1
|
Li H, Li Q, Sun T, Zhou Y, Han ST. Recent advances in artificial neuromorphic applications based on perovskite composites. MATERIALS HORIZONS 2024; 11:5499-5532. [PMID: 39140168 DOI: 10.1039/d4mh00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
High-performance perovskite materials with excellent physical, electronic, and optical properties play a significant role in artificial neuromorphic devices. However, the development of perovskites in microelectronics is inevitably hindered by their intrinsic non-ideal properties, such as high defect density, environmental sensitivity, and toxicity. By leveraging materials engineering, integrating various materials with perovskites to leverage their mutual strengths presents great potential to enhance ion migration, energy level alignment, photoresponsivity, and surface passivation, thereby advancing optoelectronic and neuromorphic device development. This review initially provides an overview of perovskite materials across different dimensions, highlighting their physical properties and detailing their applications and metrics in two- and three-terminal devices. Subsequently, we comprehensively summarize the application of perovskites in combination with other materials, including organics, nanomaterials, oxides, ferroelectrics, and crystalline porous materials (CPMs), to develop advanced devices such as memristors, transistors, photodetectors, sensors, light-emitting diodes (LEDs), and artificial neuromorphic systems. Lastly, we outline the challenges and future research directions in synthesizing perovskite composites for neuromorphic devices. Through the review and analysis, we aim to broaden the utilization of perovskites and their composites in neuromorphic research, offering new insights and approaches for grasping the intricate physical working mechanisms and functionalities of perovskites.
Collapse
Affiliation(s)
- Huaxin Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qingxiu Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tao Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China.
| |
Collapse
|
2
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 PMCID: PMC11543516 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
3
|
Moriguchi J, Koga T, Tsunoji N, Nishihara S, Akutagawa T, Masuya-Suzuki A, Tsunashima R. Solvent-assisted mechanochemical crystallization of the metal-free perovskite solid solution (H 2dabco, H 2hmta)NH 4(BF 4) 3. Chem Commun (Camb) 2024; 60:12181-12184. [PMID: 39282968 DOI: 10.1039/d4cc04010d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
All-proportional solid solutions of the metal-free perovskite (H2dabco1-y, H2hmtay)(NH4)(BF4)3 ((d,h)-BF4) were crystallized via a mechanochemical method. Their molecular dynamics depend on the ratio y with a compositional boundary at y = 0.43, where H2dabco2+ was deduced to be at a dynamic disorder state, even below phase transition temperature to a plastic crystalline phase seen at y = 0.
Collapse
Affiliation(s)
- Jumpei Moriguchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan.
| | - Tomoe Koga
- Chemistry Course, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Sadafumi Nishihara
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
| | - Atsuko Masuya-Suzuki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan.
- Chemistry Course, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| | - Ryo Tsunashima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan.
- Chemistry Course, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| |
Collapse
|
4
|
Zhang ZX, Ni HF, Tang JS, Huang PZ, Luo JQ, Zhang FW, Lin JH, Jia QQ, Teri G, Wang CF, Fu DW, Zhang Y. Metal-Free Perovskite Ferroelectrics with the Most Equivalent Polarization Axes. J Am Chem Soc 2024; 146:27443-27450. [PMID: 39141483 DOI: 10.1021/jacs.4c07268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ferroelectricity in metal-free perovskites (MFPs) has emerged as an academic hotspot for their lightweight, eco-friendly processability, flexibility, and degradability, with considerable progress including large spontaneous polarization, high Curie temperature, large piezoelectric response, and tailoring coercive field. However, their equivalent polarization axes as a key indicator are far from enough, although multiaxial ferroelectrics are highly preferred for performance output and application flexibility that profit from as many equivalent polarization directions as possible with easier reorientation. Here, by implementing the synergistic overlap of regulating anionic geometries (from spherical I- to octahedral [PF6]- and to tetrahedral [ClO4]- or [BF4]-) and cationic asymmetric modification, we successfully designed multiaxial MFP ferroelectrics CMDABCO-NH4-X3 (CMDABCO = N-chloromethyl-N'-diazabicyclo[2.2.2]octonium; X = [ClO4]- or [BF4]-) with the lowest P1 symmetry. More impressively, systemic characterizations indicate that they possess 24 equivalent polarization axes (Aizu notations of 432F1 and m3̅mF1, respectively)─the maximum number achievable for ferroelectrics. Benefiting from the multiaxial feature, CMDABCO-NH4-[ClO4]3 has been demonstrated to have excellent piezoelectric sensing performance in its polycrystalline sample and prepared composite device. Our study provides a feasible strategy for designing multiaxial MFP ferroelectrics and highlights their great promise for use in microelectromechanical, sensing, and body-compatible devices.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jing-Song Tang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-Qi Luo
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Feng-Wen Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Jia-He Lin
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, People's Republic of China
| |
Collapse
|
5
|
Li K, Li ZG, Chen YQ, Li W. B-site substitution effects on the mechanical properties of halide perovskites [C 4H 12N 2][BCl 3]·H 2O (B = NH 4+; K +). Dalton Trans 2024; 53:14451-14456. [PMID: 39145540 DOI: 10.1039/d4dt01795a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The mechanical properties of halide perovskites have been attracting ever-increasing interest for their significant importance in future industrial applications. However, studies focused on the effect of B-site substitution of molecular perovskites on their mechanical properties are rare, which makes it favorable to shed light on their fundamental structure-mechanical property relationships. Here, using isostructural halide perovskites, [C4H12N2][BCl3]·H2O (B = NH4+; K+), constructed by ionic bonds and hydrogen bonds, respectively, as the model systems, we investigate their mechanical properties through high-pressure synchrotron X-ray diffraction experiments and density functional theory calculations. Owing to the similar sizes of NH4+ and K+, the two compounds possess almost identical cell parameters and frameworks. Upon compression, the two perovskites exhibit analogous behavior except for slight differences in the shrinkage ratio of principal axes and the onset pressure of amorphization. The fitted bulk moduli of [C4H12N2][KCl3]·H2O and [C4H12N2][NH4Cl3]·H2O are 43.89 and 27.28 GPa, respectively. These results demonstrate that the simple replacement of K+ by NH4+ can significantly reduce the structural rigidity of the corresponding compounds, which is ascribed to the weaker strength of NH4⋯Cl hydrogen bonds than that of K-Cl bonds.
Collapse
Affiliation(s)
- Kai Li
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, China.
| | - Zhi-Gang Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| | - Yong-Qiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, China.
| | - Wei Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & TKL of Metal and Molecule Based Material Chemistry, Tianjin 300350, China
| |
Collapse
|
6
|
Dong P, Lin C, Ye N, Luo M. Dimensional Regulation in Metal-Free Perovskites by Compositional Engineering to Achieve Record Low X-Ray Detection Limits. Angew Chem Int Ed Engl 2024; 63:e202407048. [PMID: 38701362 DOI: 10.1002/anie.202407048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Utilizing the manipulation of perovskite dimensions has been proven as an effective approach in regulating perovskite properties. Nevertheless, achieving precise control over the dimensions of perovskites within the same system poses a significant challenge. In this study, we introduce a sophisticated method to attain precise dimensional control in metal-free perovskites (MFPs), specifically through the process of octahedron tailoring by compositional engineering. Accordingly, we successfully instigated a transition from HPIP-NH4I3 ⋅ H2O (3D), HPIP2-NH4I5 (2D) and HPIP3-NH4I7 (1D) structures. Notably, HPIP2-NH4I5 is the first 2D MFP. As anticipated, these perovskites exhibited completely distinct fluorescence and X-ray detection capabilities due to their differing dimensions. Remarkably, the 2D HPIP2-NH4I5 device effectively hindered ion migration perpendicular to the 2D layers, achieving the lowest detection limit of 12.2 nGyair s-1 among metal-free single crystals-based detectors. This study expands the dimensionality control strategies for MFPs and introduces, for the first time, the potential of 2D MFPs as high-performance X-ray detectors, thereby enriching the diversity of the MFPs family.
Collapse
Affiliation(s)
- Pengxiang Dong
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chensheng Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| | - Ning Ye
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384, China
| | - Min Luo
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002, China
| |
Collapse
|
7
|
Pan Q, Gu ZX, Zhou RJ, Feng ZJ, Xiong YA, Sha TT, You YM, Xiong RG. The past 10 years of molecular ferroelectrics: structures, design, and properties. Chem Soc Rev 2024; 53:5781-5861. [PMID: 38690681 DOI: 10.1039/d3cs00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Ferroelectricity, which has diverse important applications such as memory elements, capacitors, and sensors, was first discovered in a molecular compound, Rochelle salt, in 1920 by Valasek. Owing to their superiorities of lightweight, biocompatibility, structural tunability, mechanical flexibility, etc., the past decade has witnessed the renaissance of molecular ferroelectrics as promising complementary materials to commercial inorganic ferroelectrics. Thus, on the 100th anniversary of ferroelectricity, it is an opportune time to look into the future, specifically into how to push the boundaries of material design in molecular ferroelectric systems and finally overcome the hurdles to their commercialization. Herein, we present a comprehensive and accessible review of the appealing development of molecular ferroelectrics over the past 10 years, with an emphasis on their structural diversity, chemical design, exceptional properties, and potential applications. We believe that it will inspire intense, combined research efforts to enrich the family of high-performance molecular ferroelectrics and attract widespread interest from physicists and chemists to better understand the structure-function relationships governing improved applied functional device engineering.
Collapse
Affiliation(s)
- Qiang Pan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zhu-Xiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, P. R. China.
| | - Ru-Jie Zhou
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Zi-Jie Feng
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-An Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Tai-Ting Sha
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
8
|
Choi HS, Lin J, Wang G, Wong WPD, Park IH, Lin F, Yin J, Leng K, Lin J, Loh KP. Molecularly thin, two-dimensional all-organic perovskites. Science 2024; 384:60-66. [PMID: 38574140 DOI: 10.1126/science.adk8912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/22/2024] [Indexed: 04/06/2024]
Abstract
Recently, the emergence of all-organic perovskites with three-dimensional (3D) structures has expanded the potential applications of perovskite materials. However, the synthesis and utilization of all-organic perovskites in 2D form remain largely unexplored because the design principle has not been developed. We present the successful synthesis of a metal-free 2D layered perovskite, denoted as the Choi-Loh van der Waals phase (CL-v phase), with the chemical formula A2B2X4, where A represents a larger-sized cation compared to B and X denotes an anion. The CL-v phase exhibits a van der Waals gap enabled by interlayer hydrogen bonding and can be exfoliated or grown as molecularly thin 2D organic crystals. The dielectric constants of the CL-v phase range from 4.8 to 5.5 and we demonstrate their potential as gate dielectrics for thin-film transistors.
Collapse
Affiliation(s)
- Hwa Seob Choi
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jun Lin
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Walter P D Wong
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Fang Lin
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China
| | - Jun Yin
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kai Leng
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Kian Ping Loh
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Cui Q, Liu X, Li N, Zeng H, Chu D, Li H, Song X, Xu Z, Liu Y, Zhu H, Zhao K, Liu SF. A New Metal-Free Molecular Perovskite-Related Single Crystal with Quantum Wire Structure for High-Performance X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308945. [PMID: 37948432 DOI: 10.1002/smll.202308945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Indexed: 11/12/2023]
Abstract
The family of metal-free molecular perovskites, an emerging novel class of eco-friendly semiconductor, welcomes a new member with a unique 1D hexagonal perovskite structure. Lowering dimensionality at molecular level is a facile strategy for crystal structure conversion, optoelectronic property regulation, and device performance optimization. Herein, the study reports the design, synthesis, packing structure, and photophysical properties of the 1D metal-free molecular perovskite-related single crystal, rac-3APD-NH4 I3 (rac-3APD= racemic-3-Aminopiperidinium), that features a quantum wire structure formed by infinite chains of face-sharing NH4 I6 octahedra, enabling strong quantum confinement with strongly self-trapped excited (STE) states to give efficient warm orange emission with a photoluminescence quantum yield (PLQY) as high as ≈41.6%. The study accordingly unveils its photoexcited carrier dynamics: rac-3APD-NH4 I3 relaxes to STE state with a short lifetime of 10 ps but decays to ground state by emitting photons with a relatively longer lifetime of 560 ps. Additionally, strong quantum confinement effect is conducive to charge transport along the octahedral channels that enables the co-planar single-crystal X-ray detectors to achieve a sensitivity as high as 1556 µC Gyair -1 cm-2 . This work demonstrates the first case of photoluminescence mechanism and photophysical dynamics of 1D metal-free perovskite-related semiconductor, as well as the promise for high-performance X-ray detector.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Hanqing Zeng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Depeng Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yanping Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haiming Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Li Z, Shi S, Peng G, Wu Y, Xie H, Wang H, Li Z, Jin Z. Metal-Free Hydrazinium Halide Perovskitoid Single Crystals for X-ray Detection. NANO LETTERS 2023; 23:9972-9979. [PMID: 37862680 DOI: 10.1021/acs.nanolett.3c03062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Metal-free perovskitoids (MFPs) with N2H5+ as B-site component possess higher crystal density and hydrogen bonding networks and have been recently expanded into X-ray detection. However, research on this material is in its infancy and lacks an understanding of the function of halide components on physical properties and device performance. Here, N2H5-based MFP single crystals (SCs) with different halides are fabricated, and the influence of halides on the crystal structure, band nature, charge transport characteristics, and final device performance is actively explored. Based on theory and experiments, the tolerance factor and octahedral factor jointly determine the octahedral composition. Further, halides with different electronegativities and ionic radii also affect octahedral distortion and energy band bending, further influencing carrier transport and device performance. Finally, a sensitivity of 1284 μC Gyair-1 cm-2 and low detection limits (LoD) of 5.62 μGyair s-1 were obtained by the Br-based device due to its superior physical properties.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Shenghuan Shi
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Yujiang Wu
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Hang Xie
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province & Key Laboratory of Quantum Theory and Applications of MOE, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Xu YM, Li K, Jian ZB, Bie J, Wei M, Chen S. Accelerated Discovery of Targeted Environmentally Friendly A(II)B(I)X 3-Type Three-Dimensional Hybrid Organic-Inorganic Perovskites for Potential Light Harvesting via Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37920944 DOI: 10.1021/acsami.3c13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The engineered hybrid organic-inorganic perovskites (HOIPs) with outstanding multifunctionalities have realized overarching targeted-driven applications and thus aroused intense research interest. The emergence of three-dimensional (3D) A(II)B(I)X3-type HOIPs in 2018 brought a breakthrough to extend the 3D perovskite family and successfully realized prominent ferroelectricity at the same time. Here, we focus on these new-type HOIPs to perform machine-learning (ML)-based molecular design to screen promising candidates for versatile light harvesting, involving photovoltaics (77 ones), water splitting (216 ones), and photodetection (178 ones), out of 3180 A(II)B(I)X3 perovskites in total. These candidates await future experimental synthesis and characterization. Our high-throughput ML-based screening of 3D A(II)B(I)X3 HOIPs would enrich the material inventory by successfully introducing a class of new 3D HOIPs to realize property-oriented light harvesting and additional versatile energy harvesting due to their potential multifunctionalities such as ferroelectricity and electrocaloricity.
Collapse
Affiliation(s)
- Yi-Ming Xu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Kai Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zhi-Bin Jian
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jie Bie
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Meng Wei
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shuang Chen
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
12
|
Wu Y, Li Z, Lei Y, Jin Z. Metal-Free Perovskites for X-Ray Detection. Chemistry 2023; 29:e202301536. [PMID: 37427493 DOI: 10.1002/chem.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/11/2023]
Abstract
Metal-free perovskites are a promising class of materials for X-ray detection due to their unique structural, optical, and electrical properties. Here, we first delve into the stoichiometry and geometric argument of metal-free perovskites. Followed, the alternative A/B/X ions and hydrogen-bonding are clearly introduced to further optimize the materials' stability and properties. Finally, we provide a comprehensive overview of their potential applications for flexible X-ray images and prospects for metal-free perovskite development. In conclusion, metal-free perovskite is a promising material for X-ray detection. Its stoichiometric and geometric parameters, ion, and hydrogen bond selection, and application prospects are worthy of further study.
Collapse
Affiliation(s)
- Yujiang Wu
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhizai Li
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Yutian Lei
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Materials and Energy School of Physical Science and Technolog Lanzhou Center for Theoretical Physics Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
13
|
Xu WJ, Zelenovskii P, Tselev A, Verissimo L, Romanyuk K, Yuan W, Zhang WX, Kholkin A, Rocha J. A hybrid double perovskite ferroelastic exhibiting the highest number of orientation states. Chem Commun (Camb) 2023; 59:11264-11267. [PMID: 37661855 DOI: 10.1039/d3cc02645k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Integrating NH4+ as a B'-site ion within a three-dimensional double hybrid perovskite resulted in a novel high-temperature ferroelastic, (Me3NOH)2(NH4)[Co(CN)6], which uniquely demonstrates a reversible triclinic-to-cubic phase transition at 369 K and offers a record-setting 24 orientation states, the highest ever reported among all ferroelastics.
Collapse
Affiliation(s)
- Wei-Jian Xu
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pavel Zelenovskii
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Alexander Tselev
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luis Verissimo
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Konstantin Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Wei Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Andrei Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João Rocha
- Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Goreshnik E, Petrusenko S. Cation Charge as a Tool to Change Dimensionality in Organic-Inorganic Hybrids Based on Copper Thiocyanate Templated by 1,4-Diazabicyclo[2.2.2]octane. Molecules 2023; 28:molecules28083608. [PMID: 37110842 DOI: 10.3390/molecules28083608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The first three compounds based on a {copper-thiocyanate-dabco} combination, namely, (Hdabco)[Cu2(NCS)3] (1), (H2dabco)[Cu(NCS)3] (2), and [Cu(Hdabco)2(NCS)4]∙2dmso (3), where dabco = 1,4-diazabicyclo[2.2.2]octane were synthesized and characterized by single-crystal XRD, elemental analysis, Raman, and partial IR spectroscopy. In copper(I) derivatives, the influence of the charge of the organic cation on the dimensionality of the crystal structure is observed. Thus, in the case of 1, monoprotonated Hdabco+ cations provide the template for the formation of a polymeric anionic 3D framework {[Cu2(NCS)3]-}n, while in the case of 2, diprotonated H2dabco2+ cations together with discrete [Cu(SCN)3]2- anions generate a simple ionic 0D structure with an island-like crystal lattice. The anionic {[Cu2(SCN)3]-}n framework has infinite square channels of 10 × 10 Å size running along the 001 crystallographic direction. In 3, both the Hdabco+ and thiocyanato units behave as terminal monodentate ligands attached to copper(II) centers via N-donor atoms, forming neutral molecular complexes with an elongated (4+2) octahedral environment. The crystallization molecules of dmso are hydrogen bonded to the protonated parts of the coordinated dabco molecules. A series of by-products Cu(SCN)2(dmso)2 (4), (Hdabco)SCN (5), (H2dabco)(SCN)2 (6), and (H2dabco)(SCN)2∙H2O (7) were identified and characterized.
Collapse
Affiliation(s)
- Evgeny Goreshnik
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Svitlana Petrusenko
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Li Z, Li Z, Peng G, Shi C, Wang H, Ding SY, Wang Q, Liu Z, Jin Z. PF 6 - Pseudohalides Anion Based Metal-Free Perovskite Single Crystal for Stable X-Ray Detector to Attain Record Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300480. [PMID: 36971461 DOI: 10.1002/adma.202300480] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Metal-free perovskites (MFPs) possess excellent photophysical properties of perovskites while avoiding the introduction of toxic metal ions and organic solvents, and have been expanded to X-ray detection. However, iodine-based high-performance MFPs are tended to oxidation, corrosion, and uncontrolled ion migration, resulting in poor material stability and device performance. Herein, the strongly electronegative PF6 - pseudohalide is used to fabricate the large-size MDABCO-NH4 (PF6 )3 (MDBACO = methyl-N'-diazabicyclo[2.2.2]octonium) single crystals (SCs) for solving the problems of iodine ions. After the introduction of PF6 - pseudohalides, the Coulomb interaction and hydrogen bonding strength are enhanced to alleviate the ion-migration and stability problems. Moreover, combined with theoretical calculations, PF6 - pseudohalides increase the ion-migration barrier, and affect the contribution of its components to the energy band for a broadening bandgap. Meanwhile, the improved physical properties, such as large activation energy of ionic migration, high resistivity, and low current drift, further expand its application in low-dose and sensitive X-ray detection. Finally, the X-ray detector based on MDABCO-NH4 (PF6 )3 SCs achieves a sensitivity of 2078 µC Gyair -1 cm-2 (highest among metal-free SCs-based detectors) and the lowest detectable dose rate (16.3 nGyair s-1 ). This work has expanded the selection of MFPs for X-ray detectors and somewhat advanced the development of high-performance devices.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Chang Shi
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
16
|
Zhang H, Xu ZK, Wang ZX, Yu H, Lv HP, Li PF, Liao WQ, Xiong RG. Large Piezoelectric Response in a Metal-Free Three-Dimensional Perovskite Ferroelectric. J Am Chem Soc 2023; 145:4892-4899. [PMID: 36795554 DOI: 10.1021/jacs.3c00646] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Metal-free perovskites with light weight and eco-friendly processability have received great interest in recent years due to their superior physical features in ferroelectrics, X-ray detection, and optoelectronics. The famous metal-free perovskite ferroelectric MDABCO-NH4-I3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) has been demonstrated to exhibit excellent ferroelectricity comparable to that of inorganic ceramic ferroelectric BaTiO3, such as large spontaneous polarization and high Curie temperature (Ye et al. Science 2018, 361, 151). However, piezoelectricity as a vitally important index is far from enough in the metal-free perovskite family. Here, we report the discovery of large piezoelectric response in a new metal-free three-dimensional perovskite ferroelectric NDABCO-NH4-Br3 (NDABCO = N-amino-N'-diazabicyclo[2.2.2]octonium) by replacing the methyl group of MDABCO with the amino group. Besides the evident ferroelectricity, strikingly, NDABCO-NH4-Br3 shows a large d33 of 63 pC/N more than 4 times that of MDABCO-NH4-I3 (14 pC/N). The d33 value is also strongly supported by the computational study. To the best of our knowledge, such a large d33 value ranks the highest among the documented organic ferroelectric crystals to date and represents a major breakthrough in metal-free perovskite ferroelectrics. Combined with decent mechanical properties, NDABCO-NH4-Br3 is expected to be a competitive candidate for medical, biomechanical, wearable, and body-compatible ferroelectric devices.
Collapse
Affiliation(s)
- Hua Zhang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhe-Kun Xu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Zhong-Xia Wang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China.,College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, People's Republic of China
| | - Hang Yu
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
17
|
Li Z, Peng G, Li Z, Xu Y, Wang T, Wang H, Liu Z, Wang G, Ding L, Jin Z. Hydrogen Bonds Strengthened Metal-Free Perovskite for Degradable X-ray Detector with Enhanced Stability, Flexibility and Sensitivity. Angew Chem Int Ed Engl 2023; 62:e202218349. [PMID: 36647293 DOI: 10.1002/anie.202218349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Metal-free perovskites (MFPs) with flexible and degradable properties have been adopted in flexible X-ray detection. For now, figuring out the key factors between structure and device performance are critical to guide the design of MFPs. Herein, MPAZE-NH4 I3 ⋅ H2 O was first designed and synthesized with improved structural stability and device performance. Through theoretical calculations, the introducing methyl group benefits modulating tolerance factor, increases dipole moment and strengthens hydrogen bonds. Meanwhile, H2 O increases the hydrogen bond formation sites and synergistically realizes the band nature modulation, ionic migration inhibition and structural stiffness optimization. Spectra analysis also proves that the improved electron-phonon coupling and carrier recombination lifetime contribute to enhanced performance. Finally, a flexible and degradable X-ray detector was fabricated with the highest sensitivity of 740.8 μC Gyair -1 cm-2 and low detection limit (0.14 nGyair s-1 ).
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Youkui Xu
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Tao Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China.,State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
18
|
Zhang H, You X, Zhang M, Guo W, Wei Z, Cai H. Two metal-free perovskite molecules with different 3D frameworks show reversible phase transition, dielectric anomaly and SHG effect. Dalton Trans 2023; 52:1753-1760. [PMID: 36655610 DOI: 10.1039/d2dt03889g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Three-dimensional (3D) hybrid organic-inorganic perovskites (HOIPs) have attracted tremendous research interest due to their unique structure and promising applications. However, research on the design, synthesis and properties of this kind of metal-free crystalline material is still in the exploratory stage. Herein, two 3D perovskite molecules [1,4-3.2.2-dabcn]NH4Br3 (1) and [1,4-3.2.2-dabcn]NH4I3·0.5H2O (2) were obtained by reacting 1,4-diazabicyclo[3.2.2]nonane (1,4-3.2.2-dabcn) with NH4X (X = Br and I) in the corresponding concentrated halogen acids. The single X-ray diffraction results demonstrated that the inorganic framework structures in compounds 1 and 2 constructed with NH4Br and NH4I are completely different, caused by the radius of the bromide ion being smaller than that of the iodide ion. The 3D framework of compound 1 is constructed with a coplanar dimer [(NH4)2Br6]2- as the basic building unit, leading to the expanded 3D perovskite framework structure with a larger cavity to accommodate the 1,4-3.2.2-dabcn molecule. Nevertheless, compound 2 adopts a familiar 3D crystal framework structure with corner-sharing [(NH4)I6] octahedra, where the [1,4-3.2.2-dabcn] cations and water solvent molecule are confined in the cavities enclosed by the octahedra. Notably, both compounds exhibit reversible phase transition, dielectric anomaly and the second harmonic generation (SHG) effect. From the perspective of molecular design, this work is of great significance to guide the construction of new 3D metal-free perovskite molecular materials with reversible properties.
Collapse
Affiliation(s)
- Haina Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Xiuli You
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, People's Republic of China
| | - Mengxia Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Wenjing Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
19
|
He X, Deng Y, Ouyang D, Zhang N, Wang J, Murthy AA, Spanopoulos I, Islam SM, Tu Q, Xing G, Li Y, Dravid VP, Zhai T. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem Rev 2023; 123:1207-1261. [PMID: 36728153 DOI: 10.1021/acs.chemrev.2c00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Yao Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi39217, United States
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR999078, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
20
|
Zhang T, Xu K, Li J, He L, Fu DW, Ye Q, Xiong RG. Ferroelectric hybrid organic-inorganic perovskites and their structural and functional diversity. Natl Sci Rev 2022; 10:nwac240. [PMID: 36817836 PMCID: PMC9935996 DOI: 10.1093/nsr/nwac240] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Molecular ferroelectrics have gradually aroused great interest in both fundamental scientific research and technological applications because of their easy processing, light weight and mechanical flexibility. Hybrid organic-inorganic perovskite ferroelectrics (HOIPFs), as a class of molecule-based ferroelectrics, have diverse functionalities owing to their unique structure and have become a hot spot in molecular ferroelectrics research. Therefore, they are extremely attractive in the field of ferroelectrics. However, there seems to be a lack of systematic review of their design, performance and potential applications. Herein, we review the recent development of HOIPFs from lead-based, lead-free and metal-free perovskites, and outline the versatility of these ferroelectrics, including piezoelectricity for mechanical energy-harvesting and optoelectronic properties for photovoltaics and light detection. Furthermore, a perspective view of the challenges and future directions of HOIPFs is also highlighted.
Collapse
Affiliation(s)
| | | | - Jie Li
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, China
| | - Lei He
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing211189, China
| | | | | | | |
Collapse
|
21
|
Zhang J, Ma H, Zhang X, Ma Y. Light-Induced Degradation of Metal-Free Organic Perovskites. J Phys Chem Lett 2022; 13:9848-9854. [PMID: 36251259 DOI: 10.1021/acs.jpclett.2c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perovskites have attracted great interest in optoelectronics and photonics. As a new class of perovskites, metal-free perovskites have drawn growing attention due to the absence of toxic metal elements in them and their wide chemical diversity. Taking MDABCO-NH4I3 (MDBACO = N-methyl-N'-diazabicyclo[2.2.2]octonium) and MDABCO-NH4Br3 as examples, our first-principles calculations discover two fundamental features of metal-free perovskites that should be crucial for their applications. First, their photoluminescence emission originates from halogen vacancies, instead of the self-trapped exciton generally suggested. Second, in the vicinity of a halogen vacancy, optical excitation from the valence bands to the empty defect bands may cause release of H2 and NH3 molecules, which will not only lead to degradation of the perovskite but also quench its photoluminescence. To prevent the degradation and protect the optoelectronic and photonic performances of metal-free perovskites, short-wavelength illumination needs to be shielded.
Collapse
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huizhong Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
22
|
Budzianowski A, Petřiček V, Katrusiak A. Metal-free enantiomorphic perovskite [dabcoH 2] 2+[H 3O] +Br - 3 and its one-dimensional polar polymorph. IUCRJ 2022; 9:544-550. [PMID: 36071811 PMCID: PMC9438492 DOI: 10.1107/s2052252522006406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The structure and stoichiometry of a new metal-free and ammonium-free compound [dabcoH2]2+H3O+Br- 3 (where [dabcoH2]2+ = 1,4-di-aza-bicyclo-[2.2.2]octane dication) correspond to the general formula ABX 3 characteristic of perovskites. In enantiomorphic trigonal polymorph α of [dabcoH2]2+H3O+Br- 3, the corner-sharing [H3O]Br6 octahedra combine into a 3D framework embedding [dabcoH2]2+ dications in pseudo-cubic cages. In the more dense polymorph β, the face-sharing [H3O]Br6 octahedra form 1D polyanionic columns separated by [dabcoH2]2+ dications. These different topologies correlate with different crystal fields around the cations and their different disorder types: orientational disorders of [dabcoH2]2+ dications and H3O+ cations in polymorph α and positional disorder of [H3O]+ cations in polymorph β. The orientational disorder increases the lengths of OH⋯Br hydrogen bonds in polymorph α, but NH⋯Br distances of ordered dabcoH2 dications are longer in polymorph β. The presence of polar [H3O]+ cations in [dabcoH2]2+H3O+Br- 3 polymorphs offers additional polarizability of the centres compared with analogous metal-free [dabcoH2]2+[NH4]+Br- 3 perovskite.
Collapse
Affiliation(s)
- Armand Budzianowski
- National Centre for Nuclear Research, Andrzeja Sołtana 7, Otwock, Świerk 05-400, Poland
| | - Vaclav Petřiček
- Institute of Physics; Department of Structure Analysis, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, Prague 6 16253, Czech Republic
| | - Andrzej Katrusiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89 b, Poznań 61-614, Poland
| |
Collapse
|
23
|
Phillips AE. Further adventures of the perovskite family. IUCRJ 2022; 9:533-535. [PMID: 36071799 PMCID: PMC9438500 DOI: 10.1107/s2052252522008673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The perovskites are an intensely studied class of materials, with a breadth of possible compositions made even wider by the possibility of incorporating molecular ions. Here the context is discussed of a newly reported metal-free perovskite with the H3O+ ion on the B site.
Collapse
Affiliation(s)
- Anthony E. Phillips
- School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
24
|
Cui Q, Bu N, Liu X, Li H, Xu Z, Song X, Zhao K, Liu SF. Efficient Eco-Friendly Flexible X-ray Detectors Based on Molecular Perovskite. NANO LETTERS 2022; 22:5973-5981. [PMID: 35819349 DOI: 10.1021/acs.nanolett.2c02071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Next-generation wearable electronics requires mechanical robustness. In addition to the previously reported eco-friendliness, low cost, and light weight of molecular perovskites, flexibility is also a desired merit for their practical use. Here we design a flexible X-ray detector based on a novel molecular perovskite, DABCO-CsBr3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium), which is the missing link between metal-free molecular perovskites A(NH4)X3 (A = divalent organic ammoniums) and conventional metal halide based ABX3 (B = divalent metal cations) perovskites. DABCO-CsBr3 inherits its band nature from A(NH4)X3, while it exhibits a stronger stopping power. DABCO-CsBr3 shows potential for high-performance ionizing radiation detectors due to low dark current, low ion migration, and an efficient mobility-lifetime (μτ) product. Finally, a molecular-perovskite-based flexible X-ray detector is demonstrated on the basis of the DABCO-CsBr3/poly(vinylidene fluoride) composite, with a sensitivity of 106.7 μC Gyair-1 cm-2. This work enriches the molecular perovskite family and highlights the promise of molecular perovskites for the next-generation eco-friendly and wearable optoelectronic devices.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei 230026, People's Republic of China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Nuo Bu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
25
|
Li Z, Peng G, Chen H, Shi C, Li Z, Jin Z. Metal‐Free PAZE‐NH4X3·H2O Perovskite for Flexible Transparent X‐ray Detection and Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhizai Li
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Guoqiang Peng
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Huanyu Chen
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Chang Shi
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Zhenhua Li
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Zhiwen Jin
- Lanzhou University School of Physical Science and Technology Lanzhou University, Lanzhou 730000, P. R. China. Lanzhou CHINA
| |
Collapse
|
26
|
Li Z, Peng G, Chen H, Shi C, Li Z, Jin Z. Metal-Free PAZE-NH 4 X 3 ⋅H 2 O Perovskite for Flexible Transparent X-ray Detection and Imaging. Angew Chem Int Ed Engl 2022; 61:e202207198. [PMID: 35726524 DOI: 10.1002/anie.202207198] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Metal-free perovskites are of interest for their chemical diversity and eco-friendly properties, and recently have been used for X-ray detection with superior carrier behavior. However, the size and shape complexity of the organic components results in difficulties in evaluating their stability in high-energy radiation. Herein, we introduce multiple hydrogen-bond metal-free PAZE-NH4 X3 ⋅H2 O perovskite, where H2 O leads to more hydrogen bonds appearing between organic molecules and the perovskite host. As suggested by the theoretical calculations, multiple hydrogen bonds promote stiffness of the lattice, and increase the diffusion barrier to inhibit ionic migration. Then, low trap density, high μτ products and structural flexibility of PAZE-NH4 Br3 ⋅H2 O give a flexible X-ray detector with the highest sensitivity of 3708 μC Gyair -1 cm-2 , ultra-low detection limit of 0.19 μGyair -1 s-1 and superior spatial resolution of 5.0 lp mm-1 .
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Huanyu Chen
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Chang Shi
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
27
|
Cui Q, Liu SF, Zhao K. Structural and Functional Insights into Metal-Free Perovskites. J Phys Chem Lett 2022; 13:5168-5178. [PMID: 35658509 DOI: 10.1021/acs.jpclett.2c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the past three years, metal-free perovskites have garnered significant interest as promising candidates for utilization in next-generation wearable electronics. A variety of different molecular structures for these perovskites have been designed for different applications. However, there is still no systematic understanding that can elucidate the relationship between the structural details and properties of perovskites. This would provide a helpful guide for designing a metal-free perovskite with the desired packing structure and properties. Herein, we summarize recently reported structural and functional insights into metal-free perovskites. The underlying design of the molecular structure and its role in the packing structure and resulting properties are explained. In addition, important factors and challenges in the design of a molecular structure that will be useful for future applications are discussed. This information will help enrich the library of potential structures and future applications of metal-free perovskites, which is believed to be much larger than is currently known.
Collapse
Affiliation(s)
- Qingyue Cui
- Department of Chemical Physics; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China (USTC), Hefei 230026, P.R. China
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
- Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, P.R. China
| |
Collapse
|
28
|
Wu H, Wei S, Chen S, Pan H, Pan W, Huang S, Tsai M, Yang P. Metal-Free Perovskite Piezoelectric Nanogenerators for Human-Machine Interfaces and Self-Powered Electrical Stimulation Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105974. [PMID: 35445556 PMCID: PMC9218782 DOI: 10.1002/advs.202105974] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/10/2022] [Indexed: 06/02/2023]
Abstract
Single crystal metal-free halide perovskites have received great attention in recent years owing to their excellent piezoelectric and ferroelectric properties. However, the nanotoxicity and piezoelectricity within the nanoscale of such materials have yet been reported for the demonstration of practical applications. In this work, the observation of intrinsic piezoelectricity in metal-free perovskite (MDABCO-NH4 I3 ) films using piezoresponse force microscopy (PFM) is reported. A cytotoxicity test is also performed on MDABCO-NH4 I3 to evaluate its low-toxic nature. The as-synthesized MDABCO-NH4 I3 is further integrated into a piezoelectric nanogenerator (PENG). The MDABCO-NH4 I3 -based PENG (MN-PENG) exhibits optimal output voltage and current of 15.9 V and 54.5 nA, respectively. In addition, the MN-PENG can serve as a self-powered strain sensor for human-machine interface applications or be adopted in in vitro electrical stimulation devices. This work demonstrates a path of perovskite-based PENG with high performance, low toxicity, and multifunctionality for future advanced wearable sensors and portable therapeutic systems.
Collapse
Affiliation(s)
- Han‐Song Wu
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Shih‐Min Wei
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Shuo‐Wen Chen
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Han‐Chi Pan
- National Laboratory Animal CenterNational Applied Research LaboratoriesTaipei City11571Taiwan
| | - Wei‐Pang Pan
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Shih‐Min Huang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Meng‐Lin Tsai
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| | - Po‐Kang Yang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| |
Collapse
|
29
|
Wu H, Murti BT, Singh J, Yang P, Tsai M. Prospects of Metal-Free Perovskites for Piezoelectric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104703. [PMID: 35199947 PMCID: PMC9036044 DOI: 10.1002/advs.202104703] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Metal-halide perovskites have emerged as versatile materials for various electronic and optoelectronic devices such as diodes, solar cells, photodetectors, and sensors due to their interesting properties of high absorption coefficient in the visible regime, tunable bandgap, and high power conversion efficiency. Recently, metal-free organic perovskites have also emerged as a particular class of perovskites materials for piezoelectric applications. This broadens the chemical variety of perovskite structures with good mechanical adaptability, light-weight, and low-cost processability. Despite these achievements, the fundamental understanding of the underlying phenomenon of piezoelectricity in metal-free perovskites is still lacking. Therefore, this perspective emphasizes the overview of piezoelectric properties of metal-halide, metal-free perovskites, and their recent progress which may encourage material designs to enhance their applicability towards practical applications. Finally, challenges and outlooks of piezoelectric metal-free perovskites are highlighted for their future developments.
Collapse
Affiliation(s)
- Han‐Song Wu
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| | - Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue EngineeringTaipei Medical UniversityTaipei City11031Taiwan
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
| | - Jitendra Singh
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| | - Po‐Kang Yang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan City32001Taiwan
- Graduate Institute of Nanomedicine and Medical EngineeringTaipei Medical UniversityTaipei City11031Taiwan
| | - Meng‐Lin Tsai
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei City10607Taiwan
| |
Collapse
|
30
|
García-Ben J, McHugh LN, Bennett TD, Bermúdez-García JM. Dicyanamide-perovskites at the edge of dense hybrid organic–inorganic materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Choi HS, Li S, Park IH, Liew WH, Zhu Z, Kwon KC, Wang L, Oh IH, Zheng S, Su C, Xu QH, Yao K, Pan F, Loh KP. Tailoring the coercive field in ferroelectric metal-free perovskites by hydrogen bonding. Nat Commun 2022; 13:794. [PMID: 35145089 PMCID: PMC8831526 DOI: 10.1038/s41467-022-28314-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
The miniaturization of ferroelectric devices in non-volatile memories requires the device to maintain stable switching behavior as the thickness scales down to nanometer scale, which requires the coercive field to be sufficiently large. Recently discovered metal-free perovskites exhibit advantages such as structural tunability and solution-processability, but they are disadvantaged by a lower coercive field compared to inorganic perovskites. Herein, we demonstrate that the coercive field (110 kV/cm) in metal-free ferroelectric perovskite MDABCO-NH4-(PF6)3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) is one order larger than MDABCO-NH4-I3 (12 kV/cm) owing to the stronger intermolecular hydrogen bonding in the former. Using isotope experiments, the ferroelectric-to-paraelectric phase transition temperature and coercive field are verified to be strongly influenced by hydrogen bonds. Our work highlights that the coercive field of organic ferroelectrics can be tailored by tuning the strength of hydrogen bonding.
Collapse
Affiliation(s)
- Hwa Seob Choi
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P.R. China
| | - Shunning Li
- School of Advanced Materials, Peking University Shenzhen Graduate School, 518055, Shenzhen, P.R. China
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Weng Heng Liew
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Ziyu Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Ki Chang Kwon
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P.R. China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Lin Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - In-Hwan Oh
- Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Shisheng Zheng
- School of Advanced Materials, Peking University Shenzhen Graduate School, 518055, Shenzhen, P.R. China
| | - Chenliang Su
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P.R. China
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Kui Yao
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore, Singapore
| | - Feng Pan
- School of Advanced Materials, Peking University Shenzhen Graduate School, 518055, Shenzhen, P.R. China.
| | - Kian Ping Loh
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P.R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.
| |
Collapse
|
32
|
Gale SD, Lloyd HJ, Male L, Warren MR, Saunders LK, Anderson PA, Yeung HHM. Materials discovery and design limits in MDABCO perovskites. CrystEngComm 2022. [DOI: 10.1039/d2ce00848c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new structures in the MDABCO perovskite family of ferroelectrics define new design rules for ferroelectric phase discovery.
Collapse
Affiliation(s)
- Samuel D. Gale
- School of Chemistry, University of Birmingham, B15 2TT, UK
| | - Harry J. Lloyd
- School of Chemistry, University of Birmingham, B15 2TT, UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, B15 2TT, UK
| | - Mark R. Warren
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Lucy K. Saunders
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | | | | |
Collapse
|
33
|
Tsunashima R. Molecular solid solutions for advanced materials – homeomorphic or heteromorphic. CrystEngComm 2022. [DOI: 10.1039/d1ce01632f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Crystalline molecular solid solutions are discussed on the basis of homeomorphism and heteromorphism of blended molecules.
Collapse
Affiliation(s)
- Ryo Tsunashima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| |
Collapse
|
34
|
Lyu F, Chen Z, Shi R, Yu J, Lin BL. Solid phase synthesis of metal-free perovskite crystalline materials. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Song X, Li Q, Han J, Ma C, Xu Z, Li H, Wang P, Yang Z, Cui Q, Gao L, Quan Z, Liu SF, Zhao K. Highly Luminescent Metal-Free Perovskite Single Crystal for Biocompatible X-Ray Detector to Attain Highest Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102190. [PMID: 34309079 DOI: 10.1002/adma.202102190] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Solution-processed metal-based halide perovskites have taken a dominant position for perovskite optoelectronics including light emission and X-ray detection; however, the toxicity of the included heavy metals severely restricts their applications for wearable, lightweight, and transient optoelectronic devices. Here, the authors describe investigations of large (4 × 6 × 2 mm3 ) 3D metal-free perovskite MDABCO-NH4 I3 (MDBACO = methyl-N'-diazabicyclo[2.2.2]octonium) single crystal and its charge recombination and extraction behavior for light emission and X-ray detection. Unlike conventional 3D metal-based perovskites, this lightweight and biocompatible perovskite large crystal is processed from aqueous solution at room temperature, and can achieve both an extremely long carrier lifetime up to ≈1.03 µs and the formation of self-trapped excited states for luminescence. These features contribute to a photoluminescence quantum yield (PLQY) as high as ≈53% at room temperature and an X-ray sensitivity up to 1997 ± 80 μC Gy cm-2 at 50 V bias (highest among all metal-free detectors). The ability to tune the perovskite band gap by modulating the structure under high pressure is also demonstrated, which opens up applications for the crystal as colored emitters. These attributes make it a molecular alternative to metal-based perovskites for biocompatible and transient optoelectronics.
Collapse
Affiliation(s)
- Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qian Li
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Jiang Han
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Peijun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingyue Cui
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Lili Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
36
|
An LC, Li K, Li ZG, Zhu S, Li Q, Zhang ZZ, Ji LJ, Li W, Bu XH. Engineering Elastic Properties of Isostructural Molecular Perovskite Ferroelectrics via B-Site Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006021. [PMID: 33719203 DOI: 10.1002/smll.202006021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Managing elastic properties of ABX3 type molecular perovskite ferroelectrics is critical to their future applications since these parameters determine their service durability and reliability in devices. The abundant structural and chemical viability of these compounds offer a convenient way to manipulate their elastic properties through a facile chemical approach. Here, the elastic properties and high-pressure behaviors of two isostructural perovskite ferroelectrics, MDABCO-NH4 I3 and MDABCO-KI3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) is systematically investigated, via the first principles calculations and high-pressure synchrotron X-ray diffraction experiments. It is show that the simple replacement of NH4 + by K+ on the B-site respectively results in up to 48.1%, 52.4%, and 56.3% higher Young's moduli, shear moduli and bulk moduli, which is attributed to the much stronger KI coordination bonding than NH4 …I hydrogen bonding. These findings demonstrate that it is possible to tune elastic properties of molecular perovskite ferroelectrics via simply varying the framework assembling interactions.
Collapse
Affiliation(s)
- Lian-Cai An
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Kai Li
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Zhi-Gang Li
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Qite Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhuo-Zhen Zhang
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Li-Jun Ji
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Li
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin, 300350, China
| |
Collapse
|
37
|
Li L, Gao H, Liu S, Shi L, Wei W, Tan Y. The structural phase transition of a metal-free perovskite (C4N2H12)(NH4I3)∙H2O. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Bie J, Yang DB, Ju MG, Pan Q, You YM, Fa W, Zeng XC, Chen S. Molecular Design of Three-Dimensional Metal-Free A(NH 4)X 3 Perovskites for Photovoltaic Applications. JACS AU 2021; 1:475-483. [PMID: 34467310 PMCID: PMC8395623 DOI: 10.1021/jacsau.1c00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 05/19/2023]
Abstract
The intense research activities on the hybrid organic-inorganic perovskites (HOIPs) have led to the greatly improved light absorbers for solar cells with high power conversion efficiency (PCE). However, it is still challenging to find an alternative lead-free perovskite to replace the organohalide lead perovskites to achieve high PCE. This is because both previous experimental and theoretical investigations have shown that the Pb2+ cations play a dominating role in contributing the desirable frontier electronic bands of the HOIPs for light absorbing. Recent advances in the chemical synthesis of three-dimensional (3D) metal-free perovskites, by replacing Pb2+ with NH4 +, have markedly enriched the family of multifunctionalized perovskites (Ye et al., Science2018, 361, 151-155). These metal-free perovskites possess the chemical formula of A(NH4)X3, where A is divalent organic cations and X denotes halogen atoms. Without involving transition-metal cations, the metal-free A(NH4)X3 perovskites can entail notably different frontier electronic band features from those of the organohalide lead perovskites. Indeed, the valence and conduction bands of A(NH4)X3 perovskites are mainly attributed by the halogen atoms and the divalent A2+ organic cations, respectively. Importantly, a linear relationship between the bandgaps of A(NH4)X3 perovskites and the lowest unoccupied molecular orbital energies of the A2+ cations is identified, suggesting that bandgaps can be tailored via molecular design, especially through a chemical modification of the A2+ cations. Our comprehensive computational study and molecular design predict a metal-free perovskite, namely, 6-ammonio-1-methyl-5-nitropyrimidin-1-ium-(NH4)I3, with a desirable bandgap of ∼1.74 eV and good optical absorption property, both being important requirements for photovoltaic applications. Moreover, the application of strain can further fine-tune the bandgap of this metal-free perovskite. Our proposed design principle not only offers chemical insights into the structure-property relationship of the multifunctional metal-free perovskites but also can facilitate the discovery of highly efficient alternative, lead-free perovskites for potential photovoltaic or optoelectronic applications.
Collapse
Affiliation(s)
- Jie Bie
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Dai-Bei Yang
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- School
of Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, Jiangsu, China
| | - Ming-Gang Ju
- School
of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Pan
- Jiangsu
Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Yu-Meng You
- Jiangsu
Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Wei Fa
- National
Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Xiao Cheng Zeng
- Department
of Chemistry, University of Nebraska−Lincoln, Lincoln 68588, Nebraska, United States
| | - Shuang Chen
- Kuang
Yaming Honors School, Nanjing University, Nanjing 210023, Jiangsu, China
- Institute
for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Sun MJ, Zheng C, Gao Y, Johnston A, Najarian AM, Wang PX, Voznyy O, Hoogland S, Sargent EH. Linear Electro-Optic Modulation in Highly Polarizable Organic Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006368. [PMID: 33325577 DOI: 10.1002/adma.202006368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Electrical-to-optical signal conversion is widely employed in information technology and is implemented using on-chip optical modulators. State-of-the-art modulator technologies are incompatible with silicon manufacturing techniques: inorganic nonlinear crystals such as LiNbO3 are integrated with silicon photonic chips only using complex approaches, and hybrid silicon-LiNbO3 optical modulators show either low bandwidth or high operating voltage. Organic perovskites are solution-processed materials readily integrated with silicon photonics; and organic molecules embedded within the perovskite scaffold allow in principle for high polarizability. However, it is found that the large molecules required for high polarizability also require an increase of the size of the perovskite cavity: specifically, using the highly polarizable DR2+ (R = H, F, Cl) in the A site necessitates the exploration of new X-site options. Only by introducing BF4 - as the X-site molecule is it possible to synthesize (DCl)(NH4 )(BF4 )3 , a material exhibiting a linear EO coefficient of 20 pm V-1 , which is 10 times higher than that of metal halide perovskites and is a 1.5 fold enhancement compared to reported organic perovskites. The EO response of the organic perovskite approaches that of LiNbO3 (reff ≈ 30 pm V-1 ) and highlights the promise of rationally designed organic perovskites for use in efficient EO modulators.
Collapse
Affiliation(s)
- Meng-Jia Sun
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Chao Zheng
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Yuan Gao
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Andrew Johnston
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Amin Morteza Najarian
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Pei-Xi Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, 1065 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| |
Collapse
|
40
|
Song X, Cui Q, Liu Y, Xu Z, Cohen H, Ma C, Fan Y, Zhang Y, Ye H, Peng Z, Li R, Chen Y, Wang J, Sun H, Yang Z, Liu Z, Yang Z, Huang W, Hodes G, Liu SF, Zhao K. Metal-Free Halide Perovskite Single Crystals with Very Long Charge Lifetimes for Efficient X-ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003353. [PMID: 32930461 DOI: 10.1002/adma.202003353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Metal-free halide perovskites, as a specific category of the perovskite family, have recently emerged as novel semiconductors for organic ferroelectrics and promise the wide chemical diversity of the ABX3 perovskite structure with mechanical flexibility, light weight, and eco-friendly processing. However, after the initial discovery 17 years ago, there has been no experimental information about their charge transport properties and only one brief mention of their optoelectronic properties. Here, growth of large single crystals of metal-free halide perovskite DABCO-NH4 Br3 (DABCO = N-N'-diazabicyclo[2.2.2]octonium) is reported together with characterization of their instrinsic optical and electronic properties and demonstration, of metal-free halide perovskite optoelectronics. The results reveal that the crystals have an unusually large semigap of ≈16 eV and a specific band nature with the valence band maximum and the conduction band minimum mainly dominated by the halide and DABCO2+ , respectively. The unusually large semigap rationalizes extremely long lifetimes approaching the millisecond regime, leading to very high charge diffusion lengths (tens of μm). The crystals also exhibit high X-ray attenuation as well as being lightweight. All these properties translate to high-performance X-ray imaging with sensitivity up to 173 μC Gyair -1 cm-2 . This makes metal-free perovskites novel candidates for the next generation of optoelectronics.
Collapse
Affiliation(s)
- Xin Song
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingyue Cui
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Chemical Physics, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, 230026, China
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuanyuan Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yunxia Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haochen Ye
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhanhui Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ruipeng Li
- NSLS II, Brookhaven National Lab, Upton, NY, 11973, USA
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211800, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211800, China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhike Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zupei Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, China
| | - Gary Hodes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
41
|
Chu LL, Zhang T, Zhang WY, Shi PP, Gao JX, Ye Q, Fu DW. Three-Dimensional Metal-Free Molecular Perovskite with a Thermally Induced Switchable Dielectric Response. J Phys Chem Lett 2020; 11:1668-1674. [PMID: 32040321 DOI: 10.1021/acs.jpclett.9b03556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Temperature-responsive materials with switching physical properties have been widely researched. Among them, the switchable dielectric perovskite materials show potential applications in the electrical and electronic industries and even the intelligence industries. However, perovskite oxides and hybrid organic-inorganic perovskites, as the most representative switchable dielectric materials, are limited by bad biocompatibility. Herein, we report temperature-dielectric-responsive metal-free perovskite (H2dabco)(NH4)[BF4]3 constructed by the strategy of substituting the B site in the general formula ABX3 (doubly protonated 1,4-diazabicyclo[2.2.2]octane = H2dabco). Meanwhile, structurally similar hybrid material (H2dabco)Rb[BF4]3 was designed as a control. They exhibit similar phase-transition characteristics and dielectric response behaviors around 333 K. More interestingly, the ordered-disordered transformation of their organic "spherical" cations (H2dabco) was deemed to produce their phase transitions and dielectric response switching. Given its ability to generate a dielectric response, (H2dabco)(NH4)[BF4]3 will show the potential application of metal-free perovskite in a future thermal sensing device.
Collapse
Affiliation(s)
- Lu-Lu Chu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Wan-Ying Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Ping-Ping Shi
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Ji-Xing Gao
- Institute for Science and Applications of Molecular Ferroelectrics, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Qiong Ye
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P. R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
42
|
Morita H, Tsunashima R, Nishihara S, Akutagawa T. Doping of metal-free molecular perovskite with hexamethylenetetramine to create non-centrosymmetric defects. CrystEngComm 2020. [DOI: 10.1039/d0ce00173b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metal-free perovskite (dabcoH22+)(NH4)Br (d-Br) (dabco: 1,4-diazabicyclo[2.2.2]octane) was doped with non-centrosymmetric hexamethylenetetramine.
Collapse
Affiliation(s)
- Hagino Morita
- Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Yamaguchi
- Japan
| | - Ryo Tsunashima
- Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Yamaguchi
- Japan
- Chemistry Course
| | - Sadafumi Nishihara
- Graduate School of Science
- Hiroshima University
- Higashi-Hiroshima 739-8526
- Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
43
|
Shi C, Yu H, Wang Q, Ye L, Gong Z, Ma J, Jiang J, Hua M, Shuai C, Zhang Y, Ye H. Hybrid Organic–Inorganic Antiperovskites. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Shi
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Hui Yu
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Qin‐Wen Wang
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Le Ye
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Zhi‐Xin Gong
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Jia‐Jun Ma
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Jia‐Ying Jiang
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Miao‐Miao Hua
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Cijun Shuai
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Yi Zhang
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| | - Heng‐Yun Ye
- Chaotic Matter Science Research Center Department of Materials, Metallurgy and Chemistry Jiangxi University of Science and Technology Ganzhou 341000 P. R. China
| |
Collapse
|
44
|
Shi C, Yu H, Wang QW, Ye L, Gong ZX, Ma JJ, Jiang JY, Hua MM, Shuai C, Zhang Y, Ye HY. Hybrid Organic-Inorganic Antiperovskites. Angew Chem Int Ed Engl 2019; 59:167-171. [PMID: 31670443 DOI: 10.1002/anie.201908945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Indexed: 11/07/2022]
Abstract
Substitution of A-site and/or X-site ions of ABX3 -type perovskites with organic groups can give rise to hybrid perovskites, many of which display intriguing properties beyond their parent compounds. However, this method cannot be extended effectively to hybrid antiperovskites. Now, the design of hybrid antiperovskites under the guidance of the concept of Goldschmidt's tolerance factor is presented. Spherical anions were chosen for the A and B sites and spherical organic cations for the X site, and seven hybrid antiperovskites were obtained, including (F3 (H2 O)x )(AlF6 )(H2 dabco)3 , ((Co(CN)6 )(H2 O)5 )(MF6 )(H2 dabco)3 (M=Al3+ , Cr3+ , or In3+ ), (Co(CN)6 )(MF6 )(H2 pip)3 (M=Al3+ or Cr3+ ), and (SbI6 )(AlF6 )(H2 dabco)3 . These new structures reveal that all ions at A, B, and X sites of inorganic antiperovskites can be replaced by molecular ions to form hybrid antiperovskites. This work will lead to the synthesis of a large family of hybrid antiperovskites.
Collapse
Affiliation(s)
- Chao Shi
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Hui Yu
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Qin-Wen Wang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Le Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Zhi-Xin Gong
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jia-Jun Ma
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jia-Ying Jiang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Miao-Miao Hua
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Cijun Shuai
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yi Zhang
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
45
|
Gebhardt J, Rappe AM. Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802697. [PMID: 30570799 DOI: 10.1002/adma.201802697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/10/2018] [Indexed: 06/09/2023]
Abstract
Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic-inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials.
Collapse
Affiliation(s)
- Julian Gebhardt
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
46
|
Morita H, Tsunashima R, Nishihara S, Inoue K, Omura Y, Suzuki Y, Kawamata J, Hoshino N, Akutagawa T. Ferroelectric Behavior of a Hexamethylenetetramine‐Based Molecular Perovskite Structure. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hagino Morita
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Ryo Tsunashima
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
- Chemistry CourseFaculty of ScienceYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Sadafumi Nishihara
- Graduate School of ScienceHiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Katsuya Inoue
- Graduate School of ScienceHiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Yuriko Omura
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku University Sendai 980-8577 Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
47
|
Morita H, Tsunashima R, Nishihara S, Inoue K, Omura Y, Suzuki Y, Kawamata J, Hoshino N, Akutagawa T. Ferroelectric Behavior of a Hexamethylenetetramine‐Based Molecular Perovskite Structure. Angew Chem Int Ed Engl 2019; 58:9184-9187. [DOI: 10.1002/anie.201905087] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 11/12/2022]
Affiliation(s)
- Hagino Morita
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Ryo Tsunashima
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
- Chemistry CourseFaculty of ScienceYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Sadafumi Nishihara
- Graduate School of ScienceHiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Katsuya Inoue
- Graduate School of ScienceHiroshima University 1-3-1 Kagamiyama Higashi-Hiroshima 739-8526 Japan
| | - Yuriko Omura
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Yasutaka Suzuki
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Jun Kawamata
- Graduate School of Sciences and Technology for InnovationYamaguchi University Yoshida 1677-1 Yamaguchi 753-8512 Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku University Sendai 980-8577 Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
48
|
|
49
|
Ning W, Gao F. Structural and Functional Diversity in Lead-Free Halide Perovskite Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900326. [PMID: 31025419 DOI: 10.1002/adma.201900326] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Lead halide perovskites have emerged as promising semiconducting materials for different applications owing to their superior optoelectronic properties. Although the community holds different views toward the toxic lead in these high-performance perovskites, it is certainly preferred to replace lead with nontoxic, or at least less-toxic, elements while maintaining the superior properties. Here, the design rules for lead-free perovskite materials with structural dimensions from 3D to 0D are presented. Recent progress in lead-free halide perovskites is reviewed, and the relationships between the structures and fundamental properties are summarized, including optical, electric, and magnetic-related properties. 3D perovskites, especially A2 B+ B3+ X6 -type double perovskites, demonstrate very promising optoelectronic prospects, while low-dimensional perovskites show rich structural diversity, resulting in abundant properties for optical, electric, magnetic, and multifunctional applications. Furthermore, based on these structure-property relationships, strategies for multifunctional perovskite design are proposed. The challenges and future directions of lead-free perovskite applications are also highlighted, with emphasis on materials development and device fabrication. The research on lead-free halide perovskites at Linköping University has benefited from inspirational discussions with Prof. Olle Inganäs.
Collapse
Affiliation(s)
- Weihua Ning
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-581 83, Sweden
| |
Collapse
|
50
|
Ehrenreich MG, Zeng Z, Burger S, Warren MR, Gaultois MW, Tan JC, Kieslich G. Mechanical properties of the ferroelectric metal-free perovskite [MDABCO](NH4)I3. Chem Commun (Camb) 2019; 55:3911-3914. [DOI: 10.1039/c9cc00580c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We here probe the mechanical properties of the metal-free perovskite [MDABCO](NH4)I3, a material that recently has been discovered as promising ferroelectric.
Collapse
Affiliation(s)
- Michael G. Ehrenreich
- Department of Chemistry and Catalysis Research Center, Technical University of Munich
- D-85748 Garching
- Germany
| | - Zhixin Zeng
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford
- Oxford OX1 3PJ
- UK
| | - Stefan Burger
- Department of Chemistry and Catalysis Research Center, Technical University of Munich
- D-85748 Garching
- Germany
| | - Mark R. Warren
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus
- OX11 ODE Oxfordshire
- UK
| | - Michael W. Gaultois
- Leverhulme Research Centre of Functional Materials Design, The Materials Innovation Factory, Department of Chemistry, University of Liverpool
- L3 3NY Liverpool
- UK
| | - Jin-Chong Tan
- Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford
- Oxford OX1 3PJ
- UK
| | - Gregor Kieslich
- Department of Chemistry and Catalysis Research Center, Technical University of Munich
- D-85748 Garching
- Germany
| |
Collapse
|