1
|
Yeh K, Ditto JC, Rivellini LH, Askari A, Abbatt JPD. Ultrafine Particle Generation from Ozone Oxidation of Cannabis Smoke. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39691962 DOI: 10.1021/acs.est.4c08311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Cannabis smoke is a complex aerosol mixture, featuring characteristic monoterpenes and sesquiterpenes which are susceptible to reaction with ozone and other oxidants. These reactions form less-volatile species which can contribute to secondary organic aerosol (SOA) and ultrafine particle (UFP) formation. In this work, the reaction of ozone with cannabis smoke was observed in an environmental chamber. Particle size distribution, and gas-phase and particle-phase composition were monitored in real time. The diameter of primary particles ranged from 10-1 to 1 μm. Ultrafine particle formation occurred when cannabis smoke was exposed to ozone levels greater than 10 ppb, over the entire observed primary particle concentration range (1030-4580 μg m-3). Gas-phase measurements indicate that monoterpene and sesquiterpene levels decayed rapidly upon ozone exposure, while oxygen-containing species were formed during oxidation. On the other hand, measurements of particle composition showed an increase in nitrogen-containing species during oxidation. Although ozone was the only oxidant added to cannabis smoke in the chamber, it is believed that the OH radical plays an important role in the oxidation mechanism, where OH results from the reaction of ozone with terpenes and sesquiterpenes. Overall, smoking cannabis in ozone-rich environments, both indoors and outdoors, will likely lead to UFP formation.
Collapse
Affiliation(s)
- Kristen Yeh
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jenna C Ditto
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Laura-Helena Rivellini
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Amirashkan Askari
- Department of Chemical Engineering, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Graeffe F, Heikkinen L, Garmash O, Äijälä M, Allan J, Feron A, Cirtog M, Petit JE, Bonnaire N, Lambe A, Favez O, Albinet A, Williams LR, Ehn M. Detecting and Characterizing Particulate Organic Nitrates with an Aerodyne Long-ToF Aerosol Mass Spectrometer. ACS EARTH & SPACE CHEMISTRY 2023; 7:230-242. [PMID: 36704177 PMCID: PMC9869397 DOI: 10.1021/acsearthspacechem.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Particulate organic nitrate (pON) can be a major part of secondary organic aerosol (SOA) and is commonly quantified by indirect means from aerosol mass spectrometer (AMS) data. However, pON quantification remains challenging. Here, we set out to quantify and characterize pON in the boreal forest, through direct field observations at Station for Measuring Ecosystem Atmosphere Relationships (SMEAR) II in Hyytiälä, Finland, and targeted single-precursor laboratory studies. We utilized a long time-of-flight AMS (LToF-AMS) for aerosol chemical characterization, with a particular focus to identify C x H y O z N+ ("CHON+") fragments. We estimate that during springtime at SMEAR II, pON (including both the organic and nitrate part) accounts for ∼10% of the particle mass concentration (calculated by the NO+/NO2 + method) and originates mainly from the NO3 radical oxidation of biogenic volatile organic compounds. The majority of the background nitrate aerosol measured is organic. The CHON+ fragment analysis was largely unsuccessful at SMEAR II, mainly due to low concentrations of the few detected fragments. However, our findings may be useful at other sites as we identified 80 unique CHON+ fragments from the laboratory measurements of SOA formed from NO3 radical oxidation of three pON precursors (β-pinene, limonene, and guaiacol). Finally, we noted a significant effect on ion identification during the LToF-AMS high-resolution data processing, resulting in too many ions being fit, depending on whether tungsten ions (W+) were used in the peak width determination. Although this phenomenon may be instrument-specific, we encourage all (LTOF-) AMS users to investigate this effect on their instrument to reduce the possibility of incorrect identifications.
Collapse
Affiliation(s)
- Frans Graeffe
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - Liine Heikkinen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
- Department
of Environmental Science and Bolin Centre for Climate Research, Stockholm University, StockholmSE-10691, Sweden
| | - Olga Garmash
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
- Aerosol
Physics Laboratory, Physics Unit, Tampere
University, Tampere33014, Finland
| | - Mikko Äijälä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - James Allan
- Department
of Earth and Environmental Sciences and National Centre for Atmospheric
Science (NCAS), University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Anaïs Feron
- Univ
Paris Est Créteil and Université Paris Cité,
CNRS, LISA, Créteil, ParisF-94010, France
| | - Manuela Cirtog
- Univ
Paris Est Créteil and Université Paris Cité,
CNRS, LISA, Créteil, ParisF-94010, France
| | - Jean-Eudes Petit
- Laboratoire
des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette91191, France
| | - Nicolas Bonnaire
- Laboratoire
des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette91191, France
| | - Andrew Lambe
- Aerodyne
Research Inc., Billerica, Massachusetts01821, United States
| | - Olivier Favez
- Institut
National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte60550, France
| | - Alexandre Albinet
- Institut
National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte60550, France
| | - Leah R. Williams
- Aerodyne
Research Inc., Billerica, Massachusetts01821, United States
| | - Mikael Ehn
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| |
Collapse
|
3
|
Karpov SV, Dzhalmukhanova AS, Kurbatov VG, Perepelitsina EO, Tarasov AE, Badamshina ER. Synthesis and Study of Properties of Waterborne Polyurethanes Based on β-Cyclodextrin Partial Nitrate as Potential Systems for Delivery of Bioactive Compounds. Polymers (Basel) 2022; 14:polym14235262. [PMID: 36501656 PMCID: PMC9735566 DOI: 10.3390/polym14235262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Eco-friendly waterborne polyurethanes (WPU) find wide application in agriculture as pesticide carriers, which enhances their efficiency. To provide better control of the retention time and capacity of pesticides, WPU can be modified by cyclodextrin derivatives able to form supramolecular assemblies with bioactive substances. Synthesis of WPU containing up to 15 wt.% of covalently bound β-cyclodextrin partial nitrate (CDPN) is reported in this work. Covalent bonding of CDPN to a polyurethane matrix has been proved by IR spectroscopy and size exclusion chromatography. The particle size and viscosity of the WPU dispersion have been determined. The introduction of CDPN affects molecular weight and thermal properties of WPU films. The presence of CDPN in WPU is shown to provide higher average molecular weight, wider molecular weight distribution, and larger average size of dispersed particles, compared with WPU reference samples containing 1,4-butanediol. The analysis of the rheological behavior of the obtained WPU dispersions shows that they can be classified as pseudoplastic liquids. The analysis of the thermal parameters of WPU films indicates that the introduction of 15.0 wt.% CDPN shifts the value of the glass transition temperature from -63 °C to -48 °C compared with reference samples. We believe that the results of the present study are sufficiently encouraging in terms of using CDPN-modified eco-friendly WPU as potential systems for developing the delivering agents of bioactive compounds. The application of such systems will allow the long-term contact of pesticides with the plant surface and minimize the possibility of their release into the environment.
Collapse
Affiliation(s)
- Sergei V. Karpov
- Department of Polymers and Composite Materials, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
- Correspondence:
| | - Aigul S. Dzhalmukhanova
- Department of Polymers and Composite Materials, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Vladimir G. Kurbatov
- Department of Polymers and Composite Materials, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
- Department of Chemical Technology of Organic Coatings, Yaroslavl State Technical University, Moscow Avenue 88, Yaroslavl 150023, Russia
| | - Eugenia O. Perepelitsina
- Department of Polymers and Composite Materials, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Alexander E. Tarasov
- Department of Polymers and Composite Materials, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| | - Elmira R. Badamshina
- Department of Polymers and Composite Materials, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Avenue 1, Chernogolovka 142432, Russia
| |
Collapse
|
4
|
Jiang X, Liu D, Li Q, Tian P, Wu Y, Li S, Hu K, Ding S, Bi K, Li R, Huang M, Ding D, Chen Q, Kong S, Li W, Pang Y, He D. Connecting the Light Absorption of Atmospheric Organic Aerosols with Oxidation State and Polarity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12873-12885. [PMID: 36083258 DOI: 10.1021/acs.est.2c02202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The light-absorbing organic aerosol (OA) constitutes an important fraction of absorbing components, counteracting major cooling effect of aerosols to climate. The mechanisms in linking the complex and changeable chemistry of OA with its absorbing properties remain to be elucidated. Here, by using solvent extraction, ambient OA from an urban environment was fractionated according to polarity, which was further nebulized and online characterized with compositions and absorbing properties. Water extracted high-polar compounds with a significantly higher oxygen to carbon ratio (O/C) than methanol extracts. A transition O/C of about 0.6 was found, below and above which the enhancement and reduction of OA absorptivity were observed with increasing O/C, occurring on the less polar and high polar compounds, respectively. In particular, the co-increase of nitrogen and oxygen elements suggests the important role of nitrogen-containing functional groups in enhancing the absorptivity of the less polar compounds (e.g., forming nitrogen-containing aromatics), while further oxidation (O/C > 0.6) on high-polar compounds likely led to fragmentation and bleaching chromophores. The results here may reconcile the previous observations about darkening or whitening chromophores of brown carbon, and the parametrization of O/C has the potential to link the changing chemistry of OA with its polarity and absorbing properties.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Dantong Liu
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qian Li
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ping Tian
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Yangzhou Wu
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Siyuan Li
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kang Hu
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shuo Ding
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kai Bi
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Ruijie Li
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Mengyu Huang
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Deping Ding
- Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, 44 Zizhuyuan Road, Beijing 100089, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, 6 Xuefuzhong Road, Xi'an 710021, China
| | - Shaofei Kong
- Department of Atmospheric Science, School of Environmental Science, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
| | - Weijun Li
- Department of Atmospheric Science, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yu Pang
- Organic Geochemistry Unit, School of Earth Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ding He
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
| |
Collapse
|
5
|
Fan W, Chen T, Zhu Z, Zhang H, Qiu Y, Yin D. A review of secondary organic aerosols formation focusing on organosulfates and organic nitrates. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128406. [PMID: 35149506 DOI: 10.1016/j.jhazmat.2022.128406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Secondary organic aerosols (SOA) are crucial constitution of fine particulate matter (PM), which are mainly derived from photochemical oxidation products of primary organic matter and volatile organic compounds (VOCs), and can induce terrible impacts to human health, air quality and climate change. As we know, organosulfates (OSs) and organic nitrates (ON) are important contributors for SOA formation, which could be possibly produced through various pathways, resulting in extremely complex formation mechanism of SOA. Although plenty of research has been focused on the origins, spatial distribution and formation mechanisms of SOA, a comprehensive and systematic understanding of SOA formation in the atmosphere remains to be detailed explored, especially the most important OSs and ON dedications. Thus, in this review, we systematically summarize the recent research about origins and formation mechanisms of OSs and ON, and especially focus on their contribution to SOA, so as to have a clearer understanding of the origin, spatial distribution and formation principle of SOA. Importantly, we interpret the complex interaction with coexistence effect of SOx and NOx on SOA formation, and emphasize the future insights for SOA research to expect a more comprehensive theory and practice to alleviate SOA burden.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Ting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China.
| |
Collapse
|
6
|
Qi L, Bozzetti C, Corbin JC, Daellenbach KR, El Haddad I, Zhang Q, Wang J, Baltensperger U, Prévôt ASH, Chen M, Ge X, Slowik JG. Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151800. [PMID: 34813816 DOI: 10.1016/j.scitotenv.2021.151800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Despite the fact that atmospheric particulate organic nitrogen (ON) can significantly affect human health, ecosystems and the earth's climate system, qualitative and quantitative chemical characterization of ON remains limited due to its chemical complexity. In this study, the Aerodyne soot particle - high-resolution time-of-flight aerosol mass spectrometer (SP-AMS) was deployed for ambient measurements in Nanjing, China. Positive matrix factorization (PMF) was applied to the ON data to quantify the sources of ON in submicron aerosols. The averaged ON concentration was 1.24 μg m-3, while the averaged total nitrogen (TN) in the aerosol was 20.26 μg m-3. From the PMF ON analysis, a 5-factor solution was selected as the most representative and interpretable solution for the investigated dataset, including oxygenated OA (OOAON), amine-related OAON (AMOAON), hydrocarbon-like OA (HOAON), industry OA (IOAON), and local primary OA (POAON) factors. The quantified ON ions were separated into families, including CxHN, CxHyNO, C3H<6N, CxH2x+2N, CxH2xN and Others, consistent with their contribution to each factor. The CxHyNO family mainly contributed to the OOAON factor and suggested the presence of amides or amino acids. The CxH2x+2N family likely mostly originated from amines only contributing to the AMOAON and HOAON factors. The IOAON and POAON factors were resolved due to significant tracers in the mass spectra. Further, compared with regular organic PMF analysis, PMF ON analysis gave more insights due to improved source separation and interpretability of the OA components, which could be a role model for further atmospheric ON research.
Collapse
Affiliation(s)
- Lu Qi
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Carlo Bozzetti
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Joel C Corbin
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland.
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Jay G Slowik
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland.
| |
Collapse
|
7
|
He Q, Li C, Siemens K, Morales AC, Hettiyadura AP, Laskin A, Rudich Y. Optical Properties of Secondary Organic Aerosol Produced by Photooxidation of Naphthalene under NOx Condition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4816-4827. [PMID: 35384654 PMCID: PMC9022426 DOI: 10.1021/acs.est.1c07328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 05/21/2023]
Abstract
Secondary organic aerosols (SOAs) affect incoming solar radiation by interacting with light at ultraviolet and visible wavelength ranges. However, the relationship between the chemical composition and optical properties of SOA is still not well understood. In this study, the complex refractive index (RI) of SOA produced from OH oxidation of naphthalene in the presence of nitrogen oxides (NOx) was retrieved online in the wavelength range of 315-650 nm and the bulk chemical composition of the SOA was characterized by an online high-resolution time-of-flight mass spectrometer. In addition, the molecular-level composition of brown carbon chromophores was determined using high-performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. The real part of the RI of the SOA increases with both the NOx/naphthalene ratio and aging time, likely due to the increased mean polarizability and decreased molecular weight due to fragmentation. Highly absorbing nitroaromatics (e.g., C6H5NO4, C7H7NO4, C7H5NO5, C8H5NO5) produced under higher NOx conditions contribute significantly to the light absorption of the SOA. The imaginary part of the RI linearly increases with the NOx/VOCs ratio due to the formation of nitroaromatic compounds. As a function of aging, the imaginary RI increases with the O/C ratio (slope = 0.024), mainly attributed to the achieved higher NOx/VOCs ratio, which favors the formation of light-absorbing nitroaromatics. The light-absorbing enhancement is not as significant with extensive aging as it is under a lower aging time due to the opening of aromatic rings by reactions.
Collapse
Affiliation(s)
- Quanfu He
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Kyla Siemens
- Department of Chemistry, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C. Morales
- Department of Chemistry, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Alexander Laskin
- Department of Chemistry, Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Garofalo LA, He Y, Jathar SH, Pierce JR, Fredrickson CD, Palm BB, Thornton JA, Mahrt F, Crescenzo GV, Bertram AK, Draper DC, Fry JL, Orlando J, Zhang X, Farmer DK. Heterogeneous Nucleation Drives Particle Size Segregation in Sequential Ozone and Nitrate Radical Oxidation of Catechol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15637-15645. [PMID: 34813317 DOI: 10.1021/acs.est.1c02984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Secondary organic aerosol formation via condensation of organic vapors onto existing aerosol transforms the chemical composition and size distribution of ambient aerosol, with implications for air quality and Earth's radiative balance. Gas-to-particle conversion is generally thought to occur on a continuum between equilibrium-driven partitioning of semivolatile molecules to the pre-existing mass size distribution and kinetic-driven condensation of low volatility molecules to the pre-existing surface area size distribution. However, we offer experimental evidence in contrast to this framework. When catechol is sequentially oxidized by O3 and NO3 in the presence of (NH4)2SO4 seed particles with a single size mode, we observe a bimodal organic aerosol mass size distribution with two size modes of distinct chemical composition with nitrocatechol from NO3 oxidation preferentially condensing onto the large end of the pre-existing size distribution (∼750 nm). A size-resolved chemistry and microphysics model reproduces the evolution of the two distinct organic aerosol size modes─heterogeneous nucleation to an independent, nitrocatechol-rich aerosol phase.
Collapse
Affiliation(s)
- Lauren A Garofalo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yicong He
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Carley D Fredrickson
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Brett B Palm
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Fabian Mahrt
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Giuseppe V Crescenzo
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Danielle C Draper
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Juliane L Fry
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - John Orlando
- National Center for Atmospheric Research, Boulder, Colorado 80307, United States
| | - Xuan Zhang
- National Center for Atmospheric Research, Boulder, Colorado 80307, United States
- Department of Life and Environmental Sciences, University of California, Merced, California 95343, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
9
|
Joo T, Rivera-Rios JC, Alvarado-Velez D, Westgate S, Ng NL. Formation of Oxidized Gases and Secondary Organic Aerosol from a Commercial Oxidant-Generating Electronic Air Cleaner. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:691-698. [PMID: 37566381 PMCID: PMC8315241 DOI: 10.1021/acs.estlett.1c00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic increased the demand for indoor air cleaners. While some commercial electronic air cleaners can be effective in reducing primary pollutants and inactivating bioaerosol, studies on the formation of secondary products from oxidation chemistry during their use are limited. Here, we measured oxygenated volatile organic compounds (OVOCs) and the chemical composition of particles generated from a hydroxyl radical generator in an office. During operation, enhancements in OVOCs, especially low-molecular-weight organic acids, were detected. Rapid increases in particle number and mass concentrations were observed, corresponding to the formation of highly oxidized secondary organic aerosol (SOA) (O:C ∼ 1.3), with an enhanced signal at m/z 44 (CO2+) in the organic mass spectra. These results suggest that organic acids generated during VOC oxidation contributed to particle nucleation and SOA formation. Nitrate, sulfate, and chloride also increased during the oxidation without a corresponding increase in ammonium, suggesting organic nitrate, organic sulfate, and organic chloride formation. As secondary species are reported to have detrimental health effects, further studies should not be limited to the inactivation of bioaerosol or reduction of particular VOCs, but should also evaluate potential OVOCs and SOA formation from electronic air cleaners in different indoor environments.
Collapse
Affiliation(s)
- Taekyu Joo
- School of Earth and Atmospheric Sciences,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Jean C. Rivera-Rios
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Daniel Alvarado-Velez
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Sabrina Westgate
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Nga Lee Ng
- School of Earth and Atmospheric Sciences,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
- School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
- School of Civil and Environmental Engineering,
Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| |
Collapse
|
10
|
Xu L, Yang Z, Tsona NT, Wang X, George C, Du L. Anthropogenic-Biogenic Interactions at Night: Enhanced Formation of Secondary Aerosols and Particulate Nitrogen- and Sulfur-Containing Organics from β-Pinene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7794-7807. [PMID: 34044541 DOI: 10.1021/acs.est.0c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixing of anthropogenic gaseous pollutants and biogenic volatile organic compounds impacts the formation of secondary aerosols, but still in an unclear manner. The present study explores secondary aerosol formation via the interactions between β-pinene, O3, NO2, SO2, and NH3 under dark conditions. Results showed that aerosol yield can be largely enhanced by more than 330% by NO2 or SO2 but slightly enhanced by NH3 by 39% when the ratio of inorganic gases to β-pinene ranged from 0 to 1.3. Joint effects of NO2 and SO2 and SO2 and NH3 existed as aerosol yields increased with NO2 but decreased with NH3 when SO2 was kept constant. Infrared spectra showed nitrogen-containing aerosol components derived from NO2 and NH3 and sulfur-containing species derived from SO2. Several particulate organic nitrates (MW 215, 229, 231, 245), organosulfates (MW 250, 264, 280, 282, 284), and nitrooxy organosulfates (MW 295, 311, 325, 327, and 343) were identified using high-resolution orbitrap mass spectrometry in NO2 and SO2 experiments, and their formation mechanism is discussed. Most of these nitrogen- and sulfur-containing species have been reported in ambient particles. Our results suggest that the complex interactions among β-pinene, O3, NO2, SO2, and NH3 during the night might serve as a potential pathway for the formation of particulate nitrogen- and sulfur-containing organics, especially in polluted regions with both anthropogenic and biogenic influences.
Collapse
Affiliation(s)
- Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zhaomin Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Xinke Wang
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Christian George
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
11
|
Huang W, Yang Y, Wang Y, Gao W, Li H, Zhang Y, Li J, Zhao S, Yan Y, Ji D, Tang G, Liu Z, Wang L, Zhang R, Wang Y. Exploring the inorganic and organic nitrate aerosol formation regimes at a suburban site on the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144538. [PMID: 33453527 DOI: 10.1016/j.scitotenv.2020.144538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Nitrate-driven aerosol pollution frequently occurs during winter over the North China Plain (NCP). Extensive studies have focused on inorganic nitrate formation, but few have focused on organic nitrates in China, precluding a thorough understanding of the nitrogen cycle and nitrate aerosol formation. Here, the inorganic (NO3,inorg) and organic nitrate (NO3,org) formation regimes under aerosol liquid water (ALW) and aerosol acidity (pH) influences were investigated during winter over the NCP based on data derived from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The campaign-averaged concentration of the total nitrate was 5.3 μg m-3, with a 13% contribution from NO3,org, which exhibited a significantly decreased contribution with increasing haze episode evolution. The diurnal cycles of NO3,inorg and NO3,org were similar, with high concentrations during the nighttime at a high ALW level, revealing the important role of aqueous-phase processes. However, the correlations between the aerosol pH and NO3,inorg (R2 = 0.13, P < 0.01) and NO3,org (R2 = 0.63, P < 0.01) during polluted periods indicated a contrasting effect of aerosol pH on inorganic and organic nitrate formation. Our results provide a useful reference for smog chamber studies and promote a better understanding of organic nitrate formation via anthropogenic emissions.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Yang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland.
| | - Wenkang Gao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Haiyan Li
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
| | - Yanyan Zhang
- Langfang Meteorological Bureau of Hebei Province, Langfang 065000, Hebei, China
| | - Jiayun Li
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuman Zhao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yingchao Yan
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Ji
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Guiqian Tang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zirui Liu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Lili Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Renjian Zhang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuesi Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
He Q, Tomaz S, Li C, Zhu M, Meidan D, Riva M, Laskin A, Brown SS, George C, Wang X, Rudich Y. Optical Properties of Secondary Organic Aerosol Produced by Nitrate Radical Oxidation of Biogenic Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2878-2889. [PMID: 33596062 PMCID: PMC8023652 DOI: 10.1021/acs.est.0c06838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/30/2023]
Abstract
Nighttime oxidation of biogenic volatile organic compounds (BVOCs) by nitrate radicals (NO3·) represents one of the most important interactions between anthropogenic and natural emissions, leading to substantial secondary organic aerosol (SOA) formation. The direct climatic effect of such SOA cannot be quantified because its optical properties and atmospheric fate are poorly understood. In this study, we generated SOA from the NO3· oxidation of a series BVOCs including isoprene, monoterpenes, and sesquiterpenes. The SOA were subjected to comprehensive online and offline chemical composition analysis using high-resolution mass spectrometry and optical properties measurements using a novel broadband (315-650 nm) cavity-enhanced spectrometer, which covers the wavelength range needed to understand the potential contribution of the SOA to direct radiative forcing. The SOA contained a significant fraction of oxygenated organic nitrates (ONs), consisting of monomers and oligomers that are responsible for the detected light absorption in the 315-400 nm range. The SOA created from β-pinene and α-humulene was further photochemically aged in an oxidation flow reactor. The SOA has an atmospheric photochemical bleaching lifetime of >6.2 h, indicating that some of the ONs in the SOA may serve as atmosphere-stable nitrogen oxide sinks or reservoirs and will absorb and scatter incoming solar radiation during the daytime.
Collapse
Affiliation(s)
- Quanfu He
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Sophie Tomaz
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ming Zhu
- State
Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory
of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Daphne Meidan
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Matthieu Riva
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Alexander Laskin
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Steven S. Brown
- Chemical
Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, United States
- Department
of Chemistry, University of Colorado, 216 UCB, Boulder, Colorado 80309, United States
| | - Christian George
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Xinming Wang
- State
Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory
of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
for Excellence in Urban Atmospheric Environment, Institute of Urban
Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Li H, Zhang Q, Jiang W, Collier S, Sun Y, Zhang Q, He K. Characteristics and sources of water-soluble organic aerosol in a heavily polluted environment in Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143970. [PMID: 33338790 DOI: 10.1016/j.scitotenv.2020.143970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/24/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Water-soluble organic aerosol (WSOA) in fine particles (PM2.5) collected during wintertime in a polluted city (Handan) in Northern China was characterized using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS). Through comparing with real-time measurements from a collocated Aerosol Chemical Speciation Monitor (ACSM), we determined that WSOA on average accounts for 29% of total organic aerosol (OA) mass and correlates tightly with secondary organic aerosol (SOA; Pearson's r = 0.95). The mass spectra of WSOA closely resemble those of ambient SOA, but also show obvious influences from coal combustion and biomass burning. Positive matrix factorization (PMF) analysis of the WSOA mass spectra resolved a water-soluble coal combustion OA (WS-CCOA; O/C = 0.17), a water-soluble biomass burning OA (WS-BBOA; O/C = 0.32), and a water-soluble oxygenated OA (WS-OOA; O/C = 0.89), which account for 10.3%, 29.3% and 60.4% of the total WSOA mass, respectively. The water-solubility of the OA factors was estimated by comparing the offline AMS analysis results with the ambient ACSM measurements. OOA has the highest water-solubility of 49%, consistent with increased hygroscopicity of oxidized organics induced by atmospheric aging processes. In contrast, CCOA is the least water soluble, containing 17% WS-CCOA. The distinct characteristics of WSOA from different sources extend our knowledge of the complex aerosol chemistry in the polluted atmosphere of Northern China and the water-solubility analysis may help us to understand better aerosol hygroscopicity and its effects on radiative forcing in this region.
Collapse
Affiliation(s)
- Haiyan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| | - Wenqing Jiang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Sonya Collier
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Zhang L, Huang X, Fan X, He W, Yang C, Wang C. Rapid fingerprinting technology of heavy oil spill by mid-infrared spectroscopy. ENVIRONMENTAL TECHNOLOGY 2021; 42:270-278. [PMID: 31169447 DOI: 10.1080/09593330.2019.1626913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
With the increase of unconventional oil production and transportation, the detection methods of light crude oil have been challenged. Mid-Infrared spectroscopy can reflect the functional group of the oil related samples, which has strong absorption signals with distinguishable peaks featured as a fast, economy, and robust technique. Nevertheless, the previous study and application of oil relevant samples, such as petroleum chemical industry online monitoring, are mainly based on Near-infrared spectroscopy. Recently, the rapid development of the spectral instrument manufacturing and the data analysis methods provides a more comprehensive technical support for the rapid and accurate identification of marine oil spill by Mid-infrared spectroscopy. In this paper, 10 crude oil samples were selected for infrared spectroscopy detection, and the results were analysed and compared with those of gas chromatography flame ionization detection method. The character information of the IR spectra and GC/FID chromatograms were extracted and classified both by principal component analysis and partial least squares regression. Under the condition of small sample size, the recognition accuracy was up to 100%. The results show that the mid-infrared method combined with chemometrics can be expected to achieve rapid, accurate and economical identification of heavy oil species.
Collapse
Affiliation(s)
- Lujun Zhang
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, People's Republic of China
| | - Xiaodong Huang
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, People's Republic of China
| | - Xinmin Fan
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, People's Republic of China
| | - Weidong He
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, People's Republic of China
| | - Chun Yang
- Emergencies Science and Technology Section, Science and Technology Branch, Environment Canada, Ottawa, Canada
| | - Chunyan Wang
- Department of Physics and Optoelectronic Engineering, Weifang University, Weifang, People's Republic of China
| |
Collapse
|
15
|
Jia L, Xu Y. The role of functional groups in the understanding of secondary organic aerosol formation mechanism from α-pinene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139831. [PMID: 32531597 DOI: 10.1016/j.scitotenv.2020.139831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The infrared spectra (IR) analysis in combination with electrospray ionization high-resolution orbitrap mass spectra (ESI-HRMS) can provide new insight into the overall structural feature and specific molecules of secondary organic aerosol (SOA). In this study, the functional group signature of SOA produced from OH and O3 channel oxidation of α-pinene is characterized based on the IR and ESI-HRMS. The IR spectra of SOA from the OH channel show strong absorptions of hydrogen bonded OH groups and weak absorptions of CO groups, while the absorptions of CO are more abundant than OH in the O3 channel. A linear relationship between the ratio of functional group absorption area (SO-H/SC=O) and the group number ratio of nO-H/nC=O is obtained. The ratios of nO-H/nC=O in the O3 and H2O2 systems of SOA are estimated to be 0.60 and 3.91, respectively. The ESI-HRMS results show that organic acids are the major products in both the O3 and NO2 systems. In contrast to the O3 channel, alcohols are more abundant from the OH channel. The major compounds of SOA from the H2O2 system are confirmed to be formed by autoxidation of first generation RO2 radicals. The nO-H/nC=O ratio obtained by IR is in good agreement with that by MS. Thus, the ratio of nO-H/nC=O can be used to characterize SOA formation from different oxidation channels. In α-pinene-NO2 irradiations, the ratio of nO-H/nC=O is 0.83, which is quite close to that from the O3 system, but totally different from that in the H2O2 system. This strongly supports that the O3 channel plays a key role in the formation of SOA from the α-pinene-NO2 system. The similarity of both products and the nO-H/nC=O ratios between the α-pinene-O3 and α-pinene-NO2 systems strongly states that a stabilized Criegee intermediate (SCI) is a key factor controlling SOA formation.
Collapse
Affiliation(s)
- Long Jia
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - YongFu Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Li C, He Q, Fang Z, Brown SS, Laskin A, Cohen SR, Rudich Y. Laboratory Insights into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown Carbon Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11827-11837. [PMID: 32870663 PMCID: PMC7547865 DOI: 10.1021/acs.est.0c04310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transformations of biomass burning brown carbon aerosols (BB-BrC) over their diurnal lifecycle are currently not well studied. In this study, the aging of BB tar proxy aerosols processed by NO3• under dark conditions followed by the photochemical OH• reaction and photolysis were investigated in tandem flow reactors. The results show that O3 oxidation in the dark diminishes light absorption of wood tar aerosols, resulting in higher particle single-scattering albedo (SSA). NO3• reactions augment the mass absorption coefficient (MAC) of the aerosols by a factor of 2-3 by forming secondary chromophores, such as nitroaromatic compounds (NACs) and organonitrates. Subsequent OH• oxidation and direct photolysis both decompose the organic nitrates (ONs, representing bulk functionalities of NACs and organonitrates) in the NO3•-aged wood tar aerosols, thus decreasing particle absorption. Moreover, NACs degrade faster than organonitrates by photochemical aging. The NO3•-aged wood tar aerosols are more susceptible to photolysis than to OH• reactions. The photolysis lifetimes for the ONs and for the absorbance of the NO3•-aged aerosols are on the order of hours under typical solar irradiation, while the absorption and ON lifetimes toward OH• oxidation are substantially longer. Overall, nighttime aging via NO3• reactions increases the light absorption of wood tar aerosols and shortens their absorption lifetime under daytime conditions.
Collapse
Affiliation(s)
- Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Quanfu He
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Steven S. Brown
- NOAA
Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
- Department
of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Alexander Laskin
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sidney R. Cohen
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Zhu J, Li J, Du L. Exploring the formation potential and optical properties of secondary organic aerosol from the photooxidation of selected short aliphatic ethers. J Environ Sci (China) 2020; 95:82-90. [PMID: 32653196 DOI: 10.1016/j.jes.2020.03.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Secondary organic aerosol (SOA) formation potential for six kinds of short aliphatic ethers has been studied. The size distribution, mass concentration, and yield of SOA formed by ethers photooxidation were determined under different conditions. The results showed that all six ethers can generate SOA via reaction with OH radicals even under no seed and NOx-free condition. The mass concentration for six seedless experiments was less than 10 µg/m3 and the SOA yields were all below 1%. The strong increase in the SOA formation was observed when the system contained ammonium sulfate seed particles, while SOA yield decreased under the high-NOx condition. SOA composition was analyzed using offline methods. Infrared spectra indicated that there are complex components in the particle-phase including carbonyls acid and aldehydes species. Moreover, the aqueous filter extracts were analyzed using ultraviolet-visible spectrometer and fluorescence spectrophotometer. For the fresh methyl n-butyl ether SOA, the largest absorption peak occurs at 280 nm and there exists slightly absorption in the 300-400 nm. Excitation-emission matrices display the distinct peak at excitation/emission = 470 nm/480 nm according to the fluorescence spectrum. These findings are important considerations of formation for ether SOA that can eventually be included in atmospheric models.
Collapse
Affiliation(s)
- Jianqiang Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
18
|
Yang Z, Tsona NT, Li J, Wang S, Xu L, You B, Du L. Effects of NO x and SO 2 on the secondary organic aerosol formation from the photooxidation of 1,3,5-trimethylbenzene: A new source of organosulfates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114742. [PMID: 32402708 DOI: 10.1016/j.envpol.2020.114742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
1,3,5-Trimethylbeneze (TMB) is an important constituent of anthropogenic volatile organic compounds that contributes to the formation of secondary organic aerosol (SOA). A series of chamber experiments were performed to probe the effects of NOx and SO2 on SOA formation from TMB photooxidation. The molecular composition of TMB SOA was investigated by ultra-high performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). We found that the SOA yield increases notably with elevated NOx concentrations under low-NOx condition ([TMB]0/[NOx]0 > 10 ppbC ppb-1), while an opposite trend is observed in high-NOx experiments ([TMB]0/[NOx]0 < 10 ppbC ppb-1). The increase in SOA yield in low-NOx regime is attributed to the increase of NOx-induced OH concentrations. The formation of low-volatility species might be suppressed, thereby leading to a lower SOA yield in high-NOx conditions. Moreover, SOA formation was promoted in experiment with SO2 addition. Multifunctional products containing carbonyl, acid, alcohol, and nitrate functional groups were characterized in TMB/NOx photooxidation, whereas several organosulfates (OSs) and nitrooxy organosulfates were identified in TMB/NOx/SO2 photooxidation based on HR-Q-TOFMS analysis. The formation mechanism relevant to the detected compounds in SOA were proposed. Based on our measurements, the photooxidation of TMB in the presence of SO2 may be a new source of OSs in the atmosphere. The results presented here also deepen the understanding of SOA formation under relatively complex polluted environments.
Collapse
Affiliation(s)
- Zhaomin Yang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Narcisse T Tsona
- School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shuyan Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Li Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Bo You
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
19
|
Wang S, Du L, Tsona NT, Jiang X, You B, Xu L, Yang Z, Wang W. Effect of NOx and SO 2 on the photooxidation of methylglyoxal: Implications in secondary aerosol formation. J Environ Sci (China) 2020; 92:151-162. [PMID: 32430118 DOI: 10.1016/j.jes.2020.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 02/09/2020] [Indexed: 05/24/2023]
Abstract
Methylglyoxal (CH3COCHO, MG), which is one of the most abundant α-dicarbonyl compounds in the atmosphere, has been reported as a major source of secondary organic aerosol (SOA). In this work, the reaction of MG with hydroxyl radicals was studied in a 500 L smog chamber at (293 ± 3) K, atmospheric pressure, (18 ± 2)% relative humidity, and under different NOx and SO2. Particle size distribution was measured by using a scanning mobility particle sizer (SMPS) and the results showed that the addition of SO2 can promote SOA formation, while different NOx concentrations have different influences on SOA production. High NOx suppressed the SOA formation, whereas the particle mass concentration, particle number concentration and particle geometric mean diameter increased with the increasing NOx concentration at low NOx concentration in the presence of SO2. In addition, the products of the OH-initiated oxidation of MG and the functional groups of the particle phase in the MG/OH/SO2 and MG/OH/NOx/SO2 reaction systems were detected by gas chromatography mass spectrometry (GC-MS) and attenuated total reflection fourier transformed infrared spectroscopy (ATR-FTIR) analysis. Two products, glyoxylic acid and oxalic acid, were detected by GC-MS. The mechanism of the reaction of MG and OH radicals that follows two main pathways, H atom abstraction and hydration, is proposed. Evidence is provided for the formation of organic nitrates and organic sulfate in particle phase from IR spectra. Incorporation of NOx and SO2 influence suggested that SOA formation from anthropogenic hydrocarbons may be more efficient in polluted environment.
Collapse
Affiliation(s)
- Shuyan Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China.
| | - Narcisse T Tsona
- School of Life Science, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xiaotong Jiang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Bo You
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Li Xu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Zhaomin Yang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| |
Collapse
|
20
|
Li C, He Q, Hettiyadura APS, Käfer U, Shmul G, Meidan D, Zimmermann R, Brown SS, George C, Laskin A, Rudich Y. Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO 3 Radical Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1395-1405. [PMID: 31730747 DOI: 10.1021/acs.est.9b05641] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Atmospheric brown carbon (BrC) is an important contributor to the radiative forcing of climate by organic aerosols. Because of the molecular diversity of BrC compounds and their dynamic transformations, it is challenging to predictively understand BrC optical properties. OH radical and O3 reactions, together with photolysis, lead to diminished light absorption and lower warming effects of biomass burning BrC. The effects of night-time aging on the optical properties of BrC aerosols are less known. To address this knowledge gap, night-time NO3 radical chemistry with tar aerosols from wood pyrolysis was investigated in a flow reactor. This study shows that the optical properties of BrC change because of transformations driven by reactions with the NO3 radical that form new absorbing species and lead to significant absorption enhancement over the ultraviolet-visible (UV-vis) range. The overnight aging increases the mass absorption coefficients of the BrC by a factor of 1.3-3.2 between 380 nm and 650 nm. Nitrated organic compounds, particularly nitroaromatics, were identified as the main products that contribute to the enhanced light absorption in the secondary BrC. Night-time aging of BrC aerosols represents an important source of secondary BrC and can have a pronounced effect on atmospheric chemistry and air pollution.
Collapse
Affiliation(s)
- Chunlin Li
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Quanfu He
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | | | - Uwe Käfer
- Joint Mass Spectrometry Centre , University of Rostock , Dr.-Lorenz-Weg 2 , 18059 Rostock , Germany
- Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics" (CMA) , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Guy Shmul
- Department of Chemical Research Support , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Daphne Meidan
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre , University of Rostock , Dr.-Lorenz-Weg 2 , 18059 Rostock , Germany
- Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics" (CMA) , Helmholtz Zentrum München , Ingolstädter Landstrasse 1 , 85764 Neuherberg , Germany
| | - Steven S Brown
- Chemical Science Division , NOAA Earth System Research Laboratory (ESRL) , Boulder , Colorado 80305 , United States
- Department of Chemistry , University of Colorado , Boulder , Colorado 80309-0215 , United States
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1 , CNRS, IRCELYON , F-69626 , Villeurbanne , France
| | - Alexander Laskin
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Yinon Rudich
- Department of Earth and Planetary Sciences , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
21
|
Vander Wall AC, Perraud V, Wingen LM, Finlayson-Pitts BJ. Evidence for a kinetically controlled burying mechanism for growth of high viscosity secondary organic aerosol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:66-83. [PMID: 31670732 DOI: 10.1039/c9em00379g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Secondary organic aerosol (SOA) particles are ubiquitous in air and understanding the mechanism by which they grow is critical for predicting their effects on visibility and climate. The uptake of three organic nitrates into semi-solid SOA particles formed by α-pinene ozonolysis either with or without an OH scavenger was investigated. Four types of experiments are presented here. In Series A, uptake of the selected organic nitrates (2-ethylhexyl nitrate (2EHN); β-hydroxypropyl nitrate (HPN); β-hydroxyhexyl nitrate (HHN)) into impacted SOA particles was interrogated by attenuated total reflectance (ATR)-FTIR. In this case, equilibrium was reached and partition coefficients (KSOA = [-ONO2]SOA/[-ONO2]air) were measured to be K2EHN = (3.2-11) × 104, KHPN = (4.4-5.4) × 105, and KHHN = (4.9-9.0) × 106. In Series B, SOA particles were exposed on-the-fly to gas phase organic nitrates for comparison to Series A, and uptake of organic nitrates was quantified by HR-ToF-AMS analysis, which yielded similar results. In Series C (AMS) and D (ATR-FTIR), each organic nitrate was incorporated into the SOA as the particles formed and grew. The incorporation of the RONO2 was much larger in Series C and D (during growth), exceeding equilibrium values determined in Series A and B (after growth). This suggests that enhanced uptake of organic nitrates during SOA formation and growth is due to a kinetically controlled "burying" mechanism, rather than equilibrium partitioning. This has important implications for understanding SOA formation and growth under conditions where the particles are semi-solid, which is central to accurately predicting properties for such SOA.
Collapse
Affiliation(s)
| | - Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | - Lisa M Wingen
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.
| | | |
Collapse
|
22
|
ATR-FTIR Spectral Analysis and Soluble Components of PM 10 And PM 2.5 Particulate Matter over the Urban Area of Palermo (Italy) during Normal Days and Saharan Events. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142507. [PMID: 31337072 PMCID: PMC6679192 DOI: 10.3390/ijerph16142507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022]
Abstract
Several epidemiological studies have shown a close relationship between the mass of particulate matter (PM) and its effects on human health. This study reports the identification of inorganic and organic components by attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) analysis in PM10 and PM2.5 filters collected from three air quality monitoring stations in the city of Palermo (Sicily, Italy) during non-Saharan dust events and Saharan events. It also provides information on the abundance and types of water-soluble species. ATR-FTIR analysis identified sulfate, ammonium, nitrate, and carbonate matter characterized by vibrational frequencies at 603, 615, 670, and 1100 cm–1 (SO42–); at 1414 cm–1 (NH4+); at 825 and 1356 cm–1 (NO3–); and at 713, 730, and 877 cm–1 (CO32–) in PM10 and PM2.5 filters. Moreover, aliphatic hydrocarbons were identified in the collected spectra. Stretching frequencies at 2950 cm–1 were assigned to CH3 aliphatic carbon stretching absorptions, while frequencies at 2924 and 2850 cm–1 indicated CH2 bonds. In filters collected during Saharan dust events, the analysis also showed the presence of absorbance peaks typical of clay minerals. The measurement of soluble components confirmed the presence of a geogenic component (marine spray and local rocks) and secondary particles ((NH4)2SO4, NH4NO3) in the PM filters. ATR-FTIR characterization of solid surfaces is a powerful analytical technique for identifying inorganic and organic compounds in samples of particulate matter.
Collapse
|
23
|
Bianco A, Deguillaume L, Chaumerliac N, Vaïtilingom M, Wang M, Delort AM, Bridoux MC. Effect of endogenous microbiota on the molecular composition of cloud water: a study by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Sci Rep 2019; 9:7663. [PMID: 31113999 PMCID: PMC6529453 DOI: 10.1038/s41598-019-44149-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/07/2019] [Indexed: 11/23/2022] Open
Abstract
A cloud water sample collected at the puy de Dôme observatory (PUY) has been incubated under dark conditions, with its endogenous microbiota at two different temperatures (5 and 15 °C), and the change in the molecular organic composition of this sample was analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Microorganisms were metabolically active and strongly modified the dissolved organic matter since they were able to form and consume many compounds. Using Venn diagrams, four fractions of compounds were identified: (1) compounds consumed by microbial activity; (2) compounds not transformed during incubation; (3) compounds resulting from dark chemistry (i.e., hydrolysis and Fenton reactions) and, finally, (4) compounds resulting from microbial metabolic activity. At 15 °C, microorganisms were able to consume 58% of the compounds initially present and produce 266 new compounds. For this cloud sample, the impact of dark chemistry was negligible. Decreasing the temperature to 5 °C led to the more efficient degradation of organic compounds (1716 compounds vs. 1094 at 15 °C) but with the less important production of new ones (173). These transformations were analyzed using a division into classes based on the O/C and H/C ratios: lipid-like compounds, aliphatic/peptide-like compounds, carboxylic-rich alicyclic molecule (CRAM)-like structures, carbohydrate-like compounds, unsaturated hydrocarbons, aromatic structures and highly oxygenated compounds (HOCs). Lipid-like, aliphatic/peptide-like and CRAMs-like compounds were the most impacted since they were consumed to maintain the microbial metabolism. On the contrary, the relative percentages of CRAMs and carbohydrates increased after incubation.
Collapse
Affiliation(s)
- Angelica Bianco
- Université Clermont Auvergne, CNRS Laboratoire de Météorologie Physique, F-63000, Clermont-Ferrand, France.,CEA, DAM, DIF, F-91297, Arpajon, France
| | - Laurent Deguillaume
- Université Clermont Auvergne, CNRS Laboratoire de Météorologie Physique, F-63000, Clermont-Ferrand, France.
| | - Nadine Chaumerliac
- Université Clermont Auvergne, CNRS Laboratoire de Météorologie Physique, F-63000, Clermont-Ferrand, France
| | - Mickaël Vaïtilingom
- Université Clermont Auvergne, CNRS Laboratoire de Météorologie Physique, F-63000, Clermont-Ferrand, France.,Laboratoire de Recherche en Géosciences et Energies (LaRGE), Departement of Physics, Université des Antilles, Pointe-à-Pitre, France
| | - Miao Wang
- Université Clermont Auvergne, CNRS Laboratoire de Météorologie Physique, F-63000, Clermont-Ferrand, France
| | - Anne-Marie Delort
- Université Clermont Auvergne, CNRS, SIGMA-Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | | |
Collapse
|
24
|
Luan P, Oehrlein GS. Characterization of Ultrathin Polymer Films Using p-Polarized ATR-FTIR and Its Comparison with XPS. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4270-4277. [PMID: 30840470 DOI: 10.1021/acs.langmuir.9b00316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on the chemical analysis of ultrathin (10 nm) polymer films using the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) technique based on p-polarized infrared light and two types of enhancing substrates, that is, metallic (Au) and dielectric (Si). We selected low-temperature plasma-treated ∼10 nm thick polystyrene films as a test case for demonstrating the capability of the p-polarized ATR-FTIR, whose performance was further compared with the conventional X-ray photoelectron spectroscopy (XPS) techniques. Although ATR-FTIR cannot be used for quantitatively determining elemental compositions in polymers at which XPS excels, it is able to be operated under nonvacuum conditions and allows the study of hydrogen-containing moieties. By correcting the contact condition between the polymer surface and the ATR prism, the relative concentration of the chemical bonds from different samples can be compared. Because ATR-FTIR and XPS provide complementary information on chemical bonds, their combination provides a powerful approach for studying the chemical composition of polymers.
Collapse
Affiliation(s)
- Pingshan Luan
- Department of Materials Science and Engineering and the Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , Maryland 20742 , United States
| | - Gottlieb S Oehrlein
- Department of Materials Science and Engineering and the Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
25
|
Determination of Semivolatile Organic Nitrates in Ambient Atmosphere by Gas Chromatography/Electron Ionization–Mass Spectrometry. ATMOSPHERE 2019. [DOI: 10.3390/atmos10020088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Semivolatile organic nitrates (SVONs) contribute a large proportion of total organic nitrates and play an important role in the tropospheric chemistry. However, the composition and concentrations of SVONs in the atmosphere remain unclear due to the lack of reliable analytical techniques for specific organic nitrates. In this study, a method based on gas chromatography and electron ionization–mass spectrometry was developed to detect ambient SVONs that were collected via polyurethane foam disk enrichment. Three SVONs were identified in the semivolatile samples from urban Jinan during spring based on the characteristic fragment ions of [NO2]+ and [CH2NO3]+ and the characteristic fragment loss of NO2 and NO3: 1-pentyl nitrate (molecular weight [MW] = 133), 4-hydroxy-isoprene nitrate (MW = 147), and (3,4)-di-hydroxy-isoprene nitrate (MW = 163). The latter two isoprene nitrates were rarely detected in the real atmosphere in previous studies. The contents of 1-pentyl nitrate, 4-hydroxy-isoprene nitrate, and (3,4)-di-hydroxy-isoprene nitrate were roughly quantified based on the standard of 1-pentyl nitrate, with a detection limit of 50 μg L−1. In addition, Fourier transform infrared spectrometry was used to determine the total SVONs content. The average concentrations of 1-pentyl nitrate, 4-hydroxy-isoprene nitrate, (3,4)-di-hydroxy-isoprene nitrate, and total SVONs in Jinan during spring were 20.2 ± 7.2, 13.2 ± 7.2, 36.5 ± 8.4, and 380.0 ± 190.8 ng m−3, respectively. The three identified SVONs contributed only 20.2 ± 5.5% to the total SVONs, which suggests that some unidentified SVONs are present in the ambient atmosphere and that studies with improved or advanced analytical techniques will be required to identify them.
Collapse
|
26
|
Vander Wall AC, Lakey PSJ, Rossich Molina E, Perraud V, Wingen LM, Xu J, Soulsby D, Gerber RB, Shiraiwa M, Finlayson-Pitts BJ. Understanding interactions of organic nitrates with the surface and bulk of organic films: implications for particle growth in the atmosphere. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1593-1610. [PMID: 30382275 DOI: 10.1039/c8em00348c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding impacts of secondary organic aerosol (SOA) in air requires a molecular-level understanding of particle growth via interactions between gases and particle surfaces. The interactions of three gaseous organic nitrates with selected organic substrates were measured at 296 K using attenuated total reflection Fourier transform infrared spectroscopy. The organic substrates included a long chain alkane (triacontane, TC), a keto-acid (pinonic acid, PA), an amorphous ester oligomer (poly(ethylene adipate) di-hydroxy terminated, PEA), and laboratory-generated SOA from α-pinene ozonolysis. There was no uptake of the organic nitrates on the non-polar TC substrate, but significant uptake occurred on PEA, PA, and α-pinene SOA. Net uptake coefficients (γ) at the shortest reaction times accessible in these experiments ranged from 3 × 10-4 to 9 × 10-6 and partition coefficients (K) from 1 × 107 to 9 × 104. Trends in γ did not quantitatively follow trends in K, suggesting that the intermolecular forces involved in gas-surface interactions are not the same as those in the bulk, which is supported by theoretical calculations. Kinetic modeling showed that nitrates diffused throughout the organic films over several minutes, and that the bulk diffusion coefficients evolved as uptake/desorption occurred. A plasticizing effect occurred upon incorporation of the organic nitrates, whereas desorption caused decreases in diffusion coefficients in the upper layers, suggesting a crusting effect. Accurate predictions of particle growth in the atmosphere will require knowledge of uptake coefficients, which are likely to be several orders of magnitude less than one, and of the intermolecular interactions of gases with particle surfaces as well as with the particle bulk.
Collapse
Affiliation(s)
- A C Vander Wall
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bianco A, Deguillaume L, Vaïtilingom M, Nicol E, Baray JL, Chaumerliac N, Bridoux M. Molecular Characterization of Cloud Water Samples Collected at the Puy de Dôme (France) by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10275-10285. [PMID: 30052429 DOI: 10.1021/acs.est.8b01964] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cloud droplets contain dynamic and complex pools of highly heterogeneous organic matter, resulting from the dissolution of both water-soluble organic carbon in atmospheric aerosol particles and gas-phase soluble species, and are constantly impacted by chemical, photochemical, and biological transformations. Cloud samples from two summer events, characterized by different air masses and physicochemical properties, were collected at the Puy de Dôme station in France, concentrated on a strata-X solid-phase extraction cartridge and directly infused using electrospray ionization in the negative mode coupled with ultrahigh-resolution mass spectrometry. A significantly higher number (n = 5258) of monoisotopic molecular formulas, assigned to CHO, CHNO, CHSO, and CHNSO, were identified in the cloud sample whose air mass had passed over the highly urbanized Paris region (J1) compared to the cloud sample whose air mass had passed over remote areas (n = 2896; J2). Van Krevelen diagrams revealed that lignins/CRAM-like, aliphatics/proteins-like, and lipids-like compounds were the most abundant classes in both samples. Comparison of our results with previously published data sets on atmospheric aqueous media indicated that the average O/C ratios reported in this work (0.37) are similar to those reported for fog water and for biogenic aerosols but are lower than the values measured for aerosols sampled in the atmosphere and for aerosols produced artificially in environmental chambers.
Collapse
Affiliation(s)
- Angelica Bianco
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
- CEA, DAM, DIF , F-91297 Arpajon , France
| | - Laurent Deguillaume
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | - Mickaël Vaïtilingom
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | - Edith Nicol
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole Polytechnique , Université Paris-Saclay , 91128 Palaiseau , France
| | - Jean-Luc Baray
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | - Nadine Chaumerliac
- Laboratoire de Météorologie Physique (LaMP) , Université Clermont Auvergne (UCA) , 63000 Clermont-Ferrand , France
| | | |
Collapse
|
28
|
Yu X, Song W, Yu Q, Li S, Zhu M, Zhang Y, Deng W, Yang W, Huang Z, Bi X, Wang X. Fast screening compositions of PM 2.5 by ATR-FTIR: Comparison with results from IC andOC/EC analyzers. J Environ Sci (China) 2018; 71:76-88. [PMID: 30195692 DOI: 10.1016/j.jes.2017.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 06/08/2023]
Abstract
Chemical speciation of fine particles or PM2.5 collected on filters is still a costly and time-consuming task. In this study, filter-based PM2.5 samples were collected during November-December 2013 at four sites in Guangzhou, and the major components were fast screened (~7min per filter sample) by Attenuated Total Reflectance (ATR)-Fourier Transform Infrared Spectroscopic (FTIR) in comparison with that measured by Organic carbon/Element carbon (OC/EC) analyzer and Ion Chromatography (IC). The concentrations of nitrate, ammonium, sulfate, primary organic carbon (POC) and secondary organic carbon (SOC) measured by OC/EC and IC analyzers were better correlated with their infrared absorption peak heights at 1320cm-1 for nitrate, 1435, 3045 and 3215cm-1 for ammonium, 615cm-1 for sulfate, 690, 760 and 890cm-1 for POC and 1640 and 1660cm-1 for SOC respectively, during polluted days (PM2.5>75μg/m3) than during clean days (PM2.5≤75μg/m3). With the evolution of a haze episode during our field campaign, the concentrations of the major PM2.5 components displayed consistent variations with their infrared absorption peak heights, suggesting ATR-FTIR could be a fast and useful technique to characterize filter-based PM2.5 compositions particularly during pollution events although cautions should be taken when PM2.5 levels are low. Notably, elevated PM2.5 mass concentrations occurred with enhanced ratios of [NO3-]/[SO42-] and [NH4+]/[SO42-], implying that nitrogenous components play vital roles in the PM2.5 pollution events in the study region.
Collapse
Affiliation(s)
- Xu Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingqing Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Li
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wei Deng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghui Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
29
|
Chakraborty A, Mandariya AK, Chakraborti R, Gupta T, Tripathi SN. Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: Sources, composition, and comparison with other seasons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:310-321. [PMID: 28974342 DOI: 10.1016/j.envpol.2017.09.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/10/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Real time chemical characterization of non-refractory submicron aerosols (NR-PM1) was carried out during post monsoon (September-October) via Aerosol Mass Spectrometer (AMS) at a polluted urban location of Kanpur, India. Organic aerosol (OA) was found to be the dominant species with 58% contribution to total NR-PM1 mass, followed by sulfate (16%). Overall, OA was highly oxidized (average O/C = 0.66) with the dominance of oxidized OAs (60% of total OA) as revealed by source apportionment. Oxidized nature of OA was also supported by very high OC/EC ratios (average = 8.2) obtained from simultaneous offline filter sampling. High and low OA loading periods have very dramatic effects on OA composition and oxidation. OA O/C ratios during lower OA loading periods were on average 30% higher than the same from high loading periods with significant changes in types and relative contribution from oxidized OAs (OOA). Comparison of OA sources and chemistry among post monsoon and other seasons revealed significant differences. Characteristics of primary OAs remain very similar, but features of OOAs showed substantial changes from one season to another. Winter had lowest OOA contribution to total OA but similar overall O/C ratios as other seasons. This reveals that processing of primary OAs, local atmospheric chemistry, and regional contributions can significantly alter OA characteristics from one season to another. This study provides interesting insights into the seasonal variations of OA sources and evolution in a very polluted and complex environment.
Collapse
Affiliation(s)
| | | | | | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India; Centre of Environmental Science and Engineering, CESE, IIT Kanpur, India.
| | - S N Tripathi
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India; Centre of Environmental Science and Engineering, CESE, IIT Kanpur, India.
| |
Collapse
|
30
|
Chakraborty A, Rajeev P, Rajput P, Gupta T. Water soluble organic aerosols in indo gangetic plain (IGP): Insights from aerosol mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1573-1582. [PMID: 28535589 DOI: 10.1016/j.scitotenv.2017.05.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Filter samples collected during winter of 2015-16 from two polluted urban locations (Allahabad and Kanpur) residing within Indo-Gangetic plain (IGP) showed high levels of water-soluble organic aerosols (WSOA). Total organic aerosols (OA) in submicron fraction, measured at Kanpur in real time via Aerosol Mass Spectrometer also showed substantially high concentration levels. WSOA to OA contribution in Kanpur was found to be very high (around 55%) indicating significant contributions from secondary OA (SOA). On average, WSOA oxidation ratio (O/C) was found to be higher (15-20%) in Kanpur than at Allahabad. WSOA from Allahabad was found to be following a much shallower slope (-0.38) in Van Krevelen diagram (H/C vs O/C plot) than Kanpur (-0.58). These differences suggest different composition and chemistry of WSOA at these two different locations. O/C ratios of WSOA were found to be much higher (~40%) than that of OA and independent of WSOA loading. Higher OA loadings were found to be associated with less oxidized primary OAs (POA) and culminated into lower WSOA/OA ratios. The presence of organo sulfate in filter samples from both locations indicate a significant amount of aqueous processing of organics. Concentrations and characteristics of water insoluble OA (WIOA) in Kanpur revealed that although they are present in significant quantity, their oxidation levels are much (almost 3 times) lower than that of WSOA. This finding indicates that less oxidized OAs are less soluble in line with the conventional wisdom. This study provides the first insight into oxidation levels and evolution of WSOA from India and also explores the interplay between WSOA and OA characteristics based on AMS measurements.
Collapse
Affiliation(s)
| | - Pradhi Rajeev
- Department of Civil Engineering, Indian Institute of Technology Kanpur, India
| | - Prashant Rajput
- Department of Civil Engineering, Indian Institute of Technology Kanpur, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology Kanpur, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India.
| |
Collapse
|
31
|
Cao L, Zhu Q, Huang X, Deng J, Chen J, Hong Y, Xu L, He L. Chemical characterization and source apportionment of atmospheric submicron particles on the western coast of Taiwan Strait, China. J Environ Sci (China) 2017; 52:293-304. [PMID: 28254051 DOI: 10.1016/j.jes.2016.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Taiwan Strait is a special channel for subtropical East Asian Monsoon and its western coast is an important economic zone in China. In this study, a suburban site in the city of Xiamen on the western coast of Taiwan Strait was selected for fine aerosol study to improve the understanding of air pollution sources in this region. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and an Aethalometer were deployed to measure fine aerosol composition with a time resolution of 5 min from May 1 to 18, 2015. The average mass concentration of PM1 was 46.2 ± 26.3 μg/m3 for the entire campaign. Organics (28.3%), sulfate (24.9%), and nitrate (20.6%) were the major components in the fine particles, followed by ammonium, black carbon (BC), and chloride. Evolution of nitrate concentration and size distribution indicated that local NOx emissions played a key role in high fine particle pollution in Xiamen. In addition, organic nitrate was found to account for 9.0%-13.8% of the total measured nitrate. Positive Matrix Factorization (PMF) conducted with high-resolution organic mass spectra dataset differentiated the organic aerosol into three components, including a hydrocarbon-like organic aerosol (HOA) and two oxygenated organic aerosols (SV-OOA and LV-OOA), which on average accounted for 27.6%, 28.8%, and 43.6% of the total organic mass, respectively. The relationship between the mass concentration of submicron particle species and wind further confirmed that all major fine particle species were influenced by both strong local emissions in the southeastern area of Xiamen and regional transport through the Taiwan Strait.
Collapse
Affiliation(s)
- Liming Cao
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qiao Zhu
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaofeng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Junjun Deng
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Youwei Hong
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lingling Xu
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
32
|
Ng NL, Brown SS, Archibald AT, Atlas E, Cohen RC, Crowley JN, Day DA, Donahue NM, Fry JL, Fuchs H, Griffin RJ, Guzman MI, Herrmann H, Hodzic A, Iinuma Y, Jimenez JL, Kiendler-Scharr A, Lee BH, Luecken DJ, Mao J, McLaren R, Mutzel A, Osthoff HD, Ouyang B, Picquet-Varrault B, Platt U, Pye HOT, Rudich Y, Schwantes RH, Shiraiwa M, Stutz J, Thornton JA, Tilgner A, Williams BJ, Zaveri RA. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol. ATMOSPHERIC CHEMISTRY AND PHYSICS 2017; 17:2103-2162. [PMID: 30147712 PMCID: PMC6104845 DOI: 10.5194/acp-17-2103-2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
Collapse
Affiliation(s)
- Nga Lee Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steven S. Brown
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | | | - Elliot Atlas
- Department of Atmospheric Sciences, RSMAS, University of Miami, Miami, FL, USA
| | - Ronald C. Cohen
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, USA
| | - John N. Crowley
- Max-Planck-Institut für Chemie, Division of Atmospheric Chemistry, Mainz, Germany
| | - Douglas A. Day
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Juliane L. Fry
- Department of Chemistry, Reed College, Portland, OR, USA
| | - Hendrik Fuchs
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Robert J. Griffin
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | - Hartmut Herrmann
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Alma Hodzic
- Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
| | - Yoshiteru Iinuma
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - José L. Jimenez
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Astrid Kiendler-Scharr
- Institut für Energie und Klimaforschung: Troposphäre (IEK-8), Forschungszentrum Jülich, Jülich, Germany
| | - Ben H. Lee
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Deborah J. Luecken
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jingqiu Mao
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
- Geophysical Fluid Dynamics Laboratory/National Oceanic and Atmospheric Administration, Princeton, NJ, USA
| | - Robert McLaren
- Centre for Atmospheric Chemistry, York University, Toronto, Ontario, Canada
| | - Anke Mutzel
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Hans D. Osthoff
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Bin Ouyang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Benedicte Picquet-Varrault
- Laboratoire Interuniversitaire des Systemes Atmospheriques (LISA), CNRS, Universities of Paris-Est Créteil and ì Paris Diderot, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Ulrich Platt
- Institute of Environmental Physics, University of Heidelberg, Heidelberg, Germany
| | - Havala O. T. Pye
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot, Israel
| | - Rebecca H. Schwantes
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jochen Stutz
- Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
| | - Joel A. Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA
| | - Andreas Tilgner
- Atmospheric Chemistry Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany
| | - Brent J. Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul A. Zaveri
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
33
|
Berkemeier T, Ammann M, Mentel TF, Pöschl U, Shiraiwa M. Organic Nitrate Contribution to New Particle Formation and Growth in Secondary Organic Aerosols from α-Pinene Ozonolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6334-42. [PMID: 27219077 DOI: 10.1021/acs.est.6b00961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The chemical kinetics of organic nitrate production during new particle formation and growth of secondary organic aerosols (SOA) were investigated using the short-lived radioactive tracer (13)N in flow-reactor studies of α-pinene oxidation with ozone. Direct and quantitative measurements of the nitrogen content indicate that organic nitrates accounted for ∼40% of SOA mass during initial particle formation, decreasing to ∼15% upon particle growth to the accumulation-mode size range (>100 nm). Experiments with OH scavengers and kinetic model results suggest that organic peroxy radicals formed by α-pinene reacting with secondary OH from ozonolysis are key intermediates in the organic nitrate formation process. The direct reaction of α-pinene with NO3 was found to be less important for particle-phase organic nitrate formation. The nitrogen content of SOA particles decreased slightly upon increase of relative humidity up to 80%. The experiments show a tight correlation between organic nitrate content and SOA particle-number concentrations, implying that the condensing organic nitrates are among the extremely low volatility organic compounds (ELVOC) that may play an important role in the nucleation and growth of atmospheric nanoparticles.
Collapse
Affiliation(s)
- Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| | - Markus Ammann
- Laboratory of Environmental Chemistry, Paul Scherrer Institute , Villigen 5232, Switzerland
| | - Thomas F Mentel
- Institute of Energy and Climate Research , IEK-8, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| | - Manabu Shiraiwa
- Multiphase Chemistry Department, Max Planck Institute for Chemistry , Mainz 55128, Germany
| |
Collapse
|
34
|
Chen Q, Ikemori F, Higo H, Asakawa D, Mochida M. Chemical Structural Characteristics of HULIS and Other Fractionated Organic Matter in Urban Aerosols: Results from Mass Spectral and FT-IR Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1721-1730. [PMID: 26771766 DOI: 10.1021/acs.est.5b05277] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The chemical characteristics of complex organic matter in atmospheric aerosols remain poorly understood. Water-insoluble organic matter (WISOM) and water-soluble organic matter (WSOM) in the total suspended particulates collected in the city of Nagoya in summer/early autumn and winter were extracted using multiple solvents. Two fractions of humic-like substances, showing neutral and acidic behavior (HULIS-n and HULIS-a, respectively), and the remaining highly polar part (HP-WSOM) were fractionated from WSOM using solid phase extraction. The chemical structural characteristics and concentrations of the organic matter were investigated using mass spectrometry and Fourier transform infrared (FT-IR) spectroscopy. WISOM and HULIS-n had low O/C ratios (0.1 and 0.4, respectively) and accounted for a large fraction of the organics in aerosols (70%). HULIS-a and HP-WSOM had higher O/C ratios (0.7 and 1.0, respectively), and their concentrations in summer and early autumn were on average ∼2 times higher than those in winter. The mass spectrum and FT-IR analyses suggest the following: (1) WISOM were high-molecular-weight aliphatics (primarily C27-C32) with small proportions of -CH3, -OH, and C═O groups; (2) HULIS-n was abundant in aliphatic structures and hydroxyl groups (primarily C9-C18) and by branched structures; (3) HULIS-a and HP-WSOM contained relatively large amounts of low-molecular-weight carboxylic acids and alcohols (primarily C4-C10); and (4) WISOM and HULIS-n were relatively abundant in amines and organic nitrates.
Collapse
Affiliation(s)
- Qingcai Chen
- Graduate School of Environmental Studies, Nagoya University , Nagoya, Japan
| | - Fumikazu Ikemori
- Graduate School of Environmental Studies, Nagoya University , Nagoya, Japan
- Nagoya City Institute for Environmental Sciences, Nagoya, Japan
| | - Hayato Higo
- Fukuoka City HAKATA Health & Welfare Center, Fukuoka, Japan
| | - Daichi Asakawa
- Osaka City Institute of Public Health and Environmental Sciences, Osaka, Japan
| | - Michihiro Mochida
- Graduate School of Environmental Studies, Nagoya University , Nagoya, Japan
| |
Collapse
|
35
|
Nah T, Sanchez J, Boyd CM, Ng NL. Photochemical Aging of α-pinene and β-pinene Secondary Organic Aerosol formed from Nitrate Radical Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:222-231. [PMID: 26618657 DOI: 10.1021/acs.est.5b04594] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nitrate radical (NO3) is the dominant nighttime oxidant in most urban and rural environments and reacts rapidly with biogenic volatile organic compounds to form secondary organic aerosol (SOA) and organic nitrates (ON). Here, we study the formation of SOA and ON from the NO3 oxidation of two monoterpenes (α-pinene and β-pinene) and investigate how they evolve during photochemical aging. High SOA mass loadings are produced in the NO3+β-pinene reaction, during which we detected 41 highly oxygenated gas- and particle-phase ON possessing 4 to 9 oxygen atoms. The fraction of particle-phase ON in the β-pinene SOA remains fairly constant during photochemical aging. In contrast to the NO3+β-pinene reaction, low SOA mass loadings are produced during the NO3+α-pinene reaction, during which only 5 highly oxygenated gas- and particle-phase ON are detected. The majority of the particle-phase ON evaporates from the α-pinene SOA during photochemical aging, thus exhibiting a drastically different behavior from that of β-pinene SOA. Our results indicate that nighttime ON formed by NO3+monoterpene chemistry can serve as either permanent or temporary NOx sinks depending on the monoterpene precursor.
Collapse
Affiliation(s)
- Theodora Nah
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Javier Sanchez
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christopher M Boyd
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Nga Lee Ng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Carrasquillo AJ, Daumit KE, Kroll JH. Radical Reactivity in the Condensed Phase: Intermolecular versus Intramolecular Reactions of Alkoxy Radicals. J Phys Chem Lett 2015; 6:2388-2392. [PMID: 26266621 PMCID: PMC5348301 DOI: 10.1021/acs.jpclett.5b00913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Condensed-phase alkoxy (RO) radicals can undergo unimolecular (e.g., intramolecular H atom abstraction) reactions as well as bimolecular (intermolecular H atom abstraction) reactions, though the competition between these two channels is not well constrained. Here, we examine this branching by generating RO radicals from the photolysis of a large alkyl nitrite (C20H41ONO) in hexanes and nebulizing the mixture into an aerosol mass spectrometer for analysis. Product ions associated with unimolecular (isomerization) reactions were observed to increase upon photolysis. However, no formation of the C20 alcohol (C20H41OH, the expected product from RO + RH reactions) was observed, suggesting that bimolecular reactions are at most a minor channel for this condensed-phase system (involving saturated hydrocarbons). This result, combined with previous studies of liquid-phase RO radicals carried out at higher concentrations, suggests that when 1,5-H atom abstraction reactions are facile (i.e., in which a 1,5-H atom shift from a secondary or tertiary carbon can occur), this channel will dominate over bimolecular reactions.
Collapse
Affiliation(s)
- Anthony J. Carrasquillo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Kelly E. Daumit
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jesse H. Kroll
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
37
|
Romonosky DE, Nguyen LQ, Shemesh D, Nguyen TB, Epstein SA, Martin DB, Vanderwal CD, Gerber RB, Nizkorodov SA. Absorption spectra and aqueous photochemistry of β-hydroxyalkyl nitrates of atmospheric interest. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1017020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Ji Z, Dai R, Zhang Z. Characterization of fine particulate matter in ambient air by combining TEM and multiple spectroscopic techniques--NMR, FTIR and Raman spectroscopy. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:552-560. [PMID: 25597896 DOI: 10.1039/c4em00678j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper reports a systematic study of the microstructures and spectroscopic characteristics of PM2.5 and its potential sources in Beijing by combining transmission electron microscopy and multiple spectroscopic techniques: nuclear magnetic resonance, Fourier transform infrared and Raman spectroscopy. TEM images showed that dominant components of PM2.5 are airborne organic substances with many trace metal elements which are associated with combustion sources. NMR spectra precisely determined the percentage of carbonaceous speciation in both PM2.5 (with spatial and temporal distribution) and its potential sources, and distinguished the similarities and differences among them. In FTIR spectra, a remarkable peak at 1390 cm(-1) that appeared only in PM2.5 samples was attributed to NH4NO3, representing the occurrence of secondary processes. Raman spectra revealed certain inorganic compounds including sulfate and nitrate ions. Based on the analysis of the decomposition of Raman spectra, spectral parameters provided structural information and helped to find potential sources of PM2.5. In the space of carbon aromaticity index and ID1/IG, PM2.5 points followed a linear distribution which may also be useful in source tracing. The result shows that the combined non-destructive methods are efficient to trace the sources of PM2.5.
Collapse
Affiliation(s)
- Zhurun Ji
- School of The Gifted Young, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | |
Collapse
|
39
|
Song Q, Tan S, Zhuang X, Guo Y, Zhao Y, Wu T, Ye Q, Si L, Zhang Z. Nitric oxide releasing d-α-tocopheryl polyethylene glycol succinate for enhancing antitumor activity of doxorubicin. Mol Pharm 2014; 11:4118-29. [PMID: 25222114 DOI: 10.1021/mp5003009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitric oxide (NO) has attracted much attention for its antitumor activity and synergistic effects when codelivered with anticancer agents. However, due to its chemical instability and short half-life, delivering gaseous NO directly to tumors is still challenging. Herein, we synthesized a NO releasing polymer, nitrate functionalized d-α-tocopheryl polyethylene glycol succinate (TNO3). TNO3 was able to self-assemble into stable micelles in physiological conditions, accumulate in tumors, and release ∼90% of NO content in cancer cells for 96 h. It further exhibited significant cancer cell cytotoxicity and apoptosis compared with nitroglycerine (GTN). Notably, TNO3 could also serve as an enhancer for the common chemotherapeutic drug doxorubicin (DOX). Codelivering TNO3 with DOX to hepatocarcinoma HepG2 cancer cells strengthened the cellular uptake of DOX and enabled the synergistic effect between NO and DOX to induce higher cytotoxicity (∼6.25-fold lower IC50). Moreover, for DOX-based chemotherapy in tumor-bearing mice, coadministration with TNO3 significantly extended the blood circulation time of DOX (14.7-fold t1/2, 6.5-fold mean residence time (MRT), and 13.7-fold area under curve (AUC)) and enhanced its tumor accumulation and penetration, thus resulting in better antitumor efficacy. In summary, this new NO donor, TNO3, may provide a simple but effective strategy to enhance the therapeutic efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Qingle Song
- Tongji School of Pharmacy and ‡National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology , Wuhan 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sobanska S, Falgayrac G, Rimetz-Planchon J, Perdrix E, Brémard C, Barbillat J. Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEM–EDX, Raman and ToF–SIMS imaging. Microchem J 2014. [DOI: 10.1016/j.microc.2013.12.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Jung HJ, Eom HJ, Kang HW, Moreau M, Sobanska S, Ro CU. Combined use of quantitative ED-EPMA, Raman microspectrometry, and ATR-FTIR imaging techniques for the analysis of individual particles. Analyst 2014; 139:3949-60. [DOI: 10.1039/c4an00380b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quantitative ED-EPMA, RMS, and ATR-FTIR imaging techniques were used in combination for the analysis of the same individual particles for the first time.
Collapse
Affiliation(s)
- Hae-Jin Jung
- Air Quality Research Division
- National Institute of Environmental Research
- Seo-gu, South Korea
| | - Hyo-Jin Eom
- Department of Chemistry
- Inha University
- Nam Gu, South Korea
| | - Hyun-Woo Kang
- Department of Chemistry
- Inha University
- Nam Gu, South Korea
| | - Myriam Moreau
- Laboratoire de Spectrochimie Infrarouge et Raman
- UMR CNRS 8516
- Université de Lille 1
- 59655 Villeneuve d'Ascq Cedex, France
| | - Sophie Sobanska
- Laboratoire de Spectrochimie Infrarouge et Raman
- UMR CNRS 8516
- Université de Lille 1
- 59655 Villeneuve d'Ascq Cedex, France
| | - Chul-Un Ro
- Department of Chemistry
- Inha University
- Nam Gu, South Korea
| |
Collapse
|
42
|
Perring AE, Pusede SE, Cohen RC. An Observational Perspective on the Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chem Rev 2013; 113:5848-70. [DOI: 10.1021/cr300520x] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. E. Perring
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - S. E. Pusede
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| | - R. C. Cohen
- Department
of Chemistry, and ‡Department of Earth and Planetary Sciences, University of California Berkeley, Berkeley, California
94720, United States
| |
Collapse
|
43
|
Hao L, Romakkaniemi S, Kortelainen A, Jaatinen A, Portin H, Miettinen P, Komppula M, Leskinen A, Virtanen A, Smith JN, Sueper D, Worsnop DR, Lehtinen KEJ, Laaksonen A. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2645-2653. [PMID: 23419193 DOI: 10.1021/es302889w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.
Collapse
Affiliation(s)
- Liqing Hao
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Study of the degradation mechanism of Chinese historic silk (Bombyx mori) for the purpose of conservation. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2012.12.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Chemical Warfare Agent Simulants in Gamble’s Fluid: Is the Fluid Toxic? Can It Be Made Safer by Inclusion of Solid Nanocrystalline Metal Oxides? J CHEM-NY 2013. [DOI: 10.1155/2013/641620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The reactions of chemical warfare agent simulants, 2-chloroethyl ethyl sulfide (2-CEES) and di-i-propyl fluoro phosphate (DFP), in fluids have been investigated. Data analyses confirm the major degradation pathway to be hydrolysis of 2-CEES to 2-hydroxyethyl ethyl sulfide, along with minor self-condensation products. Among the three fluids examined, 2-CEES degradation was the fastest in Gamble’s fluid during a 96 h period. Upon addition of Exceptional Hazard Attenuation Materials (EHAMs) to 2-CEES containing Gamble’s fluid, degradation was generally improved during the first 24 h period. The 96 h outcome was similar for fluid samples with or without EHAM 2 and EHAM 4. EHAM 1-added fluid contained only one degradation product, 2-nitroethyl ethyl sulfide. DFP degradation was the slowest in Gamble’s fluid, but was enhanced by the addition of EHAMs. FTIR and solid state31P NMR confirm the destructive adsorption of 2-CEES and DFP by the EHAMs. The results collectively demonstrate that 2-CEES and DFP decompose to various extents in Gamble’s fluid over a 96 h period but the fluid still contains a considerable amount of intact simulant. EHAM 1 appears to be promising for 2-CEES and DFP mitigation while EHAM 2 and EHAM 4 work well for early on concentration reduction of 2-CEES and DFP.
Collapse
|
46
|
Sobanska S, Hwang H, Choël M, Jung HJ, Eom HJ, Kim H, Barbillat J, Ro CU. Investigation of the Chemical Mixing State of Individual Asian Dust Particles by the Combined Use of Electron Probe X-ray Microanalysis and Raman Microspectrometry. Anal Chem 2012; 84:3145-54. [DOI: 10.1021/ac2029584] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sophie Sobanska
- Laboratoire de Spectrochimie
Infrarouge et Raman, UMR CNRS 8516, Université de Lille 1, Bât. C5, 59655 Villeneuve d’Ascq
Cedex, France
| | - HeeJin Hwang
- Korea Polar Research Institute, Songdo Dong, Yeonsu Gu, 406-840 Incheon,
South Korea
| | - Marie Choël
- Laboratoire de Spectrochimie
Infrarouge et Raman, UMR CNRS 8516, Université de Lille 1, Bât. C5, 59655 Villeneuve d’Ascq
Cedex, France
| | - Hae-Jin Jung
- Department of
Chemistry, Inha University, Yonghyun Dong,
Nam Gu, 402-751 Incheon,
South Korea
| | - Hyo-Jin Eom
- Department of
Chemistry, Inha University, Yonghyun Dong,
Nam Gu, 402-751 Incheon,
South Korea
| | - HyeKyeong Kim
- Department of
Chemistry, Inha University, Yonghyun Dong,
Nam Gu, 402-751 Incheon,
South Korea
| | - Jacques Barbillat
- Laboratoire de Spectrochimie
Infrarouge et Raman, UMR CNRS 8516, Université de Lille 1, Bât. C5, 59655 Villeneuve d’Ascq
Cedex, France
| | - Chul-Un Ro
- Department of
Chemistry, Inha University, Yonghyun Dong,
Nam Gu, 402-751 Incheon,
South Korea
| |
Collapse
|
47
|
Perraud V, Bruns EA, Ezell MJ, Johnson SN, Yu Y, Alexander ML, Zelenyuk A, Imre D, Chang WL, Dabdub D, Pankow JF, Finlayson-Pitts BJ. Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proc Natl Acad Sci U S A 2012; 109:2836-41. [PMID: 22308444 PMCID: PMC3286997 DOI: 10.1073/pnas.1119909109] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Airborne particles play critical roles in air quality, health effects, visibility, and climate. Secondary organic aerosols (SOA) formed from oxidation of organic gases such as α-pinene account for a significant portion of total airborne particle mass. Current atmospheric models typically incorporate the assumption that SOA mass is a liquid into which semivolatile organic compounds undergo instantaneous equilibrium partitioning to grow the particles into the size range important for light scattering and cloud condensation nuclei activity. We report studies of particles from the oxidation of α-pinene by ozone and NO(3) radicals at room temperature. SOA is primarily formed from low-volatility ozonolysis products, with a small contribution from higher volatility organic nitrates from the NO(3) reaction. Contrary to expectations, the particulate nitrate concentration is not consistent with equilibrium partitioning between the gas phase and a liquid particle. Rather the fraction of organic nitrates in the particles is only explained by irreversible, kinetically determined uptake of the nitrates on existing particles, with an uptake coefficient that is 1.6% of that for the ozonolysis products. If the nonequilibrium particle formation and growth observed in this atmospherically important system is a general phenomenon in the atmosphere, aerosol models may need to be reformulated. The reformulation of aerosol models could impact the predicted evolution of SOA in the atmosphere both outdoors and indoors, its role in heterogeneous chemistry, its projected impacts on air quality, visibility, and climate, and hence the development of reliable control strategies.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Emily A. Bruns
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Michael J. Ezell
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Stanley N. Johnson
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | - Yong Yu
- Department of Chemistry, University of California, Irvine, CA 92697-2025
| | | | - Alla Zelenyuk
- Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352
| | - Dan Imre
- Imre Consulting, 181 McIntosh Court, Richland, WA 99352
| | - Wayne L. Chang
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975; and
| | - Donald Dabdub
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975; and
| | - James F. Pankow
- Department of Chemistry, Portland State University, Portland, OR, 97207
| | | |
Collapse
|
48
|
Cornell SE. Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2214-22. [PMID: 21131113 DOI: 10.1016/j.envpol.2010.11.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/11/2023]
Abstract
The organic component of atmospheric reactive nitrogen plays a role in biogeochemical cycles, climate and ecosystems. Although its deposition has long been known to be quantitatively significant, it is not routinely assessed in deposition studies and monitoring programmes. Excluding this fraction, typically 25-35%, introduces significant uncertainty in the determination of nitrogen deposition, with implications for the critical loads approach. The last decade of rainwater studies substantially expands the worldwide dataset, giving enough global coverage for specific hypotheses to be considered about the distribution, composition, sources and effects of organic-nitrogen deposition. This data collation and meta-analysis highlights knowledge gaps, suggesting where data-gathering efforts and process studies should be focused. New analytical techniques allow long-standing conjectures about the nature and sources of organic N to be investigated, with tantalising indications of the interplay between natural and anthropogenic sources, and between the nitrogen and carbon cycles.
Collapse
Affiliation(s)
- Sarah E Cornell
- QUEST, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK.
| |
Collapse
|
49
|
Gratien A, Johnson SN, Ezell MJ, Dawson ML, Bennett R, Finlayson-Pitts BJ. Surprising formation of p-cymene in the oxidation of α-pinene in air by the atmospheric oxidants OH, O3, and NO3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2755-2760. [PMID: 21405079 DOI: 10.1021/es103632b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Anthropogenic sources release into the troposphere a wide range of volatile organic compounds (VOCs) including aromatic hydrocarbons, whose major sources are believed to be combustion and the evaporation of fossil fuels. An important question is whether there are other sources of aromatics in air. We report here the formation of p-cymene [1-methyl-4-(1-methylethyl) benzene, C6H4(CH3)(C3H7)] from the oxidation of α-pinene by OH, O3, and NO3 at 1 atm in air and 298 K at low (<5%) and high (70%) relative humidities (RH). Loss of α-pinene and the generation of p-cymene were measured using GC-MS. The fractional yields of p-cymene relative to the loss of α-pinene, Δ [p-cymeme]/Δ [α-pinene], were measured to range from (1.6±0.2)×10(-5) for the O3 reaction to (3.0±0.3)×10(-4) for the NO3 reaction in the absence of added water vapor. The yields for the OH and O3 reactions increased by a factor of 4-8 at 70% RH (uncertainties are ±2s). The highest yields at 70% RH for the OH and O3 reactions, ∼15 times higher than for dry conditions, were observed if the walls of the Teflon reaction chamber had been previously exposed to H2SO4 formed from the OH oxidation of SO2. Possible mechanisms of the conversion of α-pinene to p-cymene and the potential importance in the atmosphere are discussed.
Collapse
Affiliation(s)
- Aline Gratien
- Department of Chemistry, University of California Irvine, Irvine, California 92697-2025, United States
| | | | | | | | | | | |
Collapse
|
50
|
Nakayama T, Matsumi Y, Sato K, Imamura T, Yamazaki A, Uchiyama A. Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α
-pinene. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014387] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoki Nakayama
- Solar-Terrestrial Environment Laboratory and Graduate School of Science; Nagoya University; Nagoya Japan
| | - Yutaka Matsumi
- Solar-Terrestrial Environment Laboratory and Graduate School of Science; Nagoya University; Nagoya Japan
| | - Kei Sato
- National Institute for Environmental Studies; Tsukuba Japan
| | | | - Akihiro Yamazaki
- Meteorological Research Institute; Japan Meteorological Agency; Tsukuba Japan
| | - Akihiro Uchiyama
- Meteorological Research Institute; Japan Meteorological Agency; Tsukuba Japan
| |
Collapse
|