1
|
Vankeerberghen B, Jimidar ISM, Desmet G. Sealing and Chromatographic Performance of Microgroove Columns. Anal Chem 2025; 97:6303-6311. [PMID: 40062649 DOI: 10.1021/acs.analchem.5c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In a recent paper, we introduced the concept of structured microgroove columns as a potential solution to obtain perfectly ordered particle beds for nano- and micro-LC. In this concept, spherical particles are either individually positioned (single layer column) or stacked (multilayer column) in a series of interconnected micromachined pockets. After introducing a suitable method to fill the columns efficiently in a one-particle-per-pocket mode, the present contribution addresses the issue of sealing the filled columns and reports on the first flow tests conducted in a microgroove column device. For this purpose, an adapted set of micromachined columns was filled with 10 μm calibrated silica particles and subsequently anodically bonded to a borofloat top plate. The potential chromatographic performance of this first prototype is determined by injecting a band of fluorescent dye into the unretentive column. Reduced plate heights were higher (hmin = 2 instead of = 1) than theoretically expected, while pressure drop and flow resistance were much closer to the expected value (ϕi,i = 120 versus 130 expected). It is assumed the plate height deviations from theory are due to the fact that the pockets were somewhat oversized (some 75%), creating unnecessary large dead spaces.
Collapse
Affiliation(s)
- Bert Vankeerberghen
- Department of Chemical Engineering CHIS, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Ignaas S M Jimidar
- Department of Chemical Engineering CHIS, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Enschede 7500AE, Netherlands
| | - Gert Desmet
- Department of Chemical Engineering CHIS, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
2
|
Xu S, Liu Q, Wang Y, Ji Z, Lian Z, Tan H, Zhou J, Wang C. Template-based synthesis of novel polymeric colloidal photonic crystals. Chem Commun (Camb) 2025; 61:3884-3887. [PMID: 39935303 DOI: 10.1039/d4cc06754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Here, we devise a universal method for preparing colloidal photonic crystals (CPCs) composed of novel building blocks, using inverse opal materials as templates. This method not only enables the preparation of three-dimensional (3D) CPCs composed of hard sphere building blocks, but also, facilitates the creation of two-dimensional(2D) CPCs composed of chitosan and 3D CPCs composed of polydimethylsiloxane(PDMS) elastic soft spheres.
Collapse
Affiliation(s)
- Shunan Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Qingyao Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Yuanhui Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Zhihao Ji
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Zhengshuai Lian
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Hongzi Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| | - Chuan Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China.
| |
Collapse
|
3
|
Kobiyama E, Urbonas D, Aymoz B, Bodnarchuk MI, Rainò G, Olziersky A, Caimi D, Sousa M, Mahrt RF, Kovalenko MV, Stöferle T. Perovskite Nanocrystal Self-Assemblies in 3D Hollow Templates. ACS NANO 2025; 19:6748-6757. [PMID: 39804801 DOI: 10.1021/acsnano.4c07819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Highly ordered nanocrystal (NC) assemblies, namely, superlattices (SLs), have been investigated as materials for optical and optoelectronic devices due to their unique properties based on interactions among neighboring NCs. In particular, lead halide perovskite NC SLs have attracted significant attention owing to their extraordinary optical characteristics of individual NCs and collective emission processes like superfluorescence (SF). So far, the primary method for preparing perovskite NC SLs has been the drying-mediated self-assembly method, in which the colloidal NCs spontaneously assemble into SLs during solvent evaporation. However, this method lacks controllability because NCs form random-sized SLs at random positions on the substrate, rendering NC assemblies in conjunction with device structures, such as photonic waveguides or microcavities, challenging. Here, we demonstrate template-assisted self-assembly to deterministically place perovskite NC SLs and control their geometrical properties. A solution of CsPbBr3 NCs is drop-casted on a substrate with lithographically defined hollow structures. After solvent evaporation and removal of excess NCs from the substrate surface, NCs remain only in the templates, thereby defining the position and size of these NC assemblies. We performed photoluminescence (PL) measurements on these NC assemblies and observed signatures of SF, similar to those in spontaneously assembled SLs. Our findings are crucial for optical devices that harness embedded perovskite NC assemblies and enable fundamental studies on how these collective effects can be tailored through the SL geometry.
Collapse
Affiliation(s)
- Etsuki Kobiyama
- IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Darius Urbonas
- IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Benjamin Aymoz
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory of Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory of Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory of Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Antonis Olziersky
- IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Daniele Caimi
- IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Marilyne Sousa
- IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Rainer F Mahrt
- IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory of Thin Films and Photovoltaics, Empa─Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Thilo Stöferle
- IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
4
|
Zha H, Zhang W, Chen P, Tao J, Qiu L, Yang F, Ye S, Sang Y, Nie Z. Sustainable Fabrication and Transfer of High-Precision Nanoparticle Arrays Using Recyclable Chemical Pattern Templates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407393. [PMID: 39645573 PMCID: PMC11791935 DOI: 10.1002/advs.202407393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/03/2024] [Indexed: 12/09/2024]
Abstract
Nanoparticle (NP) arrays, particularly those with plasmonic properties, have diverse applications in electronics, photonics, catalysis, and biosensing, but their precise and scalable fabrication remains challenging. In this work, a facile chemical-based strategy is presented for the fabrication of precise NP patterns using a combination of soft thermal nanoimprinting and template-directed assembly. The approach enables the creation of well-defined NP arrays with single-particle resolution and yields over 99%, covering a diverse range of NP sizes from 30 to 150 nm. These patterns can be transferred onto various substrates including semiconductors, insulators, 2D materials, and flexible polymers, maintaining high uniformity and repeatability for over 60 cycles with minimal degradation. Moreover, the method enables the fabrication of extensive NP arrays up to 1 cm2 with a positional accuracy of ±11 nm for 30 nm NPs. As a result, the obtained silver NP arrays exhibit ultranarrow surface lattice resonances with a linewidth of 4 nm and a quality factor (Q) of 216. The method offers new avenues for the creation of plasmonic NP arrays for flexible and wearable devices.
Collapse
Affiliation(s)
- Huaining Zha
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Metasurfaces for Light ManipulationDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Wenjie Zhang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro‐ and Nano‐Photonic Structures (Ministry of Education)Department of PhysicsFudan UniversityShanghai200433P. R. China
| | - Peng Chen
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Metasurfaces for Light ManipulationDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Jing Tao
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Metasurfaces for Light ManipulationDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Li Qiu
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Metasurfaces for Light ManipulationDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Fan Yang
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Metasurfaces for Light ManipulationDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Shunsheng Ye
- Department of ChemistryCollege of SciencesNortheastern UniversityShenyang110819P. R. China
| | - Yutao Sang
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Metasurfaces for Light ManipulationDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of PolymersShanghai Key Laboratory of Metasurfaces for Light ManipulationDepartment of Macromolecular ScienceFudan UniversityShanghai200438P. R. China
| |
Collapse
|
5
|
Yu Z, Sarkar S, Seçkin S, Sun N, Ghosh AK, Wießner S, Zhou Z, Fery A. 2D wrinkle assisted zigzag plasmonic chains for isotropic SERS enhancement. Sci Rep 2025; 15:3662. [PMID: 39880936 PMCID: PMC11779806 DOI: 10.1038/s41598-025-87504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Template-assisted colloidal self-assembly has gained significant attention due to its flexibility and versatility. By precisely controlling the shape of the template, it is possible to achieve custom-designed nanoparticle assemblies. However, a major challenge remains in fabricating these templates over large areas at a low cost. Recently, one-dimensional (1D) nano-wrinkle structures have been effectively used for the linear assembly of single-chain or multi-chain nanoparticles, which feature abundant interparticle nanogaps that facilitate efficient plasmonic coupling. To further enhance these assemblies by incorporating diffraction modes, we develop two-dimensional (2D) zigzag wrinkle structures that successfully assemble nanoparticles into plasmonic zigzag chains. Micro spectral measurements and FDTD simulations reveal that zigzag assemblies of plasmonic nanoparticle chains offer isotropic behavior and exhibit stronger plasmonic coupling compared to 1D assemblies, which could be highly beneficial for sensing applications. Due to the responsive PANI shell encapsulating the gold nanoparticles, this 2D zigzag assembly enables flexible tuning of plasmonic resonance under pH regulation.
Collapse
Affiliation(s)
- Ziwen Yu
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany
- Institute of Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
| | - Swagato Sarkar
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany
| | - Sezer Seçkin
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany
| | - Ningwei Sun
- Institute of Macromolecular Chemistry, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany
| | - Anik Kumar Ghosh
- Institute of Polymer Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany
| | - Sven Wießner
- Institute of Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Institute of Polymer Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany
| | - Ziwei Zhou
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany.
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), 01069, Dresden, Germany.
- Chair for Physical Chemistry of Polymeric Materials, Technische Universität Dresden, 01062, Dresden, Germany.
| |
Collapse
|
6
|
Navas SF, Klapp SHL. Discrete state model of a self-aggregating colloidal system with directional interactions. J Chem Phys 2024; 161:234903. [PMID: 39679522 DOI: 10.1063/5.0243978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The construction of coarse-grained descriptions of a system's kinetics is well established in biophysics. One prominent example is Markov state models in protein folding dynamics. In this paper, we develop a coarse-grained, discrete state model of a self-aggregating colloidal particle system inspired by the concepts of Markov state modeling. The specific self-aggregating system studied here involves field-responsive colloidal particles in orthogonal electric and magnetic fields. Starting from particle-resolved (Brownian dynamics) simulations, we define the discrete states by categorizing each particle according to its local structure. We then describe the kinetics between these states as a series of stochastic, memoryless jumps. In contrast to other works on colloidal self-assembly, our coarse-grained approach describes the simultaneous formation and evolution of multiple aggregates from single particles. Our discrete model also takes into account the changes in transition dynamics between the discrete states as the size of the largest cluster grows. We validate the coarse-grained model by comparing the predicted population fraction in each of the discrete states with those calculated directly from the particle-resolved simulations as a function of the largest cluster size. We then predict population fractions in the presence of noise-averaging and in a situation where a model parameter is changed instantaneously after a certain time. Finally, we explore the validity of the detailed balance condition in the various stages of aggregation.
Collapse
Affiliation(s)
- Salman Fariz Navas
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
7
|
Juodėnas M, Khinevich N, Klyvis G, Henzie J, Tamulevičius T, Tamulevičius S. Lasing in an assembled array of silver nanocubes. NANOSCALE HORIZONS 2024; 10:142-149. [PMID: 39470004 DOI: 10.1039/d4nh00263f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We demonstrate a surface lattice resonance (SLR)-based plasmonic nanolaser that leverages bulk production of colloidal nanoparticles and assembly on templates with single particle resolution. SLRs emerge from the hybridization of the plasmonic and photonic modes when nanoparticles are arranged into periodic arrays and this can provide feedback for stimulated emission. It has been shown that perfect arrays are not a strict prerequisite for producing lasing. Here, we propose using high-quality colloids instead. Silver colloidal nanocubes feature excellent plasmonic properties due to their single-crystal nature and low facet roughness. We use capillarity-assisted nanoparticle assembly to produce substrates featuring SLR and comprising single nanocubes. Combined with the laser dye pyrromethene-597, the nanocube array lases at 574 nm with <1.2 nm linewidth, <100 μJ cm-2 lasing threshold, and produces a beam with <1 mrad divergence, despite less-than-perfect arrangement. Such plasmonic nanolasers can be produced on a large-scale and integrated in point-of-care diagnostics, photonic integrated circuits, and optical communications applications.
Collapse
Affiliation(s)
- Mindaugas Juodėnas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Nadzeya Khinevich
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Gvidas Klyvis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tomas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Sigitas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| |
Collapse
|
8
|
Tang B, Wang L, Ai X, Liao C, Xiong Z, He Y, Wang X. Photomanipulatable colloidal clusters from the aggregation of azo molecular glass spheres. NANOSCALE 2024; 16:20060-20066. [PMID: 39415695 DOI: 10.1039/d4nr03618b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Colloidal clusters with well-controlled shapes have attracted extensive interest in the fields of materials, chemistry, physics, and biology. This communication reports the controllable fabrication of photoresponsive colloidal clusters with a wide range of adjustable sizes and complex architectures through an approach of microsphere formation and fusion. The clusters of colloidal spheres were obtained via adding ethanol dropwise into a tetrahydrofuran solution of an isosorbide-based azo compound (IAC-4). In the process, the colloidal spheres with soft and sticky shells were first formed in the dispersion. After stirring at an appropriate rate and time, clusters composed of controlled numbers of colloidal spheres were obtained. With increasing stirring time, the colloidal spheres in the clusters underwent fusion transforming into a range of structures with particular architectures. The structure formation, evolution and control were investigated by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Under linearly polarized light irradiation, colloidal spheres in the clusters in the solid state were observed to be stretched along the direction of electric-field oscillation and these clusters were thus transformed into complex particles with unique morphologies. This exploration can lead to a new methodology to effectively fabricate colloidal clusters with complex architectures and shed new light on colloidal packing and organization under the driving forces of extrinsic energy input.
Collapse
Affiliation(s)
- Bo Tang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 401320, P. R. China.
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P. R. China.
| | - Lier Wang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 401320, P. R. China.
| | - Xitong Ai
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 401320, P. R. China.
| | - Chuyi Liao
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P. R. China.
| | - Zhiyuan Xiong
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P. R. China.
| | - Yaning He
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P. R. China.
| | - Xiaogong Wang
- Department of Chemical Engineering, Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
9
|
Cao A, Gong Y, Liu D, Yang F, Fan Y, Guo Y, Tian X, Li Y. Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging. Nat Commun 2024; 15:9182. [PMID: 39448579 PMCID: PMC11502786 DOI: 10.1038/s41467-024-53407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Smooth metal microspheres with uniform sizes are ideal for constructing particle-arrayed anisotropic conductive films (ACF), but synthesis is hindered by challenges in controlling anisotropic metal growth. Here, we present a positioned transient-emulsion self-assembly and laser-irradiation strategy to fabricate pure gold microsphere arrays with smooth surfaces and uniform sizes. The fabrication involves assembling gold nanoparticles into uniform colloidosomes within a pre-designed microhole array, followed by rapid transformation into well-defined microspheres through laser heating. The gold nanoparticles melt and merge in a layer-by-layer manner due to the finite skin depth of the laser, leading to a localized photothermal effect. This strategy circumvents anisotropic growth, enables tunable control of microsphere size and positioning, and is compatible with conventional lithography. Importantly, these pure gold microspheres exhibit stable conductivity under deep compression, offering promising applications in soldering micro-sized chips onto integrated circuits.
Collapse
Affiliation(s)
- An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
| | - Yi Gong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
- China-Europe Electronic Materials International Innovation Center, Hefei, PR China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China.
| | - Fan Yang
- Tiangong University, Tianjin, PR China
| | - Yulong Fan
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, PR China.
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, PR China.
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area (Guangdong), Shenzhen, PR China.
| | - Yinghui Guo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, PR China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, PR China
| | - Xingyou Tian
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China.
- Tiangong University, Tianjin, PR China.
| |
Collapse
|
10
|
Ye Z, Harrington B, Pickel AD. Optical super-resolution nanothermometry via stimulated emission depletion imaging of upconverting nanoparticles. SCIENCE ADVANCES 2024; 10:eado6268. [PMID: 39018395 PMCID: PMC466949 DOI: 10.1126/sciadv.ado6268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
From engineering improved device performance to unraveling the breakdown of classical heat transfer laws, far-field optical temperature mapping with nanoscale spatial resolution would benefit diverse areas. However, these attributes are traditionally in opposition because conventional far-field optical temperature mapping techniques are inherently diffraction limited. Optical super-resolution imaging techniques revolutionized biological imaging, but such approaches have yet to be applied to thermometry. Here, we demonstrate a super-resolution nanothermometry technique based on highly doped upconverting nanoparticles (UCNPs) that enable stimulated emission depletion (STED) super-resolution imaging. We identify a ratiometric thermometry signal and maintain imaging resolution better than ~120 nm for the relevant spectral bands. We also form self-assembled UCNP monolayers and multilayers and implement a detection scheme with scan times >0.25 μm2/min. We further show that STED nanothermometry reveals a temperature gradient across a joule-heated microstructure that is undetectable with diffraction limited thermometry, indicating the potential of this technique to uncover local temperature variation in wide-ranging practical applications.
Collapse
Affiliation(s)
- Ziyang Ye
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| | - Benjamin Harrington
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| | - Andrea D. Pickel
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
11
|
Hayashi M, Sumi T, Inooka Y, Hamatake H, Kawakita H, Ohto K, Morisada S. Effect of Particle-Substrate Interactions on Colloidal Layer Structure Prepared by Convective Self-Assembly Using Polyelectrolyte-Grafted Silica Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8493-8502. [PMID: 38602017 DOI: 10.1021/acs.langmuir.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Cationic and anionic polyelectrolytes, poly(vinylbenzyl trimethylammonium chloride) (PVBTA) and poly(sodium styrene sulfate) (PSSS), were grafted on the surface of the silica particles, respectively, and then these two types of polyelectrolyte-grafted silica particles were applied to the colloidal layer preparation by convective self-assembly (CSA) using hydrophilic or hydrophobic glass substrates to investigate the effect of the interactions between the particles and the substrate surface on the resultant layer structures. When the PVBTA-grafted silica particle (PVBTA-Si) was used, the colloidal monolayers with a non-close-packed (NCP) structure were formed on both hydrophilic and hydrophobic glass substrates, where the NCP colloidal layers on the hydrophobic glass substrate have a somewhat more ordered structure than those on the hydrophilic glass substrate. In the case of the PSSS-grafted silica particle (PSSS-Si), on the other hand, stripe patterns with close-packed (CP) colloidal layers were obtained on both types of the glass substrates. The number of layers of the stripes on the hydrophilic glass substrate was less than that on the hydrophobic glass substrate, while the spacing and width of the stripes on both substrates were similar to each other. The difference in the structures of the colloidal layers obtained here indicates that an attractive interaction, such as an electrostatic attraction and a hydrophobic interaction, between the particle and the substrate surface is necessary to achieve the NCP structure by the CSA process using polyelectrolyte-grafted silica particles.
Collapse
Affiliation(s)
- Miki Hayashi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Takahiro Sumi
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Yaya Inooka
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hiromu Hamatake
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Hidetaka Kawakita
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Keisuke Ohto
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Shintaro Morisada
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| |
Collapse
|
12
|
Jambhulkar S, Ravichandran D, Zhu Y, Thippanna V, Ramanathan A, Patil D, Fonseca N, Thummalapalli SV, Sundaravadivelan B, Sun A, Xu W, Yang S, Kannan AM, Golan Y, Lancaster J, Chen L, Joyee EB, Song K. Nanoparticle Assembly: From Self-Organization to Controlled Micropatterning for Enhanced Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306394. [PMID: 37775949 DOI: 10.1002/smll.202306394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Nanoparticles form long-range micropatterns via self-assembly or directed self-assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle-template interactions (e.g., physical confinement, chemical functionalization, additive layer-upon-layer). The review commences with a general overview of nanoparticle self-assembly, with the state-of-the-art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non-templated and pre-templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly.
Collapse
Affiliation(s)
- Sayli Jambhulkar
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuxiang Zhu
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Varunkumar Thippanna
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Arunachalam Ramanathan
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Dhanush Patil
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Nathan Fonseca
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sri Vaishnavi Thummalapalli
- Manufacturing Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Barath Sundaravadivelan
- Department of Mechanical and Aerospace Engineering, School for Engineering of Matter, Transport & Energy, Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Tempe, AZ, 85281, USA
| | - Allen Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Weiheng Xu
- Systems Engineering, School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University (ASU), Tempe, AZ, 85287, USA
| | - Arunachala Mada Kannan
- The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| | - Yuval Golan
- Department of Materials Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Jessica Lancaster
- Department of Immunology, Mayo Clinic Arizona, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Lei Chen
- Mechanical Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI, 48128, USA
| | - Erina B Joyee
- Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Kenan Song
- School of Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM), College of Engineering, University of Georgia (UGA), Athens, GA, 30602, USA
- Adjunct Professor of School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering, Arizona State University (ASU), Mesa, AZ, 85212, USA
| |
Collapse
|
13
|
Roy P, Zhu S, Claude JB, Liu J, Wenger J. Ultraviolet Resonant Nanogap Antennas with Rhodium Nanocube Dimers for Enhancing Protein Intrinsic Autofluorescence. ACS NANO 2023; 17:22418-22429. [PMID: 37931219 PMCID: PMC10690780 DOI: 10.1021/acsnano.3c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 11/08/2023]
Abstract
Plasmonic optical nanoantennas offer compelling solutions for enhancing light-matter interactions at the nanoscale. However, until now, their focus has been mainly limited to the visible and near-infrared regions, overlooking the immense potential of the ultraviolet (UV) range, where molecules exhibit their strongest absorption. Here, we present the realization of UV resonant nanogap antennas constructed from paired rhodium nanocubes. Rhodium emerges as a robust alternative to aluminum, offering enhanced stability in wet environments and ensuring reliable performance in the UV range. Our results showcase the nanoantenna's ability to enhance the UV autofluorescence of label-free streptavidin and hemoglobin proteins. We achieve significant enhancements of the autofluorescence brightness per protein by up to 120-fold and reach zeptoliter detection volumes, enabling UV autofluorescence correlation spectroscopy (UV-FCS) at high concentrations of several tens of micromolar. We investigate the modulation of fluorescence photokinetic rates and report excellent agreement between the experimental results and numerical simulations. This work expands the applicability of plasmonic nanoantennas to the deep UV range, unlocking the investigation of label-free proteins at physiological concentrations.
Collapse
Affiliation(s)
- Prithu Roy
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Siyuan Zhu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jean-Benoît Claude
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jie Liu
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jérôme Wenger
- Aix
Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
14
|
Boggon C, Mairpady Shambat S, Zinkernagel AS, Secchi E, Isa L. Single-cell patterning and characterisation of antibiotic persistent bacteria using bio-sCAPA. LAB ON A CHIP 2023; 23:5018-5028. [PMID: 37909096 PMCID: PMC10661667 DOI: 10.1039/d3lc00611e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
In microbiology, accessing single-cell information within large populations is pivotal. Here we introduce bio-sCAPA, a technique for patterning bacterial cells in defined geometric arrangements and monitoring their growth in various nutrient environments. We demonstrate bio-sCAPA with a study of subpopulations of antibiotic-tolerant bacteria, known as persister cells, which can survive exposure to high doses of antibiotics despite lacking any genetic resistance to the drug. Persister cells are associated with chronic and relapsing infections, yet are difficult to study due in part to a lack of scalable, single-cell characterisation methods. As >105 cells can be patterned on each template, and multiple templates can be patterned in parallel, bio-sCAPA allows for very rare population phenotypes to be monitored with single-cell precision across various environmental conditions. Using bio-sCAPA, we analysed the phenotypic characteristics of single Staphylococcus aureus cells tolerant to flucloxacillin and rifampicin killing. We find that antibiotic-tolerant S. aureus cells do not display significant heterogeneity in growth rate and are instead characterised by prolonged lag-time phenotypes alone.
Collapse
Affiliation(s)
- Cameron Boggon
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Switzerland.
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, University of Zurich, Switzerland
| | - Eleonora Secchi
- Institute of Environmental Engineering, Department of Civil, Environmental, and Geomatic Engineering, ETH Zürich, Switzerland.
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Switzerland.
| |
Collapse
|
15
|
Meijs ZC, Yun HS, Fandre P, Park G, Yoon DK, Isa L. Pixelated Physical Unclonable Functions through Capillarity-Assisted Particle Assembly. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37910785 PMCID: PMC10658447 DOI: 10.1021/acsami.3c09386] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Recent years have shown the need for trustworthy, unclonable, and durable tokens as proof of authenticity for a large variety of products to combat the economic cost of counterfeits. An excellent solution is physical unclonable functions (PUFs), which are intrinsically random objects that cannot be recreated, even if illegitimate manufacturers have access to the same methods. We propose a robust and simple way to make pixelated PUFs through the deposition of a random mixture of fluorescent colloids in a predetermined lattice using capillarity-assisted particle assembly. As the encoding capacity scales exponentially with the number of deposited particles, we can easily achieve encoding capacities above 10700 for sub millimeter scale samples, where the pixelated nature of the PUFs allows for easy and trustworthy readout. Our method allows for the PUFs to be transferred to, and embedded in, a range of transparent materials to protect them from environmental challenges, leading to improved stability and robustness and allowing their implementation for a large number of different applications.
Collapse
Affiliation(s)
- Zazo Cazimir Meijs
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Hee Seong Yun
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Pascal Fandre
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Geonhyeong Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Ki Yoon
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Lucio Isa
- Laboratory
for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Takahashi R, Yamamoto K, Sugahara R, Otake R, Hayashi K, Nakamura J, Ohtsuki C, Aoshima S, Sugawara-Narutaki A. In Situ and Ex Situ Studies of Ring-Like Assembly of Silica Nanoparticles in the Presence of Poly(propylene oxide)-Poly(ethylene oxide) Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11379-11387. [PMID: 37531145 DOI: 10.1021/acs.langmuir.3c01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Block copolymer-mediated self-assembly of colloidal nanoparticles has attracted great attention for fabricating various nanoparticle arrays. We have previously shown that silica nanoparticles (SNPs) assemble into ring-like nanostructures in the presence of temperature-responsive block copolymers poly[(2-ethoxyethyl vinyl ether)-block-(2-methoxyethyl vinyl ether)] (PEOVE-PMOVE) in an aqueous phase. The ring-like nanostructures formed within an aggregate of PEOVE-PMOVE when the temperature was increased to 45 °C, at which the polymer is amphiphilic. Herein, we report that SNPs assemble into ring-like nanostructures even with a different temperature-responsive, amphiphilic block copolymer poly(propylene oxide)-block-poly(ethylene oxide) (PPO-PEO) at 45 °C. Field-emission scanning electron microscopy for SNP assemblies that were spin-coated on a substrate indicated that SNP first assembled into chain-like nanostructures and then bent into closed loops over several days. In contrast, in situ small-angle X-ray diffraction measurements revealed the formation of SNP nanorings within 75 s at 45 °C in the liquid phase. These results indicated that ring-like assembly of SNPs occurs quickly in the liquid phase, but the slow formation of Si-O-Si bonds between SNPs leads to their structure being destroyed by spin-coating. Intriguingly, SNPs with a diameter of 15 nm form a well-defined nanoring structure, with five SNPs located at the vertex points of a regular pentagon. Additionally, small-angle neutron scattering, where the contrast of the solvent (a mixture of H2O and D2O) matches that of SNPs, clarified that SNPs are contained within the spherical micelle formed from PPO-PEO. This work offers a facile and versatile approach to preparing ring-like arrays from inorganic colloidal nanoparticles, leading to applications including sensing, catalysis, and nanoelectronics.
Collapse
Affiliation(s)
- Rintaro Takahashi
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazuki Yamamoto
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryo Sugahara
- Department of Energy Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryusuke Otake
- Department of Energy Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Keisuke Hayashi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka 560-0043, Japan
| | - Jin Nakamura
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Chikara Ohtsuki
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka 560-0043, Japan
| | - Ayae Sugawara-Narutaki
- Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
17
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
18
|
Xing X, Zhou Y, Wei Y, Zhang Y, Man Z, Zhang W, Lu Z. Patterning of Molecules/Ions via Reverse Micelle Vessels by Nanoxerography. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37296516 DOI: 10.1021/acsami.3c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise patterning of molecules/ions in the nanometer scale is a crucial but challenging technique for the fabrication of advanced functional nanodevices. We developed a robust method to print molecules/ions into arbitrarily defined patterns with sub-20 nm precision assisted by reverse micelles. The reverse micelle, serving as a nano-sized vessel, can load molecules/ions and then be patterned onto the predefined positions by electrostatic attraction. The number of molecules/ions on each spot, the spot spacing, and pattern shapes can be flexibly adjusted, reaching 10 nm position accuracy, 30 nm spot size, and 100 nm spot spacing (>250,000 DPI). Then, water-soluble dye molecules, protein molecules, and chloroaurate ions were loaded in the micelles and successfully patterned into nanoarrays, which provides an important platform for the convenient, flexible, and robust fabrication of functional molecule/ion-based nanodevices, such as biochips, for high-throughput and ultrasensitive analysis.
Collapse
Affiliation(s)
- Xing Xing
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yao Zhou
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Yelu Wei
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- College of Chemistry, and State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of the Environment, Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Cui Y, Wang J, Liang J, Qiu H. Molecular Engineering of Colloidal Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207609. [PMID: 36799197 DOI: 10.1002/smll.202207609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Indexed: 05/18/2023]
Abstract
Creation of architectures with exquisite hierarchies actuates the germination of revolutionized functions and applications across a wide range of fields. Hierarchical self-assembly of colloidal particles holds the promise for materialized realization of structural programing and customizing. This review outlines the general approaches to organize atom-like micro- and nanoparticles into prescribed colloidal analogs of molecules by exploiting diverse interparticle driving motifs involving confining templates, interactive surface ligands, and flexible shape/surface anisotropy. Furthermore, the self-regulated/adaptive co-assembly of simple unvarnished building blocks is discussed to inspire new designs of colloidal assembly strategies.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingchun Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
20
|
Vankeerberghen B, Verloy S, Jimidar ISM, Gardeniers H, Desmet G. Structured microgroove columns as a potential solution to obtain perfectly ordered particle beds. J Chromatogr A 2023; 1700:464031. [PMID: 37148569 DOI: 10.1016/j.chroma.2023.464031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
We report on a novel concept to produce ordered beds of spherical particles in a suitable format for liquid chromatography. In this concept, spherical particles are either positioned individually (single-layer column) or stacked (multi-layer column) in micromachined pockets that form an interconnected array of micro-grooves acting as a perfectly ordered chromatographic column. As a first step towards realizing this concept, we report on the breakthrough we realized by obtaining a solution to uniformly fill the micro-groove arrays with spherical particles. We show this can be achieved in a few sweeps using a dedicated rubbing approach wherein a particle suspension is manually rubbed over a silicon chip. In addition, numerical calculations of the dispersion in the newly introduced column format have been carried out and demonstrate the combined advantage of order and reduced flow resistance the newly proposed concept has over the conventional packed bed. For fully-porous particles and a zone retention factor of k'' = 2, the hmin decreases from hmin = 1.9 for the best possible packed bed column to around hmin = 1.0 for the microgroove array, while the interstitial velocity-based separation impedance Ei (a direct measure for the required analysis time) decreases from 1450 to 200. The next steps will focus on the removal of occasional particles remaining on the sides of the micro-pockets, the addition of a cover substrate to seal the column and the subsequent conduction of actual chromatographic separations.
Collapse
Affiliation(s)
- Bert Vankeerberghen
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sandrien Verloy
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium; Mesoscale Chemical Systems, University of Twente, Enschede, the Netherlands
| | - Ignaas S M Jimidar
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium; Mesoscale Chemical Systems, University of Twente, Enschede, the Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems, University of Twente, Enschede, the Netherlands
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
21
|
Yun HS, Meijs ZC, Park G, Fu Y, Isa L, Yoon DK. Controlling liquid crystal boojum defects on fixed microparticle arrays via capillarity-assisted particles assembly. J Colloid Interface Sci 2023; 645:115-121. [PMID: 37146375 DOI: 10.1016/j.jcis.2023.04.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
HYPOTHESIS Colloidal particles in nematic liquid crystals (LCs) are of high interest for self-assembly of soft matter systems. When two free particles approach within a uniaxially-oriented nematic LC, an elastic force is generated due to the distorted nematic director configuration around them, allowing particles to self-assemble by an attractive force. We hypothesize that if particles are immobilized, repulsive forces emerge instead, causing the deflection of the interacting defects to compensate for the energy increase. EXPERIMENTS We fabricated tailored arrays of spherical silica microparticles via capillarity-assisted particle assembly (CAPA) to investigate the interactions of defects as a function of particle separation. By transferring the particle arrays from the CAPA templates to a glass substrate, we studied interacting boojum defect textures within thin LC films sandwiched between two substrates using polarized optical microscopy (POM). FINDINGS We observed deflected boojum defects on arrays of fixed silica particles, confirming our hypothesis that the elastic repulsive force between the particles affects the defect orientation. The nematic director configuration is reconstructed by Landau-de Gennes q-tensor modeling, and simulated POM images are obtained by the Jones-Matrix method. Our results provide a new platform for controlling defect interactions and pave the way for future work to study topology and implement new defect based applications in LC films.
Collapse
Affiliation(s)
- Hee Seong Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zazo Cazimir Meijs
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yutong Fu
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland.
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Nanoscience and Technology and KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
22
|
Lochab V, Ewim ED, Prakash S. Continuous flow microfluidics for colloidal particle assembly on porous substrates. SOFT MATTER 2023; 19:2564-2569. [PMID: 36942885 DOI: 10.1039/d2sm01414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Self-assembly of colloidal particles for 'bottom-up' fabrication of various patterns and structures is critical for a range of applications including, but not limited to, energy generation and storage, nanomaterial structures, biomimetics, and biosensing. Multiple self-assembly techniques, such as substrate templating-via topological or chemical patterning-and solvent evaporation were discussed in our previous papers and have been developed for the deposition of patterned self-assembled structures, such as bands of colloidal particles, on various substrates. While the templating techniques are limited in applications due to the requirements for pattern-specific prior substrate engineering to fabricate the desired structure, solvent evaporation requires longer assembly times and precise control over environmental conditions. In this paper, a template-free, continuous flow process, which is facilitated by continuous solvent drainage through porous substrates, is demonstrated for the self-assembly of colloidal particles into high-aspect ratio (>103, length to width) structures, such as linear arrays or grid structures. Colloidal particles were assembled both on polymeric and metallic porous membranes, with rapid assembly times.
Collapse
Affiliation(s)
- Varun Lochab
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - E Daniel Ewim
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Shaurya Prakash
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| |
Collapse
|
23
|
Zhong H, Zhao B, Deng J. Synthesis and Application of Fluorescent Polymer Micro- and Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300961. [PMID: 36942688 DOI: 10.1002/smll.202300961] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fluorescent polymer particles have witnessed an increasing interest in recent years, owing to their fascinating physicochemical properties as well as wide-ranging applications. In this review, the state-of-the-art research progress of fluorescent polymer particles in the past five years is summarized. First, the synthesis protocols for fluorescent polymer particles, including emulsion polymerization, precipitation polymerization, dispersion polymerization, suspension polymerization, nanoprecipitation, self-assembly, and post-polymerization modification, are presented in detail. Then, the applications of the resulting beguiling particles in anticounterfeiting, chemical sensing, and biomedicine, are illustrated. Finally, the challenges and opportunities that exist in the field are pointed out. This review aims to offer important guidance and stimulate more research attention to this rapidly developing field.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
24
|
van Kesteren S, Shen X, Aldeghi M, Isa L. Printing on Particles: Combining Two-Photon Nanolithography and Capillary Assembly to Fabricate Multimaterial Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207101. [PMID: 36601964 DOI: 10.1002/adma.202207101] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/20/2022] [Indexed: 05/16/2023]
Abstract
Additive manufacturing at the micro- and nanoscale has seen a recent upsurge to suit an increasing demand for more elaborate structures. However, the integration of multiple distinct materials at small scales remains challenging. To this end, capillarity-assisted particle assembly (CAPA) and two-photon polymerization direct laser writing (2PP-DLW) are combined to realize a new class of multimaterial microstructures. 2PP-DLW and CAPA both are used to fabricate 3D templates to guide the CAPA of soft- and hard colloids, and to link well-defined arrangements of functional microparticle arrays produced by CAPA, a process that is termed "printing on particles." The printing process uses automated particle recognition algorithms to connect colloids into 1D, 2D, and 3D tailored structures, via rigid, soft, or responsive polymer links. Once printed and developed, the structures can be easily re-dispersed in water. Particle clusters and lattices of varying symmetry and composition are reported, together with thermoresponsive microactuators, and magnetically driven "micromachines", which can efficiently move, capture, and release DNA-coated particles in solution. The flexibility of this method allows the combination of a wide range of functional materials into complex structures, which will boost the realization of new systems and devices for numerous fields, including microrobotics, micromanipulation, and metamaterials.
Collapse
Affiliation(s)
- Steven van Kesteren
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Xueting Shen
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Michele Aldeghi
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zurich, 8093, Switzerland
| |
Collapse
|
25
|
Nguyen HA, Sharp D, Fröch JE, Cai YY, Wu S, Monahan M, Munley C, Manna A, Majumdar A, Kagan CR, Cossairt BM. Deterministic Quantum Light Arrays from Giant Silica-Shelled Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4294-4302. [PMID: 36507852 DOI: 10.1021/acsami.2c18475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colloidal quantum dots (QDs) are promising candidates for single-photon sources with applications in photonic quantum information technologies. Developing practical photonic quantum devices with colloidal materials, however, requires scalable deterministic placement of stable single QD emitters. In this work, we describe a method to exploit QD size to facilitate deterministic positioning of single QDs into large arrays while maintaining their photostability and single-photon emission properties. CdSe/CdS core/shell QDs were encapsulated in silica to both increase their physical size without perturbing their quantum-confined emission and enhance their photostability. These giant QDs were then precisely positioned into ordered arrays using template-assisted self-assembly with a 75% yield for single QDs. We show that the QDs before and after assembly exhibit antibunching behavior at room temperature and their optical properties are retained after an extended period of time. Together, this bottom-up synthetic approach via silica shelling and the robust template-assisted self-assembly offer a unique strategy to produce scalable quantum photonics platforms using colloidal QDs as single-photon emitters.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| | - David Sharp
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
| | - Johannes E Fröch
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Yi-Yu Cai
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shenwei Wu
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| | - Madison Monahan
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
| | - Arnab Manna
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
| | - Arka Majumdar
- Department of Physics, University of Washington, Seattle, Washington 98185, United States
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98189, United States
| |
Collapse
|
26
|
Wong AM, Je K, Zheng CY, Jibril L, Miao Z, Glotzer SC, Mirkin CA. Arrays of Colloidal Single Crystals Engineered with DNA in Lithographically Defined Microwells. NANO LETTERS 2023; 23:116-123. [PMID: 36541890 DOI: 10.1021/acs.nanolett.2c03713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lithographically defined microwell templates are used to study DNA-guided colloidal crystal assembly parameters, including superlattice position, habit orientation, and size, in an effort to increase our understanding of the crystallization process. In addition to enabling the synthesis of arrays of individual superlattices in arbitrary predefined patterns, the technique allows one to study the growth pathways of the crystals via ex situ scanning electron microscopy. Importantly, a Volmer-Weber (VM) (island formation)-like growth mode is identified, which has been reproduced via simulations. Notably, both experiment and simulation reveal that the crystallites merge and reorient within the microwells that defined the crystal growth to form single-crystalline structures, an observation not common for VM pathways. The control afforded by this platform will facilitate efforts in constructing metamaterials from colloidal crystals as well as their integration into optical devices and applications.
Collapse
Affiliation(s)
- Alexa M Wong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kwanghwi Je
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cindy Y Zheng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Liban Jibril
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziyi Miao
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Reiser A, Schuh CA. Microparticle Impact Testing at High Precision, Higher Temperatures, and with Lithographically Patterned Projectiles. SMALL METHODS 2023; 7:e2201028. [PMID: 36517113 DOI: 10.1002/smtd.202201028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/02/2022] [Indexed: 06/17/2023]
Abstract
In the first decade of high-velocity microparticle impact research, hardly any modification of the original experimental setup has been necessary. However, future avenues for the field require advancements of the experimental method to expand both the impact variables that can be quantitatively assessed and the materials and phenomena that can be studied. This work explores new design concepts for the launch pad (the assembly that launches microparticles upon laser ablation) that can address the root causes of many experimental challenges that may limit the technique in the future. Among the design changes contemplated, the substitution of a stiff glass launch layer for the standard elastomeric polymer layer offers a number of improvements. First, it facilitates a reduction of the gap between launch pad and target from hundreds to tens of micrometers and thus unlocks a reproducibility in targeting a specific impact location better than the diameter of the test particle itself (±1.75 µm for SiO2 particles 7.38 µm in diameter). Second, the inert glass surface enables experiments at higher temperatures than previously possible. Finally-as demonstrated by the launch of thin-film Au disks-a launch pad made of materials standard in microfabrication paves the way to facile microfabrication of advanced impactors.
Collapse
Affiliation(s)
- Alain Reiser
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher A Schuh
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Sabzi D, Hsu Ko D, Partridge A, Hosseini A. Impact of Self-Assembled Monolayer Templates on Electrodeposition of Pt Particles. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Abstract
From microcircuits to metamaterials, the micropatterning of surfaces adds valuable functionality. For nonplanar surfaces, incompatibility with conventional microlithography requires the transfer of originally planar micropatterns onto those surfaces; however, existing approaches accommodate only limited curvatures. A microtransfer approach was developed using reflowable materials that transform between solid and liquid on demand, freely stretching to yield transfers that naturally conform down to nanoscale radii of curvature and arbitrarily complex topographies. Such reflow transfer helps generalize microprinting, extending the reach of precision planar microlithography to highly nonplanar substrates and microstructures. With gentle water-based processing, reflow transfer can be applied to a range of materials, with microprinting demonstrated onto metal, plastic, paper, glass, polystyrene, semiconductor, elastomer, hydrogel, and multiple biological surfaces.
Collapse
Affiliation(s)
- G Zabow
- Applied Physics Division, National Institute of Standards and Technology; Boulder, CO 80305, USA
| |
Collapse
|
30
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
31
|
Collard Y, Piñan Basualdo FN, Bolopion A, Gauthier M, Lambert P, Vandewalle N. Controlled transitions between metastable states of 2D magnetocapillary crystals. Sci Rep 2022; 12:16027. [PMID: 36163481 PMCID: PMC9513081 DOI: 10.1038/s41598-022-20035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Magnetocapillary interactions between particles allow to self-assemble floating crystals along liquid interfaces. For a fixed number of particles, different states possessing different symmetrical features, known as metastable states, coexist. In this paper, we demonstrate how to trigger the transition from one state to another, either by rearranging the crystal, or by controlling its growth. First, we show that externally controlled magnetic fields can squeeze the entire crystal to induce structural modifications, that upon relaxation can lead to a modified state. Second, we propose localized laser-induced thermocapillary flows that can be used to guide new particles towards an existing crystal in a desired direction, thus favoring a particular resulting state. The control of the formation of metastable states is a key ingredient to functionalize such assemblies, paving the way to self-assembled microrobots.
Collapse
Affiliation(s)
- Ylona Collard
- GRASP, Institute of Physics B5a, Université de Liège, 4000, Liège, Belgium.
| | - Franco N Piñan Basualdo
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelle, 1050, Brussels, Belgium. .,FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25000, Besançon, France.
| | - Aude Bolopion
- FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Michaël Gauthier
- FEMTO-ST, CNRS, Université Bourgogne Franche-Comté, 25000, Besançon, France
| | - Pierre Lambert
- TIPs, École Polytechnique de Bruxelles, Université Libre de Bruxelle, 1050, Brussels, Belgium
| | - Nicolas Vandewalle
- GRASP, Institute of Physics B5a, Université de Liège, 4000, Liège, Belgium
| |
Collapse
|
32
|
Pillanagrovi J, Dutta-Gupta S. Controlled assembly of gold nanoparticles in resonant gold nanoapertures for SERS applications. NANOTECHNOLOGY 2022; 33:485301. [PMID: 36001942 DOI: 10.1088/1361-6528/ac8c49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The controlled assembly of plasmonic nanoparticles is vital for realizing low-cost, high efficiency plasmonic substrates with tunable resonances. Here, we present a strategy to assemble gold nanoparticles (AuNPs) in resonant gold nanoapertures (NAs) to enable coupling-mediated near-field enhancement. The NAs templates are fabricated using shadow sphere lithography on polyelectrolyte (PE) coated substrates. Subsequently, AuNPs are assembled in the resonant NA templates via a simple immersion step. The PE layer, AuNP concentration, NaCl concentration, incubation time, and template thickness are used to control the particle number per aperture and the interparticle distance of the AuNP assemblies. The fabricated AuNP-NA substrates are evaluated for their SERS potential using 4-Mercaptobenzoic acid (MBA) as a Raman reporter molecule. The SERS intensity of the AuNP-NA templates can be enhanced by ten times by controlling the AuNP and NA template parameters as compared to the bare NA templates. Numerical simulations show that the coupling between the various plasmonic modes is crucial for this SERS enhancement. The proposed strategy can be used to fabricate hybrid AuNP-NA based SERS substrates with improved sensitivity.
Collapse
Affiliation(s)
- Jayakumar Pillanagrovi
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Shourya Dutta-Gupta
- Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
33
|
Wang Y, Zhao P, Zhang S, Zhu K, Shangguan X, Liu L, Zhang S. Application of Janus Particles in Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090689. [PMID: 36140074 PMCID: PMC9496037 DOI: 10.3390/bios12090689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/01/2023]
Abstract
Janus particles (JPs), named after the two-faced Roman god, are asymmetric particles with different chemical properties or polarities. JPs have been widely used in the biomedical field in recent years, including as drug carriers for targeted controlled drug release and as biosensors for biological imaging and biomarker detection, which is crucial in the early detection and treatment of diseases. In this review, we highlight the most recent advancements made with regard to Janus particles in point-of-care testing (POCT). Firstly, we introduce several commonly used methods for preparing Janus particles. Secondly, we present biomarker detection using JPs based on various detection methods to achieve the goal of POCT. Finally, we discuss the challenges and opportunities for developing Janus particles in POCT. This review will facilitate the development of POCT biosensing devices based on the unique properties of Janus particles.
Collapse
|
34
|
Li Y, Mao Y, Wang J, Liu Z, Jia P, Wu N, Yu H, Wang J, Song Y, Zhou J. Cracking enabled unclonability in colloidal crystal patterns authenticated with computer vision. NANOSCALE 2022; 14:8833-8841. [PMID: 35695072 DOI: 10.1039/d2nr01479c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colloidal crystals with iridescent structural coloration have appealing applications in the fields of sensors, displays, anti-counterfeiting, etc. A serious issue accompanying the facile chemical self-assembly approach to colloidal crystals is the formation of uncontrolled and irregular cracks. In contrast to the previous efforts to avoid cracking, the unfavorable and random micro-cracks in colloidal crystals were utilized here as unclonable codes for tamper-proof anti-counterfeiting. The special structural and optical characteristics of the colloidal crystal patterns assembled with monodisperse poly(styrene-methyl methacrylate-acrylic acid) core-shell nanospheres enabled multi-anti-counterfeiting modes, including angle-dependent structural colors and polarization anisotropy, besides the physically unclonable functions (PUFs) of random micro-cracks. Moreover, by using the random cracks in the colloidal crystals as templates to guide fluorescent silica nanoparticle deposition, an fluorescent anti-counterfeiting mode with PUFs was introduced. To validate the PUFs of the fluorescent micro-cracks in the colloidal crystals, a novel edge-sensitive template matching approach based on a computer vision algorithm with an accuracy of ∼100% was developed, enabling ultimate security immune to forgery. The computer-vision verifiable physically unclonable colloidal crystals with multi-anti-counterfeiting modes are superior to conventional photonic crystal anti-counterfeiting materials that rely on angle-dependent or tunable structural colors, and the conventional PUF labels in the aspect of decorative functions, which will open a new avenue for advanced security materials with multi-functionality.
Collapse
Affiliation(s)
- Yuhuan Li
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Yexin Mao
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiahui Wang
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Zhiwei Liu
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Pan Jia
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Na Wu
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Haitao Yu
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | - Jinqiao Wang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jinming Zhou
- Key Laboratory of Inorganic Nanomaterials of Hebei Province, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| |
Collapse
|
35
|
Weisgerber D, Hatori M, Li X, Abate AR. Polyhedral Particles with Controlled Concavity by Indentation Templating. Anal Chem 2022; 94:7475-7482. [PMID: 35578791 PMCID: PMC9161221 DOI: 10.1021/acs.analchem.1c04884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Current methods for fabricating microparticles offer limited control over size and shape. Here, we demonstrate a droplet microfluidic method to form polyhedral microparticles with controlled concavity. By manipulating Laplace pressure, buoyancy, and particle rheology, we generate microparticles with diverse shapes and curvatures. Additionally, we demonstrate the particles provide increased capture efficiency when used for particle-templated emulsification. Our approach enables microparticles with enhanced chemical and biological functionality.
Collapse
Affiliation(s)
- Daniel
W. Weisgerber
- Department
of Bioengineering and Therapeutic Sciences University of California, San Francisco 1700 Fourth Street, San Francisco, California 94158, United States
| | - Makiko Hatori
- Department
of Bioengineering and Therapeutic Sciences University of California, San Francisco 1700 Fourth Street, San Francisco, California 94158, United States
| | - Xiangpeng Li
- Department
of Bioengineering and Therapeutic Sciences University of California, San Francisco 1700 Fourth Street, San Francisco, California 94158, United States
| | - Adam R. Abate
- Department
of Bioengineering and Therapeutic Sciences University of California, San Francisco 1700 Fourth Street, San Francisco, California 94158, United States
- Chan
Zuckerberg Biohub 499
Illinois Street, San Francisco, California 94158, United States
| |
Collapse
|
36
|
Lermusiaux L, Roach L, Baron A, Treguer-Delapierre M. Bottom-up synthesis of meta-atoms as building blocks in self-assembled metamaterials : Recent advances and perspectives. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac6889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Meta-atoms interact with light in interesting ways and offer a large range of exciting properties. They exhibit optical properties inaccessible by natural atoms but their fabrication is notoriously difficult because of the precision required. In this perspective, we present the current research landscape in making meta-atoms, with a focus on the most promising self-assembly approaches and main challenges to overcome, for the development of materials with novel properties at optical frequencies.
Collapse
|
37
|
Abstract
In the last few decades, plasmonic colorimetric biosensors raised increasing interest in bioanalytics thanks to their cost-effectiveness, responsiveness, and simplicity as compared to conventional laboratory techniques. Potential high-throughput screening and easy-to-use assay procedures make them also suitable for realizing point of care devices. Nevertheless, several challenges such as fabrication complexity, laborious biofunctionalization, and poor sensitivity compromise their technological transfer from research laboratories to industry and, hence, still hamper their adoption on large-scale. However, newly-developing plasmonic colorimetric biosensors boast impressive sensing performance in terms of sensitivity, dynamic range, limit of detection, reliability, and specificity thereby continuously encouraging further researches. In this review, recently reported plasmonic colorimetric biosensors are discussed with a focus on the following categories: (i) on-platform-based (localized surface plasmon resonance, coupled plasmon resonance and surface lattice resonance); (ii) colloid aggregation-based (label-based and label free); (iii) colloid non-aggregation-based (nanozyme, etching-based and growth-based).
Collapse
|
38
|
Vialetto J, Zanini M, Isa L. Attachment and detachment of particles to and from fluid interfaces. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Muldarisnur M, Marlow F. Structure and Optical Properties of Opal Films Made by an Out-of-Plane Electric Field-Assisted Capillary Deposition Method. ACS OMEGA 2022; 7:8084-8090. [PMID: 35284731 PMCID: PMC8908520 DOI: 10.1021/acsomega.1c07391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Self-assembled opals that are considered as a promising candidate for three-dimensional photonic crystals often suffer from the existence of internal defects. Defects influence optical properties and limit the applicability of opal films. Directed assembly using external fields may offer a certain degree of tunability in the opal formation process. We investigate the effect of an out-of-plane electric field on the formation and optical properties of opal films deposited using the capillary deposition method. The application of an electric field of intermediate strength (20-30 V/cm) can improve opal quality. The quality of opal films was found to depend on the polarity of the bottom substrate resulting from the beneficial influence of an asymmetry between the growths and the interplay with gravity. The negatively charged bottom substrate results in slightly better opal quality. This finding shows the potential of electric fields to tune opal formation in order to reduce the defect content.
Collapse
Affiliation(s)
- Mulda Muldarisnur
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang 25163, Indonesia
| | - Frank Marlow
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr 45470, Germany
- CENIDE—Center
for Nanointegration Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
40
|
Lyu Q, Li M, Zhang L, Zhu J. Bioinspired Supramolecular Photonic Composites: Construction and Emerging Applications. Macromol Rapid Commun 2022; 43:e2100867. [PMID: 35255176 DOI: 10.1002/marc.202100867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/29/2022] [Indexed: 11/08/2022]
Abstract
Natural organisms have evolved fascinating structural colors to survive in complex natural environments. Artificial photonic composites developed by imitating the structural colors of organisms have been applied in displaying, sensing, biomedicine, and many other fields. As emerging materials, photonic composites mediated by supramolecular chemistry, namely, supramolecular photonic composites, have been designed and constructed to meet emerging application needs and challenges. This feature article mainly introduces the constructive strategies, properties, and applications of supramolecular photonic composites. First, constructive strategies of supramolecular photonic composites are summarized, including the introduction of supramolecular polymers into colloidal photonic array templates, co-assembly of colloidal particles (CPs) with supramolecular polymers, self-assembly of soft CPs, and compounding photonic elastomers with functional substances via supramolecular interactions. Supramolecular interactions endow photonic composites with attractive properties, such as stimuli-responsiveness and healability. Subsequently, the unique optical and mechanical properties of supramolecular photonic composites are summarized, and their applications in emerging fields, such as colorful coatings, real-time and visual motion monitoring, and biochemical sensors, are introduced. Finally, challenges and perspectives in supramolecular photonic composites are discussed. This feature article provides general strategies and considerations for the design of photonic materials based on supramolecular chemistry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Quanqian Lyu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Miaomiao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lianbin Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jintao Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
41
|
Shulevitz HJ, Huang TY, Xu J, Neuhaus SJ, Patel RN, Choi YC, Bassett LC, Kagan CR. Template-Assisted Self-Assembly of Fluorescent Nanodiamonds for Scalable Quantum Technologies. ACS NANO 2022; 16:1847-1856. [PMID: 35025204 DOI: 10.1021/acsnano.1c09839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Milled nanodiamonds containing nitrogen-vacancy (NV) centers are nanoscale quantum sensors that form colloidal dispersions. However, variations in their size, shape, and surface chemistry limit the ability to position individual nanodiamonds and statistically study properties that affect their optical and quantum characteristics. Here, we present a scalable strategy to form ordered arrays of nanodiamonds using capillary-driven, template-assisted self-assembly. We demonstrate the precise spatial arrangement of isolated nanodiamonds with diameters below 50 nm across millimeter-scale areas. Measurements of over 200 assembled nanodiamonds yield a statistical understanding of their structural, optical, and quantum properties. The NV centers' spin and charge properties are uncorrelated with nanodiamond size but rather are consistent with heterogeneity in their nanoscale environment.
Collapse
Affiliation(s)
- Henry J Shulevitz
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tzu-Yung Huang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jun Xu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Steven J Neuhaus
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raj N Patel
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yun Chang Choi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lee C Bassett
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cherie R Kagan
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
Minopoli A, Scardapane E, Ventura BD, Tanner JA, Offenhäusser A, Mayer D, Velotta R. Double-Resonant Nanostructured Gold Surface for Multiplexed Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6417-6427. [PMID: 35089707 PMCID: PMC8832399 DOI: 10.1021/acsami.1c23438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/17/2023]
Abstract
A novel double-resonant plasmonic substrate for fluorescence amplification in a chip-based apta-immunoassay is herein reported. The amplification mechanism relies on plasmon-enhanced fluorescence (PEF) effect. The substrate consists of an assembly of plasmon-coupled and plasmon-uncoupled gold nanoparticles (AuNPs) immobilized onto a glass slide. Plasmon-coupled AuNPs are hexagonally arranged along branch patterns whose resonance lies in the red band (∼675 nm). Plasmon-uncoupled AuNPs are sprinkled onto the substrate, and they exhibit a narrow resonance at 524 nm. Numerical simulations of the plasmonic response of the substrate through the finite-difference time-domain (FDTD) method reveal the presence of electromagnetic hot spots mainly confined in the interparticle junctions. In order to realize a PEF-based device for potential multiplexing applications, the plasmon resonances are coupled with the emission peak of 5-carboxyfluorescein (5-FAM) fluorophore and with the excitation/emission peaks of cyanine 5 (Cy5). The substrate is implemented in a malaria apta-immunoassay to detect Plasmodium falciparum lactate dehydrogenase (PfLDH) in human whole blood. Antibodies against Plasmodium biomarkers constitute the capture layer, whereas fluorescently labeled aptamers recognizing PfLDH are adopted as the top layer. The fluorescence emitted by 5-FAM and Cy5 fluorophores are linearly correlated (logarithm scale) to the PfLDH concentration over five decades. The limits of detection are 50 pM (1.6 ng/mL) with the 5-FAM probe and 260 fM (8.6 pg./mL) with the Cy5 probe. No sample preconcentration and complex pretreatments are required. Average fluorescence amplifications of 160 and 4500 are measured in the 5-FAM and Cy5 channel, respectively. These results are reasonably consistent with those worked out by FDTD simulations. The implementation of the proposed approach in multiwell-plate-based bioassays would lead to either signal redundancy (two dyes for a single analyte) or to a simultaneous detection of two analytes by different dyes, the latter being a key step toward high-throughput analysis.
Collapse
Affiliation(s)
- Antonio Minopoli
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Emanuela Scardapane
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
| | | | - Julian A. Tanner
- School
of Biomedical Sciences, University of Hong
Kong, Hong Kong, China
| | - Andreas Offenhäusser
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing (IBI-3), Bioelectronics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Raffaele Velotta
- Department
of Physics “E. Pancini”, University
Federico II, Via Cintia 26, 80126 Naples, Italy
| |
Collapse
|
43
|
Saroj SK, Panigrahi PK. Magnetophoretic Control of Diamagnetic Particles Inside an Evaporating Droplet. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14950-14967. [PMID: 34910880 DOI: 10.1021/acs.langmuir.1c02968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study reports the magnetophoresis of diamagnetic particles in an evaporating ferrofluid droplet. Both solid and ring magnet arrangements are used to investigate the effect of magnetic field distribution. The distance of the magnet from the droplet is varied to study the effect of magnetic field strength. The magnetic field distribution is computed using COMSOL multiphysics software. Magnetometer measurements have been carried out to validate the simulation results. The motion of particles and the drying pattern of evaporating ferrofluid droplets are visualized using the confocal microscopy technique. Both bright-field and fluorescence imagings have been carried out to observe the differential deposition of the fluorescent particle (microparticle) and magnetic nanoparticles in the absence and presence of a magnetic field. The velocity of diamagnetic particles as a function of magnetic field distribution and strength has been studied using the micro-PIV technique. In the absence of the magnetic field, a ring-shaped deposition pattern is observed. The mixture of microparticles (diamagnetic) and nanoparticles (magnetic) is deposited between the outer and inner edges of the ring. The diamagnetic particles occupy the inner and outer edges of the ring. Magnetic particles travel toward the higher magnetic field zone and diamagnetic particles move toward the smaller magnetic field zone when a magnetic field is applied by a solid magnet placed over the droplet. This can be attributed to the negative magnetic force originating from the difference between the susceptibility of magnetic and nonmagnetic particles. The negative magnetic force on the microparticle increases as the magnetic field intensity increases, causing the microparticle to convect faster toward the contact line. The deposition behavior can be reversed or suppressed using a ring magnet in place of a solid magnet. In this case, the negative magnetic force is stronger at the contact line region of the droplet and decreases as it approaches the center region of the droplet. The deposition behavior of diamagnetic particle depends on the balance between the Marangoni force and the magnetophoretic force. Overall, the present study demonstrates the capability of the controlled deposition of diamagnetic polystyrene particles by suitable arrangement of the solid and ring magnet.
Collapse
Affiliation(s)
- Sunil Kumar Saroj
- Department of Mechanical Engineering, IIT Kanpur, Kanpur 208016, India
| | | |
Collapse
|
44
|
Wang J, Zhu B, Wang Y, Hao Y, Zhang J, Li Z. Polymer pattern-induced self-assembly of inorganic nanoparticles. SOFT MATTER 2021; 18:97-106. [PMID: 34870666 DOI: 10.1039/d1sm01388b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional assemblies of inorganic nanoparticles (NPs) are widely studied owing to their collective electromagnetic properties and various application from nanodrugs and bioimaging. In most cases, the superstructures of NPs are prepared with the assistance of templates or external fields. Therefore, how to prepare the functional assemblies of NPs more simply remains a challenge. Here, a free-template assembly strategy for preparing the superstructures of NPs is proposed in our work. In our strategy, we design poly(glycerol monomethacrylate)-b-poly(2-hydroxypropyl methacrylate) (PGMA-b-PHPMA) coated NPs. Then, using the polymerization-induced self-assembly (PISA), hydrophobic PHPMA blocks resulted in the phase separation to form the orderly patterns, which is expected to induced NPs to self-assemble into the orderly superstructures. By DPD simulations, we find that the disk, ring, composite superstructures can be obtained by regulating the graft density, verifying that our assembly strategy of NPs is feasible. Even more interesting is that NPs are also distributed in an orderly way on the surface of aggregations to form the orderly NP patterns. Besides that, the thermodynamics, dynamics, and structure details in the self-assembly process of HINPs are shown in our work, providing a new idea and elaborate physical picture for the following preparation of the superstructure of NPs.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Bojin Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yining Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yujian Hao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| |
Collapse
|
45
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
46
|
Raut HK, Wang H, Ruan Q, Wang H, Fernandez JG, Yang JKW. Hierarchical Colorful Structures by Three-Dimensional Printing of Inverse Opals. NANO LETTERS 2021; 21:8602-8608. [PMID: 34662137 DOI: 10.1021/acs.nanolett.1c02483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Structural coloration is a recurring solution in biological systems to control visible light. In nature, basic structural coloration results from light interacting with a repetitive nanopattern, but more complex interactions and striking results are achieved by organisms incorporating additional hierarchical structures. Artificial reproduction of single-level structural color has been achieved using repetitive nanostructures, with flat sheets of inverse opals being very popular because of their simple and reliable fabrication process. Here, we control photonic structures at several length scales using a combination of direct laser writing and nanosphere assembly, producing freeform hierarchical constructions of inverse opals with high-intensity structural coloration. We report the first 3D prints of stacked, overhanging and slanted microstructures of inverse opals. Among other characteristics, these hierarchical photonic structures exhibit geometrically tunable colors, focal-plane-dependent patterns, and arbitrary alignment of microstructure facet with self-assembled lattice. Based on those results, novel concepts of multilevel information encoding systems are presented.
Collapse
Affiliation(s)
- Hemant Kumar Raut
- Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
| | - Hao Wang
- Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
| | - Qifeng Ruan
- Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
| | - Hongtao Wang
- Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
| | - Javier G Fernandez
- Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
| | - Joel K W Yang
- Division of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Republic of Singapore
| |
Collapse
|
47
|
Ostrovsky N, Le Saux G, Argaman U, Chen IT, Chen T, Chang CH, Makov G, Schvartzman M. Templated Assembly of Nanoparticles into Continuous Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9098-9110. [PMID: 34293867 DOI: 10.1021/acs.langmuir.1c01188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The templated assembly of nanoparticles has been limited so far to yield only discontinuous nanoparticle clusters confined within lithographically patterned cavities. Here, we explored the templated assembly of nanoparticles into continuous 2D structures, using lithographically patterned templates with topographical features sized as the assembled nanoparticles. We found that these features act as nucleation centers, whose exact arrangement determines four possible assembly regimes (i) rotated, (ii) disordered, (iii) closely packed, and (iv) unpacked. These regimes produce structures strikingly different from their geometry, orientation, long-range and short-range orders, and packing density. Interestingly, for templates with relatively distant nucleation centers, these four regimes are replaced with three new ones, which produce large monocrystalline domains that are either (i) uniformly rotated, (ii) uniformly aligned, or (iii) nonuniformly rotated relative to the nucleation lattice. We rationalized our experimental data using a mathematical model, which examines all the alignment possibilities between the nucleation centers and the ideal hexagonal assembly. Our finding provides a new approach for the à la carte obtainment of various nanoscale structures unachievable by natural self-assembly and opens a route for the fabrication of numerous functional nanodevices and nanosystems that could not be realized so far by the standard bottom-up approach.
Collapse
Affiliation(s)
| | | | | | - I Te Chen
- Walker Department of Mechanical Engineering, The University of Texas, Austin 78712-1139, Texas, United States
| | - Timothy Chen
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Chih-Hao Chang
- Walker Department of Mechanical Engineering, The University of Texas, Austin 78712-1139, Texas, United States
| | | | | |
Collapse
|
48
|
Sorkhabi SG, Ahmadi-Kandjani S, Cousseau F, Dabos-Seignon S, Loumaigne M, Ortyl E, Zielinska S, Barille R. Topological reconstruction of a stretched transparent surface relief grating via an optical diffraction pattern. APPLIED OPTICS 2021; 60:5236-5244. [PMID: 34143093 DOI: 10.1364/ao.424845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
The optical characterization of transparent and stretchable patterned surfaces replicated from the fabrication of quasicrystal structures on azopolymer thin films is presented. The complexity of the quasicrystal surface fabrication is obtained by superimposed multiple light exposures. Azopolymer surface patterns are used as a replica molding master. The microscopic elongation of nanocavities induced by macroscopic stretchings of the elastomeric quasicrystal replication is characterized via optical diffraction. An original numerical method is presented to reconstruct the structured surface deduced from the optical diffraction measurements. The measurements show that drastic topologic changes, e.g., going from cavities to a canal, happens on the surface. This could be ingeniously used for creating actionable structured surfaces or nanoparticles trapping surfaces.
Collapse
|
49
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
50
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|