1
|
Yarema M, Yazdani N, Yarema O, Đorđević N, Lin WMM, Bozyigit D, Volk S, Moser A, Turrini A, Khomyakov PA, Nachtegaal M, Luisier M, Wood V. Structural Ordering in Ultrasmall Multicomponent Chalcogenides: The Case of Quaternary Cu-Zn-In-Se Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406351. [PMID: 39233545 DOI: 10.1002/adma.202406351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/19/2024] [Indexed: 09/06/2024]
Abstract
The compositional tunability of non-isovalent multicomponent chalcogenide thin films and the extent of atomic ordering of their crystal structure is key to the performance of many modern technologies. In contrast, the effects of ordering are rarely studied for quantum-confined materials, such as colloidal nanocrystals. In this paper, the possibilities around composition tunability and atomic ordering are explored in ultrasmall ternary and quaternary quantum dots, taking I-III-VI-group Cu-Zn-In-Se semiconductor as a case study. A quantitative synthesis for 3.3 nm quaternary chalcogenide nanocrystals is developed and shown that cation and cationic vacancy ordering can be achieved in these systems consisting of only 100s of atoms. Combining experiment and theoretical calculations, the relationship between structural ordering and optical properties of the materials are demonstrated. It is found that the arrangement and ordering of cationic sublattice plays an important role in the luminescent efficiency. Specifically, the concentration of Cu-vacancy couples in the nanocrystal correlates with luminescence quantum yield, while structure ordering increases the occurrence of such optically active Cu-vacancy units. On the flip side, the detrimental impact of cationic site disorder in I-III-VI nanocrystals can be mitigated by introducing a cation of intermediate valence, such as Zn (II).
Collapse
Affiliation(s)
- Maksym Yarema
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Nuri Yazdani
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Olesya Yarema
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Nikola Đorđević
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Weyde M M Lin
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Deniz Bozyigit
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Sebastian Volk
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Annina Moser
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Alexandra Turrini
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Petr A Khomyakov
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | | | - Mathieu Luisier
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| | - Vanessa Wood
- Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
2
|
Hu J, Li J, Guo Q, Du G, Li C, Li R, Zhou R, He H. Visual Detection of Dopamine with CdS/ZnS Quantum Dots Bearing by ZIF-8 and Nanofiber Membranes. Int J Mol Sci 2024; 25:10346. [PMID: 39408675 PMCID: PMC11476674 DOI: 10.3390/ijms251910346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Dopamine (DA) is a widely present, calcium cholinergic neurotransmitter in the body, playing important roles in the central nervous system and cardiovascular system. Developing fast and sensitive DA detection methods is of great significance. Fluorescence-based methods have attracted much attention due to their advantages of easy operation, a fast response speed, and high sensitivity. This study prepared hydrophilic and high-performance CdS/ZnS quantum dots (QDs) for DA detection. The waterborne CdS/ZnS QDs were synthesized in one step using the amphiphilic polymer PEI-g-C14, obtained by grafting tetradecane (C14) to polyethyleneimine (PEI), as a template. The polyacrylonitrile nanofiber membrane (PAN-NFM) was prepared by electrospinning (e-spinning), and a metal organic frame (ZIF-8) was deposited in situ on the surface of the PAN-NFM. The CdS/ZnS QDs were loaded onto this substrate (ZIF-8@PAN-NFM). The results showed that after the deposition of ZIF-8, the water contact angle of the hydrophobic PAN-NFM decreased to within 40°. The nanofiber membrane loaded with QDs also exhibited significant changes in fluorescence in the presence of DA at different concentrations, which could be applied as a fast detection method of DA with high sensitivity. Meanwhile, the fluorescence on this PAN-NFM could be visually observed as it transitioned from a blue-green color to colorless, making it suitable for the real-time detection of DA.
Collapse
Affiliation(s)
- Jiadong Hu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Jiaxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Changming Li
- Schneider Institute of Industrial Technology, Qingdao University, Qingdao 266071, China
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (J.L.); (Q.G.); (G.D.); (R.L.)
| | - Rong Zhou
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| | - Hongwei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (J.H.); (R.Z.)
| |
Collapse
|
3
|
Fang YB, Shang C, Liu ZP, Gong XG. Structural transitions in liquid semiconductor alloys: A molecular dynamics study with a neural network potential. J Chem Phys 2024; 161:104504. [PMID: 39258571 DOI: 10.1063/5.0223453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Liquid-liquid phase transitions hold a unique and profound significance within condensed matter physics. These transitions, while conceptually intriguing, often pose formidable computational challenges. However, recent advances in neural network (NN) potentials offer a promising avenue to effectively address these challenges. In this paper, we delve into the structural transitions of liquid CdTe, CdS, and their alloy systems using molecular dynamics simulations, harnessing the power of an NN potential named LaspNN. Our investigations encompass both pressure and temperature effects. Through our simulations, we uncover three primary liquid structures around melting points that emerge as pressure increases: tetrahedral, rock salt, and close-packed structures, which greatly resemble those of solid states. In the high-temperature regime, we observe the formation of Te chains and S dimers, providing a deeper understanding of the liquid's atomic arrangements. When examining CdSxTe1-x alloys, our findings indicate that a small substitution of S by Te atoms for S-rich alloys (x > 0.5) exhibits a structural transition much different from CdS, while a large substitution of Te by S atoms for Te-rich alloys (x < 0.5) barely exhibits a structural transition similar to CdTe. We construct a schematic diagram for liquid alloys that considers both temperature and pressure, providing a comprehensive overview of the alloy system's behavior. The local aggregation of Te atoms demonstrates a linear relationship with alloy composition x, whereas that of S atoms exhibits a nonlinear one, shedding light on the composition-dependent structural changes.
Collapse
Affiliation(s)
- Yi-Bin Fang
- Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Cheng Shang
- Shanghai Qi Zhi Institute, Shanghai 200232, China
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Shanghai Qi Zhi Institute, Shanghai 200232, China
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xin-Gao Gong
- Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
| |
Collapse
|
4
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
5
|
Zhang W, Li W, Song Y, Xu Q, Xu H. Bacterial detection based on Förster resonance energy transfer. Biosens Bioelectron 2024; 255:116244. [PMID: 38547644 DOI: 10.1016/j.bios.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The huge economic loss and threat to human health caused by bacterial infection have attracted the public's concern, and there is an urgent need to relieve and improve the tough problem. Therefore, it is significant to establish a facile, rapid, and sensitive method for bacterial detection considering the shortcomings of existing methods. Förster resonance energy transfer (FRET)-based sensors have exhibited immense potential and applicability for bacterial detection given their high signal-to-noise ratio and high sensitivity. This review focuses on the development of FRET-based fluorescence assays for bacterial detection. We summarize the principle of FRET-based assays, discuss the commonly used recognition molecules and further introduce three frequent construction strategies. Based on the strategies and materials, relevant applications are presented. Moreover, some restrictions of FRET fluorescence sensors and development prospects are discussed. Suitable donor-acceptor pairs and stable recognition molecules are the essential conditions for sensors to play their roles, and there is still some room for development. Besides, applying FRET fluorescence sensors to point-of-care detection is still difficult. Future developments could focus on near-infrared fluorescent dyes and simultaneous detection of multiple analytes.
Collapse
Affiliation(s)
- Wanqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Weiqiang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yang Song
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Qian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
6
|
Cao K, Yu B, Huang F, Pan Q, Wang J, Ning J, Zheng K, Pullerits T, Tian J. Constructing ZnTe Spherical Quantum Well for Efficient Light Emission. NANO LETTERS 2024; 24:5238-5245. [PMID: 38629707 DOI: 10.1021/acs.nanolett.4c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
ZnTe colloidal semiconductor nanocrystals (NCs) have shown promise for light-emitting diodes (LEDs) and displays, because they are free from toxic heavy metals (Cd). However, so far, their low photoluminescence (PL) efficiency (∼30%) has hindered their applications. Herein, we devised a novel structure of ZnTe NCs with the configuration of ZnSe (core)/ZnTe (spherical quantum well, SQW)/ZnSe (shell). The inner layer ZnTe was grown at the surface of ZnSe core with avoiding using highly active and high-risk Zn sources. Due to the formation of coherently strained heterostructure which reduced the lattice mismatch, and the thermodynamic growth of ZnTe, the surface or interface defects were suppressed. A high PL efficiency of >60% was obtained for the green light-emitting ZnSe/ZnTe/ZnSe SQWs after ZnS outer layer passivation, which is the highest value for colloidal ZnTe-based NCs. This work paves the way for the development of novel semiconductor NCs for luminescent and display applications.
Collapse
Affiliation(s)
- Kequan Cao
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Binbin Yu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Fei Huang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qinying Pan
- Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden
| | - Junfeng Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajia Ning
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Kaibo Zheng
- Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden
| | - Tõnu Pullerits
- Chemical Physics and NanoLund, Lund University, 22100 Lund, Sweden
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
7
|
Sajjadi S, Wu SJ, Rabbani Y, Zubkovs V, Ahmadzadeh H, K. Goharshadi E, Boghossian AA. Micropreparative Gel Electrophoresis for Purification of Nanoscale Bioconjugates. Bioconjug Chem 2024; 35:154-163. [PMID: 38320084 PMCID: PMC10885001 DOI: 10.1021/acs.bioconjchem.3c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Conventional techniques for purifying macromolecular conjugates often require complex and costly installments that are inaccessible to most laboratories. In this work, we develop a one-step micropreparative method based on a trilayered polyacrylamide gel electrophoresis (MP-PAGE) setup to purify biological samples, synthetic nanoparticles, as well as biohybrid complexes. We apply this method to recover DNA from a ladder mixture with yields of up to 90%, compared to the 58% yield obtained using the conventional crush-and-soak method. MP-PAGE was also able to isolate enhanced yellow fluorescence protein (EYFP) from crude cell extract with 90% purity, which is comparable to purities achieved through a more complex two-step purification procedure involving size exclusion and immobilized metal-ion affinity chromatography. This technique was further extended to demonstrate size-dependent separation of a commercial mixture of graphene quantum dots (GQDs) into three different fractions with distinct optical properties. Finally, MP-PAGE was used to isolate DNA-EYFP and DNA-GQD bioconjugates from their reaction mixture of DNA and EYFP and GQD precursors, samples that otherwise could not be effectively purified by conventional chromatography. MP-PAGE thus offers a rapid and versatile means of purifying biological and synthetic nanomaterials without the need for specialized equipment.
Collapse
Affiliation(s)
- Sayyed
Hashem Sajjadi
- Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
- Chemistry
Department, Faculty of Science, Ferdowsi
University of Mashhad, Mashhad 9177948974, Iran
| | - Shang-Jung Wu
- Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Yahya Rabbani
- Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Vitalijs Zubkovs
- Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hossein Ahmadzadeh
- Chemistry
Department, Faculty of Science, Ferdowsi
University of Mashhad, Mashhad 9177948974, Iran
| | - Elaheh K. Goharshadi
- Chemistry
Department, Faculty of Science, Ferdowsi
University of Mashhad, Mashhad 9177948974, Iran
| | | |
Collapse
|
8
|
Belal F, Mabrouk M, Hammad S, Ahmed H, Barseem A. Recent Applications of Quantum Dots in Pharmaceutical Analysis. J Fluoresc 2024; 34:119-138. [PMID: 37222883 DOI: 10.1007/s10895-023-03276-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Nanotechnology has emerged as one of the most potential areas for pharmaceutical analysis. The need for nanomaterials in pharmaceutical analysis is comprehended in terms of economic challenges, health and safety concerns. Quantum dots (QDs)or colloidal semiconductor nanocrystals are new groups of fluorescent nanoparticles that bind nanotechnology to drug analysis. Because of their special physicochemical characteristics and small size, QDs are thought to be promising candidates for the electrical and luminescent probes development. They were originally developed as luminescent biological labels, but are now discovering new analytical chemistry applications, where their photo-luminescent properties are used in pharmaceutical, clinical analysis, food quality control and environmental monitoring. In this review, we discuss QDs regarding properties and advantages, advances in methods of synthesis and their recent applications in drug analysis in the recent last years.
Collapse
Affiliation(s)
- Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mokhtar Mabrouk
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin Hammad
- Department of pharmaceutical analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Hytham Ahmed
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Aya Barseem
- Pharmaceutical Analysis Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
9
|
Chu C, Hofman E, Gao C, Li S, Lin H, MacSwain W, Franck JM, Meulenberg RW, Chakraborty A, Zheng W. Inserting an "atomic trap" for directional dopant migration in core/multi-shell quantum dots. Chem Sci 2023; 14:14115-14123. [PMID: 38098727 PMCID: PMC10717451 DOI: 10.1039/d3sc04165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
Diffusion of atoms or ions in solid crystalline lattice is crucial in many areas of solid-state technology. However, controlling ion diffusion and migration is challenging in nanoscale lattices. In this work, we intentionally insert a CdZnS alloyed interface layer, with small cationic size mismatch with Mn(ii) dopant ions, as an "atomic trap" to facilitate directional (outward and inward) dopant migration inside core/multi-shell quantum dots (QDs) to reduce the strain from the larger cationic mismatch between dopants and host sites. Furthermore, it was found that the initial doping site/environment is critical for efficient dopant trapping and migration. Specifically, a larger Cd(ii) substitutional site (92 pm) for the Mn(ii) dopant (80 pm), with larger local lattice distortion, allows for efficient atomic trapping and dopant migration; while Mn(ii) dopant ions can be very stable with no significant migration when occupying a smaller Zn(ii) substitutional site (74 pm). Density functional theory calculations revealed a higher energy barrier for a Mn(ii) dopant hopping from the smaller Zn substitutional tetrahedral (Td) site as compared to a larger Cd substitutional Td site. The controlled dopant migration by "atomic trapping" inside QDs provides a new way to fine tune the properties of doped nanomaterials.
Collapse
Affiliation(s)
- Chun Chu
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - Elan Hofman
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - Chengpeng Gao
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - Shuya Li
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - Hanjie Lin
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - Walker MacSwain
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - John M Franck
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - Robert W Meulenberg
- Department of Physics and Astronomy and Frontier Institute for Research in Sensor Technologies, University of Maine Orono Maine 04469 USA
| | | | - Weiwei Zheng
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| |
Collapse
|
10
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
11
|
Saenz N, Hamachi LS, Wolock A, Goodge BH, Kuntzmann A, Dubertret B, Billinge I, Kourkoutis LF, Muller DA, Crowther AC, Owen JS. Synthesis of graded CdS 1-xSe x nanoplatelet alloys and heterostructures from pairs of chalcogenoureas with tailored conversion reactivity. Chem Sci 2023; 14:12345-12354. [PMID: 37969574 PMCID: PMC10631235 DOI: 10.1039/d3sc03384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
A mixture of N,N,N'-trisubstituted thiourea and cyclic N,N,N',N'-tetrasubstituted selenourea precursors were used to synthesize three monolayer thick CdS1-xSex nanoplatelets in a single synthetic step. The microstructure of the nanoplatelets could be tuned from homogeneous alloys, to graded alloys to core/crown heterostructures depending on the relative conversion reactivity of the sulfur and selenium precursors. UV-visible absorption and photoluminescence spectroscopy and scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) images demonstrate that the elemental distribution is governed by the relative precursor conversion kinetics. Slow conversion kinetics produced nanoplatelets with larger lateral dimensions, behavior that is characteristic of precursor conversion limited growth kinetics. Across a 10-fold range of reactivity, CdS nanoplatelets have 4× smaller lateral dimensions than CdSe nanoplatelets grown under identical conversion kinetics. The difference in size is consistent with a rate of CdSe growth that is 4× greater than the rate of CdS. The influence of the relative sulfide and selenide growth rates, the duration of the nucleation phase, and the solute composition on the nanoplatelet microstructure are discussed.
Collapse
Affiliation(s)
- Natalie Saenz
- Department of Chemistry, Columbia University New York NY USA
| | | | - Anna Wolock
- Department of Chemistry, Barnard College, Columbia University New York NY USA
| | - Berit H Goodge
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
| | - Alexis Kuntzmann
- Ecole Supérieure de Physique et de Chimie Industrielle Paris France
| | - Benoit Dubertret
- Ecole Supérieure de Physique et de Chimie Industrielle Paris France
| | - Isabel Billinge
- Department of Chemistry, Columbia University New York NY USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University Ithaca NY 14853 USA
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University Ithaca NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University Ithaca NY 14853 USA
| | - Andrew C Crowther
- Department of Chemistry, Barnard College, Columbia University New York NY USA
| | - Jonathan S Owen
- Department of Chemistry, Columbia University New York NY USA
| |
Collapse
|
12
|
Ryu JE, Park S, Park Y, Ryu SW, Hwang K, Jang HW. Technological Breakthroughs in Chip Fabrication, Transfer, and Color Conversion for High-Performance Micro-LED Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204947. [PMID: 35950613 DOI: 10.1002/adma.202204947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The implementation of high-efficiency and high-resolution displays has been the focus of considerable research interest. Recently, micro light-emitting diodes (micro-LEDs), which are inorganic light-emitting diodes of size <100 µm2 , have emerged as a promising display technology owing to their superior features and advantages over other displays like liquid crystal displays and organic light-emitting diodes. Although many companies have introduced micro-LED displays since 2012, obstacles to mass production still exist. Three major challenges, i.e., low quantum efficiency, time-consuming transfer, and complex color conversion, have been overcome with technological breakthroughs to realize cost-effective micro-LED displays. In the review, methods for improving the degraded quantum efficiency of GaN-based micro-LEDs induced by the size effect are examined, including wet chemical treatment, passivation layer adoption, LED structure design, and growing LEDs in self-passivated structures. Novel transfer technologies, including pick-up transfer and self-assembly methods, for developing large-area micro-LED displays with high yield and reliability are discussed in depth. Quantum dots as color conversion materials for high color purity, and deposition methods such as electrohydrodynamic jet printing or contact printing on micro-LEDs are also addressed. This review presents current status and critical challenges of micro-LED technology and promising technical breakthroughs for commercialization of high-performance displays.
Collapse
Affiliation(s)
- Jung-El Ryu
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sohyeon Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongjo Park
- Advance Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Sang-Wan Ryu
- Department of Physics, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyungwook Hwang
- Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advance Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
13
|
Ebrahim F, Al-Hartomy O, Wageh S. Cadmium-Based Quantum Dots Alloyed Structures: Synthesis, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5877. [PMID: 37687569 PMCID: PMC10488842 DOI: 10.3390/ma16175877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/10/2023]
Abstract
Cadmium-based alloyed quantum dots are one of the most popular metal chalcogenides in both the industrial and research fields owing to their extraordinary optical and electronic properties that can be manipulated by varying the compositional ratio in addition to size control. This report aims to cover the main information concerning the synthesis techniques, properties, and applications of Cd-based alloyed quantum dots. It provides a comprehensive overview of the most common synthesis methods for these QDs, which include hot injection, co-precipitation, successive ionic layer adsorption and reaction, hydrothermal, and microwave-assisted synthesis methods. This detailed literature highlights the optical and structural properties of both ternary and quaternary quantum dots. Also, this review provides the high-potential applications of various alloyed quantum dots.
Collapse
Affiliation(s)
- Fadia Ebrahim
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.E.); (O.A.-H.)
- Department of Physics, College of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.E.); (O.A.-H.)
| | - S. Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.E.); (O.A.-H.)
- K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| |
Collapse
|
14
|
Yilmazer A, Alagarsamy KN, Gokce C, Summak GY, Rafieerad A, Bayrakdar F, Ozturk BI, Aktuna S, Delogu LG, Unal MA, Dhingra S. Low Dose of Ti 3 C 2 MXene Quantum Dots Mitigate SARS-CoV-2 Infection. SMALL METHODS 2023; 7:e2300044. [PMID: 37075731 DOI: 10.1002/smtd.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Indexed: 05/03/2023]
Abstract
MXene QDs (MQDs) have been effectively used in several fields of biomedical research. Considering the role of hyperactivation of immune system in infectious diseases, especially in COVID-19, MQDs stand as a potential candidate as a nanotherapeutic against viral infections. However, the efficacy of MQDs against SARS-CoV-2 infection has not been tested yet. In this study, Ti3 C2 MQDs are synthesized and their potential in mitigating SARS-CoV-2 infection is investigated. Physicochemical characterization suggests that MQDs are enriched with abundance of bioactive functional groups such as oxygen, hydrogen, fluorine, and chlorine groups as well as surface titanium oxides. The efficacy of MQDs is tested in VeroE6 cells infected with SARS-CoV-2. These data demonstrate that the treatment with MQDs is able to mitigate multiplication of virus particles, only at very low doses such as 0,15 µg mL-1 . Furthermore, to understand the mechanisms of MQD-mediated anti-COVID properties, global proteomics analysis are performed and determined differentially expressed proteins between MQD-treated and untreated cells. Data reveal that MQDs interfere with the viral life cycle through different mechanisms including the Ca2 + signaling pathway, IFN-α response, virus internalization, replication, and translation. These findings suggest that MQDs can be employed to develop future immunoengineering-based nanotherapeutics strategies against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Açelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
| | | | - Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Fatma Bayrakdar
- Microbiology References Laboratory, Ministry of Health General Directorate of Public Health, Ankara, 06100, Turkey
| | - Berfin Ilayda Ozturk
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, 06830, Turkey
| | - Suleyman Aktuna
- Department of Medical Genetics, Faculty of Medicine, Yuksek Ihtisas University, Ankara, 06530, Turkey
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, 35122, Italy
- New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| | - Mehmet Altay Unal
- Stem Cell Institute, Ankara University, Balgat, Ankara, 06520, Turkey
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
15
|
Scholtz L, Tavernaro I, Eckert JG, Lutowski M, Geißler D, Hertwig A, Hidde G, Bigall NC, Resch-Genger U. Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads. Sci Rep 2023; 13:11957. [PMID: 37488159 PMCID: PMC10366211 DOI: 10.1038/s41598-023-38518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 µm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials.
Collapse
Affiliation(s)
- Lena Scholtz
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Isabella Tavernaro
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - J Gerrit Eckert
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
| | - Marc Lutowski
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Daniel Geißler
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
- PolyAn GmbH, Schkopauer Ring 6, 12681, Berlin, Germany
| | - Andreas Hertwig
- Division 6.1 Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Gundula Hidde
- Division 6.1 Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, 30167, Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), 30167, Hannover, Germany
| | - Ute Resch-Genger
- Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
16
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
17
|
Upadhyay K, Tamrakar RK, Thomas S, Kumar M. Surface functionalized nanoparticles: A boon to biomedical science. Chem Biol Interact 2023; 380:110537. [PMID: 37182689 DOI: 10.1016/j.cbi.2023.110537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
The rapid development of nanomedicine has increased the likelihood that manufactured nanoparticles will one day come into contact with people and the environment. A variety of academic fields, including engineering and the health sciences, have taken a keen interest in the development of nanotechnology. Any significant development in nanomaterial-based applications would depend on the production of functionalized nanoparticles, which are believed to have the potential to be used in fields like pharmaceutical and biomedical sciences. The functionalization of nanoparticles with particular recognition chemical moieties does result in multifunctional nanoparticles with greater efficacy while at the same time minimising adverse effects, according to early clinical studies. This is because of traits like aggressive cellular uptake and focused localization in tumours. To advance this field of inquiry, chemical procedures must be developed that reliably attach chemical moieties to nanoparticles. The structure-function relationship of these functionalized nanoparticles has been extensively studied as a result of the discovery of several chemical processes for the synthesis of functionalized nanoparticles specifically for drug delivery, cancer therapy, diagnostics, tissue engineering, and molecular biology. Because of the growing understanding of how to functionalize nanoparticles and the continued work of innovative scientists to expand this technology, it is anticipated that functionalized nanoparticles will play an important role in the aforementioned domains. As a result, the goal of this study is to familiarise readers with nanoparticles, to explain functionalization techniques that have already been developed, and to examine potential applications for nanoparticles in the biomedical sciences. This review's information is essential for the safe and broad use of functionalized nanoparticles, particularly in the biomedical sector.
Collapse
Affiliation(s)
- Kanchan Upadhyay
- Department of Applied Physics, Bhilai Institute of Technology (Seth Balkrishan Memorial), Near Bhilai House, Durg, C.G, 491001, India.
| | - Raunak Kumar Tamrakar
- Department of Applied Physics, Bhilai Institute of Technology (Seth Balkrishan Memorial), Near Bhilai House, Durg, C.G, 491001, India
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottyam, Kerla, 686560, India
| | - Manish Kumar
- Department of Mechanical Engineering, Bhilai Institute of Technology (Seth Balkrishan Memorial), Near Bhilai Power House, Durg, 49100, Chhattisgarh, India
| |
Collapse
|
18
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
19
|
Shabani F, Martinez PLH, Shermet N, Korkut H, Sarpkaya I, Dehghanpour Baruj H, Delikanli S, Isik F, Durmusoglu EG, Demir HV. Gradient Type-II CdSe/CdSeTe/CdTe Core/Crown/Crown Heteronanoplatelets with Asymmetric Shape and Disproportional Excitonic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205729. [PMID: 36650974 DOI: 10.1002/smll.202205729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Characterized by their strong 1D confinement and long-lifetime red-shifted emission spectra, colloidal nanoplatelets (NPLs) with type-II electronic structure provide an exciting ground to design complex heterostructures with remarkable properties. This work demonstrates the synthesis and optical characterization of CdSe/CdSeTe/CdTe core/crown/crown NPLs having a step-wise gradient electronic structure and disproportional wavefunction distribution, in which the excitonic properties of the electron and hole can be finely tuned through adjusting the geometry of the intermediate crown. The first crown with staggered configuration gives rise to a series of direct and indirect transition channels that activation/deactivation of each channel is possible through wavefunction engineering. Moreover, these NPLs allow for switching between active channels with temperature, where lattice contraction directly affects the electron-hole (e-h) overlap. Dominated by the indirect transition channels over direct transitions, the lifetime of the NPLs starts to increase at 9 K, indicative of low dark-bright exciton splitting energy. The charge transfer states from the two type-II interfaces promote a large number of indirect transitions, which effectively increase the absorption of low-energy photons critical for nonlinear properties. As a result, these NPLs demonstrate exceptionally high two-photon absorption cross-sections with the highest value of 12.9 × 106 GM and superlinear behavior.
Collapse
Affiliation(s)
- Farzan Shabani
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Pedro Ludwig Hernandez Martinez
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nina Shermet
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Hilal Korkut
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Ibrahim Sarpkaya
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Hamed Dehghanpour Baruj
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Furkan Isik
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Emek Goksu Durmusoglu
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hilmi Volkan Demir
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
20
|
Morozov S, Vezzoli S, Myslovska A, Di Giacomo A, Mortensen NA, Moreels I, Sapienza R. Purifying single photon emission from giant shell CdSe/CdS quantum dots at room temperature. NANOSCALE 2023; 15:1645-1651. [PMID: 36597874 DOI: 10.1039/d2nr04744f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Giant shell CdSe/CdS quantum dots are bright and flexible emitters, with near-unity quantum yield and suppressed blinking, but their single photon purity is reduced by efficient multiexcitonic emission. We report the observation, at the single dot level, of a large blueshift of the photoluminescence biexciton spectrum (24 ± 5 nm over a sample of 32 dots) for pure-phase wurtzite quantum dots. By spectral filtering, we demonstrate a 2.3 times reduction of the biexciton quantum yield relative to the exciton emission, while preserving as much as 60% of the exciton single photon emission, thus improving the purity from g2(0) = 0.07 ± 0.01 to g2(0) = 0.03 ± 0.01. At a larger pump fluency, spectral purification is even more effective with up to a 6.6 times reduction in g2(0), which is due to the suppression of higher order excitons and shell states experiencing even larger blueshifts. Our results indicate the potential for the synthesis of engineered giant shell quantum dots, with further increased biexciton blueshifts, for quantum optical applications requiring both high purity and brightness.
Collapse
Affiliation(s)
- Sergii Morozov
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Stefano Vezzoli
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2BW, UK.
| | - Alina Myslovska
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, Gent 9000, Belgium
| | - Alessio Di Giacomo
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, Gent 9000, Belgium
| | - N Asger Mortensen
- Center for Nano Optics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Iwan Moreels
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, Gent 9000, Belgium
| | - Riccardo Sapienza
- The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2BW, UK.
| |
Collapse
|
21
|
Bahmani Jalali H, De Trizio L, Manna L, Di Stasio F. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chem Soc Rev 2022; 51:9861-9881. [PMID: 36408788 PMCID: PMC9743785 DOI: 10.1039/d2cs00490a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Colloidal quantum dots (QDs) emitting in the infrared (IR) are promising building blocks for numerous photonic, optoelectronic and biomedical applications owing to their low-cost solution-processability and tunable emission. Among them, lead- and mercury-based QDs are currently the most developed materials. Yet, due to toxicity issues, the scientific community is focusing on safer alternatives. In this regard, indium arsenide (InAs) QDs are one of the best candidates as they can absorb and emit light in the whole near infrared spectral range and they are RoHS-compliant, with recent trends suggesting that there is a renewed interest in this class of materials. This review focuses on colloidal InAs QDs and aims to provide an up-to-date overview spanning from their synthesis and surface chemistry to post-synthesis modifications. We provide a comprehensive overview from initial synthetic methods to the most recent developments on the ability to control the size, size distribution, electronic properties and carrier dynamics. Then, we describe doping and alloying strategies applied to InAs QDs as well as InAs based heterostructures. Furthermore, we present the state-of-the-art applications of InAs QDs, with a particular focus on bioimaging and field effect transistors. Finally, we discuss open challenges and future perspectives.
Collapse
Affiliation(s)
- Houman Bahmani Jalali
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca De Trizio
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
22
|
Yuan Y, Song M, Cao Y, Huang Q, Lu F. Fine-tuning of aptamer complementary DNA for fluorescence resonance energy transfer assay. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Zhang H, Sun C, Sun L, Xu W, Wu W, Chen J, Wang B, Yu J, Cui P, Zhang F, Tang Y. Stable Monodisperse Pb
1−
x
Cd
x
S Quantum Dots for NIR‐II Bioimaging by Aqueous Coprecipitation of Bimetallic Clusters. Angew Chem Int Ed Engl 2022; 61:e202203851. [DOI: 10.1002/anie.202203851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Hui Zhang
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
- Jiangsu Huanghai Ecological Environment Detection Co., Ltd. Yancheng 224008 China
| | - Caixia Sun
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Libo Sun
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Wenhao Xu
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Wenxiao Wu
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Jie Chen
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Binhang Wang
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Junlai Yu
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Pengfei Cui
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Fan Zhang
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| | - Yun Tang
- Department of Chemistry, Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials Fudan University Shanghai 200438 China
| |
Collapse
|
24
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
25
|
Koo JJ, Jung KH, Park K, Min WJ, Yu KS, Kim ZH, Lee JK. Characterization of the Interfacial Structures of Core/Shell CdSe/ZnS QDs. J Phys Chem Lett 2022; 13:7220-7227. [PMID: 35912964 DOI: 10.1021/acs.jpclett.2c01923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Core/shell quantum dots (QDs) have been extensively studied, yet their optical properties widely vary among studies. Such variation may arise from the variation in interfacial structures induced by the subtle difference in each synthetic procedure. Here, we studied the interfacial structures of CdSe/ZnS QDs using the time-of-flight medium energy ion-scattering spectroscopy (TOF-MEIS), which offers the radial elemental distributions as well as the overall elemental compositions of QDs. The TOF-MEIS spectra provided strong evidence for the existence of an alloyed layer at the interface between CdSe and ZnS in typical CdSe/ZnS QDs. On the basis of the emission and absorption spectra of QDs sampled during the synthesis, we conclude that such interfacial alloying is caused by the dissolution of CdSe seeds during the synthesis steps. Such a dissolution mechanism is further corroborated by the observation that the ligand environment of solvent (X or L type) leads to different shapes of interfaces.
Collapse
Affiliation(s)
- Ja-Jung Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Hwan Jung
- K-MAC, Yongsan-Dong 554, Yueseong-Gu, Daejeon 305-500, Republic of Korea
- R&D Center, NEOTOP Co., Ltd., Hwaseong-si, Gyeonggi-do 18468, Republic of Korea
| | - Kyungsu Park
- K-MAC, Yongsan-Dong 554, Yueseong-Gu, Daejeon 305-500, Republic of Korea
- HB Solution, Asan-si, Choongcheongnam-do 31413, Republic of Korea
| | - Won Ja Min
- K-MAC, Yongsan-Dong 554, Yueseong-Gu, Daejeon 305-500, Republic of Korea
- HB Solution, Asan-si, Choongcheongnam-do 31413, Republic of Korea
| | - Kyu-Sang Yu
- K-MAC, Yongsan-Dong 554, Yueseong-Gu, Daejeon 305-500, Republic of Korea
- HB Solution, Asan-si, Choongcheongnam-do 31413, Republic of Korea
| | - Zee Hwan Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Kyu Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
Stable Monodisperse Pb1‐xCdxS Quantum Dots for NIR‐II Bioimaging by Aqueous Coprecipitation of Bimetallic Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Mu Y, Li Y, Du P, Ren H, Monroy IT, Ibrahim M, Wen G, Liang D, Feng J, Ao J, Xie X, Li Y. Constraint Mechanism of Power Device Design Based on Perovskite Quantum Dots Pumped by an Electron Beam. SENSORS (BASEL, SWITZERLAND) 2022; 22:3721. [PMID: 35632137 PMCID: PMC9147271 DOI: 10.3390/s22103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022]
Abstract
This paper studied the constraint mechanism for power device design based on perovskite quantum dots pumped by an electron beam. Combined with device designing, an experimental system of self-saturation luminescence and aging failure was designed for CsPbBr3 films. On this basis, we further completed the self-saturation luminescence and aging failure experiment and constructed a model of self-saturation luminescence and aging failure for CsPbBr3 device designing. Three constraints were proposed after analyzing and discussing the experimental data. Firstly, too high of a pumping current density makes it difficult to effectively promote the enhancement of luminescence efficiency. Secondly, radiation decomposition and aging failure of CsPbBr3 films are mainly related to the polarized degree of CsPbBr3 nanocrystals. Thirdly, by increasing the pumping electric field, the pumping energy can be effectively and widely delivered to the three-dimensional quantum dots film layer space, and there is a nonlinear relationship between the attenuation of the pumping energy density and the increment of the pumping electric field, which will effectively avoid the local high-energy density of instantaneous optical pumping.
Collapse
Affiliation(s)
- Yining Mu
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
- Institute for Photonic Integration, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yanzheng Li
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
| | - Peng Du
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
| | - Hang Ren
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
| | - Idelfonso Tafur Monroy
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Institute for Photonic Integration, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Makram Ibrahim
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo 11421, Egypt
| | - Guanyu Wen
- Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117, China;
| | - Dong Liang
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Jianshang Feng
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Jiayu Ao
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Xiangyue Xie
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Yumeng Li
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| |
Collapse
|
28
|
Roy D, De CK, Ghosh S, Mukherjee S, Mandal S, Mandal PK. Ultrafast dynamics and ultrasensitive single particle spectroscopy of optically robust core/alloy shell semiconductor quantum dots. Phys Chem Chem Phys 2022; 24:8578-8590. [PMID: 35355030 DOI: 10.1039/d1cp05780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A "one-pot one-step" synthesis method of Core/Alloy Shell (CAS) quantum dots (QDs) offers the scope of large scale synthesis in a less time consuming, more economical, highly reproducible and high-throughput manner in comparison to "multi-pot multi-step" synthesis for Core/Shell (CS) QDs. Rapid initial nucleation, and smooth & uniform shell growth lead to the formation of a compositionally-gradient alloyed hetero-structure with very significantly reduced interfacial trap density in CAS QDs. Thus, interfacial strain gets reduced in a much smoother manner leading to enhanced confinement for the photo-generated charge carriers in CAS QDs. Convincing proof of alloy-shelling for a CAS QD has been provided from HRTEM images at the single particle level. The band gap could be tuned as a function of composition, temperature, reactivity difference of precursors, etc. and a high PLQY and improved photochemical stability could be achieved for a small sized CAS QD. From the ultrafast exciton dynamics in CdSe and InP CAS QDs, it has been shown that (a) the hot exciton thermalization/relaxation happens in <500 fs, (b) hot electron trapping dynamics occurs within a ∼1 ps time scale, (c) band edge exciton trapping occurs within a 10-25 ps timescale and (d) for CdSe CAS QDs the hot hole gets trapped in about 35 ps. From fast PL decay dynamics, it has been shown that the amplitude of the intermediate time constant can be correlated with the PLQY. A model has been provided to understand these ultrafast to fast exciton dynamical processes. At the ultrasensitive single particle level, unlike CS QDs, CdSe CAS QDs have been shown to exhibit (a) constancy of PLmax (i.e. no bluing) and (b) constancy of PL intensity (i.e. no bleaching) of the single CAS QDs for continuous irradiation for one hour under an air atmosphere. Thus, CAS QDs hold the promise of being a superior optical probe in comparison to CS QDs both at the ensemble and at the single particle level, leading to enhanced flexibility of the CAS QDs towards designing and developing next generation application devices.
Collapse
Affiliation(s)
- Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Chayan K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Saptarshi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India. .,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
29
|
Roy D, Ghosh S, De CK, Mukherjee S, Mandal S, Mandal PK. Excitation-Energy-Dependent Photoluminescence Quantum Yield is Inherent to Optically Robust Core/Alloy-Shell Quantum Dots in a Vast Energy Landscape. J Phys Chem Lett 2022; 13:2404-2417. [PMID: 35257586 DOI: 10.1021/acs.jpclett.2c00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The importance of alloy-shelling in optically robust Core/Alloy-Shell (CAS) QDs has been described from structural and energetic aspects. Unlike fluorescent dyes, both Core/Shell (CS) and CAS QDs exhibit excitation-energy-dependent photoluminescence quantum yield (PLQY). For both CdSe and InP CAS QDs (with metal- and nonmetal-based alloy-shelling, respectively), with increasing excitation energy, (a) the ultrafast rise-time or relaxation-time to the band-edge increases and (b) the magnitude of the normalized bleach signal decreases. Ultrasensitive single-particle spectroscopic investigation results showed that with decreasing excitation energy, (a) the fraction of ON events increases, (b) the ratio of exciton-detrapping rate/trapping rate increases, and (c) the extent of beneficial hole trapping increases. A relative decrease in PLQY with increasing excitation energy is much less pronounced in CAS QDs than in CS QDs. Unless trap states are removed completely especially in the higher-energy landscape, PLQY will remain inherently dependent on excitation energy for QDs in the vast energy landscape. When reporting the PLQY of QDs, the magnitude of the excitation energy must be mentioned.
Collapse
Affiliation(s)
- Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Chayan K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Saptarshi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| | - Prasun K Mandal
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, India 741246
| |
Collapse
|
30
|
Dieleman C, van der Burgt J, Thakur N, Garnett EC, Ehrler B. Direct Patterning of CsPbBr 3 Nanocrystals via Electron-Beam Lithography. ACS APPLIED ENERGY MATERIALS 2022; 5:1672-1680. [PMID: 35252773 PMCID: PMC8889902 DOI: 10.1021/acsaem.1c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/03/2022] [Indexed: 05/13/2023]
Abstract
Lead-halide perovskite (LHP) nanocrystals have proven themselves as an interesting material platform due to their easy synthesis and compositional versatility, allowing for a tunable band gap, strong absorption, and high photoluminescence quantum yield (PLQY). This tunability and performance make LHP nanocrystals interesting for optoelectronic applications. Patterning active materials like these is a useful way to expand their tunability and applicability as it may allow more intricate designs that can improve efficiencies or increase functionality. Based on a technique for II-VI quantum dots, here we pattern colloidal LHP nanocrystals using electron-beam lithography (EBL). We create patterns of LHP nanocrystals on the order of 100s of nanometers to several microns and use these patterns to form intricate designs. The patterning mechanism is induced by ligand cross-linking, which binds adjacent nanocrystals together. We find that the luminescent properties are somewhat diminished after exposure, but that the structures are nonetheless still emissive. We believe that this is an interesting step toward patterning LHP nanocrystals at the nanoscale for device fabrication.
Collapse
Affiliation(s)
- Christian
D. Dieleman
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Julia van der Burgt
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Neha Thakur
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Erik C. Garnett
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Bruno Ehrler
- Center
for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
31
|
Deng H, Konopka CJ, Prabhu S, Sarkar S, Medina NG, Fayyaz M, Arogundade OH, Vidana Gamage HE, Shahoei SH, Nall D, Youn Y, Dobrucka IT, Audu CO, Joshi A, Melvin WJ, Gallagher KA, Selvin PR, Nelson ER, Dobrucki LW, Swanson KS, Smith AM. Dextran-Mimetic Quantum Dots for Multimodal Macrophage Imaging In Vivo, Ex Vivo, and In Situ. ACS NANO 2022; 16:1999-2012. [PMID: 35107994 PMCID: PMC8900655 DOI: 10.1021/acsnano.1c07010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Macrophages are white blood cells with diverse functions contributing to a healthy immune response as well as the pathogenesis of cancer, osteoarthritis, atherosclerosis, and obesity. Due to their pleiotropic and dynamic nature, tools for imaging and tracking these cells at scales spanning the whole body down to microns could help to understand their role in disease states. Here we report fluorescent and radioisotopic quantum dots (QDs) for multimodal imaging of macrophage cells in vivo, ex vivo, and in situ. Macrophage specificity is imparted by click-conjugation to dextran, a biocompatible polysaccharide that natively targets these cell types. The emission spectral band of the crystalline semiconductor core was tuned to the near-infrared for optical imaging deep in tissue, and probes were covalently conjugated to radioactive iodine for nuclear imaging. The performance of these probes was compared with all-organic dextran probe analogues in terms of their capacity to target macrophages in visceral adipose tissue using in vivo positron emission tomography/computed tomography (PET/CT) imaging, in vivo fluorescence imaging, ex vivo fluorescence, post-mortem isotopic analyses, and optical microscopy. All probe classes exhibited equivalent physicochemical characteristics in aqueous solution and similar in vivo targeting specificity. However, dextran-mimetic QDs provided enhanced signal-to-noise ratio for improved optical quantification, long-term photostability, and resistance to chemical fixation. In addition, the vascular circulation time for the QD-based probes was extended 9-fold compared with dextran, likely due to differences in conformational flexibility. The enhanced photophysical and photochemical properties of dextran-mimetic QDs may accelerate applications in macrophage targeting, tracking, and imaging across broad resolution scales, particularly advancing capabilities in single-cell and single-molecule imaging and quantification.
Collapse
Affiliation(s)
- Hongping Deng
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian J Konopka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Suma Prabhu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Suresh Sarkar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Natalia Gonzalez Medina
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Muhammad Fayyaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Opeyemi H Arogundade
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Duncan Nall
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yeoan Youn
- Center for Biophysics and Quantitative Biology and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Iwona T Dobrucka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Christopher O Audu
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amrita Joshi
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - William J Melvin
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katherine A Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul R Selvin
- Department of Physics and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Humayun M, Wang C, Luo W. Recent Progress in the Synthesis and Applications of Composite Photocatalysts: A Critical Review. SMALL METHODS 2022; 6:e2101395. [PMID: 35174987 DOI: 10.1002/smtd.202101395] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Photocatalysis is an advanced technique that transforms solar energy into sustainable fuels and oxidizes pollutants via the aid of semiconductor photocatalysts. The main scientific and technological challenges for effective photocatalysis are the stability, robustness, and efficiency of semiconductor photocatalysts. For practical applications, researchers are trying to develop highly efficient and stable photocatalysts. Since the literature is highly scattered, it is urgent to write a critical review that summarizes the state-of-the-art progress in the design of a variety of semiconductor composite photocatalysts for energy and environmental applications. Herein, a comprehensive review is presented that summarizes an overview, history, mechanism, advantages, and challenges of semiconductor photocatalysis. Further, the recent advancements in the design of heterostructure photocatalysts including alloy quantum dots based composites, carbon based composites including carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and graphene, covalent-organic frameworks based composites, metal based composites including metal carbides, metal halide perovskites, metal nitrides, metal oxides, metal phosphides, and metal sulfides, metal-organic frameworks based composites, plasmonic materials based composites and single atom based composites for CO2 conversion, H2 evolution, and pollutants oxidation are discussed elaborately. Finally, perspectives for further improvement in the design of composite materials for efficient photocatalysis are provided.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
33
|
Lee T, Kim BJ, Lee H, Hahm D, Bae WK, Lim J, Kwak J. Bright and Stable Quantum Dot Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106276. [PMID: 34706113 DOI: 10.1002/adma.202106276] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Quantum dot light-emitting diodes (QLEDs) are one of the most promising candidates for next-generation displays and lighting sources, but they are barely used because vulnerability to electrical and thermal stresses precludes high brightness, efficiency, and stability at high current density (J) regimes. Here, bright and stable QLEDs on a Si substrate are demonstrated, expanding their potential application boundary over the present art. First, a tailored interface is granted to the quantum dots, maximizing the quantum yield and mitigating nonradiative Auger decay of the multiexcitons generated at high-J regimes. Second, a heat-endurable, top-emission device architecture is employed and optimized based on optical simulation to enhance the light outcoupling efficiency. The multilateral approaches realize that the red top-emitting QLEDs exhibit a maximum luminance of 3 300 000 cd m-2 , a current efficiency of 75.6 cd A-1 , and an operational lifetime of 125 000 000 h at an initial brightness of 100 cd m-2 , which are the highest of the values reported so far.
Collapse
Affiliation(s)
- Taesoo Lee
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byong Jae Kim
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunkoo Lee
- Department of Electronics Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Donghyo Hahm
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wan Ki Bae
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaehoon Lim
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
34
|
Zhou Q, Zhang P, Chen XW. General Framework of Canonical Quasinormal Mode Analysis for Extreme Nano-optics. PHYSICAL REVIEW LETTERS 2021; 127:267401. [PMID: 35029493 DOI: 10.1103/physrevlett.127.267401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Optical phenomena associated with an extremely localized field should be understood with considerations of nonlocal and quantum effects, which pose a hurdle to conceptualize the physics with a picture of eigenmodes. Here we first propose a generalized Lorentz model to describe general nonlocal media under linear mean-field approximation and formulate source-free Maxwell's equations as a linear eigenvalue problem to define the quasinormal modes. Then we introduce an orthonormalization scheme for the modes and establish a canonical quasinormal mode framework for general nonlocal media. Explicit formalisms for metals described by a quantum hydrodynamic model and polar dielectrics with nonlocal response are exemplified. The framework enables for the first time a direct modal analysis of mode transition in the quantum tunneling regime and provides physical insights beyond usual far-field spectroscopic analysis. Applied to nonlocal polar dielectrics, the framework also unveils the important roles of longitudinal phonon polaritons in optical response.
Collapse
Affiliation(s)
- Qiang Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China
- Institute of Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pu Zhang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China
- Institute of Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xue-Wen Chen
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, People's Republic of China
- Institute of Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
35
|
Wang M, Tsukamoto M, Sergeyev VG, Zinchenko A. Fluorescent Nanoparticles Synthesized from DNA, RNA, and Nucleotides. NANOMATERIALS 2021; 11:nano11092265. [PMID: 34578581 PMCID: PMC8471148 DOI: 10.3390/nano11092265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022]
Abstract
Ubiquitous on Earth, DNA and other nucleic acids are being increasingly considered as promising biomass resources. Due to their unique chemical structure, which is different from that of more common carbohydrate biomass polymers, materials based on nucleic acids may exhibit new, attractive characteristics. In this study, fluorescent nanoparticles (biodots) were prepared by a hydrothermal (HT) method from various nucleic acids (DNA, RNA, nucleotides, and nucleosides) to establish the relationship between the structure of precursors and fluorescent properties of biodots and to optimize conditions for preparation of the most fluorescent product. HT treatment of nucleic acids results in decomposition of sugar moieties and depurination/depyrimidation of nucleobases, while their consequent condensation and polymerization gives fluorescent nanoparticles. Fluorescent properties of DNA and RNA biodots are drastically different from biodots synthesized from individual nucleotides. In particular, biodots synthesized from purine-containing nucleotides or nucleosides show up to 50-fold higher fluorescence compared to analogous pyrimidine-derived biodots. The polymeric nature of a precursor disfavors formation of a bright fluorescent product. The reported effect of the structure of the nucleic acid precursor on the fluorescence properties of biodots should help designing and synthesizing brighter fluorescent nanomaterials with broader specification for bioimaging, sensing, and other applications.
Collapse
Affiliation(s)
- Maofei Wang
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Masaki Tsukamoto
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Vladimir G. Sergeyev
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119899 Moscow, Russia;
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
- Correspondence: ; Tel.: +81-52-789-4771
| |
Collapse
|
36
|
Kim A, Hosseinmardi A, Annamalai PK, Kumar P, Patel R. Review on Colloidal Quantum Dots Luminescent Solar Concentrators. ChemistrySelect 2021. [DOI: 10.1002/slct.202100674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art New York City, NY 10003 USA
| | - Alireza Hosseinmardi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pratheep K. Annamalai
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland St Lucia QLD 4072 Australia
| | - Pawan Kumar
- Institut National de la Recherche Scientifique, Centre Énergie Materiaux Télecommunications (INRS-EMT) Varennes QC Canada
- Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman OK 73019 USA
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE) Integrated Science and Engineering Division (ISED) Underwood International College Yonsei University 85 Songdogwahak-ro, Yeonsugu Incheon 21938 South Korea
| |
Collapse
|
37
|
van't Padje A, Werner GDA, Kiers ET. Mycorrhizal fungi control phosphorus value in trade symbiosis with host roots when exposed to abrupt 'crashes' and 'booms' of resource availability. THE NEW PHYTOLOGIST 2021; 229:2933-2944. [PMID: 33124078 PMCID: PMC7898638 DOI: 10.1111/nph.17055] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 05/06/2023]
Abstract
Biological market theory provides a conceptual framework to analyse trade strategies in symbiotic partnerships. A key prediction of biological market theory is that individuals can influence resource value - meaning the amount a partner is willing to pay for it - by mediating where and when it is traded. The arbuscular mycorrhizal symbiosis, characterised by roots and fungi trading phosphorus and carbon, shows many features of a biological market. However, it is unknown if or how fungi can control phosphorus value when exposed to abrupt changes in their trade environment. We mimicked an economic 'crash', manually severing part of the fungal network (Rhizophagus irregularis) to restrict resource access, and an economic 'boom' through phosphorus additions. We quantified trading strategies over a 3-wk period using a recently developed technique that allowed us to tag rock phosphate with fluorescing quantum dots of three different colours. We found that the fungus: compensated for resource loss in the 'crash' treatment by transferring phosphorus from alternative pools closer to the host root (Daucus carota); and stored the surplus nutrients in the 'boom' treatment until root demand increased. By mediating from where, when and how much phosphorus was transferred to the host, the fungus successfully controlled resource value.
Collapse
Affiliation(s)
- Anouk van't Padje
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| | - Gijsbert D. A. Werner
- Department of ZoologyUniversity of OxfordOxfordOX1 3PSUK
- Netherlands Scientific Council for Government PolicyBuitenhof 34The Hague2513 AHthe Netherlands
| | - E. Toby Kiers
- Department of Ecological SciencesFaculty of Earth and Life SciencesVrije Universiteitde Boelelaan 1085Amsterdam1081 HVthe Netherlands
| |
Collapse
|
38
|
|
39
|
Van't Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M, Shimizu T, Kiers ET. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. THE ISME JOURNAL 2021; 15:435-449. [PMID: 32989245 PMCID: PMC8027207 DOI: 10.1038/s41396-020-00786-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.
Collapse
Affiliation(s)
- Anouk Van't Padje
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Loreto Oyarte Galvez
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Malin Klein
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Shimizu
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Marin R, Jaque D. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chem Rev 2020; 121:1425-1462. [DOI: 10.1021/acs.chemrev.0c00692] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Riccardo Marin
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
| | - Daniel Jaque
- Fluorescence Imaging Group (FIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Madrid 28049, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación, Sanitaria Hospital Ramón y Cajal, Ctra. De Colmenar Viejo, Km. 9100, 28034 Madrid, Spain
| |
Collapse
|
41
|
Farzin MA, Abdoos H. A critical review on quantum dots: From synthesis toward applications in electrochemical biosensors for determination of disease-related biomolecules. Talanta 2020; 224:121828. [PMID: 33379046 DOI: 10.1016/j.talanta.2020.121828] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023]
Abstract
Fluorescent quantum dots (QDs), defined by a diameter size of <10 nm, have been the core concept of nanoscience and nanotechnology since their inception. QDs possess many unique structural, electrochemical and photochemical properties that render them a promising platform for sensing applications. These nanomaterials can greatly enhance the analytical performances of biosensors, namely detection limit, sensitivity and selectivity. QDs are being developed not only because of their ability for signal enhancement but also because of their high capacity for fuctionalization with bioreceptors. In this review, we summarize a basic knowledge of QDs before focusing on their application to sensing thus far followed by a discussion of future directions for research into the sensing field. Due to the nature of QDs, especially their ability to combine nanotechnology and biotechnology, they possess the potential to open a novel paradigm on early diagnosis of diseases using the electrochemical biosensors. Therefore, we try to give a comprehensive view of the role of these zero-dimensional (0D) nanomaterials in the designing electrochemical sensors for determination of disease-related biomolecules, including tumor markers, inflammatory biomarkers, depression markers and archetypal biomarker in diabetes diagnosis. Considering the high potential of QDs for the electrochemistry-based biosensing strategies, the authors suggest that more research is needed on understanding their electronic properties and why synthesis and surface modification methods can affect these properties.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, 35131-19111, Semnan, Iran
| | - Hassan Abdoos
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, 35131-19111, Semnan, Iran.
| |
Collapse
|
42
|
Xing B, Ge S, Zhao J, Yang H, Song J, Geng Y, Qiao Y, Gu L, Han P, Ma G. Alloyed Crystalline CdSe 1-xS x Semiconductive Nanomaterials - A Solid State 113Cd NMR Study. ChemistryOpen 2020; 9:1018-1026. [PMID: 33072471 PMCID: PMC7549000 DOI: 10.1002/open.202000216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Solid‐state NMR analysis on wurtzite alloyed CdSe1−xSx crystalline nanoparticles and nanobelts provides evidence that the 113Cd NMR chemical shift is not affected by the varying sizes of nanoparticles, but is sensitive to the S/Se anion molar ratios. A linear correlation is observed between 113Cd NMR chemical shifts and the sulfur component for the alloyed CdSe1−xSx (0<x<1) system both in nanoparticles and nanobelts (δCd=169.71⋅XS+529.21). Based on this correlation, a rapid and applied approach has been developed to determine the composition of the alloyed nanoscalar materials utilizing 113Cd NMR spectroscopy. The observed results from this system confirm that one can use 113Cd NMR spectroscopy not only to determine the composition but also the phase separation of nanomaterial semiconductors without destruction of the sample structures. In addition, some observed correlations are discussed in detail.
Collapse
Affiliation(s)
- Baoyan Xing
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.,Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Sai Ge
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Jianguo Zhao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.,Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Hui Yang
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Jie Song
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Yu Geng
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Yuying Qiao
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Ling Gu
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| | - Peide Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Guibin Ma
- Institute of Carbon Materials Science, Shanxi Datong University, Datong, 037009, China
| |
Collapse
|
43
|
Shkir M, Alshahrani T, Chandekar KV, Manthrammel MA, Sayed MA, Ashraf IM, Palanivel B, AlFaify S. Effect of Gd3+ Doping on Linear and Nonlinear Optical Properties of PbI2/FTO Thin Films for Optoelectronic and Nonlinear Applications. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01765-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Li Y, Cui C, Song J, Liu Q, Yuan S, Zeng C, Xia J. Precisely ordered Ge quantum dots on a patterned Si microring for enhanced light-emission. NANOTECHNOLOGY 2020; 31:385603. [PMID: 32480391 DOI: 10.1088/1361-6528/ab9862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconductor microcavities can greatly enhance the light-emission of embedded quantum dots (QDs). Here, a new route toward the microcavity-QD system by fabricating microcavities followed by growing ordered QDs on a patterned microresonator is proposed, which keeps QDs from being etched. Self-assembled Ge QDs prefer to form at the rims of Si microrings or microdisks. The Ge QDs on the pit- or groove-patterned microring resonator (MRR) show better size uniformity and position accuracy. These features are explained by the evolutions of surface morphology and surface chemical potential distribution. Sharp photoluminescence peaks in the telecommunication band with the quality factors in the range of 450-850 from groove-patterned MRR are observed at 295 K due to efficient overlap between Ge QDs and resonant modes. Our schemes shed light on the exactly site-controlled growth of QDs on micro- and nano-structures, which further facilitates the investigation of light-matter interactions.
Collapse
Affiliation(s)
- Yi Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X. Quantum Dots for Display Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yufei Shu
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xing Lin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Haiyan Qin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhuang Hu
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yizheng Jin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xiaogang Peng
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
46
|
Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X. Quantum Dots for Display Applications. Angew Chem Int Ed Engl 2020; 59:22312-22323. [PMID: 32421230 DOI: 10.1002/anie.202004857] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/19/2022]
Abstract
This article offers a materials-chemistry perspective for colloidal quantum dots (QDs) in the field of display, including QD-enhanced liquid-crystal-display (QD-LCD) and QD-based light-emitting-diodes (QLEDs) display. The rapid successes of QDs for display in the past five years are not accidental but have a deep root in both maturity of their synthetic chemistry and their unique chemical, optical, and optoelectronic properties. This article intends to discuss the natural match of QD emitters for display and chemical means to eventually bring about their full potential.
Collapse
Affiliation(s)
- Yufei Shu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xing Lin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haiyan Qin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhuang Hu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yizheng Jin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaogang Peng
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
47
|
Fu ZQ, Pan Y, Zhou JJ, Bai KK, Ma DL, Zhang Y, Qiao JB, Jiang H, Liu H, He L. Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots. NANO LETTERS 2020; 20:6738-6743. [PMID: 32787177 DOI: 10.1021/acs.nanolett.0c02623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coupled quantum dots (QDs), usually referred to as artificial molecules, are important not only in exploring fundamental physics of coupled quantum objects but also in realizing advanced QD devices. However, previous studies have been limited to artificial molecules with nonrelativistic Fermions. Here, we show that relativistic artificial molecules can be realized when two circular graphene QDs are coupled to each other. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we observe the formation of bonding and antibonding states of the relativistic artificial molecule and directly visualize these states of the two coupled graphene QDs. The formation of the relativistic molecular states strongly alters distributions of massless Dirac Fermions confined in the graphene QDs. Moreover, our experiment demonstrates that the degeneracy of different angular-momentum states in the relativistic artificial molecule can be further lifted by external magnetic fields. Then, both the bonding and antibonding states are split into two peaks.
Collapse
Affiliation(s)
- Zhong-Qiu Fu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yueting Pan
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jiao-Jiao Zhou
- College of Physics, Optoelectronics and Energy and Institute for Advanced Study, Soochow University, Suzhou 215006, People's Republic of China
| | - Ke-Ke Bai
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
- Institute of Physics, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Dong-Lin Ma
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
- Department of Physics, Capital Normal University, Beijing 100048, People's Republic of China
| | - Yu Zhang
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jia-Bin Qiao
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hua Jiang
- College of Physics, Optoelectronics and Energy and Institute for Advanced Study, Soochow University, Suzhou 215006, People's Republic of China
| | - Haiwen Liu
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
48
|
Othman HO, Salehnia F, Fakhri N, Hassan R, Hosseini M, Faizullah A, Ganjali MR, Kazem Aghamir SM. A highly sensitive fluorescent immunosensor for sensitive detection of nuclear matrix protein 22 as biomarker for early stage diagnosis of bladder cancer. RSC Adv 2020; 10:28865-28871. [PMID: 35520044 PMCID: PMC9055858 DOI: 10.1039/d0ra06191c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
A novel strategy is reported for highly sensitive, rapid, and selective detection of nuclear matrix protein NMP22 using two-color quantum dots based on fluorescence resonance energy transfer (FRET). Quantum dots (QDs) are highly advantageous for biological imaging and analysis, particularly when combined with (FRET) properties of semiconductor quantum dot (QDs) are ideal for biological analysis to improve sensitivity and accuracy. In this FRET system narrowly dispersed green emitting quantum dot CdTe core is used as a donor and labelled by monoclonal (mAb) antibody, while orange emitting quantum dot CdTe/CdS core shell is used as an accepter and labelled by polyclonal (pAb) antibody. The quantum dots are labelled by antibodies using EDC/NHS as crosslinking agent. Bovine serum albumin (BSA) solution was added to block nonspecific binding sites. The fluorescence intensity of QDs accepter decreased linearly with the increasing concentrations of NMP22 from 2-22 pg mL-1 due to FRET system and fluoroimmunoassay reaction. This method has good regression coefficient (R 2 = 0.998) and detection limit was 0.05 pg mL-1. The proposed FRET-based immunosensor provides a quick, simple and sensitive immunoassay tool for protein detection, and can be considered as a promising approach for clinical applications. The proposed FRET-based immunosensor provides a quick, simple and sensitive immunoassay tool for protein detection, and can be considered as a promising approach for clinical applications.
Collapse
Affiliation(s)
- Hazha Omar Othman
- Chemistry Department, College of Science, Salahaddin University-Erbil Iraq
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran Tehran 1417614418 Iran
| | - Foad Salehnia
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran Tehran 1417614418 Iran
| | - Neda Fakhri
- School of Chemical Engineering, College of Engineering, University of Tehran Tehran 1417614418 Iran
| | - Rebwar Hassan
- Chemistry Department, College of Science, Salahaddin University-Erbil Iraq
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran Tehran 1417614418 Iran
- Medicinal Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Azad Faizullah
- Chemistry Department, College of Science, Salahaddin University-Erbil Iraq
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran Tehran 1417614418 Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences Tehran 1417614418 Iran
| | | |
Collapse
|
49
|
Guo J, Fu Y, Lu M, Zhang X, Kershaw SV, Zhang J, Luo S, Li Y, Yu WW, Rogach AL, Zhang L, Bai X. Cd-Rich Alloyed CsPb 1- x Cd x Br 3 Perovskite Nanorods with Tunable Blue Emission and Fermi Levels Fabricated through Crystal Phase Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000930. [PMID: 32775167 PMCID: PMC7404144 DOI: 10.1002/advs.202000930] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Indexed: 05/23/2023]
Abstract
One-dimensional semiconductor nanostructures have already been used for a variety of optoelectronic applications. Metal halide perovskites have emerged in recent years as promising high-performance optoelectronic materials, but reports on 1D nanorods (NRs) of all-inorganic halide perovskites are still scarce. This work demonstrates a synthetic strategy toward cesium-based inorganic perovskite NRs by exploiting composition-controlled crystal phase engineering. It is accomplished for Cd-rich mixed-cation CsPb1- x Cd x Br3 nanocrystals, where the initial 1D hexagonal perovskite phase drives the growth of the 1D NRs, as supported by first-principles calculations. The band gaps of the resulting NRs are tunable by varying the Cd-content, and the highly uniform CsPb0.08Cd0.92Br3 NRs (with an average length of 84 nm and width of 16 nm) exhibit a true blue-color emission centered at 460 nm, with a high quantum yield of 48%. Moreover, this work also demonstrates the tunability of the Fermi levels in the films made of CsPb1- x Cd x Br3 alloyed nanocrystals, where samples with highest Cd content show an increase of the electron concentration and a related increase in the conductivity.
Collapse
Affiliation(s)
- Jie Guo
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials andCollege of PhysicsJilin UniversityChangchun130012China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Xiaoyu Zhang
- State Key Laboratory of Integrated OptoelectronicsKey Laboratory of Automobile Materials of MOE and College of Materials Science and EngineeringJilin UniversityChangchun130012China
| | - Stephen V. Kershaw
- Department of Materials Science and EngineeringCentre for Functional Photonics (CFP)City University of Hong KongHong Kong SARChina
| | - Jia Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| | - Shulin Luo
- State Key Laboratory of Integrated OptoelectronicsKey Laboratory of Automobile Materials of MOE and College of Materials Science and EngineeringJilin UniversityChangchun130012China
| | - Yanxiu Li
- Department of Materials Science and EngineeringCentre for Functional Photonics (CFP)City University of Hong KongHong Kong SARChina
| | - William W. Yu
- Department of Chemistry and PhysicsLouisiana State UniversityShreveportLA71115USA
| | - Andrey L. Rogach
- Department of Materials Science and EngineeringCentre for Functional Photonics (CFP)City University of Hong KongHong Kong SARChina
| | - Lijun Zhang
- State Key Laboratory of Integrated OptoelectronicsKey Laboratory of Automobile Materials of MOE and College of Materials Science and EngineeringJilin UniversityChangchun130012China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and EngineeringJilin UniversityChangchun130012China
| |
Collapse
|
50
|
Sadeghi S, Bahmani Jalali H, Srivastava SB, Melikov R, Baylam I, Sennaroglu A, Nizamoglu S. High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. iScience 2020; 23:101272. [PMID: 32590328 PMCID: PMC7322176 DOI: 10.1016/j.isci.2020.101272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 02/01/2023] Open
Abstract
Colloidal quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs). For their widespread use, they need to simultaneously satisfy non-toxic material content, low reabsorption, high photoluminescence quantum yield, and large-scale production. Here, copper doping of zinc carboxylate-passivated InP core and nano-engineering of ZnSe shell facilitated high in-device quantum efficiency of QDs over 80%, having well-matched spectral emission profile with the photo-response of silicon solar cells. The optimized QD-LSCs showed an optical quantum efficiency of 37% and an internal concentration factor of 4.7 for a 10 × 10-cm2 device area under solar illumination, which is comparable with the state-of-the-art LSCs based on cadmium-containing QDs and lead-containing perovskites. Synthesis of the copper-doped InP/ZnSe QDs in gram-scale and large-area deposition (3,000 cm2) onto commercial window glasses via doctor-blade technique showed their scalability for mass production. These results position InP-based QDs as a promising alternative for efficient solar energy harvesting. The luminescent solar concentrators based on copper-doped InP QDs are demonstrated Efficient excitation transfer led to the exceptionally high in-film PLQY of 81.2% The LSCs based on copper-doped QDs showed the optical quantum efficiency of 37% The gram-scale synthesis of QDs led to the fabrication of large-area LSCs (3,000 cm2)
Collapse
Affiliation(s)
- Sadra Sadeghi
- Graduate School of Materials Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Houman Bahmani Jalali
- Department of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Isinsu Baylam
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
| | - Alphan Sennaroglu
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey; Laser Research Laboratory, Departments of Physics and Electrical-Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Graduate School of Materials Science and Engineering, Koç University, Istanbul 34450, Turkey; Department of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey; Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey.
| |
Collapse
|