-miR-224-5p was predicted to target dio1 instead of dio3, according to the TargetScan, miRmap.org and microRNA.org databases. Experiments showed that the rno-miR-224-5p level was decreased by BDE47 in a dose-dependent manner and confirmed that rno-miR-224-5p downregulated both DIO1 and DIO3 in the H4-II-E cells and in the rats, as determined using mimics and an inhibitor of rno-miR-224-5p. Furthermore, DIO1 was observed to be a direct functional target of rno-miR-224-5p, whereas DIO3 was indirectly regulated by rno-miR-224-5p via the phosphorylation of the MAPK/ERK (but not p38 or JNK) pathway. Reportedly, DIO1 and DIO3 act principally as inner-ring deiodinases and are responsible for the conversion of T4 to rT3, but not to T3, and the final clearance of thyroxine (mainly in the form of T2). Our results demonstrated that BDE47 induced low levels of T3 conversion through DIO1 and DIO3, which were regulated by rno-miR-224-5p. The findings suggest a novel additional mechanism of PBDE-induced thyroxine metabolism disorder that differs from that of PBDEs as environmental thyroid disruptors.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Hang Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Minghui Ji
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Chao Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
13
|
Lim HK, Hong SH, Bae SM, Choi IY, Kim HH. A Liquid Formulation of a Long-acting Erythropoietin Conjugate. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Mortensen ÅK, Mæhre S, Kristiansen K, Heimstad ES, Gabrielsen GW, Jenssen BM, Sylte I. Homology modeling to screen for potential binding of contaminants to thyroid hormone receptor and transthyretin in glaucous gull (Larus hyperboreus) and herring gull (Larus argentatus). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.comtox.2020.100120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Løseth ME, Flo J, Sonne C, Krogh AKH, Nygård T, Bustnes JO, Jenssen BM, Jaspers VLB. The influence of natural variation and organohalogenated contaminants on physiological parameters in white-tailed eagle (Haliaeetus albicilla) nestlings from Norway. ENVIRONMENTAL RESEARCH 2019; 177:108586. [PMID: 31377582 DOI: 10.1016/j.envres.2019.108586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Environmental exposure to organohalogenated contaminants (OHCs), even at low concentrations, may cause detrimental effects on the development and health of wild birds. The present study investigated if environmental exposure to OHCs may influence the variation of multiple physiological parameters in Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. Plasma and feather samples were obtained from 70 nestlings at two archipelagos in Norway in 2015 and 2016. The selected physiological parameters were plasma concentrations of thyroid hormones (thyroxine, T4 and triiodothyronine, T3), plasma proteins (prealbumin, albumin, α1-, α2-, β- and γ-globulins) and selected blood clinical chemical parameters (BCCPs) associated with liver and kidney functioning. Feather concentrations of corticosterone (CORTf) were also included to investigate the overall stress level of the nestlings. Concentrations of all studied physiological parameters were within the ranges of those found in other species of free-living birds of prey nestlings and indicated that the white-tailed eagle nestlings were in good health. Our statistical models indicated that perfluoroalkyl substances (PFASs) and legacy OHCs, such as polychlorinated biphenyls, organochlorinated pesticides and polybrominated diphenyl ethers, influenced only a minor fraction of the variation of plasma thyroid hormones, prealbumin and CORTf (5-15%), and partly explained the selected BCCPs (<26%). Most of the variation in each studied physiological parameter was explained by variation between nests, which is most likely due to natural physiological variation of nestlings in these nests. This indicates the importance of accounting for between nest variation in future studies. In the present nestlings, OHC concentrations were relatively low and seem to have played a secondary role compared to natural variation concerning the variation of physiological parameters. However, our study also indicates a potential for OHC-induced effects on thyroid hormones, CORTf, prealbumin and BCCPs, which could be of concern in birds exposed to higher OHC concentrations than the present white-tailed eagle nestlings.
Collapse
Affiliation(s)
- Mari Engvig Løseth
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
| | - Jørgen Flo
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University (AU), DK-4000, Roskilde, Denmark
| | - Anne Kirstine Havnsøe Krogh
- Department of Veterinary Clinical Sciences, University of Copenhagen (UCPH), Frederiksberg C, DK-1870, Denmark
| | - Torgeir Nygård
- Norwegian Institute for Nature Research (NINA), NO-7034, Trondheim, Norway
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre on Climate and the Environment, NO-9007, Tromsø, Norway
| | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
| |
Collapse
|
16
|
Nomiyama K, Eguchi A, Takaguchi K, Yoo J, Mizukawa H, Oshihoi T, Tanabe S, Iwata H. Targeted metabolome analysis of the dog brain exposed to PCBs suggests inhibition of oxidative phosphorylation by hydroxylated PCBs. Toxicol Appl Pharmacol 2019; 377:114620. [PMID: 31195005 DOI: 10.1016/j.taap.2019.114620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023]
Abstract
Canis lupus familiaris (domestic dog) possess a high capacity to metabolize higher-chlorinated polychlorinated biphenyls (PCBs) to thyroid hormone (TH)-like hydroxylated PCB metabolites (OH-PCBs). As a result, the brain could be at high risk of toxicity caused by OH-PCBs. To evaluate the effect of OH-PCBs on dog brain, we analyzed OH-PCB levels in the brain and the metabolome of the frontal cortex following exposure to a mixture of PCBs (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187, and 202). 4-OH-CB202 and 4-OH-CB107 were major OH-PCBs in the brain of PCB-exposed dogs. These OH-PCBs were associated with metabolites involved in urea cycle, proline-related compounds, and purine, pyrimidine, glutathione, and amino-acid metabolism in dog brain. Moreover, adenosine triphosphate levels in the PCBs exposure group were significantly lower than in the control group. These results suggest that OH-PCB exposure is associated with a disruption in TH homeostasis, generation of reactive oxygen species, and/or disruption of oxidative phosphorylation (OXPHOS) in brain cells. Among them, OXPHOS disturbance could be associated with both disruptions in cellular amino-acid metabolism and urea cycle. Therefore, an OXPHOS activity assay was performed to evaluate the disruption of OXPHOS by OH-PCBs. The results indicated that 4-OH-CB107 inhibits the function of Complexes III, IV, and V of the electron transport chain, suggesting that 4-OH-CB107 inhibit these complexes in OXPHOS. The neurotoxic effects of PCB exposure may be mediated through mitochondrial toxicity of OH-PCBs in the brain.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Akifumi Eguchi
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1, -33 Chiba-city, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Hazuki Mizukawa
- Laboratory of Environmental Analytical Chemistry, Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Tomoko Oshihoi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
17
|
Ding J, Long G, Luo Y, Sun R, Chen M, Li Y, Zhou Y, Xu X, Zhao W. Formation of 1,3,8-tribromodibenzo-p-dioxin and 2,4,6,8-tetrabromodibenzofuran in the oxidation of synthetic hydroxylated polybrominated diphenyl ethers by iron and manganese oxides under dry conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30160-30169. [PMID: 30151788 DOI: 10.1007/s11356-018-2980-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are ubiquitous and highly toxic emerging endocrine disruptors found in surface and subsurface soils and clay deposits. Seriously, they could be easily transformed to the more toxic dioxins (PBDD/Fs) in photochemical processes and incineration, but the spontaneous formation of PBDD/Fs has rarely been reported. This study focused on the formation of 1,3,8-tribromodibenzo-p-dioxin (1,3,8-TrBDD) and 2,4,6,8-tetrabromodibenzofuran (2,4,6,8-TeBDF) from 2'-OH-BDE-68 and 2,2'-diOH-BB-80 under the oxidization of iron and manganese oxides (goethite and MnOx). Approximately 0.09 μmol/kg (2.33%) and 0.17 μmol/kg (4.15%) were transformed to 1,3,8-TrBDD and 2,4,6,8-TeBDF by goethite in 8 days and a higher conversion 0.15 μmol/kg (3.77%) and 0.23 μmol/kg (5.74%) were observed for MnOx in 4 days. However, the formation of PBDD/Fs, probably proceeding via Smiles rearrangements and bromine elimination processes, was greatly inhibited by the presence of water. Transformation of OH-PBDEs by goethite and MnOx was accompanied by release of Fe and Mn ions and the possible pathways for the formation of reaction products were proposed. In view of the ubiquity of OH-PBDEs and metal oxides in the environment, oxidation of OH-PBDEs mediated by goethite and MnOx is likely an abiotic route for the formation of PBDD/Fs.
Collapse
Affiliation(s)
- Jiafeng Ding
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Gaoyuan Long
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Yang Luo
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Runze Sun
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Mengxia Chen
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Yajun Li
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Yanfang Zhou
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China
| | - Weirong Zhao
- Department of Environmental Engineering, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Eguchi A, Hanazato M, Suzuki N, Matsuno Y, Todaka E, Mori C. Maternal-fetal transfer rates of PCBs, OCPs, PBDEs, and dioxin-like compounds predicted through quantitative structure-activity relationship modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7212-7222. [PMID: 26396019 DOI: 10.1007/s11356-015-5436-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
The present study aims to predict the maternal-fetal transfer rates of the polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs), and dioxin-like compounds using a quantitative structure-activity relationship model. The relation between the maternal-fetal transfer rate and the contaminants' physicochemical properties was investigated by multiple linear regression (MLR), partial least square regression (PLS), and random forest regression (RF). The 10-fold cross-validation technique estimated low predictive performances for both MLR and PLS models (R 2CV = 0.425 ± 0.0964 for MLR and R 2CV = 0.492 ± 0.115 for PLS) and is in agreement with an external test (R 2pred = 0.129 for MLR and R 2pred = 0.123 for PLS). In contrast, the RF model exhibits good predictive performance, estimated through 10-fold cross-validation (R 2CV = 0.566 ± 0.0885) and an external test set (R 2pred = 0.519). Molecular weight and polarity were selected in all models as important parameters that may predict the ability of a molecule to cross the placenta to the fetus.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba City, Japan.
| | - Masamichi Hanazato
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba City, Japan
| | - Norimichi Suzuki
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba City, Japan
| | - Yoshiharu Matsuno
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba City, Japan
| | - Emiko Todaka
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba City, Japan
| | - Chisato Mori
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba City, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chuo-ku Inohana 1-8-1, Chiba City, Japan
| |
Collapse
|
19
|
Hill KL, Mortensen ÅK, Teclechiel D, Willmore WG, Sylte I, Jenssen BM, Letcher RJ. In Vitro and in Silico Competitive Binding of Brominated Polyphenyl Ether Contaminants with Human and Gull Thyroid Hormone Transport Proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1533-1541. [PMID: 29283575 DOI: 10.1021/acs.est.7b04617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tetradecabromo-1,4-diphenoxybenzene (TeDB-DiPhOBz) is a highly brominated additive flame retardant (FR). Debrominated photodegradates of TeDB-DiPhOBz are hydroxylated in vitro in liver microsomal assays based on herring gulls (Larus argentatus), including one metabolite identified as 4″-OH-2,2',2″,4-tetrabromo-DiPhOBz. Chemically related methoxylated tetra- to hexabromo-DiPhOBzs are known contaminants in herring gulls. Collectively, nothing is currently known about biological effects of these polybrominated (PB) DiPhOBz-based compounds. The present study investigated the potential thyroidogenicity of 2,2',2″,4-tetrabromo-(TB)-DiPhOBz along with its para-methoxy (MeO)- and hydroxy-(OH)-analogues, using an in vitro competitive protein binding assay with the human thyroid hormone (TH) transport proteins transthyretin (hTTR) and albumin (hALB). This model para-OH-TB-DiPhOBz was found to be capable of competing with thyroxine (T4) for the binding site on hTTR and hALB. In silico analyses were also conducted using a 3D homology model for gull TTR, to predict whether these TB-DiPhOBz-based compounds may also act as ligands for an avian TH transport protein despite evolutionary differences with hTTR. This analysis found all three TB-DiPhOBz analogues to be potential ligands for gull TTR and have similar binding efficacies to THs. Results indicate structure-related differences in binding affinities of these ligands and suggest there is potential for these contaminants to interact with both mammalian and avian thyroid function.
Collapse
Affiliation(s)
- Katie L Hill
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
- Department of Biology, Carleton University , Ottawa, Ontario K1S 5B6, Canada
- Intrinsik Corp. , Ottawa, Ontario K1S 5R1, Canada
| | - Åse-Karen Mortensen
- Department of Biology, Norwegian University of Science and Technology , Trondheim, NO-7491, Norway
| | | | - William G Willmore
- Department of Biology, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Ingebrigt Sylte
- Department of Medical Biology, UiT - The Arctic University of Norway , Tromsø, NO-9037, Norway
| | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology , Trondheim, NO-7491, Norway
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
- Department of Biology, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
20
|
Hill KL, Hamers T, Kamstra JH, Willmore WG, Letcher RJ. Organophosphate triesters and selected metabolites enhance binding of thyroxine to human transthyretin in vitro. Toxicol Lett 2018; 285:87-93. [PMID: 29306024 DOI: 10.1016/j.toxlet.2017.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
The toxicological properties of organophosphate (OP) triesters that are used as flame retardants and plasticizers are currently not well understood, though increasing evidence suggests they can affect the thyroid system. Perturbation of thyroid hormone (TH) transport is one mechanism of action that may affect thyroid function. The present study applied an in vitro competitive protein binding assay with thyroxine (T4) and human transthyretin (hTTR) transport protein to determine the potential for the OP triesters, TDCIPP (tris(1,3-dichloro-2-propyl) phosphate), TBOEP (tris(butoxyethyl) phosphate), TEP (triethyl phosphate), TPHP (triphenyl phosphate), p-OH-TPHP (para-hydroxy triphenyl phosphate), and the OP diester DPHP (diphenyl phosphate), to competitively displace T4 from hTTR. Enhancement of T4 binding to hTTR, rather than the hypothesized competition, was observed for the six OP esters and in a concentration-dependent manner. For example, T4-hTTR binding was significantly increased at concentrations of TBOEP as low as 64 nM, and up to 184% of controls at 5000 nM. A plausible explanation of these results, which to our knowledge has not been previously reported, may be allosteric interactions of the OP esters with hTTR allowing T4 to access the second site of the TH binding pocket. These in vitro results suggest a novel mechanism of OP ester toxicity via T4 binding enhancement, and possible dysregulation of T4-hTTR interactions.
Collapse
Affiliation(s)
- Katie L Hill
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada; Intrinsik Corp., Ottawa, Canada
| | - Timo Hamers
- Department of Environment and Health, Vrije Universiteit Amsterdam, The Netherlands
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine and Biosciences, Department of Basic Science and Aquatic Medicine, CoE CERAD, Norwegian University of Life Sciences, Oslo, 0033, Norway
| | | | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Canada; Department of Biology, Carleton University, Ottawa, Canada.
| |
Collapse
|
21
|
Melnes M, Gabrielsen GW, Herzke D, Sagerup K, Jenssen BM. Dissimilar effects of organohalogenated compounds on thyroid hormones in glaucous gulls. ENVIRONMENTAL RESEARCH 2017; 158:350-357. [PMID: 28683408 DOI: 10.1016/j.envres.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/09/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The glaucous gull (Larus hyperboreus) is an arctic top predator and scavenger exposed to high levels of mixtures of organohalogenated contaminants (OHCs) of which many interfere with the thyroid hormone (TH) system. In the present study, we applied statistical modeling to investigate the potential combined influence of the mixture of chlorinated, brominated and perfluorinated organic compounds in plasma of glaucous gulls on their plasma TH concentrations. In females, there were significant negative associations between several organochlorinated compounds (OCs) and free thyroxin (FT4) and triiodothyronine (FT3), indicating additive negative effects on FT4 and FT3. However, in these females there was also a significant positive association between perfluorooctane sulfonate (PFOS) and FT3. The inverse associations between several OCs and FT3 and the contrasting positive association between PFOS and FT3, indicate that these two groups of OHCs may have dissimilar and antagonistic effects on FT3 in female glaucous gulls. In males, there were no associations between any of the OHCs and the THs. That OHCs affect THs in a complex manner involving both additive and antagonistic effects add to the challenge of interpreting the overall functional effect of thyroid disruptive chemicals in wildlife. However, experimental studies are needed to confirm or disprove such effects.
Collapse
Affiliation(s)
- Marte Melnes
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | | | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre, NO-9296 Tromsø, Norway
| | | | - Bjørn Munro Jenssen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; Department of Arctic Technology, University Centre in Svalbard, NO 9171 Longyearbyen, Norway.
| |
Collapse
|
22
|
Gilroy ÈAM, Muir DCG, McMaster ME, Darling C, Campbell LM, Alaee M, Brown SB, Sherry JP. Halogenated phenolic compounds in wild fish from Canadian Areas of Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2266-2273. [PMID: 28256742 DOI: 10.1002/etc.3781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
Concentrations of halogenated phenolic compounds were measured in the plasma of brown bullhead (Ameiurus nebulosus) from 4 Canadian Areas of Concern (AOCs), to assess exposure to suspected thyroid-disrupting chemicals. Hydroxylated polychlorinated biphenyls (OH-PCBs) were detected in every sample collected in 3 of the AOCs; the detection frequency was lower in samples from the Detroit River AOC. The OH-PCBs most frequently detected were pentachloro, hexachloro, and heptachloro congeners, which are structurally similar to thyroid hormones. Pentachlorophenol (PCP) was detected at highest concentrations (1.8 ng/g) in fish from Prince Edward Bay, the Bay of Quinte Lake reference site, and Hillman Marsh (the Wheatley Harbour reference site), suggesting local sources of contamination. Elevated PCP concentrations were also detected in the plasma of brown bullhead from exposed sites in the Toronto and Region AOC (0.4-0.6 ng/g). Triclosan was consistently detected in the Toronto and Region AOC (0.05-0.9 ng/g), consistent with wastewater emission. Greater concentrations were occasionally detected in the plasma of brown bullhead from the Bay of Quinte AOC. Concentrations of polybrominated diphenyl ethers were highest in the Toronto and Region AOC, and at 2 of the Bay of Quinte AOC exposed sites near Trenton and Belleville. Distribution patterns reflected the properties and usage of the compounds under investigation and the characteristics of each AOC. Environ Toxicol Chem 2017;36:2266-2273. © 2017 SETAC.
Collapse
Affiliation(s)
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Mark E McMaster
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Colin Darling
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Linda M Campbell
- Faculty of Environmental Studies, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Mehran Alaee
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Scott B Brown
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| |
Collapse
|
23
|
Nomiyama K, Takaguchi K, Mizukawa H, Nagano Y, Oshihoi T, Nakatsu S, Kunisue T, Tanabe S. Species- and Tissue-Specific Profiles of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Derivatives in Cats and Dogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5811-5819. [PMID: 28440655 DOI: 10.1021/acs.est.7b01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The adverse effects of elevated polybrominated diphenyl ether (PBDE) levels, reported in the blood of domestic dogs and cats, are considered to be of great concern. However, the tissue distribution of PBDEs and their derivatives in these animals is poorly understood. This study determined the concentrations and profiles of PBDEs, hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and 2,4,6-tribromophenol (2,4,6-tri-BPh) in the blood, livers, bile, and brains of dogs and cats in Japan. Higher tissue concentrations of PBDEs were found in cats, with the dominant congener being BDE209. BDE207 was also predominant in cat tissues, indicating that BDE207 was formed via BDE209 debromination. BDE47 was the dominant congener in dog bile, implying a species-specific excretory capacity of the liver. OH-PBDE and MeO-PBDE concentrations were several orders of magnitude higher in cat tissues, with the dominant congener being 6OH-BDE47, possibly owing to their intake of naturally occurring MeO-PBDEs in food, MeO-PBDE demethylation in the liver, and lack of UDP-glucuronosyltransferase, UGT1A6. Relatively high concentrations of BDE209, BDE207, 6OH-BDE47, 2'MeO-BDE68, and 2,4,6-tri-BPh were found in cat brains, suggesting a passage through the blood-brain barrier. Thus, cats in Japan might be at a high risk from PBDEs and their derivatives, particularly BDE209 and 6OH-BDE47.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Yasuko Nagano
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Tomoko Oshihoi
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-5, Shorinjichonishi, Sakai-ku, Sakai, Osaka 590-0960, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
24
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
25
|
Brogan JM, Green DJ, Maisonneuve F, Elliott JE. An assessment of exposure and effects of persistent organic pollutants in an urban Cooper's hawk (Accipiter cooperii) population. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:32-45. [PMID: 27796689 DOI: 10.1007/s10646-016-1738-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Among the stressors confronting urban wildlife, chemical contaminants pose a particular problem for high trophic feeding species. Previous data from fortuitous carcass collections revealed surprisingly high levels of persistent organic pollutants in raptor species, including the Cooper's hawk (Accipiter cooperii), from urbanized areas of southwestern British Columbia, Canada. Thus, in 2012 and 2013, we followed up on that finding by measuring POPs in blood samples from 21 adult and 15 nestling Cooper's hawks in Vancouver, a large urban area in southwestern Canada. Reproductive success and circulating thyroid hormones were measured to assess possible toxicological effects. Model comparisons showed concentrations of polychlorinated biphenyls (ΣPCBs) were positively influenced by the level of urbanization. Total thyroxin (TT4) was negatively associated with increases in ΣPCBs. Total triiodothyronine (TT3) was negatively associated with ΣPCBs and polybrominated diphenyl ethers (ΣPBDEs). The legacy insecticide, dieldrin, appeared to have some negative influence on reproductive success. There is some evidence of biochemical perturbation by PBDEs and lingering impact of legacy POPs which have not been used for at least 40 years, but overall Cooper's hawks have successfully populated this urban environment.
Collapse
Affiliation(s)
- Jason M Brogan
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1 S7, Canada.
| | - David J Green
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1 S7, Canada
| | - France Maisonneuve
- Environment Canada, Science and Technology Branch, Ottawa, ON, K1A 0H3, Canada
| | - John E Elliott
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1 S7, Canada.
- Environment Canada, Science and Technology Branch, Delta, BC, V4K 3N2, Canada.
| |
Collapse
|
26
|
Ren XM, Qin WP, Cao LY, Zhang J, Yang Y, Wan B, Guo LH. Binding interactions of perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological implications. Toxicology 2016; 366-367:32-42. [PMID: 27528273 DOI: 10.1016/j.tox.2016.08.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 01/28/2023]
Abstract
Perfluoroalkyl substances (PFASs) have been shown to cause abnormal levels of thyroid hormones (THs) in experimental animals, but the molecular mechanism is poorly understood. Here, a fluorescence displacement assay was used to determine the binding affinities of 16 PFASs with two major TH transport proteins, transthyretin (TTR) and thyroxine-binding globulin (TBG). Most of the tested PFASs bound TTR with relative potency (RP) values of 3×10(-4) to 0.24 when compared with that of the natural ligand thyroxine, whereas fluorotelomer alcohols did not bind. Only perfluorotridecanoic acid and perfluorotetradecanoic acid bound TBG, with RP values of 2×10(-4) when compared with that of thyroxine. Based on these results, it was estimated that displacement of T4 from TTR by perfluorooctane sulfonate and perfluorooctanoic acids would be significant for the occupationally exposed workers but not the general population. Structure-binding analysis revealed that PFASs with a medium chain length and a sulfonate acid group are optimal for TTR binding, and PFASs with lengths longer than 12 carbons are optimal for TBG binding. Three mutant proteins were prepared to examine crucial residues involved in the binding of PFASs to TH transport proteins. TTR with a K15G mutation and TBG with either a R378G or R381G mutation showed decreased binding affinity to PFASs, indicating that these residues play key roles in the interaction with the compounds. Molecular docking showed that the PFASs bind to TTR with their acid group forming a hydrogen bond with K15 and the hydrophobic chain towards the interior. PFASs were modeled to bind TBG with their acid group forming a hydrogen bond with R381 and the hydrophobic chain extending towards R378. The findings aid our understanding of the behavior and toxicity of PFASs on the thyroid hormone system.
Collapse
Affiliation(s)
- Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Wei-Ping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Lin-Ying Cao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Jing Zhang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
27
|
Fernie KJ, Marteinson SC. Sex-specific changes in thyroid gland function and circulating thyroid hormones in nestling American kestrels (Falco sparverius) following embryonic exposure to polybrominated diphenyl ethers by maternal transfer. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2084-2091. [PMID: 26757407 DOI: 10.1002/etc.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
High concentrations of polybrominated diphenyl ethers (PBDEs) accumulate in predatory birds. Several PBDE congeners are considered thyroid disruptors; however, avian studies are limited. The authors examined circulating thyroid hormones and thyroid gland function of nestling American kestrels (Falco sparverius) at 17 d to 20 d of age, following embryonic exposure by maternal transfer only to environmentally relevant levels of PBDEs (DE-71 technical mixture). Nestlings were exposed to in ovo sum (Σ) PBDE concentrations of 11 301 ± 95 ng/g wet weight (high exposure), 289 ± 33 ng/g wet weight (low exposure), or 3.0 ± 0.5 ng/g wet weight (controls, background exposure). Statistical comparisons are made to controls of the respective sexes and account for the relatedness of siblings within broods. Circulating concentrations of plasma total thyroxine (TT4 ) and total triiodothyronine (TT3 ) in female nestlings were significantly influenced overall by the exposure to DE-71. Following intramuscular administration of thyroid-stimulating hormone, the temporal response of the thyroid gland in producing and/or releasing TT4 was also significantly affected by the females' exposure to DE-71. The altered availability of T4 for conversion to T3 outside of the gland and/or changes in thyroid-related enzymatic activity may explain the lower TT3 concentrations (baseline, overall) and moderately altered temporal TT3 patterns (p = 0.06) of the treatment females. Controlling for the significant effect on TT3 levels of the delayed hatching of treatment females, baseline TT3 levels were significantly and positively correlated with body mass (10 d, 15 d, 20 d), with PBDE-exposed females generally being smaller and having lower TT3 concentrations. Given that exposure concentrations were environmentally relevant, similar thyroidal changes and associated thyroid-mediated processes relating to growth may also occur in wild female nestlings. Environ Toxicol Chem 2016;35:2084-2091. © 2016 SETAC.
Collapse
Affiliation(s)
- Kim J Fernie
- Wildlife Toxicology & Disease, Science & Technology Branch, Environment Canada, Burlington, Ontario, Canada
| | - Sarah C Marteinson
- Wildlife Toxicology & Disease, Science & Technology Branch, Environment Canada, Burlington, Ontario, Canada
| |
Collapse
|
28
|
Xue W, Chen J, Xie Q. Direct and dissolved oxygen involved photodegradation of MeO-PBDEs in water. JOURNAL OF HAZARDOUS MATERIALS 2016; 307:344-349. [PMID: 26802632 DOI: 10.1016/j.jhazmat.2016.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
Photodegradation has been proved to be a crucial way of elimination for polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs (HO-PBDEs). However, it is still unknown whether methoxylated PBDEs (MeO-PBDEs) can also undergo photodegradation. In this study, 4'-MeO-BDE-17, 5-MeO-BDE-47, 5'-MeO-BDE-99, 6-MeO-BDE-47 and 6-MeO-BDE-85 were selected as targets to investigate their photodegradation in water. Meanwhile, the effects of dissolved oxygen on the photoreactions of MeO-PBDEs were also unveiled. Simulated sunlight experiments indicate that 6-MeO-BDE-47 resisted photodegradation for 20h, while other MeO-PBDEs underwent relatively fast photodegradation, which was greatly susceptible to the substitution patterns of methoxyl and bromine. Photo-excited MeO-PBDEs (except 6-MeO-BDE-47) can sensitize dissolved oxygen to generate singlet oxygen ((1)O2) and superoxide anion radical (O2(-)). The generated (1)O2 cannot degrade the MeO-PBDEs, whereas O2(-) was reactive with MeO-PBDEs. The contribution of dissolved oxygen to the photodegradation of 4'-MeO-BDE-17 and 6-MeO-BDE-85 was negligible; while the negative contribution was observed for 5-MeO-BDE-47 and 5'-MeO-BDE-99. Hydrodebromination was a crucial photodegradation pathway for MeO-PBDEs (excluding 4'-MeO-BDE-17 and 6-MeO-BDE-47). Eventually, direct photolysis half-lives of MeO-PBDEs except 6-MeO-BDE-47 in the surface waters at 40 N latitude were calculated to be 1.35-3.46d in midsummer and 6.39-17.47d in midwinter.
Collapse
Affiliation(s)
- Weifeng Xue
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Técher R, Houde M, Verreault J. Associations between organohalogen concentrations and transcription of thyroid-related genes in a highly contaminated gull population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:289-298. [PMID: 26747993 DOI: 10.1016/j.scitotenv.2015.12.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
A number of studies have reported altered circulating thyroid hormone levels in birds exposed either in controlled settings or in their natural habitat to ubiquitous organohalogen compounds including organochlorines (OCs) and polybrominated diphenyl ether (PBDE) flame retardants. However, limited attention has been paid to underlying homeostatic mechanisms in wild birds such as changes in the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis. The objective of the present study was to investigate the relationships between hepatic concentrations of major organohalogens (PBDEs and OCs), and circulating thyroid hormone (free and total thyroxine (T4) and triiodothyronine (T3)) levels and transcription of 14 thyroid-related genes in three tissues (thyroid, brain, and liver) of an urban-adapted bird exposed to high organohalogen concentrations in the Montreal area (QC, Canada), the ring-billed gull (Larus delawarensis). Positive correlations were found between liver concentrations of several polychlorinated biphenyls (PCBs), PBDEs as well as chlordanes and total plasma T4 levels. Hepatic concentrations of several PBDEs were negatively correlated with mRNA levels of deiodinase type 3, thyroid peroxidase, and thyroid hormone receptor β (TRβ) in the thyroid gland. Liver PCB (deca-CB) correlated positively with mRNA levels of sodium-iodide symporter and TRα. In brain, concentrations of most PBDEs were positively correlated with mRNA levels of organic anion transporter protein 1C1 and transthyretin, while PCBs positively correlated with expression of TRα and TRβ as well as deiodinase type 2. These multiple correlative linkages suggest that organohalogens operate through several mechanisms (direct or compensatory) involving gene transcription, thus potentially perturbing the HPT axis of this highly organohalogen-contaminated ring-billed gull population.
Collapse
Affiliation(s)
- Romy Técher
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| | - Magali Houde
- Environment Canada, St. Lawrence Centre, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
30
|
Oulhote Y, Chevrier J, Bouchard MF. Exposure to Polybrominated Diphenyl Ethers (PBDEs) and Hypothyroidism in Canadian Women. J Clin Endocrinol Metab 2016; 101:590-8. [PMID: 26606679 DOI: 10.1210/jc.2015-2659] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in a wide range of products, resulting in widespread human exposure. Epidemiological studies in some populations reported exposure to PBDEs and thyroid hormone levels but little epidemiological data are available among women from the general population. OBJECTIVE The objective of the study was to examine the association of PBDEs with hypothyroidism. DESIGN AND SETTING This was a cross-sectional analysis of the 2007-2009 Canadian Health Measures Survey. PARTICIPANTS A total of 745 women representative of Canadian women aged 30-79 years participated in the study. Main Outcome and Methods: We estimated the prevalence ratios (PRs) for hypothyroidism in relation to plasma concentrations of BDE-47, -99, -100, and -153 and their sum (ΣPBDEs). Women were identified as cases if they reported a doctor-diagnosed thyroid condition and underwent thyroid hormone replacement therapy (n = 90). RESULTS Higher plasma levels of brominated diphenyl ether (BDE)-47 and -100 and ΣPBDEs were associated with an increased prevalence of hypothyroidism. The PR for a 10-fold increase in ΣPBDEs was 1.7 (95% confidence interval [CI] 1.0, 3.0). Associations were consistently higher among women aged 30-50 years than among those 51-79 years for ΣPBDEs and the other PBDE congeners, although the interaction was significant only for BDE-100. For instance, in the younger age group, women with detectable levels of BDE-100 had a PR of 3.8 (95% CI 1.2, 12.3) compared with women with undetectable levels; the corresponding PR in the older age group was 1.2 (95% CI 0.6, 2.3). No association was observed for BDE-99 and -153. CONCLUSION Plasma PBDE levels were associated with an increased prevalence of hypothyroidism in Canadian women aged 30-50 years. Although the cross-sectional design of the study limits inferences of causality, these findings have important implications, given the key role of thyroid hormones in several biological mechanisms during reproductive age.
Collapse
Affiliation(s)
- Youssef Oulhote
- Department of Environmental and Occupational Health (Y.O., M.F.B.), Université de Montréal, and Centre Hospitalier de l'Université Sainte-Justine Mother and Child University Hospital Research Center (Y.O., M.F.B.), Montréal, Canada H3T 1A8; and Department of Epidemiology, Biostatistics and Occupational Health (J.C.), McGill University, Montréal, Canada H3A 1A2
| | - Jonathan Chevrier
- Department of Environmental and Occupational Health (Y.O., M.F.B.), Université de Montréal, and Centre Hospitalier de l'Université Sainte-Justine Mother and Child University Hospital Research Center (Y.O., M.F.B.), Montréal, Canada H3T 1A8; and Department of Epidemiology, Biostatistics and Occupational Health (J.C.), McGill University, Montréal, Canada H3A 1A2
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health (Y.O., M.F.B.), Université de Montréal, and Centre Hospitalier de l'Université Sainte-Justine Mother and Child University Hospital Research Center (Y.O., M.F.B.), Montréal, Canada H3T 1A8; and Department of Epidemiology, Biostatistics and Occupational Health (J.C.), McGill University, Montréal, Canada H3A 1A2
| |
Collapse
|
31
|
Xue W, Chen J, Xie Q, Zhao H. Direct photolysis of MeO-PBDEs in water and methanol: focusing on cyclization product MeO-PBDFs. CHEMOSPHERE 2015; 139:518-524. [PMID: 26298690 DOI: 10.1016/j.chemosphere.2015.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/02/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs can transform into polybrominated dibenzofurans (PBDFs) via photocyclization. However, it is unclear whether methoxylated PBDEs (MeO-PBDEs) can photocyclize to form MeO-PBDFs. In this study, 5-MeO-BDE-47, 5'-MeO-BDE-99 and 6-MeO-BDE-85 were selected as models to investigate their direct photolysis, especially photocyclization in two solvent environments (water and methanol) using simulated photochemical experiments and density functional theory (DFT) calculations. The experimental results showed that MeO-PBDEs had faster direct photolysis reactions and higher quantum yields in methanol, and MeO-PBDFs could only be formed in a methanol solution of 5-MeO-BDE-47. The DFT results indicated that the lowest excited triplet state MeO-PBDEs can form dibenzofurans via direct cyclization pathways. Intra-annular H-elimination was found to be the rate-determining step for most cyclization pathways with high reaction barriers (⩾19.7kcal/mol), while 5-MeO-BDE-47 was found to have a distinct pathway for which the rate-determining step is ring closure with a low barrier (13.8kcal/mol) in a methanol environment. For this pathway, H-elimination assisted by Br cleaved from an ortho-C-Br bond was observed with a 2.0kcal/mol barrier. Thus, the DFT results reasonably explained the experimental findings, and the photocyclization of MeO-PBDEs depended on the specific Br-substitution patterns and specific effects of the environmental media.
Collapse
Affiliation(s)
- Weifeng Xue
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
32
|
Lucia M, Verboven N, Strøm H, Miljeteig C, Gavrilo MV, Braune BM, Boertmann D, Gabrielsen GW. Circumpolar contamination in eggs of the high-Arctic ivory gull Pagophila eburnea. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1552-61. [PMID: 25677940 DOI: 10.1002/etc.2935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/30/2014] [Accepted: 02/09/2015] [Indexed: 05/14/2023]
Abstract
The ivory gull Pagophila eburnea is a high-Arctic species threatened by climate change and contaminants. The objective of the present study was to assess spatial variation of contaminant levels (organochlorines [OCs], brominated flame retardants [BFRs], perfluorinated alkyl substances [PFASs], and mercury [Hg]) in ivory gulls breeding in different areas across the Arctic region as a baseline for potential future changes associated with climate change. Contaminants were already determined in eggs from Canada (Seymour Island; except PFASs), Svalbard in Norway (Svenskøya), and 3 sites in Russia (Nagurskoe, Cape Klyuv, and Domashny). New data from Greenland allowed the investigation of a possible longitudinal gradient of contamination. The most quantitatively abundant OCs were p,p'-dichlorodiphenyldichloroethylene (DDE) and polychlorobiphenyls. Mercury concentrations were higher in Canada compared with other colonies. Eggs from Nagurskoe often were characterized by higher OC and BFR concentrations. Concentrations gradually decreased in colonies situated east of Nagurskoe. In contrast, PFAS concentrations, especially perfluorooctanoate and perfluorononanoate, were higher in Greenland. Some of the contaminants, especially Hg and p,p'-DDE, exceeded published thresholds known to disrupt the reproductive success of avian species. Overall, the levels of OCs, BFRs, and PFASs did not suggest direct lethal exposure to these compounds, but their potential synergetic/additive sublethal effects warrant monitoring.
Collapse
Affiliation(s)
| | | | | | - Cecilie Miljeteig
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria V Gavrilo
- National Park Russian Arctic, Archangelsk, Russia
- Joint Directorate of Taimyr Nature Reserves, Norilsk, Russia
| | - Birgit M Braune
- Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - David Boertmann
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
33
|
Weiss JM, Andersson PL, Zhang J, Simon E, Leonards PEG, Hamers T, Lamoree MH. Tracing thyroid hormone-disrupting compounds: database compilation and structure-activity evaluation for an effect-directed analysis of sediment. Anal Bioanal Chem 2015; 407:5625-34. [PMID: 25986900 PMCID: PMC4498237 DOI: 10.1007/s00216-015-8736-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 11/28/2022]
Abstract
A variety of anthropogenic compounds has been found to be capable of disrupting the endocrine systems of organisms, in laboratory studies as well as in wildlife. The most widely described endpoint is estrogenicity, but other hormonal disturbances, e.g., thyroid hormone disruption, are gaining more and more attention. Here, we present a review and chemical characterization, using principal component analysis, of organic compounds that have been tested for their capacity to bind competitively to the thyroid hormone transport protein transthyretin (TTR). The database contains 250 individual compounds and technical mixtures, of which 144 compounds are defined as TTR binders. Almost one third of these compounds (n = 52) were even more potent than the natural hormone thyroxine (T4). The database was used as a tool to assist in the identification of thyroid hormone-disrupting compounds (THDCs) in an effect-directed analysis (EDA) study of a sediment sample. Two compounds could be confirmed to contribute to the detected TTR-binding potency in the sediment sample, i.e., triclosan and nonylphenol technical mixture. They constituted less than 1 % of the TTR-binding potency of the unfractionated extract. The low rate of explained activity may be attributed to the challenges related to identification of unknown contaminants in combination with the limited knowledge about THDCs in general. This study demonstrates the need for databases containing compound-specific toxicological properties. In the framework of EDA, such a database could be used to assist in the identification and confirmation of causative compounds focusing on thyroid hormone disruption.
Collapse
Affiliation(s)
- Jana M Weiss
- Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, VU University, De Boelelaan 1087, 1081HV, Amsterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
34
|
Mizukawa H, Nomiyama K, Kunisue T, Watanabe MX, Subramanian A, Iwata H, Ishizuka M, Tanabe S. Organohalogens and their hydroxylated metabolites in the blood of pigs from an open waste dumping site in south India: association with hepatic cytochrome P450. ENVIRONMENTAL RESEARCH 2015; 138:255-263. [PMID: 25743931 DOI: 10.1016/j.envres.2015.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
The concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and their hydroxylated metabolites (OH-PCBs and OH-PBDEs) were measured in the blood of Eurasian wild pigs (Sus scrofa) from a municipal waste open dumping site (DS) and a reference site (RS) in South India. We showed that contamination with OH-PCBs was higher in female pigs from the DS than in all other adult pigs. The highest OH-PCB concentrations were found in piglets from the DS. Moreover, the hepatic expression levels of CYP1A and CYP2B were higher in piglets than in their dam, implying metabolism of PCBs by cytochrome P450 (CYP) enzymes. The OH-PCB congener profiles differed according to sex and collection sites, possibly because of variations in the expression levels of phase I and phase II enzymes among individual pigs, differences in the exposure sources, and maternal transfer of parent PCBs. The hepatic CYP1A expression levels were positively correlated with the blood concentrations of 4OH-CB107, 4OH-CB162, and 4OH-CB187, implying CYP1A-dependent formation of these OH-PCBs in the pig liver. We found no significant correlations between the blood concentrations of OH-PCBs and thyroid hormones (THs); however, the thyroxin (T4) levels were lower in pigs from the DS than in pigs from the RS. Our limited dataset suggest that induced CYP enzymes accelerate the metabolism of xenobiotics and endogenous molecules in pigs. Thus, besides parental compounds, the risk of hydroxylated metabolites entering wildlife and humans living in and around municipal open waste dumping sites should be considered.
Collapse
Affiliation(s)
- Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Michio X Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Annamalai Subramanian
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
35
|
Xu X, Huang H, Wen B, Wang S, Zhang S. Phytotoxicity of Brominated Diphenyl Ether-47 (BDE-47) and Its Hydroxylated and Methoxylated Analogues (6-OH-BDE-47 and 6-MeO-BDE-47) to Maize (Zea mays L.). Chem Res Toxicol 2015; 28:510-7. [DOI: 10.1021/tx500484m] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xuehui Xu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Honglin Huang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Bei Wen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Sen Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- Department
of Environmental Sciences, College of Urban and Environmental Sciences, Northwest University, Xi’an 710027, China
| | - Shuzhen Zhang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
36
|
Agarwal V, Li J, Rahman I, Borgen M, Aluwihare LI, Biggs JS, Paul VJ, Moore BS. Complexity of naturally produced polybrominated diphenyl ethers revealed via mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1339-46. [PMID: 25559102 PMCID: PMC4358748 DOI: 10.1021/es505440j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent and bioaccumulative anthropogenic and natural chemicals that are broadly distributed in the marine environment. PBDEs are potentially toxic due to inhibition of various mammalian signaling pathways and enzymatic reactions. PBDE isoforms vary in toxicity in accordance with structural differences, primarily in the number and pattern of hydroxyl moieties afforded upon a conserved core structure. Over four decades of isolation and discovery-based efforts have established an impressive repertoire of natural PBDEs. Based on our recent reports describing the bacterial biosyntheses of PBDEs, we predicted the presence of additional classes of PBDEs to those previously identified from marine sources. Using mass spectrometry and NMR spectroscopy, we now establish the existence of new structural classes of PBDEs in marine sponges. Our findings expand the chemical space explored by naturally produced PBDEs, which may inform future environmental toxicology studies. Furthermore, we provide evidence for iodinated PBDEs and direct attention toward the contribution of promiscuous halogenating enzymes in further expanding the diversity of these polyhalogenated marine natural products.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Scripps Center for Oceans and Human Health, University of California at San Diego, San Diego, California 92037, United States
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, University of California at San Diego, San Diego, California 92037, United States
| | - Imran Rahman
- Scripps Center for Oceans and Human Health, University of California at San Diego, San Diego, California 92037, United States
| | - Miles Borgen
- Scripps Center for Oceans and Human Health, University of California at San Diego, San Diego, California 92037, United States
| | - Lihini I. Aluwihare
- Scripps Center for Oceans and Human Health, University of California at San Diego, San Diego, California 92037, United States
- Geoscience Research Division, Scripps Institution of Oceanography, University of California at San Diego, San Diego, California 92037, United States
| | - Jason S. Biggs
- University of Guam Marine Laboratory, UoG Station, Mangilao, Guam 96923, United States
| | - Valerie J. Paul
- Center for Marine Biotechnology and Biomedicine, University of California at San Diego, San Diego, California 92037, United States
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, Florida 34949, United States
| | - Bradley S. Moore
- Scripps Center for Oceans and Human Health, University of California at San Diego, San Diego, California 92037, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California 92037, United States
- Corresponding Author: Phone: 858-822-6650; fax: 858-534-1318;
| |
Collapse
|
37
|
Eguchi A, Nomiyama K, Minh Tue N, Trang PTK, Hung Viet P, Takahashi S, Tanabe S. Residue profiles of organohalogen compounds in human serum from e-waste recycling sites in North Vietnam: Association with thyroid hormone levels. ENVIRONMENTAL RESEARCH 2015; 137:440-449. [PMID: 25659948 DOI: 10.1016/j.envres.2015.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
This study demonstrated the contamination levels of polychlorinated biphenyls (PCBs), hydroxylated PCBs (OH-PCBs), polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), hydroxylated PBDEs (OH-PBDEs), and bromophenols (BPhs), and their relationships with thyroid hormones (THs), in the serum of human donors from an e-waste recycling site and a rural site in Hung Yen province, Vietnam. Occupationally related exposure was indicated by significantly higher residue levels of PCBs, OH-PCBs, PBDEs, and BPhs in the serum of donors from the e-waste recycling site (median: 420, 160, 290, and 300pgg(-1) wet wt, respectively) than those in the serum of donors from the rural site (median: 290, 82, 230, and 200pgg(-)(1) wet wt, respectively). On the other hand, levels of OH-/MeO-PBDEs were significantly higher in serum of donors from the reference site (median: 160 and 20pgg(-1) wet wt, respectively) than in those from the e-waste recycling site (median: 43 and 0.52pgg(-1) wet wt, respectively). In addition, we implemented stepwise generalized linear models to assess the association between the levels of TH and PCBs, PBDEs, and their related compounds. In females, we found positive associations of PCBs and OH-PCB concentrations with total thyroxine, free thyroxine, total triiodothyronine, and free triiodothyronine, and a negative association with thyroid-stimulating hormone concentrations.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan; Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam
| | - Pham Thi Kim Trang
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam
| | - Pham Hung Viet
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment, Faculty of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
38
|
Nomiyama K, Hirakawa S, Eguchi A, Kanbara C, Imaeda D, Yoo J, Kunisue T, Kim EY, Iwata H, Tanabe S. Toxicological assessment of polychlorinated biphenyls and their metabolites in the liver of Baikal seal (Pusa sibirica). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13530-13539. [PMID: 25343573 DOI: 10.1021/es5043386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have previously reported that high accumulation of dioxins and related compounds induced cytochrome P450 (CYP 1s) isozymes in the liver of wild Baikal seals, implying the enhanced hydroxylation of polychlorinated biphenyls (PCBs). The present study attempted to elucidate the residue concentrations and patterns of PCBs and hydroxylated PCBs (OH-PCBs) in the livers of Baikal seals. The hepatic residue concentrations were used to assess the potential effects of PCBs and OH-PCBs in combination with the analyses of serum thyroid hormones, hepatic mRNA levels, and biochemical markers. The hepatic expression levels of CYP1 genes were positively correlated with the concentration of each OH-PCB congener. This suggests chronic induction of these CYP1 isozymes by exposure to PCBs and hydroxylation of PCBs induced by CYP 1s. Hepatic mRNA expression monitoring using a custom microarray showed that chronic exposure to PCBs and their metabolites alters the gene expression levels related to oxidative stress, iron ion homeostasis, and inflammatory responses. In addition, the concentrations of OH-PCBs were negatively correlated with L-thyroxine (T4) levels and the ratios of 3,3',5-triiodo-L-thyronine (T3)/reverse 3,3',5'-triiodo-L-thyroninee (rT3). These observations imply that Baikal seals contaminated with high levels of OH-PCBs may undergo the disruption of mechanisms related to the formation (or metabolism) of T3 and T4 in the liver.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University , Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Eng ML, Elliott JE, Williams TD. An assessment of the developmental toxicity of BDE-99 in the European starling using an integrated laboratory and field approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1505-1516. [PMID: 25081382 DOI: 10.1007/s10646-014-1292-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
Developmental exposure of wildlife to anthropogenic contaminants can have long-term effects that are difficult to assess in field monitoring studies, and may not be evident in laboratory studies that lack ecological components. The objective of this study was to assess the long-term effects of early exposure to contaminants under ecological conditions in a model passerine species, the European starling (Sturnus vulgaris). We selected 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) as a representative contaminant, as it is one of the major constituents of the commercial penta-BDE flame retardant mixture, and has been reported in avian egg and tissue samples worldwide. We developed a novel approach to assess the developmental toxicity of BDE-99 in starlings by combining aspects of laboratory and field studies. We dosed free-living nestlings living in natural broods in the field with environmentally relevant concentrations of BDE-99 (0-173.8 ng/g bw/day) for the duration of the nesting cycle. To simulate monitoring of long-term effects we brought birds into captivity just prior to fledging and used photoperiod manipulations to induce reproductive development. We assessed a range of physiological and development measures such as hematocrit, oxidative stress, thyroid hormones, neuroanatomy, growth, molt rate, bill color, and testes development. We found some evidence of thyroid hormone disruption, but there were no effects on any other measures of physiology or development. The European starling could serve as a valuable model species for assessing early exposure and long-term effects of anthropogenic contaminants in terrestrial wildlife using this combined field/laboratory approach.
Collapse
Affiliation(s)
- Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada,
| | | | | |
Collapse
|
40
|
Quinete N, Schettgen T, Bertram J, Kraus T. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11951-11972. [PMID: 24943885 DOI: 10.1007/s11356-014-3136-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
In recent years, attention has been directed to chemicals with possible endocrine-disrupting properties. Polychlorinated biphenyls (PCBs) and their metabolites belong to one group of environmental contaminants that have been shown to interact with the endocrine system in mammals, including humans. Although recent developments have been made in terms of determination of PCB metabolites in blood samples, still limited number of studies have been able to elucidate their profiles and toxicological and health effects in humans. This review aims to evaluate and compare the levels of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs) in blood and their relationship to parent compounds and also address the potential risks and adverse health effects in humans. Levels of OH-PCBs varied between 0.0002 and 1.6 ng g(-1) w/w in human serum/plasma from the selected literature, correlating well with ∑PCBs. In contrast, ∑OH-PCB/∑PCB ratio in animals did not show a significant correlation, which might suggest that the bioaccumulation plays an even more important role in the concentration of OH-PCBs compared to PCB metabolism. Highest levels of MeSO2-PCBs were reported in marine mammals with high selectivity retention in the liver. Health effects of PCB metabolites included carcinogenicity, reproductive impairment, and developmental neurotoxicity, being more efficiently transferred to the brain and across the placenta from mother to fetus in comparison to the parent PCBs. Based on the lack of knowledge on the occurrence and distribution of lower chlorinated OH-PCBs in humans, further studies to identify and assess the risks associated to human exposure are essential.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
41
|
Agarwal V, Moore BS. Enzymatic synthesis of polybrominated dioxins from the marine environment. ACS Chem Biol 2014; 9:1980-4. [PMID: 25061970 PMCID: PMC4168793 DOI: 10.1021/cb5004338] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Abstract
Polyhalogenated dibenzo-p-dioxins are arguably among the most toxic molecules known to man. In addition to anthropogenic sources, marine invertebrates also harbor polybrominated dibenzo-p-dioxins of as yet unknown biogenic origin. Here, we report that the bmp gene locus in marine bacteria, a recently characterized source of polybrominated diphenyl ethers, can also synthesize dibenzo-p-dioxins by employing different phenolic initiator molecules. Our findings also diversify the structural classes of diphenyl ethers accessed by the bmp biosynthetic pathway. This report lays the biochemical foundation of a likely biogenetic origin of dibenzo-p-dioxins present in the marine metabolome and greatly expands the toxicity potential of marine derived polyhaloganated natural products.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution
of Oceanography and Skaggs School of
Pharmacy and Pharmaceutical Sciences, University
of California, San Diego, California 92093, United States
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution
of Oceanography and Skaggs School of
Pharmacy and Pharmaceutical Sciences, University
of California, San Diego, California 92093, United States
| |
Collapse
|
42
|
Agarwal V, El Gamal AA, Yamanaka K, Poth D, Kersten RD, Schorn M, Allen EE, Moore BS. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat Chem Biol 2014; 10:640-7. [PMID: 24974229 PMCID: PMC4104138 DOI: 10.1038/nchembio.1564] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/19/2014] [Indexed: 01/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention because of their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominases revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | - Kazuya Yamanaka
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | - Dennis Poth
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | - Roland D. Kersten
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | - Michelle Schorn
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
| | - Eric E. Allen
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
- Division of Biological Sciences. University of California at San Diego, La Jolla, USA
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences. University of California at San Diego, La Jolla, USA
| |
Collapse
|
43
|
Nomiyama K, Kanbara C, Ochiai M, Eguchi A, Mizukawa H, Isobe T, Matsuishi T, Yamada TK, Tanabe S. Halogenated phenolic contaminants in the blood of marine mammals from Japanese coastal waters. MARINE ENVIRONMENTAL RESEARCH 2014; 93:15-22. [PMID: 24060385 DOI: 10.1016/j.marenvres.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
Information on accumulation of halogenated phenolic contaminants in the blood of marine mammal is limited. The present study, we determined the residue levels and patterns of chlorinated and brominated phenolic contaminants (OH-PCBs, OH-PBDEs and bromophenols) in the blood collected from pinnipeds (northern fur seal, spotted seal, Steller sea lion and ribbon seal) and small cetaceans (harbor porpoise and Dall's porpoise) from Japanese coastal waters. Concentrations of PCBs and OH-PCBs found in pinnipeds were the same as in small cetaceans living in the same coastal area. However, significantly lower concentrations of brominated compounds (PBDEs, MeO-PBDEs, OH-PBDEs) were found in the blood of pinnipeds than the levels found in cetacean species which live same area (p < 0.05). This difference of accumulation pattern suggested pinnipeds have an enhanced capability to degrade organobromine compounds relative to cetaceans.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan.
| | - Chika Kanbara
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Akifumi Eguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Tomohiko Isobe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Takashi Matsuishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-3-1 Minato-cho, Hakodate 041-8611, Japan
| | - Tadasu K Yamada
- Department of Zoology, National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| |
Collapse
|
44
|
Eguchi A, Nomiyama K, Ochiai M, Mizukawa H, Nagano Y, Nakagawa K, Tanaka K, Miyagawa H, Tanabe S. Simultaneous detection of multiple hydroxylated polychlorinated biphenyls from a complex tissue matrix using gas chromatography/isotope dilution mass spectrometry. Talanta 2014; 118:253-61. [DOI: 10.1016/j.talanta.2013.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 11/27/2022]
|
45
|
Plourde SP, Moreau R, Letcher RJ, Verreault J. Is the bone tissue of ring-billed gulls breeding in a pollution hotspot in the St. Lawrence River, Canada, impacted by halogenated flame retardant exposure? CHEMOSPHERE 2013; 93:2333-2340. [PMID: 24016627 DOI: 10.1016/j.chemosphere.2013.08.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
Bone metabolism is a tightly regulated process that controls bone remodeling and repair in addition to maintaining circulating calcium and phosphate levels. It has been shown that certain organohalogen contaminants may adversely impact bone tissue metabolism and structure in wildlife species. However, exceedingly few studies have addressed the bone-related effects of organohalogen exposure in birds. The objective of the present study was to investigate the associations between markers of bone metabolism and structural integrity, and concentrations of established and current-use halogenated flame retardants (FRs) in ring-billed gulls (Larus delawarensis) nesting in a known FR hotspot area in the St. Lawrence River (Montreal, Canada). Bone metabolism was assessed using plasma calcium and inorganic phosphate levels, and alkaline phophatase activity, while bone (tarsus; trabecular and cortical sections) structure quality was examined using the percentage of bone tissue comprised in the total bone volume (Bv/Tv) and bone mineral density (BMD). Bv/Tv and BMD of the tarsus tended (not significant) to be positively associated with circulating calcium levels in male ring-billed gulls. Moreover, concentrations of FRs in male bird liver (brominated diphenyl ether (BDE)-154, -183, -201, and -209) and plasma (BDE-209) were negatively correlated with trabecular and cortical BMD of the tarsus. These correlative associations may suggest light demineralization of bone tissue associated with FR exposure in male ring-billed gulls. Present findings provide some evidence that bone (tarsus) metabolism and mineral composition may be impacted in high FR-exposed (mainly to PBDEs) ring-billed gulls breeding in the highly urbanized Montreal region.
Collapse
Affiliation(s)
- Stéphanie Pellerin Plourde
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
46
|
Eng ML, Williams TD, Elliott JE. Developmental exposure to a brominated flame retardant: an assessment of effects on physiology, growth, and reproduction in a songbird, the zebra finch. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:343-349. [PMID: 23603472 DOI: 10.1016/j.envpol.2013.03.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Mixtures of polybrominated diphenyl ethers (PBDEs) have been widely used as additive flame retardants, and BDE-99 is one of the most predominant congeners found in the environment. BDE-99 has been reported in avian samples worldwide, yet knowledge of its toxicity to birds is minimal. We assessed the short- and long-term effects of nestling exposure to environmentally relevant levels of BDE-99 in a model passerine, the zebra finch. Early exposure to BDE-99 did not affect hematocrit, oxidative stress, or thyroid hormones in either the juvenile or adult stages, and there were no effects on chick growth or survival. BDE-99 exposure caused a dose-dependent delay in timing of reproduction, but there were no other effects on reproductive success. In zebra finches, endpoints related to reproductive behavior appear to be the most sensitive to BDE-99. However, passerines overall appear to be less sensitive than birds of prey or mammals to PBDE exposure.
Collapse
Affiliation(s)
- Margaret L Eng
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | | | | |
Collapse
|
47
|
Montaño M, Gutleb AC, Murk AJ. Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6071-6081. [PMID: 23635024 DOI: 10.1021/es400478k] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Halogenated phenolic compounds (HPCs) including hydroxylated polychlorobiphenyls (OH-PCBs) and hydroxylated polybromodiphenyl-ethers (OH-PBDEs) can be persistent organic pollutant (POP) metabolites or natural marine compounds. Structurally similar to thyroid hormones (THs), they are retained in blood, transported through selective barriers, and the cause of endocrine and neuronal POP effects. This study presents a meta-analysis of HPC burdens in human and wildlife tissues, including OH-PCBs, OH-PBDEs, Pentachlorophenol, and polybromophenols. HPC blood plasma levels were also compared to known in vitro and in vivo toxicological effect concentrations. Blood, highly perfused, and fetal tissues contained the highest levels of HPCs. Plasma concentrations of analyzed OH-PCBs/PBDEs ranged from 0.1 to 100 nM in humans and up to 240, 454, 800, and 7650 nM for birds, fish, cetaceans, and other mammals, respectively. These concentrations fully fall within the in vitro effect concentrations reported in literature for HPCs of 0.05-10000 nM. We strongly advise further study of HPC blood levels in the general population, children, and fetal tissue to establish background levels and the risk at sensitive development stages. As not all HPCs are, or can be, chemically analyzed, the application of additional bioanalysis might reveal an even greater toxicological relevance of HPCs. In addition, metabolic activation should always be included within in vitro hazard assessment of POPs.
Collapse
Affiliation(s)
- Mauricio Montaño
- Centre de Recherche Public - Gabriel Lippmann, Department Environment and Agro-biotechnologies, 41 rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | | | | |
Collapse
|
48
|
Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW. Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:657-62. [PMID: 23584369 PMCID: PMC3672920 DOI: 10.1289/ehp.1206198] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/11/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND The displacement of l-thyroxine (T4) from binding sites on transthyretin (TTR) is considered a significant contributing mechanism in polychlorinated biphenyl (PCB)-induced thyroid disruption. Previous research has discovered hydroxylated PCB metabolites (OH-PCBs) as high-affinity ligands for TTR, but the binding potential of conjugated PCB metabolites such as PCB sulfates has not been explored. OBJECTIVES We evaluated the binding of five lower-chlorinated PCB sulfates to human TTR and compared their binding characteristics to those determined for their OH-PCB precursors and for T4. METHODS We used fluorescence probe displacement studies and molecular docking simulations to characterize the binding of PCB sulfates to TTR. The stability of PCB sulfates and the reversibility of these interactions were characterized by HPLC analysis of PCB sulfates after their binding to TTR. The ability of OH-PCBs to serve as substrates for human cytosolic sulfotransferase 1A1 (hSULT1A1) was assessed by OH-PCB-dependent formation of adenosine-3',5'-diphosphate, an end product of the sulfation reaction. RESULTS All five PCB sulfates were able to bind to the high-affinity binding site of TTR with equilibrium dissociation constants (Kd values) in the low nanomolar range (4.8-16.8 nM), similar to that observed for T4 (4.7 nM). Docking simulations provided corroborating evidence for these binding interactions and indicated multiple high-affinity modes of binding. All OH-PCB precursors for these sulfates were found to be substrates for hSULT1A1. CONCLUSIONS Our findings show that PCB sulfates are high-affinity ligands for human TTR and therefore indicate, for the first time, a potential relevance for these metabolites in PCB-induced thyroid disruption.
Collapse
Affiliation(s)
- Fabian A Grimm
- Interdisciplinary Graduate Program in Human Toxicology, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, College of Public Health, The University of Iowa, Iowa City, Iowa 52246, USA
| | | | | | | | | |
Collapse
|
49
|
Metcalfe CD, Kleywegt S, Letcher RJ, Topp E, Wagh P, Trudeau VL, Moon TW. A multi-assay screening approach for assessment of endocrine-active contaminants in wastewater effluent samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 454-455:132-140. [PMID: 23542486 DOI: 10.1016/j.scitotenv.2013.02.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/24/2013] [Accepted: 02/24/2013] [Indexed: 06/02/2023]
Abstract
Environmental agencies must monitor an ever increasing range of contaminants of emerging concern, including endocrine disrupting compounds (EDCs). An alternative to using ultra-trace chemical analysis of samples for EDCs is to test for biological activity using in vitro screening assays, then use these assay results to direct analytical chemistry approaches. In this study, we used both analytical approaches and in vitro bioassays to characterize the EDCs present in treated wastewater from four wastewater treatment plants (WWTPs) in Ontario, Canada. Estrogen-mediated activity was assessed using a yeast estrogenicity screening (YES) assay. An in vitro competitive binding assay was used to assess capacity to interfere with binding of the thyroid hormone, thyroxine (T4) to the recombinant human thyroid hormone transport protein, transthyretin (i.e. hTTR). An in vitro binding assay with a rat peroxisome proliferator responsive element transfected into a rainbow trout gill cell line was used to evaluate binding and subsequent gene expression via the peroxisome proliferator activated receptor (PPAR). Analyses of a suite of contaminants known to be EDCs in extracts from treated wastewater were conducted using either gas chromatography with mass spectrometry (GC-MS) or liquid chromatography with tandem mass spectrometry (LC-MS/MS). Estrogenic activity was detected in the YES assay only in those extracts that contained detectable amounts of estradiol (E2). There was a positive relationship between the degree of response in the T4-hTTR assay and the amounts of polybrominated diphenyl ether (PBDE) congeners 47 and 99, triclosan and the PBDE metabolite, 4-OH-BDE17. Several wastewater extracts gave a positive response in the PPAR assay, but these responses were not correlated with the amounts of any of the EDCs analyzed by LC-MS/MS. Overall, these data indicate that a step-wise approach is feasible using a combination of in vitro testing and instrumental analysis to monitor for EDCs in wastewater and other environmental matrixes.
Collapse
Affiliation(s)
- Chris D Metcalfe
- Environmental and Resource Studies, Trent University, Peterborough, ON, K9J 7B8, Canada.
| | | | | | | | | | | | | |
Collapse
|
50
|
Papa E, Kovarich S, Gramatica P. QSAR prediction of the competitive interaction of emerging halogenated pollutants with human transthyretin. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:333-349. [PMID: 23710908 DOI: 10.1080/1062936x.2013.773374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The determination of the potential endocrine disruption (ED) activity of chemicals such as poly/perfluorinated compounds (PFCs) and brominated flame retardants (BFRs) is still hindered by a limited availability of experimental data. Quantitative structure-activity relationship (QSAR) strategies can be applied to fill this data gap, help in the characterization of the ED potential, and screen PFCs and BFRs with a hazardous toxicological profile. This paper proposes the modelling of T4-TTR (thyroxin-transthyretin) competing potency and relative binding potency toward T4 (logT4-REP) of PFCs and BFRs by regression and classification QSAR models. This study is a follow up of a former work, which analysed separately the interaction of BFRs and PFCs with the carrier TTR. The new results demonstrate the possibility of developing robust and predictive QSARs, which include both BFRs and PFCs in the training set, obtaining larger applicability domains than the existing models developed separately for BFRs and PFCs. The selection of modelling molecular descriptors confirms the importance of structural features, such as the aromatic OH or the molecular length, to increase the binding of the studied chemicals to TTR. Additionally, the need of experimental tests for some chemicals, and in particular for some of the BFRs, is highlighted.
Collapse
Affiliation(s)
- E Papa
- QSAR Research Unit in Environmental Chemistry and Ecotoxicology, Department of Theoretical and Applied Sciences, University of Insubria, Varese, Italy.
| | | | | |
Collapse
|