1
|
Cenikli M, Mullaahmetoglu F, Ozturk R, Ozkan-Ariksoysal D. Does Favipiravir interact with DNA? Design of electrochemical DNA nanobiosensor to investigate the interaction between DNA and Favipiravir used in the treatment of COVID-19. Talanta 2025; 293:128084. [PMID: 40194460 DOI: 10.1016/j.talanta.2025.128084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
The SARS-CoV-2 (COVID-19) outbreak has presented a global challenge for both rapid diagnostic tests and therapeutic drugs. In this context, the electrochemical DNA-based biosensor was designed for the investigation of DNA and Favipiravir (FAV) which was one of the drugs used in patients infected SARS-CoV-2 during the pandemic interaction by using bare and multi-walled carbon nanotube (MWCNTs) modified disposable pencil graphite electrode (PGE) for the first time. This drug and its derivatives were used extensively during the pandemic period, and the possible effects of Favipiravir on DNA have not yet been investigated in detail with electrochemical (nano) biosensor technologies. In this study, both the standard form of FAV and the tablet form were used and tested with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) to compare their effects on DNA. Besides, scanning electron microscopy (SEM) was used for the characterization of the developed MWCNTs modified electrochemical DNA biosensor. It was observed that FAV interacts with DNA and causes a significant decrease in the guanine oxidation signal at about +1.00 V. The designed MWCNT-based nanobiosensor was able to detect DNA-Favipiravir drug interaction in FAV concentration as low as 0.66 μg/mL (LOD) with a linear range from 150 to 500 μg/mL. Rapid analysis due to short interaction time (nearly 32 min) was performed.
Collapse
Affiliation(s)
- Merve Cenikli
- Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100, Türkiye
| | | | - Rabia Ozturk
- Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100, Türkiye
| | - Dilsat Ozkan-Ariksoysal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100, Türkiye.
| |
Collapse
|
2
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
3
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Raisi L, Hashemi SH, Jamali Keikha A, Kaykhaii M. Application of a novel deep eutectic solvent modified carbon nanotube for pipette-tip micro solid phase extraction of 6-mercaptopurine. BMC Chem 2024; 18:81. [PMID: 38654336 DOI: 10.1186/s13065-024-01199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND 6-mercaptopurine (6-MP) is a chemotherapy drug mainly used to treat leukemia. It is a persistent organic pollutant and can remain in the environment for a long period of time. The presence of 6-MP in the environment poses a number of hazards and needs to be assessed to monitor its potential risk to human health and the environment. However, due to its trace amount in complicated matrices, a clean-up and preconcentration step before its determination is compulsory. RESULTS As a highly efficient adsorbent for the extrication of 6-mercaptopurine (6-MP), a novel carbon nanotube doped with camphor: decanoic acid deep eutectic solvent was synthesized and applied as a packing material for the pipette-tip micro solid phase extraction sorbent of 6-MP from tap, wastewater and seawater samples before its spectrophotometric determination. Characteristics and structure of this adsorbent was fully investigated. Factors affecting extraction, including type and volume of the eluent, ionic strength and pH of the sample solution, amount of adsorbent, and number of extraction and elution cycles were optimized using one-factor-at-a-time and response surface methodologies. The method was found to be linear in the range of 1 to 1000 µg/L with a limit of detection and quantification of 0.2 and 0.7 µg/L, respectively. Reproducibility as relative standard deviation was better than 4.6%. CONCLUSION Application of deep eutectic solvent modified carbon nanotube indicated suitable microextraction results and good potential for rapid extraction of trace amounts of 6-MP from different aqueous samples. The amount of sample required for the analysis was less than 10 mL and only 1.5 mg of the adsorbent was used. The total analysis time, including extraction was less than 15 min and the adsorbent could be used for at least 10 times, without significantly losing its adsorption ability. Compared to using unmodified usual carbon nanotubes, deep eutectic solvent doped carbon nanotubes showed 19.8% higher extraction ability.
Collapse
Affiliation(s)
- Leila Raisi
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Sayyed Hossein Hashemi
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Ahmad Jamali Keikha
- Department of Mechanical Engineering, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran
| | - Massoud Kaykhaii
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| |
Collapse
|
5
|
Tyagi R, Yadav K, Srivastava N, Sagar R. Applications of Pyrrole and Pyridine-based Heterocycles in Cancer Diagnosis and Treatment. Curr Pharm Des 2024; 30:255-277. [PMID: 38711394 DOI: 10.2174/0113816128280082231205071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 05/08/2024]
Abstract
BACKGROUND The escalation of cancer worldwide is one of the major causes of economy burden and loss of human resources. According to the American Cancer Society, there will be 1,958,310 new cancer cases and 609,820 projected cancer deaths in 2023 in the United States. It is projected that by 2040, the burden of global cancer is expected to rise to 29.5 million per year, causing a death toll of 16.4 million. The hemostasis regulation by cellular protein synthesis and their targeted degradation is required for normal cell growth. The imbalance in hemostasis causes unbridled growth in cells and results in cancer. The DNA of cells needs to be targeted by chemotherapeutic agents for cancer treatment, but at the same time, their efficacy and toxicity also need to be considered for successful treatment. OBJECTIVE The objective of this study is to review the published work on pyrrole and pyridine, which have been prominent in the diagnosis and possess anticancer activity, to obtain some novel lead molecules of improved cancer therapeutic. METHODS A literature search was carried out using different search engines, like Sci-finder, Elsevier, ScienceDirect, RSC etc., for small molecules based on pyrrole and pyridine helpful in diagnosis and inducing apoptosis in cancer cells. The research findings on the application of these compounds from 2018-2023 were reviewed on a variety of cell lines, such as breast cancer, liver cancer, epithelial cancer, etc. Results: In this review, the published small molecules, pyrrole and pyridine and their derivatives, which have roles in the diagnosis and treatment of cancers, were discussed to provide some insight into the structural features responsible for diagnosis and treatment. The analogues with the chromeno-furo-pyridine skeleton showed the highest anticancer activity against breast cancer. The compound 5-amino-N-(1-(pyridin-4- yl)ethylidene)-1H-pyrazole-4-carbohydrazides was highly potent against HEPG2 cancer cell. Redaporfin is used for the treatment of cholangiocarcinoma, biliary tract cancer, cisplatin-resistant head and neck squamous cell carcinoma, and pigmentation melanoma, and it is in clinical trials for phase II. These structural features present a high potential for designing novel anticancer agents for diagnosis and drug development. CONCLUSION Therefore, the N- and C-substituted pyrrole and pyridine-based novel privileged small Nheterocyclic scaffolds are potential molecules used in the diagnosis and treatment of cancer. This review discusses the reports on the synthesis of such molecules during 2018-2023. The review mainly discusses various diagnostic techniques for cancer, which employ pyrrole and pyridine heterocyclic scaffolds. Furthermore, the anticancer activity of N- and C-substituted pyrrole and pyridine-based scaffolds has been described, which works against different cancer cell lines, such as MCF-7, A549, A2780, HepG2, MDA-MB-231, K562, HT- 29, Caco-2 cells, Hela, Huh-7, WSU-DLCL2, HCT-116, HBL-100, H23, HCC827, SKOV3, etc. This review will help the researchers to obtain a critical insight into the structural aspects of pyrrole and pyridine-based scaffolds useful in cancer diagnosis as well as treatment and design pathways to develop novel drugs in the future.
Collapse
Affiliation(s)
- Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| | - Nitin Srivastava
- Department of Chemistry, Amity University Lucknow Campus, Lucknow, Uttar Pradesh 226028, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110007, India
| |
Collapse
|
6
|
Xu Z, Liu H, Yu Y, Gao D, Leng C, Zhang S, Yan P. MWCNTs Alleviated saline-alkali stress by optimizing photosynthesis and sucrose metabolism in rice seedling. PLANT SIGNALING & BEHAVIOR 2023; 18:2283357. [PMID: 38053501 PMCID: PMC10761102 DOI: 10.1080/15592324.2023.2283357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023]
Abstract
Saline and alkali stress affects the growth and development, survival rate, and final yield of rice, while new nano materials can have a positive effect on rice growth. In order to investing the effects of carboxymethyl multi walled carbon nanotubes (MWCNTs) on the growth and development of rice seedlings under salt alkali stress, rice seedlings were cultured using rice variety "Songjing 3" using nutrient solution water culture method. The effects of MWCNTs on water absorption capacity, leaf photosynthesis, and sucrose metabolism of rice seedlings under 50 mmol/L saline-alkali stress (1NaCl: 9Na2SO4: 9NaHCO3: 1Na2CO3) conditions were investigated. The results showed that MWCNTs can improve the water use ability of roots and leaves, especially the water absorption ability of roots, which provides a guarantee for the improvement of rice biomass and the enhancement of leaf photosynthetic capacity under adverse conditions. After treatment with MWCNTs, the photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr) of leaves increased significantly, and the photochemical quenching value (qP), photochemical quantum efficiency value (Fv/Fm), and electron transfer rate value (ETR) of chlorophyll fluorescence parameters increased significantly, which is beneficial to the improvement of the PSII photosynthetic system. MWCNTs treatment promoted the increase of photosynthetic pigment content in leaves under salt and alkali stress, improved the ratio of Chla and Chlb parameters, increased the activities of key photosynthetic enzymes (RUBPCase and PEPCase) in leaves, increased the value of total lutein cycle pool (VAZ), and significantly enhanced the deepoxidation effect of lutein cycle (DEPS), which can effectively alleviate the stomatal and non stomatal constraints on leaf photosynthesis caused by salt and alkali stress. MWCNTs treatment significantly enhanced the activities of sucrose phosphate synthase (SPS) and sucrose synthase (SS) under salt and alkali stress, and decreased the activities of soluble acid invertase (SAInv) and alkaline/neutral invertase (A/N-Inv), indicating that MWCNTs promoted sucrose synthesis while inhibiting sucrose decomposition, thereby promoting sucrose accumulation in rice leaves. This study can provide theoretical and experimental basis for the application of MWCNTs to the production of rice under salt and alkali stress, and can find a new way for rice production in saline and alkaline lands.
Collapse
Affiliation(s)
- Zhenhua Xu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Haiying Liu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yanmin Yu
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Dawei Gao
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Chunxu Leng
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Shuli Zhang
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Ping Yan
- Biotechnology Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| |
Collapse
|
7
|
Huyen DT, Bui TQ, Si NT, Nhat PV, Quy PT, Nhung NTA. Theoretical study of the binding mechanism between anticancerous drug mercaptopurine and gold nanoparticles using a cluster model. J Mol Model 2023; 29:307. [PMID: 37682358 DOI: 10.1007/s00894-023-05716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
CONTEXT Mercaptopurine is an effective anticancer medicine yet known with serious adverse reactions, thus requiring further attempts to enhance its biological targeting. Small gold clusters Aun (n = 2-10) were used as model reactants to simulate the surface of gold nanoparticles. The computed results show that the drug molecules tend to anchor on the gold clusters at the S atom with the associated binding energies varying from -50 to -34 kcal mol-1 (in vacuum) and from -42 to -28 kcal mol-1 (in aqueous solution). Furthermore, the adsorption of the drug onto the gold surface is considered as a reversible process, and the mechanism of drug releasing was found to be triggerable by internal factors, such as a pH change or the concentrated presence of thiol amino acids in cancerous protein structures. METHOD Calculations based on density functional theory (DFT) were performed to probe the nature of interactions between the drug and gold nanoparticles. Structural features, thermodynamic parameters, bonding characteristics, and electronic properties of the resulting complexes were investigated at the PBE//cc-pVTZ/cc-pVDZ-PP level.
Collapse
Affiliation(s)
- Duong Thi Huyen
- Department of Chemistry-Biology, Faculty of Basic Science, Tra Vinh University, Tra Vinh, Vietnam
| | - Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| | | | - Pham Vu Nhat
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam.
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Buon Ma Thuot, Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam.
| |
Collapse
|
8
|
Conklin B, Conley BM, Hou Y, Chen M, Lee KB. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials. Adv Drug Deliv Rev 2023; 192:114636. [PMID: 36481291 PMCID: PMC11829738 DOI: 10.1016/j.addr.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.
Collapse
Affiliation(s)
- Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Sedhu N, Jagadeesh Kumar J, Sivaguru P, Raj V. Electrochemical detection of riboflavin in pharmaceutical and food samples using in situ electropolymerized glycine coated pencil graphite electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022; 221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors. The performance of the DNA sensors is summarized within 2017-2022 for various drugs and factors influencing the sensitivity and selectivity of the response are discussed. Special attention is paid to the mechanism of the signal generation and possible drawbacks in the analysis of real samples.
Collapse
Affiliation(s)
- G A Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation; Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation.
| | - A V Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - S V Belyakova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| |
Collapse
|
12
|
A facile and green synthesis of cobalt phthalocyanine-conjugated multiwall carbon nanotube by the Ugi reaction: As an efficient CO2 fixation catalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
14
|
Ganesh PS, Shimoga G, Lee SH, Kim SY, Ebenso EE. Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode. J Anal Sci Technol 2021; 12:20. [DOI: 10.1186/s40543-021-00270-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
AbstractBackgroundA simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers.MethodsThe modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques.ResultsThe effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon.ConclusionsThe limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed.Graphical abstractElectrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.
Collapse
|
15
|
Abo‐bakr AM, Abd‐Elsabour M, Abou‐Krisha MM. An Efficient Novel Electrochemical Sensor for Simultaneous Determination of Vitamin C and Aspirin Based on a PMR/Zn‐Al LDH/GCE. ELECTROANAL 2021. [DOI: 10.1002/elan.202100151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A. M. Abo‐bakr
- Faculty of Science Chemistry Department South Valley University Qena 83523 Egypt
| | - M. Abd‐Elsabour
- Faculty of Science Chemistry Department South Valley University Qena 83523 Egypt
| | - M. M. Abou‐Krisha
- Faculty of Science Chemistry Department South Valley University Qena 83523 Egypt
- Chemistry Department College of Science Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11623 Saudi Arabia
| |
Collapse
|
16
|
Karimi F, Ghorbani M, Lashkenari MS, Jajroodi M, Talooki EF, Vaseghian Y, Karaman O, Karaman C. Polyaniline-Manganese Ferrite Supported Platinum–Ruthenium Nanohybrid Electrocatalyst: Synergizing Tailoring Toward Boosted Ethanol Oxidation Reaction. Top Catal 2021. [DOI: 10.1007/s11244-021-01537-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Virender, Mohan B, Kumar S, Modi K, Deshmukh AH, Kumar A. 2-((E)-1-((E)-(2-methoxybenzylidene)hydrazono)ethyl)phenol based cost-effective sensor for the selective detection of Eu3+ ions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Yagati AK, Behrent A, Tomanek V, Chavan SG, Go A, Park SR, Jin Z, Baeumner AJ, Lee MH. Polypyrrole-palladium nanocomposite as a high-efficiency transducer for thrombin detection with liposomes as a label. Anal Bioanal Chem 2021; 414:3205-3217. [PMID: 34617153 DOI: 10.1007/s00216-021-03673-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Sensitive and selective determination of protein biomarkers with high accuracy often remains a great challenge due to their existence in the human body at an exceptionally low concentration level. Therefore, sensing mechanisms that are easy to use, simple, and capable of accurate quantification of analyte are still in development to detect biomarkers at a low concentration level. To meet this end, we demonstrated a methodology to detect thrombin in serum at low concentration levels using polypyrrole (PPy)-palladium (Pd)nanoparticle-based hybrid transducers using liposomes encapsulated redox marker as a label. The morphology of Ppy-Pd composites was characterized by scanning electron microscopy, and the hybrid structure provided excellent binding and detection platform for thrombin detection in both buffer and serum solutions. For quantitative measurement of thrombin in PBS and serum, the change in current was monitored using differential pulse voltammetry, and the calculated limit of quantification (LOQ) and limit of detection (LOD) for the linear segment (0.1-1000 nM of thrombin) were 1.1 pM and 0.3 pM, in serum, respectively. The sensors also exhibited good stability and excellent selectivity towards the detection of thrombin, and thus make it a strong candidate for adopting its sensing applications in biomarker detection technologies.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Arne Behrent
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Vanessa Tomanek
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Sung Ryul Park
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Zhengzhi Jin
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Elbalkiny HT, S. Saleh S. Monitoring Imidazoline Derivatives via Functionalized Nano‐Potentiometric Platforms in Aqueous Humor and Dosage Forms. ELECTROANAL 2021. [DOI: 10.1002/elan.202100191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Heba T. Elbalkiny
- Analytical Chemistry Department Faculty of Pharmacy October University for Modern Sciences and Arts (MSA) 11787 6th October Giza Egypt
| | - Sarah S. Saleh
- Analytical Chemistry Department Faculty of Pharmacy October University for Modern Sciences and Arts (MSA) 11787 6th October Giza Egypt
| |
Collapse
|
20
|
Wu T, Xia D, Xu J, Ye C, Zhang D, Deng D, Zhang J, Huang G. Sequential injection-square wave voltammetric sensor for phosphate detection in freshwater using silanized multi-walled carbon nanotubes and gold nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Zohreh Ghazanfari, Sarhadi H, Tajik S. Determination of Sudan I and Bisphenol A in Tap Water and Food Samples Using Electrochemical Nanosensor. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521030066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Electrode material fabricated by doping holmium in nickel oxide and its application in electrochemical sensor for flutamide determination as a prostate cancer drug. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Saedi H, Fat'hi MR, Zargar B. Synthesis of
AgNPs
functionalized
CuMOF
/
PPy–rGO
nanocomposite and its use as an electrochemical sensor for metronidazole determination. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Hamide Saedi
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Mohammad Reza Fat'hi
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Behrooz Zargar
- Department of Chemistry, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| |
Collapse
|
24
|
ESSENCE – A rapid, shear-enhanced, flow-through, capacitive electrochemical platform for rapid detection of biomolecules. Biosens Bioelectron 2021; 182:113163. [DOI: 10.1016/j.bios.2021.113163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 01/24/2023]
|
25
|
Electrochemical detection of riboflavin using tin-chitosan modified pencil graphite electrode. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Mohan B, Virender, Kumar S, Modi K, Kumar Sharma H, Kumar A. 5-Bromo-1H-indol based flexible molecular receptor possessing spectroscopic characteristics for detection of Sm(III) and Dy(III) ions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosens Bioelectron 2021; 178:113021. [DOI: 10.1016/j.bios.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
|
28
|
Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021; 229:122247. [PMID: 33838767 DOI: 10.1016/j.talanta.2021.122247] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that cancer, the second leading cause of death, is a morbidity with big impacts on the global health. In the last few years, chemo-therapeutic treatment continually induces alone most lengthy consequents, which is extremely harmful for the physiological and psychological health of the patients. In the present research, we discuss the recent techniques for employed for extraction, and quantitative determination of such compounds in pharmaceutical, and biological specimens. In the frame of this information, this review aims to provide basic principles of chromatography, spectroscopy, and electroanalytical methods for the analysis of anticancer drugs published in the last three years. The review also describes the recent developments regarding enhancing the limit of detection (LOD), the linear dynamic range, and so forth. The results show that the LOD for the chromatographic techniques with the UV detector was obtained equaled over the range 2.0 ng mL-1-0.2 μg mL-1, whereas the LOD values for analysis by chromatographic technique with the mass spectrometry (MS) detector was found between 10.0 pg mL-1-0.002 μg mL-1. The biological fluids could be directly injected to capillary electrophoresis (CE) in cases where the medicine concentration is at the contents greater than mg L-1 or g L-1. Additionally, electrochemical detection of the anticancer drugs has been mainly conducted by the voltammetry techniques with diverse modified electrodes, and lower LODs were estimated between 3.0 ng mL-1-0.3 μg mL-1. It is safe to say that the analyses of anticancer drugs can be achieved by employing a plethora of techniques such as electroanalytical, spectroscopy, and chromatography techniques.
Collapse
Affiliation(s)
- Mohadeseh Safaei
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | |
Collapse
|
29
|
Hengameh Zabolestani, Sarhadi H, Beitollahi H. Electrochemical Sensor Based on Modified Screen Printed Electrode for Vitamin B6 Detection. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521020149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
A nano-sensing composite platform combining magnetic and emissive features: Fabrication and performance. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Shetti NP, Mishra A, Bukkitgar SD, Basu S, Narang J, Raghava Reddy K, Aminabhavi TM. Conventional and Nanotechnology-Based Sensing Methods for SARS Coronavirus (2019-nCoV). ACS APPLIED BIO MATERIALS 2021; 4:1178-1190. [PMID: 34192244 PMCID: PMC7874501 DOI: 10.1021/acsabm.0c01545] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Ongoing pandemic coronavirus (COVID-19) has affected over 218 countries and infected 88,512,243 and 1,906,853 deaths reported by Jan. 8, 2021. At present, vaccines are being developed in Europe, Russia, USA, and China, although some of these are in phase III of trials, which are waiting to be available for the general public. The only option available now is by vigorous testing, isolation of the infected cases, and maintaining physical and social distances. Numerous methods are now available or being developed for testing the suspected cases, which may act as carriers of the virus. In this review, efforts have been made to discuss the conventional as well as fast, rapid, and efficient testing methods developed for the diagnosis of 2019-nCoV.Testing methods can be based on the sensing of targets, which include RNA, spike proteins and antibodies such as IgG and IgM. Apart from the development of RNA targeted PCR, antibody and VSV pseudovirus neutralization assay along with several other diagnostic techniques have been developed. Additionally, nanotechnology-based sensors are being developed for the diagnosis of the virus, and these are also discussed.
Collapse
Affiliation(s)
- Nagaraj P. Shetti
- Center
for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 027, Karnataka, India
| | - Amit Mishra
- Department
of Chemical Engineering, Inha University, Incheon 22212,South Korea
| | - Shikandar D. Bukkitgar
- Center
for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi 580 027, Karnataka, India
| | - Soumen Basu
- School
of Chemistry and Biochemistry, Thapar Institute
of Engineering & Technology, Patiala 147004, Punjab, India
| | - Jagriti Narang
- Department
of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard
Nagar, New Delhi 110062, India
| | - Kakarla Raghava Reddy
- School
of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tejraj M. Aminabhavi
- Department
of Pharmaceutical Engineering, SET’s
College of Pharmacy, Dharwad, Karnataka 580 002, India
| |
Collapse
|
32
|
Simplified synthesis of N-doped carbon nanotube arrayed mesoporous carbon for electrochemical detection of amitrole. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Dhanalakshmi N, Priya T, Thennarasu S, Sivanesan S, Thinakaran N. Synthesis and electrochemical properties of environmental free l-glutathione grafted graphene oxide/ZnO nanocomposite for highly selective piroxicam sensing. J Pharm Anal 2021; 11:48-56. [PMID: 33717611 PMCID: PMC7930633 DOI: 10.1016/j.jpha.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 11/24/2022] Open
Abstract
A simple and reliable strategy was proposed to engineer the glutathione grafted graphene oxide/ZnO nanocomposite (glutathione-GO/ZnO) as electrode material for the high-performance piroxicam sensor. The prepared glutathione-GO/ZnO nanocomposite was well characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The novel nanocomposite modified electrode showed the highest electrocatalytic activity towards piroxicam (oxidation potential is 0.52 V). Under controlled experimental parameters, the proposed sensor exhibited good linear responses to piroxicam concentrations ranging from 0.1 to 500 μM. The detection limit and sensitivity were calculated as 1.8 nM and 0.2 μA/μM·cm2, respectively. Moreover, it offered excellent selectivity, reproducibility, and long-term stability and can effectively ignore the interfering candidates commonly existing in the pharmaceutical tablets and human fluids even at a higher concentration. Finally, the reported sensor was successfully employed to the direct determination of piroxicam in practical samples.
Collapse
Affiliation(s)
- N. Dhanalakshmi
- Environmental Research Lab, PG and Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, 630 003, Tamil Nadu, India
| | - T. Priya
- Environmental Research Lab, PG and Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, 630 003, Tamil Nadu, India
| | - S. Thennarasu
- School of Chemistry, Bharathidasan University, Thiruchirapalli, 620 024, Tamil Nadu, India
| | - S. Sivanesan
- Department of Applied Science and Technology, AC Tech, Anna University, Chennai, 25, India
| | - N. Thinakaran
- Environmental Research Lab, PG and Research Department of Chemistry, Alagappa Government Arts College, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
34
|
Lu JY, Yu YS, Chen TB, Chang CF, Tamulevičius S, Erts D, Wu KCW, Gu Y. Fabrication of an Extremely Cheap Poly(3,4-ethylenedioxythiophene) Modified Pencil Lead Electrode for Effective Hydroquinone Sensing. Polymers (Basel) 2021; 13:polym13030343. [PMID: 33498983 PMCID: PMC7866211 DOI: 10.3390/polym13030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 01/26/2023] Open
Abstract
Hydroquinone (HQ) is one of the major deleterious metabolites of benzene in the human body, which has been implicated to cause various human diseases. In order to fabricate a feasible sensor for the accurate detection of HQ, we attempted to electrochemically modify a piece of common 2B pencil lead (PL) with the conductive poly(3,4-ethylenedioxythiophene) or PEDOT film to construct a PEDOT/PL electrode. We then examined the performance of PEDOT/PL in the detection of hydroquinone with different voltammetry methods. Our results have demonstrated that PEDOT film was able to dramatically enhance the electrochemical response of pencil lead electrode to hydroquinone and exhibited a good linear correlation between anodic peak current and the concentration of hydroquinone by either cyclic voltammetry or linear sweep voltammetry. The influences of PEDOT film thickness, sample pH, voltammetry scan rate, and possible chemical interferences on the measurement of hydroquinone have been discussed. The PEDOT film was further characterized by SEM with EDS and FTIR spectrum, as well as for stability with multiple measurements. Our results have demonstrated that the PEDOT modified PL electrode could be an attractive option to easily fabricate an economical sensor and provide an accurate and stable approach to monitoring various chemicals and biomolecules.
Collapse
Affiliation(s)
- Jian-Yu Lu
- Department of Chemical and Materials Engineering, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan; (J.-Y.L.); (T.-B.C.)
| | - Yu-Sheng Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; (Y.-S.Y.); (K.C.-W.W.)
| | - Tung-Bo Chen
- Department of Chemical and Materials Engineering, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan; (J.-Y.L.); (T.-B.C.)
| | - Chiung-Fen Chang
- Department of Environmental Science and Engineering, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan;
| | - Sigitas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, 59 K. Barˇsausko St., LT-51423 Kaunas, Lithuania;
| | - Donats Erts
- Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia;
| | - Kevin C.-W. Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan; (Y.-S.Y.); (K.C.-W.W.)
| | - Yesong Gu
- Department of Chemical and Materials Engineering, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan; (J.-Y.L.); (T.-B.C.)
- Correspondence: ; Tel.: +886-0423590121 (ext. 33215); Fax: +886-0423590009
| |
Collapse
|
35
|
Karimi-Maleh H, Alizadeh M, Orooji Y, Karimi F, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Rostamnia S, Fu L, Saberi-Movahed F, Malekmohammadi S. Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04698] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Avenue, Chengdu 611731, PR China
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa
- College of Materials Science and Engineering, Nanjing Forestry University 159 Longpan Road, Nanjing 210037, China
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, P.O. Box 71348-14336, Shiraz 234567890, Iran
| | - Yasin Orooji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University 159 Longpan Road, Nanjing 210037, China
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 397, Iran
| | - Jalal Rouhi
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran, 19839, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran
| | - Shilpi Agarwal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589,Saudi Arabia
| | - Vinod K. Gupta
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589,Saudi Arabia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775 Arica, Chile
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Farshad Saberi-Movahed
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Samira Malekmohammadi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
- Institute for Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Fabrication of electrochemical immunosensor based on acid-substituted poly(pyrrole) polymer modified disposable ITO electrode for sensitive detection of CCR4 cancer biomarker in human serum. Talanta 2021; 222:121487. [DOI: 10.1016/j.talanta.2020.121487] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
|
37
|
Ahmad R, Srivastava S, Ghosh S, Khare SK. Phytochemical delivery through nanocarriers: a review. Colloids Surf B Biointerfaces 2021; 197:111389. [PMID: 33075659 DOI: 10.1016/j.colsurfb.2020.111389] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
In recent times, phytochemicals encapsulated or conjugated with nanocarriers for delivery to the specific sites have gained considerable research interest. Phytochemicals are mostly plant secondary metabolites which reported to be beneficial for human health and in disease theraphy. However, these compound are large size and polar nature of these compounds, make it difficult to cross the blood-brain barrier (BBB), endothelial lining of blood vessels, gastrointestinal tract and mucosa. Moreover, they are enzymatically degraded in the gastrointestinal tract. Therefore, encapsulation or conjugation of these compounds with nanocrriers could be an alternate way to enhance their bioefficacy by influencing their gastrointestinal stability, rate of absorption and dispersion. This review presents an overview of nanocarriers alternatives which improves therapeutic value and avoid toxicity, by releasing bioactive compounds specifically at target tissues with enhanced stability and bioavailability. Future investigations may emphasize on deciphering the structural changes in nanocarriers during digestion and absorption, the difference between in-vitro and in-vivo digestion simulations, and impact of nanocarriers on the metabolism of phytochemicals.
Collapse
Affiliation(s)
- Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sukriti Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
38
|
Azadbakht R, Koolivand M, Menati S. Salicylimine-based fluorescent chemosensor for magnesium ions in aqueous solution. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Morawski FDM, Winiarski JP, de Campos CEM, Parize AL, Jost CL. Sensitive simultaneous voltammetric determination of the herbicides diuron and isoproturon at a platinum/chitosan bio-based sensing platform. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111181. [PMID: 32861008 DOI: 10.1016/j.ecoenv.2020.111181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Phenylurea herbicides are persistent contaminants, which leads their transport to the surface and ground waters, affecting human and aquatic organisms. Different analytical methods have been reported for the detection of phenylureas; however, several of them are expensive, time-consuming, and require complex pretreatment steps. Here, we show a simple method for the simultaneous electrochemical determination of two phenylurea herbicides by differential pulse adsorptive stripping voltammetry (DPAdSV) using a modified platinum/chitosan electrode. The one-step synthesized platinum/chitosan PtNPs/CS was successfully characterized by TEM, XRPD, and FT-IR, and applied through the sensing platform designated as PtNPs/CS/GCE. This bio-based modified electrode is proposed for the first time for the individual and/or simultaneous electrochemical detection of the phenylurea herbicides diuron and isoproturon compounds extensively used worldwide that present a very similar chemical structure. Electrochemical and interfacial characteristics of the modified electrode were evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It was found that the oxidation mechanism of diuron and isoproturon occurs in two different pathways, with a peak-to-peak definition of ca. 0.15 V. Under differential pulse adsorptive stripping voltammetry (DPAdSV) optimized conditions, the limit of detection (LOD) was estimated as 7 μg L-1 for isoproturon and 20 μg L-1 for diuron (Ed = +0.8 V; td = 100 s). The proposed method was successfully applied to the determination of both analytes in river water samples, at three different levels, with a recovery range of 90-110%. The employment of the bio-based sensing platform PtNPs/CS/GCE allows a novel and easy analytical method to the multi-component phenylurea herbicides detection.
Collapse
Affiliation(s)
- Franciele de Matos Morawski
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil
| | - João Paulo Winiarski
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil
| | | | - Alexandre Luis Parize
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil
| | - Cristiane Luisa Jost
- ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, CEP 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
40
|
Divya D, Thennarasu S. A novel isatin-based probe for ratiometric and selective detection of Hg 2+ and Cu 2+ ions present in aqueous and environmental samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118796. [PMID: 32805507 DOI: 10.1016/j.saa.2020.118796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
A novel isatin derivative (1) is UV-Visible active and displays about 90 nm bathochromic shift upon interaction with only Hg2+ and Cu2+, but not with other common metal ions. Also, the colorless probe 1 turns to brick-red and yellow in the presence of Hg2+ and Cu2+, respectively. Addition of increasing amounts of Hg2+ or Cu2+ to 1 leads to the emergence of a new absorption at ~470 nm (due to LMCT), with a concomitant decrease in the intensity of absorption of 1 at ~380 nm, and thereby provides a ratiometric response. Common metal ions and anions do not interfere with the interactions of 1 with Hg2+or Cu2+ ions. Probe 1 shows very high sensitivity and selectivity towards Hg2+ and Cu2+ as revealed by their very low detection limits 0.95 × 10-9 M and 1.5 × 10-9 M, respectively. Formation of 1:1 complex with Hg2+ and 2:1 complex with Cu2+ is confirmed using NMR, ESI-MS and FT-IR techniques, Job plot and DFT calculations. Selective detection of Hg2+ from Cu2+ is established from the ratiometric response caused by β-mercaptoethanol. Advantages of the probe 1 in terms of high sensitivity, stability in the physiological pH and suitability for dual detection are presented. Probe impregnated silica plates for onsite detection of Hg2+ and Cu2+ present in environmental samples is also demonstrated.
Collapse
Affiliation(s)
- D Divya
- Organic and Bioorganic Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600020, India
| | - S Thennarasu
- Organic and Bioorganic Chemistry Laboratory, CSIR - Central Leather Research Institute, Adyar, Chennai 600020, India.
| |
Collapse
|
41
|
Bolat G. Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Design and synthesis of new salicylhydrazone tagged indole derivative for fluorometric sensing of Zn2+ ion and colorimetric sensing of F− ion: Applications in live cell imaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Poly (alanine)/NaOH/ MoS2/MWCNTs modified carbon paste electrode for simultaneous detection of dopamine, ascorbic acid, serotonin and guanine. Colloids Surf B Biointerfaces 2020; 196:111299. [DOI: 10.1016/j.colsurfb.2020.111299] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
44
|
Köksoy B, Akyüz D, Şenocak A, Durmuş M, Demirbas E. Sensitive, simple and fast voltammetric determination of pesticides in juice samples by novel BODIPY-phthalocyanine-SWCNT hybrid platform. Food Chem Toxicol 2020; 147:111886. [PMID: 33248146 DOI: 10.1016/j.fct.2020.111886] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023]
Abstract
The present work describes the first synthesis of novel asymmetric zinc (II) phthalocyanine (ZnPc) including three boron dipyrromethene (BODIPY) and one ethyloxy azido moieties. Moreover, single walled carbon nanotube (SWCNT) surface was functionalized by this ZnPc containing BODIPY; using the azide-alkyne Huisgen cycloaddition (Click) reaction to obtain SWCNT-ZnPc hybrid material. Structural, thermal and morphological characterizations of both ZnPc and SWCNT-ZnPc hybrid were carried out in-depth by spectroscopic, thermal and microscopic techniques. In this study, the synthesized SWCNT-ZnPc material was decorated on composite glassy carbon electrode (GCE) by means of an easy and a practical drop cast method. The modified electrode was tested as a non-enzymatic electrochemical sensor in various common pesticides such as methyl parathion, deltamethrin, chlorpyrifos and spinosad. Electrochemical behavior of non-enzymatic electrode (GCE/SWCNT-ZnPc) was determined via cyclic voltammetry and differential pulse voltammetry. The non-enzymatic sensor demonstrated high selectivity for methyl parathion in a wide linear range (2.45 nM-4.0 × 10-8 M), low limit of detection value (1.49 nM) and high sensitivity (0.1847 μA nM-1). Also, the developing non-enzymatic sensor exhibited good repeatability (RSD = 2.3% for 10 electrodes) and stability (85.30% for 30 days). Validation guidelines by HPLC and statistical analysis showed that the proposed voltammetric method were precise, accurate, sensitive, and can be used for the routine quality control of methyl parathion determination in juice samples.
Collapse
Affiliation(s)
- Baybars Köksoy
- Bursa Technical University, Department of Chemistry, 16310, Bursa, Turkey; Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Duygu Akyüz
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Ahmet Şenocak
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Erhan Demirbas
- Gebze Technical University, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
45
|
Kaur G, Kaur A, Kaur H. Review on nanomaterials/conducting polymer based nanocomposites for the development of biosensors and electrochemical sensors. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1844233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gagandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, India
| | - Anupreet Kaur
- Basic and Applied Sciences Department, Punjabi University, Patiala, India
| | - Harpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, India
| |
Collapse
|
46
|
Liu J, Zou C, Chen C, Fang H, Wu Q, Yu H, Zhu J, Li L, Yang S, Huang W. Topochemical assembly of levodopa nanoparticles network as a high-performance biosensing platform coupling with π-π stacking and electrostatic repulsion interactions. Talanta 2020; 219:121285. [DOI: 10.1016/j.talanta.2020.121285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
|
47
|
Fatima SW, Barua S, Sardar M, Khare SK. Immobilization of Transglutaminase on multi-walled carbon nanotubes and its application as bioinspired hydrogel scaffolds. Int J Biol Macromol 2020; 163:1747-1758. [DOI: 10.1016/j.ijbiomac.2020.09.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
|
48
|
Golestaneh M. A simple and fast electrochemical nano-structure approach for the determination of Acid Red 52 in real samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Shabani-Nooshabadi M, Roostaee M, Tahernejad-Javazmi F. Graphene oxide/NiO nanoparticle composite-ionic liquid modified carbon paste electrode for selective sensing of 4-chlorophenol in the presence of nitrite. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Arabali V, Malekmohammadi S, Karimi F. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; a powerful electrochemical strategy for determination of tramadol. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|