1
|
Zhu T, Chen X, Zhu Z, Tan L, Yuan H, Wu J, Zhu C, Xu J. In Situ Synthesis of Nitrogen-Doped Carbon Coated Copper: Boosting Superhydrophobicity, Conductivity, and Oxidation Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68703-68711. [PMID: 39586021 DOI: 10.1021/acsami.4c16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Copper (Cu), known for its excellent electrical and thermal conductivity, faces significant challenges due to its susceptibility to oxidation, which leads to the formation of nonconductive oxide layers that impair its performance. We present an in situ thermal reduction method to synthesize nitrogen-doped carbon coated copper (NC@Cu) with enhanced oxidation and corrosion resistance. Using a stable, nontoxic, and cost-effective dopamine derivative, catechol (CA), and phenylenediamine, we developed a polydopamine-like (PDL) coating on copper oxide (CuO). Upon pyrolysis under an inert atmosphere, this coating transforms into a nitrogen-doped carbon layer, while simultaneously reducing CuO to metallic Cu in a stepwise process, initially forming Cu2O and then fully reducing to Cu. The resulting NC@Cu exhibits remarkable superhydrophobicity, enhanced conductivity, and exceptional resistance to oxidation and corrosion, attributed to the protective dense carbon layer. This study provides insights into the synergistic processes of PDL conversion into nitrogen-doped carbon and CuO reduction to Cu, offering a straightforward and practical passivation method for producing electrically conductive and oxidation-resistant copper with potential applications in harsh environments.
Collapse
Affiliation(s)
- Tang Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| | - Xiaochun Chen
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| | - Zijuan Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| | - Liru Tan
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| | - Huixin Yuan
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| | - Jiayi Wu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| | - Caizhen Zhu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| | - Jian Xu
- Institute of Low-dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University. Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
2
|
Jiang Z, Clavaguéra C, Denisov SA, Ma J, Mostafavi M. Role of Oxide-Derived Cu on the Initial Elementary Reaction Intermediate During Catalytic CO 2 Reduction. J Am Chem Soc 2024; 146:30164-30173. [PMID: 39453838 DOI: 10.1021/jacs.4c08603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
The catalytic role of oxide-derived Cu (OD-Cu) in promoting CO2 reduction (CO2R) to C2+ products has been appreciated for decades. However, the dynamic evolution of the surface oxidation states, together with their real correlation to the binding of reaction intermediates, remains unclear due to technical challenges. Here, we show the time-resolved spectroscopic signatures of key OD-Cu-CO2•- intermediates during catalytic CO2 reduction through one electron transfer from nanoseconds to seconds time scale. We generated the initial intermediate CO2•- radicals in the bulk solution and monitored the interfacial reaction kinetics with well-defined OD-Cu (Cu(0), Cu(I), and Cu(II)) nanoparticles. Combined with molecular simulations, transient absorption profiles analysis reveals that Cu(I) induced a faster CO2•- radical coupling reaction than Cu(0), whereas Cu(II) is only reduced to Cu(I) by the CO2•- radical. Furthermore, the newly developed multistep cumulative pulse methodology uncovered the transition in chemical states of mixed OD-Cu during radical coupling reactions. This pulse radiolysis study provides compelling evidence for the beneficial role of subsurface oxides in early time catalytic CO2 transformation.
Collapse
Affiliation(s)
- Zhiwen Jiang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Université Paris-Saclay, CNRS, Institute de Chimie Physique, UMR8000, Orsay 91405, France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institute de Chimie Physique, UMR8000, Orsay 91405, France
| | - Sergey A Denisov
- Université Paris-Saclay, CNRS, Institute de Chimie Physique, UMR8000, Orsay 91405, France
| | - Jun Ma
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mehran Mostafavi
- Université Paris-Saclay, CNRS, Institute de Chimie Physique, UMR8000, Orsay 91405, France
| |
Collapse
|
3
|
Nishimura T, Hashimoto M, Yamada K, Iwata R, Tateda K. The precipitate structure of copper-based antibacterial and antiviral agents enhances their longevity for kitchen use. NPJ Sci Food 2024; 8:83. [PMID: 39448621 PMCID: PMC11502883 DOI: 10.1038/s41538-024-00324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
The transmission of bacteria through cooking surfaces, the handles of hot plates, and cookware that is not cleaned frequently can pose a problem. In this study, a copper ion-based mixed solution (CBMS) containing only inorganic ions with controlled acidity was assessed as a new antibacterial and antiviral agent. We analysed the structure of the precipitates, and various deposits measuring a few micrometres were observed on the substrates. We have defined these deposits as strongly bonded scaly copper dispersion (SBSCD) structures.The antibacterial copper component of the liquid agent changed over time after application; this mechanism appears to be responsible for the maintenance of antibacterial performance.CBMS demonstrates high safety for the human body and can be applied to stainless steel materials used in kitchens and tables. It exhibits a sustained antibacterial effect over time, and its antibacterial properties can be continuously maintained.
Collapse
Affiliation(s)
- Takashi Nishimura
- Saitama Industrial Promotion Public Corporation, Shintoshin Business Exchange Plaza 3F, 2-3-2 Kamiochiai, Chuo-ku, Saitama City, Saitama Prefecture, 338-0001, Japan.
| | - Masami Hashimoto
- Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, 456-8587, Japan
| | - Kageto Yamada
- Department of Microbiology and Infection Diseases, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, 1143-8540, Japan
| | - Ryuji Iwata
- Department of Technology Management for Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infection Diseases, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo, 1143-8540, Japan
| |
Collapse
|
4
|
Lin W, Wu S, Tang T, Liao Y, Miao W, Shi Z, Wu X. Tuning metal atom doped interface of electrospinning nanowires to toward fast bioelectrocatalysis. Bioelectrochemistry 2024; 157:108664. [PMID: 38330529 DOI: 10.1016/j.bioelechem.2024.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Metal doping plays a key role in overcoming inefficient extracellular electron transfer between electrode interface and electricity-producing microorganisms. However, it is unknown whether different metals play distinctive roles in the doping process. Herein, three different metal ions (Fe, Ni and Cu) are added to the spinning precursor to obtain the corresponding electrospinning metal doped carbon nanofibers. It is found that the maximum output power of iron doped carbon nanofiber anode is 641.96 mW m-2, which is better than that of nickel doped carbon nanofiber (411.26 mW m-2) and copper doped carbon nanofiber (336.01 mW m-2), as well as 7.62 times higher than that of CNF. The results proved that due to the various number and types of active sites formed, as well as the distinction in surface morphology and structure, the electronegativity of each material is different. The different bio-abiotic interface could affect the direct contact between the anode interface and the extracellular protein of electricity producing microorganisms, which leading to a significant gap in the improvement of bioelectrocatalytic performance of different metal anode materials. This work provides a synthetic idea for designing highly efficient anode materials with directional metal modification and interface regulation.
Collapse
Affiliation(s)
- Wen Lin
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Shuang Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Tianyu Tang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Yongquan Liao
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Wenting Miao
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China
| | - Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China.
| | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, PR China.
| |
Collapse
|
5
|
Bartolucci SF, Leff AC, Maurer JA. Gold-copper oxide core-shell plasmonic nanoparticles: the effect of pH on shell stability and mechanistic insights into shell formation. NANOSCALE ADVANCES 2024; 6:2499-2507. [PMID: 38694468 PMCID: PMC11059517 DOI: 10.1039/d3na01000g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/12/2024] [Indexed: 05/04/2024]
Abstract
Plasmonic nanoparticles play an important role in applications for chemical sensing, catalysis, medicine, and biosensing. The localized surface plasmon resonance (LSPR) of a nanoparticle is determined by factors such as size, shape, and the local dielectric environment. Here, we report a simple colloidal synthesis method to create core-shell plasmonic nanoparticles with a gold core and a copper oxide (Cu2O) shell. The gold cores are particles of various shapes and sizes, including nanorods, nanobipyramids, and nanoshells, and the Cu2O shell is on the order of 30-40 nm thick. The growth of the oxide shell red shifts the plasmonic absorption of the gold core particle by up to 250 nanometers, resulting in a particle that can absorb into the near-infrared (NIR). Additionally, we report the unique ability to immediately remove and regrow the oxide shell by simple changes to the solution pH. We demonstrate the repeated dissolution and nucleation of the oxide shell through the addition of an acid and a base, respectively. The process is confirmed by characterization using Ultraviolet-Visible-Near-IR (UV-Vis-NIR) spectroscopy and electron microscopy of the particles. After several iterations of this process, we report the formation of large Cu2O spheres, where Cu2O nucleation on other Cu2O particles is favored over the gold nanoparticles. In addition, we provide insight into the role of ligands in shell formation.
Collapse
Affiliation(s)
- Stephen F Bartolucci
- US Army Combat Capabilities Development Command Armaments Center Watervliet NY 12189 USA
| | - Asher C Leff
- US Army Research Directorate, Combat Capabilities Development Command, Army Research Laboratory Adelphi MD 20783 USA
- General Technical Services, LLC, Wall NJ 07727 USA
| | - Joshua A Maurer
- US Army Combat Capabilities Development Command Armaments Center Watervliet NY 12189 USA
| |
Collapse
|
6
|
Zhang K, Chen X, Chuai M, Zhang M. Structure-dependent spin-polarized electron transport in twin-crystal Cu 1-xEu xO semiconductors. Phys Chem Chem Phys 2024; 26:10101-10110. [PMID: 38483191 DOI: 10.1039/d3cp05466g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this work, Eu-doped twin copper oxide (twin Cu1-xEuxO) was synthesized using the gas-liquid phase chemical deposition method in combination with high-temperature oxidation. The incorporation of Eu3+ ions was affected by their diffusivity and the related charge trapping mechanisms. The twin Cu1-xEuxO configuration exhibited significant room-temperature ferromagnetism. From our analysis, it was demonstrated that as the Eu3+ doping concentration increased, the saturation magnetization first increased and then gradually decreased, reaching a peak at 0.82 at%. A p-type to an n-type semiconducting transition was also recorded as the doping concentration increased. A significant anomalous Hall effect characterized by a maximum anomalous Hall coefficient of 1.65, and a maximum Hall conductivity mobility of 16.50 Ohm-1 cm-1 and 250.59 cm2 v-1 s-1, respectively, were derived for the twin Cu1-xEuxO, doped with 0.82 at% at room temperature. First-principles computational simulations were also conducted to elucidate the underlying mechanisms of the magnetic properties, the p-type to n-type transition, and the interplay between the spin-polarized states associated with 4f and carriers. In twin Cu1-xEuxO, the anomalous Hall effect originated from the contribution of the edge-to-jump scattering mechanism. The latter can be significantly enhanced by doping with Eu atoms, which yields the manifestation of the oblique scattering mechanism. Our work paves the way for the development of twin Cu1-xEuxO material structures, which emerge as an ideal candidate for future spintronic applications.
Collapse
Affiliation(s)
- Kewei Zhang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.
| | - Xi Chen
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.
| | - Mingyan Chuai
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Mindu Innovation Laboratory), Fuzhou 350108, Peoples's Republic of China.
- Chinese Academy of Sciences, Fujian Institute of Research on the Structure Matter, State Key Laboratory of Structural Chemistry, Fuzhou 350002, Peoples's Republic of China
| | - Mingzhe Zhang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
7
|
Mohanapandian K, Ponnarasan V, Thirupathy J. An investigation on structural, dielectric and optical properties of pure and Fe-doped CuO nanoparticles for optoelectronic device applications. OPTICAL AND QUANTUM ELECTRONICS 2024; 56:347. [DOI: 10.1007/s11082-023-05977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 12/13/2024]
|
8
|
Bai J, Yang Z, Wang Q. Capacitance-soaring phenomenon induced by CuO electrode reconstruction with metastable Cu(OH) 2 nanowires. Chem Commun (Camb) 2024; 60:2030-2033. [PMID: 38284660 DOI: 10.1039/d3cc05960j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metastable Cu(OH)2 nanowire precursors are reconstructed to interconnected CuO nanosheets through cyclic voltammetry. The capacitance retention rate of the electrode increases to 320% of its original value at a current density of 60 mA cm-2 after 10 000 charge and discharge cycles, and a strange capacitance-soaring phenomenon occurs. Thus, it can be inferred that the structural reconstruction and phase transition of the metastable phase of the electrode during the electrochemical process may also improve the electrochemical performance, which necessitates the reconsideration of the non-stable state of the electrode. Furthermore, it should not be uniformly labeled as unacceptable.
Collapse
Affiliation(s)
- Jie Bai
- School of Aeronautics, Chongqing Jiaotong University, Chongqing 400074, P. R. China.
- Chongqing Key Laboratory of Green Aviation Energy and Power, The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing 401120, P. R. China
| | - Zhenhuai Yang
- Laboratory of Microwave and Vacuum Technology, Jihua Laboratory, Foshan 528200, P. R. China.
| | - Qiang Wang
- School of Aeronautics, Chongqing Jiaotong University, Chongqing 400074, P. R. China.
- Chongqing Key Laboratory of Green Aviation Energy and Power, The Green Aerotechnics Research Institute of Chongqing Jiaotong University, Chongqing 401120, P. R. China
| |
Collapse
|
9
|
Qing Q, Chen SY, Hu SZ, Li L, Huang T, Zhang N, Wang Y. Highly Efficient Photocatalytic Degradation of Organic Pollutants Using a Polyvinylidene Fluoride/Polyvinylpyrrolidone-Cuprous Oxide Composite Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1447-1460. [PMID: 38175822 DOI: 10.1021/acs.langmuir.3c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Enhancing the efficiency of photocatalysts in the removal of organic pollutants is of vital importance in wastewater treatment. In this work, a set of composite membranes that can be used for efficient removal of the organic dyes, such as methyl orange (MO), methylene blue (MB), and Congo red (CR), were prepared through coblending/electrospinning techniques using polyvinylidene fluoride (PVDF) as the substrate, polyvinylpyrrolidone (PVP) as the dispersing agent and wettability regulator, and cuprous oxide (Cu2O) as the photocatalyst. The results showed that Cu2O particles were well encapsulated in the electrospun PVDF/PVP fibers, and the composite membranes exhibited apparently enhanced hydrophilicity. Furthermore, compared with the pure Cu2O particles, the composite membranes not only showed a higher photocatalytic degradation ratio for MO (93.6%) but also showed a much higher degradation rate (62.4 mg/(mg·h)) in comparison with the other reported Cu2O-based composite photocatalytic materials in the literature. In addition, the membrane sample also had excellent recycling stability, and the retention rate of its removal ability maintained 92.1% after 5 times of recycling. Furthermore, the composite membranes also showed high removal ability toward MB and CR, with photocatalytic degradation ratios of 81.4 and 76.1%, respectively. This work indicates that the prepared PVDF/PVP-Cu2O composite membranes possess promising application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Qing Qing
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shang-Yu Chen
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shao-Zhong Hu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Li
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
10
|
Wang Y, Sang X, Wu F, Pang Y, Xu G, Yuan Y, Hsu HY, Niu W. Boosting plasmon-enhanced electrochemistry by in situ surface cleaning of plasmonic nanocatalysts. NANOSCALE 2023; 15:18901-18909. [PMID: 37975296 DOI: 10.1039/d3nr04606k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The application of surface plasmons in heterogeneous catalysis has attracted widespread attention due to their promising potential for harvesting solar energy. The effect of surface adsorbates on catalysts has been well documented in many traditional reactions; nonetheless, their role in plasmonic catalysis has been rarely studied. In this study, an in situ electrochemical surface cleaning strategy is developed and the influence of surface adsorbates on plasmon-enhanced electrochemistry is investigated. Taking Au nanocubes as an example, plasmonic catalysts with clean surfaces are obtained by Cu2O coating and in situ electrochemical etching. During this process, the surface adsorbates of Au nanocubes are removed together with the Cu2O shells. The Au nanocubes with clean surfaces exhibit remarkable performance in plasmon-enhanced electrooxidation of glucose and an enhancement of 445% is demonstrated. The Au NCs with clean surfaces can not only provide more active sites but also avoid halides as hole scavengers, and therefore, the efficient utilization of hot holes by plasmonic excitation is achieved. This process is also generalized to other molecules and applied in electrochemical sensing with high sensitivity. These results highlight the critical role of surface adsorbates in plasmonic catalysis and may forward the design of efficient plasmonic catalysts for plasmon-enhanced electrochemistry.
Collapse
Affiliation(s)
- Yu Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Xueqing Sang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Yuanhao Pang
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
| | - Hsien-Yi Hsu
- School of Energy and Environment, Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China.
| |
Collapse
|
11
|
De Carlo I, Baudino L, Klapetek P, Serrapede M, Michieletti F, De Leo N, Pirri F, Boarino L, Lamberti A, Milano G. Electrical and Thermal Conductivities of Single Cu xO Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2822. [PMID: 37947669 PMCID: PMC10648451 DOI: 10.3390/nano13212822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Copper oxide nanowires (NWs) are promising elements for the realization of a wide range of devices for low-power electronics, gas sensors, and energy storage applications, due to their high aspect ratio, low environmental impact, and cost-effective manufacturing. Here, we report on the electrical and thermal properties of copper oxide NWs synthetized through thermal growth directly on copper foil. Structural characterization revealed that the growth process resulted in the formation of vertically aligned NWs on the Cu growth substrate, while the investigation of chemical composition revealed that the NWs were composed of CuO rather than Cu2O. The electrical characterization of single-NW-based devices, in which single NWs were contacted by Cu electrodes, revealed that the NWs were characterized by a conductivity of 7.6 × 10-2 S∙cm-1. The effect of the metal-insulator interface at the NW-electrode contact was analyzed by comparing characterizations in two-terminal and four-terminal configurations. The effective thermal conductivity of single CuO NWs placed on a substrate was measured using Scanning Thermal Microscopy (SThM), providing a value of 2.6 W∙m-1∙K-1, and using a simple Finite Difference model, an estimate for the thermal conductivity of the nanowire itself was obtained as 3.1 W∙m-1∙K-1. By shedding new light on the electrical and thermal properties of single CuO NWs, these results can be exploited for the rational design of a wide range of optoelectronic devices based on NWs.
Collapse
Affiliation(s)
- Ivan De Carlo
- Advanced Materials Metrology and Life Sciences Division, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy; (I.D.C.); (F.M.); (N.D.L.); (L.B.)
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy
| | - Luisa Baudino
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (L.B.); (M.S.); (A.L.)
| | - Petr Klapetek
- Czech Metrology Institute, Okružní 31, 638 00 Brno, Czech Republic;
| | - Mara Serrapede
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (L.B.); (M.S.); (A.L.)
| | - Fabio Michieletti
- Advanced Materials Metrology and Life Sciences Division, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy; (I.D.C.); (F.M.); (N.D.L.); (L.B.)
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (L.B.); (M.S.); (A.L.)
| | - Natascia De Leo
- Advanced Materials Metrology and Life Sciences Division, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy; (I.D.C.); (F.M.); (N.D.L.); (L.B.)
| | - Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (L.B.); (M.S.); (A.L.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia (IIT), 10144 Turin, Italy
| | - Luca Boarino
- Advanced Materials Metrology and Life Sciences Division, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy; (I.D.C.); (F.M.); (N.D.L.); (L.B.)
| | - Andrea Lamberti
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (L.B.); (M.S.); (A.L.)
- Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia (IIT), 10144 Turin, Italy
| | - Gianluca Milano
- Advanced Materials Metrology and Life Sciences Division, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy; (I.D.C.); (F.M.); (N.D.L.); (L.B.)
| |
Collapse
|
12
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
13
|
Huang X, Kong D, Ma Y, Luo B, Wang B, Zhi L. An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO 2 to ethanol. FUNDAMENTAL RESEARCH 2023; 3:786-795. [PMID: 38933297 PMCID: PMC11197807 DOI: 10.1016/j.fmre.2021.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 10/19/2022] Open
Abstract
Electrochemically reducing CO2 to ethanol is attractive but suffers from poor selectivity. Tandem catalysis that integrates the activation of CO2 to an intermediate using one active site and the subsequent formation of hydrocarbons on the other site offers a promising approach, where the control of the intermediate transfer between different catalytic sites is challenging. We propose an internally self-feeding mechanism that relies on the orientation of the mass transfer in a hierarchical structure and demonstrate it using a one-dimensional (1D) tandem core-shell catalyst. Specifically, the carbon-coated Ni-core (Ni/C) catalyzes the transformation of CO2-to-CO, after which the CO intermediates are guided to diffuse to the carbon-coated Cu-shell (Cu/C) and experience the selective reduction to ethanol, realizing the orientated key intermediate transfer. Results show that the Faradaic efficiency for ethanol was 18.2% at -1 V vs. RHE (VRHE) for up to 100 h. The following mechanism study supports the hypothesis that the CO2 reduction on Ni/C generates CO, which is further reduced to ethanol on Cu/C sites. Density functional theory calculations suggest a combined effect of the availability of CO intermediate in Ni/C core and the dimerization of key *CO intermediates, as well as the subsequent proton-electron transfer process on the Cu/C shell.
Collapse
Affiliation(s)
- Xiaoxiong Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Linjie Zhi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of New Energy, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
14
|
Alcorn FM, van der Veen RM, Jain PK. In Situ Electron Microscopy of Transformations of Copper Nanoparticles under Plasmonic Excitation. NANO LETTERS 2023. [PMID: 37399502 DOI: 10.1021/acs.nanolett.3c01474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Metal nanoparticles are attracting interest for their light-absorption properties, but such materials are known to dynamically evolve under the action of chemical and physical perturbations, resulting in changes in their structure and composition. Using a transmission electron microscope equipped for optical excitation of the specimen, the structural evolution of Cu-based nanoparticles under simultaneous electron beam irradiation and plasmonic excitation was investigated with high spatiotemporal resolution. These nanoparticles initially have a Cu core-Cu2O oxide shell structure, but over the course of imaging, they undergo hollowing via the nanoscale Kirkendall effect. We captured the nucleation of a void within the core, which then rapidly grows along specific crystallographic directions until the core is hollowed out. Hollowing is triggered by electron-beam irradiation; plasmonic excitation enhances the kinetics of the transformation likely by the effect of photothermal heating.
Collapse
Affiliation(s)
- Francis M Alcorn
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Renske M van der Veen
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Cowie BE, Häfele L, Phanopoulos A, Said SA, Lee JK, Regoutz A, Shaffer MSP, Williams CK. Matched Ligands for Small, Stable Colloidal Nanoparticles of Copper, Cuprous Oxide and Cuprous Sulfide. Chemistry 2023; 29:e202300228. [PMID: 37078972 PMCID: PMC10947121 DOI: 10.1002/chem.202300228] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/21/2023]
Abstract
This work applies organometallic routes to copper(0/I) nanoparticles and describes how to match ligand chemistries with different material compositions. The syntheses involve reacting an organo-copper precursor, mesitylcopper(I) [CuMes]z (z=4, 5), at low temperatures and in organic solvents, with hydrogen, air or hydrogen sulfide to deliver Cu, Cu2 O or Cu2 S nanoparticles. Use of sub-stoichiometric quantities of protonated ligand (pro-ligand; 0.1-0.2 equivalents vs. [CuMes]z ) allows saturation of surface coordination sites but avoids excess pro-ligand contaminating the nanoparticle solutions. The pro-ligands are nonanoic acid (HO2 CR1 ), 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (HO2 CR2 ) or di(thio)nonanoic acid, (HS2 CR1 ), and are matched to the metallic, oxide or sulfide nanoparticles. Ligand exchange reactions reveal that copper(0) nanoparticles may be coordinated by carboxylate or di(thio)carboxylate ligands, but Cu2 O is preferentially coordinated by carboxylate ligands and Cu2 S by di(thio)carboxylate ligands. This work highlights the opportunities for organometallic routes to well-defined nanoparticles and the need for appropriate ligand selection.
Collapse
Affiliation(s)
- Bradley E. Cowie
- Department of ChemistryUniversity of Oxford, Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Lisa Häfele
- Department of ChemistryUniversity of Oxford, Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Andreas Phanopoulos
- Department of ChemistryUniversity of Oxford, Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
- Department of Chemistry, Department of MaterialsImperial College LondonLondonSW7 2AZUK
| | - Said A. Said
- Department of ChemistryUniversity of Oxford, Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Ja Kyung Lee
- Department of Chemistry, Department of MaterialsImperial College LondonLondonSW7 2AZUK
| | - Anna Regoutz
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Milo S. P. Shaffer
- Department of Chemistry, Department of MaterialsImperial College LondonLondonSW7 2AZUK
| | - Charlotte K. Williams
- Department of ChemistryUniversity of Oxford, Chemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
16
|
Cheng W, Liu J, Hu J, Peng W, Niu G, Li J, Cheng Y, Feng X, Fang L, Wang MS, Redfern SAT, Tang M, Wang G, Gou H. Pressure-Stabilized High-Entropy (FeCoNiCuRu)S 2 Sulfide Anode toward Simultaneously Fast and Durable Lithium/Sodium Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301915. [PMID: 37189236 DOI: 10.1002/smll.202301915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Pressure-stabilized high-entropy sulfide (FeCoNiCuRu)S2 (HES) is proposed as an anode material for fast and long-term stable lithium/sodium storage performance (over 85% retention after 15 000 cycles @10 A g-1 ). Its superior electrochemical performance is strongly related to the increased electrical conductivity and slow diffusion characteristics of entropy-stabilized HES. The reversible conversion reaction mechanism, investigated by ex-situ XRD, XPS, TEM, and NMR, further confirms the stability of the host matrix of HES after the completion of the whole conversion process. A practical demonstration of assembled lithium/sodium capacitors also confirms the high energy/power density and long-term stability (retention of 92% over 15 000 cycles @5 A g-1 ) of this material. The findings point to a feasible high-pressure route to realize new high-entropy materials for optimized energy storage performance.
Collapse
Affiliation(s)
- Wenbo Cheng
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Jie Liu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Jun Hu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Wenfeng Peng
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Guoliang Niu
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
- Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China
| | - Junkai Li
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Yong Cheng
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaolei Feng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Leiming Fang
- Key Laboratory for Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, Sichuan, 621999, China
| | - Ming-Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Simon A T Redfern
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mingxue Tang
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| | - Gongkai Wang
- School of Material Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Huiyang Gou
- Center for High Pressure Science & Technology Advanced Research, Beijing, 100193, China
| |
Collapse
|
17
|
Kendall O, Melendez LV, Ren J, Ratnayake SP, Murdoch BJ, Mayes ELH, van Embden J, Gómez DE, Calzolari A, Della Gaspera E. Photoactive p-Type Spinel CuGa 2O 4 Nanocrystals. NANO LETTERS 2023; 23:2974-2980. [PMID: 36975136 DOI: 10.1021/acs.nanolett.3c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein we report the synthesis and characterization of spinel copper gallate (CuGa2O4) nanocrystals (NCs) with an average size of 3.7 nm via a heat-up colloidal reaction. CuGa2O4 NCs have a band gap of ∼2.5 eV and marked p-type character, in agreement with ab initio simulations. These novel NCs are demonstrated to be photoactive, generating a clear and reproducible photocurrent under blue light irradiation when deposited as thin films. Crucially, the ability to adjust the Cu/Ga ratio within the NCs, and the effect of this on the optical and electronic properties of the NCs, was also demonstrated. These results position CuGa2O4 NCs as a novel material for optoelectronic applications, including hole transport and light harvesting.
Collapse
Affiliation(s)
- Owen Kendall
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | - Lesly V Melendez
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | - Jiawen Ren
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | | | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3000, VIC, Australia
| | - Edwin L H Mayes
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne 3000, VIC, Australia
| | - Joel van Embden
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | - Daniel E Gómez
- School of Science, RMIT University, Melbourne 3000, VIC, Australia
| | | | | |
Collapse
|
18
|
Yun J, Kang D, Ramkumar R, Kim D, Lee SJ, Yun Y, Kim WK, Park NK, Kim M. Enhanced desulfurization performance of copper aerogel-based absorbents. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
19
|
Proniewicz E. Metallic nanoparticles as effective sensors of bio-molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122207. [PMID: 36502763 DOI: 10.1016/j.saa.2022.122207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This work describes biologically important nanostructures of metals (AgNPs, AuNPs, and PtNPs) and metal oxides (Cu2ONPs, CuONSs, γ-Fe2O3NPs, ZnONPs, ZnONPs-GS, anatase-TiO2NPs, and rutile-TiO2NPs) synthesized by different methods (wet-chemical, electrochemical, and green-chemistry methods). The nanostructures were characterized by molecular spectroscopic methods, including scanning/transmission electron microscopy (SEM/TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-vis), dynamic light scattering (DLS), Raman scattering spectroscopy (RS), and infrared light spectroscopy (IR). Then, a peptide (bombesin, BN) was adsorbed onto the surface of these nanostructures from an aqueous solution with pH of 7 that did not contain surfactants. Adsorption was monitored using surface-enhanced Raman scattering spectroscopy (SERS) to determine the influence of the nature of the metal surface and surface evolution on peptide geometry. Information from the SERS studies was compared with information on the biological activity of the peptide. The SERS enhancement factor was determined for each of the metallic surfaces.
Collapse
Affiliation(s)
- E Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland.
| |
Collapse
|
20
|
Liu Q, Peng Y, Masood Z, DuBois D, Tressel J, Nichols F, Ashby P, Mercado R, Assafa T, Pan D, Kuo HL, Lu JQ, Bridges F, Millhauser G, Ge Q, Chen S. Stable Cuprous Hydroxide Nanostructures by Organic Ligand Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208665. [PMID: 36462218 PMCID: PMC9975062 DOI: 10.1002/adma.202208665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Copper compounds have been extensively investigated for diverse applications. However, studies of cuprous hydroxide (CuOH) have been scarce due to structural metastability. Herein, a facile, wet-chemistry procedure is reported for the preparation of stable CuOH nanostructures via deliberate functionalization with select organic ligands, such as acetylene and mercapto derivatives. The resulting nanostructures are found to exhibit a nanoribbon morphology consisting of small nanocrystals embedded within a largely amorphous nanosheet-like scaffold. The acetylene derivatives are found to anchor onto the CuOH forming CuC linkages, whereas CuS interfacial bonds are formed with the mercapto ligands. Effective electronic coupling occurs at the ligand-core interface in the former, in contrast to mostly non-conjugated interfacial bonds in the latter, as manifested in spectroscopic measurements and confirmed in theoretical studies based on first principles calculations. Notably, the acetylene-capped CuOH nanostructures exhibit markedly enhanced photodynamic activity in the inhibition of bacteria growth, as compared to the mercapto-capped counterparts due to a reduced material bandgap and effective photocatalytic generation of reactive oxygen species. Results from this study demonstrate that deliberate structural engineering with select organic ligands is an effective strategy in the stabilization and functionalization of CuOH nanostructures, a critical first step in exploring their diverse applications.
Collapse
Affiliation(s)
- Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Yi Peng
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Zaheer Masood
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901
| | - Davida DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - John Tressel
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Forrest Nichols
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Paul Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Rene Mercado
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Tufa Assafa
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Dingjie Pan
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Han-Lin Kuo
- School of Engineering, University of California, 5200 North Lake Road, Merced, California 95343
| | - Jennifer Q. Lu
- School of Engineering, University of California, 5200 North Lake Road, Merced, California 95343
| | - Frank Bridges
- Department of Physics, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Glenn Millhauser
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| | - Qingfeng Ge
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064
| |
Collapse
|
21
|
Pinzari F. The effect of nanocrystalline TiO2 on structure and catalytic activity of CuO–ZnO in combined methanol reforming. REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-023-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AbstractCuO–ZnO (CZ) and CuO–ZnO/TiO2 (CZT) catalysts have been prepared by co-precipitation, characterized by X-ray diffraction, surface area measurements and chemical analysis and tested in the combined methanol reforming reaction. Catalytic tests have been performed in the temperature range 200–400 °C with a GHSV = 55.000 h−1, after H2 reducing pretreatment at 250 °C or 450 °C. It is shown that nanocrystalline TiO2 influences the CuO–ZnO nanosized structure, reducibility and reactivity. TiO2 slightly increases ZnO crystallite size of the fresh catalyst. Moreover, it causes the CuO chemical reduction to nanosized Cu2O on exhaust catalyst pretreated in hydrogen at 250 °C, this improves the reaction with higher methanol conversion and hydrogen production. On the contrary, TiO2 reduces CuO to submicron Cu0 and greatly increases ZnO crystallite size on the exhaust catalyst pretreated in hydrogen at 450 °C, this treatment weakens the reaction, with lower methanol conversion and hydrogen production. In both cases, nanocrystalline TiO2 presence is able to decrease the CO formation: independently of the hydrogen pretreatment temperature. This ability of the nanocrystalline TiO2 is ascribed to the presence of the oxygen vacancies, which act as electron donors that contribute to hinder CO2 and H2 surface adsorption for steric, electrostatic and probabilistic factors.
Collapse
|
22
|
Sahoo K, Varshney N, Das T, Mahto SK, Kumar M. Copper oxide nanoparticle: multiple functionalities in photothermal therapy and electrochemical energy storage. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Park MH, Kim MG, Ma JH, Jeong JH, Ha HJ, Kim W, Park S, Kang SJ. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Solution-Processable Highly Conductive Spinel Structure CuCo 2O 4 Hole Injection Layer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:972. [PMID: 36769979 PMCID: PMC9919813 DOI: 10.3390/ma16030972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Charge imbalance in quantum-dot light-emitting diodes (QLEDs) causes emission degradation. Therefore, many studies focused on improving hole injection into the QLEDs-emitting layer owing to lower hole conductivity compared to electron conductivity. Herein, CuCo2O4 has a relatively higher hole conductivity than other binary oxides and can induce an improved charge balance. As the annealing temperature decreases, the valence band maximum (VBM) of CuCo2O4 shifts away from the Fermi energy level (EF), resulting in an enhanced hole injection through better energy level alignment with hole transport layer. The maximum luminance and current efficiency of the CuCo2O4 hole injection layer (HIL) of the QLED were measured as 93,607 cd/m2 and 11.14 cd/A, respectively, resulting in a 656% improvement in luminous performance of QLEDs compared to conventional metal oxide HIL-based QLEDs. These results demonstrate that the electrical properties of CuCo2O4 can be improved by adjusting the annealing temperature, suggesting that solution-processed spinel can be applied in various optoelectronic devices.
Collapse
Affiliation(s)
- Min Ho Park
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Min Gye Kim
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin Hyun Ma
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jun Hyung Jeong
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyoun Ji Ha
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wonsik Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Soohyung Park
- Advanced Analysis Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seong Jun Kang
- Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea
- Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
24
|
Zhang S, Zhang T, Dong B, Chen J, Meng C. Metal silicates for supercapacitors derived from the multistep treatment of natural green algaes. J Colloid Interface Sci 2023; 630:11-20. [DOI: 10.1016/j.jcis.2022.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
|
25
|
Sanders LM, Nguyen Sorenson AHT, Sultan JA, Hall SB, Anderson HC, Asplund MC, Stowers KJ. Inherent Redox Activity of Titania Support Enhances Catalytic Activity of Highly Dispersed Cu Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lindsey M. Sanders
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | | | - Jack A. Sultan
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | - Seth B. Hall
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | - Hans C. Anderson
- Principal Research Scientist Northrop Grumman R&D Motor Health Management 9160 N. Hwy 83 Promontory Utah 84307 USA
| | - Matthew C. Asplund
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| | - Kara J. Stowers
- Department of Chemistry and Biochemistry Brigham Young University Provo Utah 84604 USA
| |
Collapse
|
26
|
Removal of diclofenac with zinc in the presence of Cu(II) and Co(II): Influence factors, products and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Pamei M, Kumar S, Achumi AG, Puzari A. Supercapacitive amino-functionalized cobalt and copper metal-organic frameworks with varying surface morphologies for energy storage. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Guzman M, Tian W, Walker C, Herrera JE. Copper oxide nanoparticles doped with lanthanum, magnesium and manganese: optical and structural characterization. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220485. [PMID: 36405645 PMCID: PMC9667144 DOI: 10.1098/rsos.220485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Copper oxide (Cu2O) is a promising semiconductor for photovoltaic and photocatalytic applications since this material has a high optical absorption coefficient and lower band gap (2.17 eV). Doped lanthanum (La), magnesium (Mg) and manganese (Mn) Cu2O nanoparticles (Cu2O Nps) were prepared by a displacement reaction. The doped and undoped Cu2O Nps were characterized with scanning electron microscopy-energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy. The EDS results confirm the presence of La, Mg and Mn in the Cu2O Nps. The XRD results confirm the formation a single cubic phase of Cu2O with a cuprite structure. TEM images confirm the formation of Nps with mean diameters between 12.0 ± 6.1 and 30.8 ± 11.0 nm. Doped and undoped Nps present a narrow band gap (2.40 eV), blue shifted with respect to bulk Cu2O.
Collapse
Affiliation(s)
- Maribel Guzman
- Department of Engineering, Pontifical Catholic University of Peru, Avenida Universitaria 1801, Lima 15088, Peru
| | - Wei Tian
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Chantal Walker
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Jose E. Herrera
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada
| |
Collapse
|
29
|
Mukherjee S, Powell AV, Voneshen DJ, Vaqueiro P. Talnakhite: A potential n-type thermoelectric sulphide with low thermal conductivity. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Bin Mobarak M, Hossain MS, Chowdhury F, Ahmed S. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Chen ZY, Zhang LL, Fu XY, Yan B, Yang XL. Synergistic Modification of Fe-Based Prussian Blue Cathode Material Based on Structural Regulation and Surface Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43308-43318. [PMID: 36107796 DOI: 10.1021/acsami.2c11823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Fe-based Prussian blue (Fe-PB) composite is considered as one of the most potential cathode materials for sodium-ion batteries because of its abundant iron resources and high theoretical capacity. However, the crystal water and vacancy in the Fe-PB structure will lead to poor capacity and cycle stability. In this work, a Cu-modified Fe-PB composite (FeCu-PB@CuO) is successfully prepared through regulating the Fe-PB structure by Cu doping and engineering the surface by CuO coating. The density functional theory calculation results confirm that Cu preferentially replaces FeHS in the Fe-PB lattice and Cu doping reduces the bandgap. Our experiment results reveal that CuO coating can provide more active sites, inhibit side reactions, and potentially enhance the activity of FeHS. Due to the synergistic effect of Cu doping and CuO coating, FeCu-PB@CuO has a considerable initial discharge capacity of 123.5 mAh g-1 at 0.1 A g-1. In particular, at 2 A g-1, it delivers an impressive initial capacity of 84.3 mAh g-1, and the capacity decreasing rate of each cycle is only 0.02% over 1500 cycles. Therefore, the synergistic modification strategy of metal ion doping and metal oxide coating has tremendous application potential and can be extended to other electrode materials.
Collapse
Affiliation(s)
- Zhao-Yao Chen
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, China
| | - Lu-Lu Zhang
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xin-Yuan Fu
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang, Hubei 443002, China
| | - Bo Yan
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xue-Lin Yang
- Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
32
|
Kurenkova AY, Yakovleva AY, Saraev AA, Gerasimov EY, Kozlova EA, Kaichev VV. Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3106. [PMID: 36144894 PMCID: PMC9504562 DOI: 10.3390/nano12183106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, we have proposed titania-based photocatalysts modified with copper compounds for hydrogen evolution. Thermal pre-treatment of commercial TiO2 Degussa P25 (DTiO2) and Hombifine N (HTiO2) in the range from 600 to 800 °C was carried out followed by the deposition of copper oxides (1-10 wt. % of Cu). The morphology and chemical state of synthesized photocatalysts were studied using X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and XANES/EXAFS X-ray absorption spectroscopy. Photocatalytic activity was tested in the hydrogen evolution from aqueous solutions of glycerol under ultraviolet (λ = 381 nm) and visible (λ = 427 nm) light. The photocatalysts 2% CuOx/DTiO2 T750 and 5% CuOx/DTiO2 T700 showed the highest activity under UV irradiation (λ = 380 nm), with the rate of H2 evolution at the level of 2.5 mmol (H2) g-1 h-1. Under the visible light irradiation (λ = 427 nm), the highest activity of 0.6 mmol (H2) g-1 h-1 was achieved with the 5% CuOx/DTiO2 T700 photocatalyst. The activity of these photocatalysts is 50% higher than that of the platinized 1% Pt/DTiO2 sample. Thus, it was shown for the first time that a simple heat treatment of a commercial titanium dioxide in combination with a deposition of non-noble metal particles led to a significant increase in the activity of photocatalysts and made it possible to obtain materials that were active in hydrogen production under visible light irradiation.
Collapse
Affiliation(s)
- Anna Yu. Kurenkova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Anastasiya Yu. Yakovleva
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
- Department of Natural Science, Novosibirsk State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Andrey A. Saraev
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Evgeny Yu. Gerasimov
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Ekaterina A. Kozlova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Vasily V. Kaichev
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| |
Collapse
|
33
|
Zheng YL, Dai MD, Yang XF, Yin HJ, Zhang YW. Copper(II)-Doped Two-Dimensional Titanium-Based Metal-Organic Frameworks toward Light-Driven CO 2 Reduction to Value-Added Products. Inorg Chem 2022; 61:13981-13991. [PMID: 36000253 DOI: 10.1021/acs.inorgchem.2c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, metal-organic framework (MOF)-based photocatalysts for an efficient CO2 reduction reaction have drawn wide attention in multidisciplinary fields and sustainable chemistry. In this work, a series of Cu2+-doped two-dimensional Ti-based MOFs were fabricated by a facile in situ solvothermal method. Cu2+ ions were doped in equal proportions and uniformly dispersed in the crystal structure of the MOF matrix. Interestingly, the doping content of Cu2+ ions and the photocatalytic performance displayed an obvious volcanic relationship, the medium-concentration Cu2+-doped sample (T1-2Cu) held the greatest activity with 100% carbonaceous product (CH4 and CO) formation, and the CH4 production rate was 3.7 μmol g-1 h-1 with 93% electron selectivity. The band structure, local electronic structure, carrier separation kinetics, and CO2 adsorption studies demonstrated that the excellent photocatalytic activity of T1-2Cu benefited from the appropriate amount of Cu2+ ion doping: (1) a doping amount of 2 atom % optimized the conduction band position of the MOF substrate and endowed T1-2Cu with strong reduction potential in thermodynamics, (2) doping Cu2+ ions tuned the local electronic environment around titanium oxide clusters and optimized the generation, separation, and migration processes of photoinduced carriers, and (3) the introduction of Cu2+ ions also provided more accessible active sites and more probabilities for the adsorption and activation of CO2 reactants.
Collapse
Affiliation(s)
- Ya-Li Zheng
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng-De Dai
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang-Fei Yang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hai-Jing Yin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ya-Wen Zhang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Qayyum A, Batool Z, Fatima M, Buzdar SA, Ullah H, Nazir A, Jabeen Q, Siddique S, Imran R. Antibacterial and in vivo toxicological studies of Bi 2O 3/CuO/GO nanocomposite synthesized via cost effective methods. Sci Rep 2022; 12:14287. [PMID: 35995797 PMCID: PMC9395419 DOI: 10.1038/s41598-022-17332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this research work, Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites have been synthesized via an eco-friendly green synthesis technique, solgel route and co-precipitation method respectively for the assessment of antibacterial activity as well as in vivo toxicity. The XRD patterns confirm the formation of Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites showing monoclinic structures. Crystallite size and lattice strain are calculated by Scherrer equation, Scherrer plot and Willimson Hall plot methods. Average crystallite size measured for Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites by Scherrer equation, Scherrer plot and WH-plot methods are (5.1, 13.9, 11.5)nm, (5.4, 14.2, 11.3)nm and (5.2, 13.5, 12.0)nm respectively. Optical properties such as absorption peaks and band-gap energies are studied by UV-vis spectroscopy. The FTIR peaks at 513 cm-1, 553 cm-1 and 855 cm-1 confirms the successful synthesis of Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites. The antibacterial activity of synthesized Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposites is examined against two gram-negative (Escherichia coli and pseudomonas) as well as gram-positive bacteria (Bacillus cereus and Staphylococcus aureus) at dose 25 mg/kg and 40 mg/kg by disk diffusion technique. Zone of inhibition for Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO at dose 40 mg/kg against E. coli (gram - ve) are 12 mm, 17 mm and 18 mm respectively and against Pseudomonas (gram - ve) are 28 mm, 19 mm and 21 mm respectively. While the zone of inhibition for Bi2O3/GO and Bi2O3/CuO/GO at dose 40 mg/kg against B. cereus (gram + ve) are 8 mm and 8.5 mm respectively and against S. aureus (gram + ve) are 5 mm and 10.5 mm respectively. These amazing results reveal that Bi2O3, Bi2O3/GO and Bi2O3/CuO/GO nanocomposite as a kind of antibacterial content, have enormous potential for biomedical applications. In addition, the in vivo toxicity of synthesized Bi2O3/CuO/GO nanocomposite is investigated on Swiss Albino mice at dose of 20 mg/kg by evaluating immune response, hematology and biochemistry at the time period of 2, 7, 14 and 30 days. No severe damage is observed in mice during whole treatment. The p value calculated by statistical analysis of hematological and biochemistry tests is nonsignificant which ensures that synthesized nanocomposites are safe and non-toxic as they do not affect mice significantly. This study proves that Bi2O3/CuO/GO nanocomposites are biocompatible and can be explored further for different biomedical applications.
Collapse
Affiliation(s)
- Asifa Qayyum
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahida Batool
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Mahvish Fatima
- Department of Physics, Deanship of Educational Services, Qassim University, P.O.Box 6595, Buraydah, 51452, Saudi Arabia.
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafeez Ullah
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aalia Nazir
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Qaiser Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sofia Siddique
- Department of Physics, University of Engineering and Technology Lahore, Lahore, Pakistan
| | - Rimsha Imran
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
35
|
Li W, Qi K, Lu X, Qi Y, Zhang J, Zhang B, Qi W. Electrochemically Assisted Cycloaddition of Carbon Dioxide to Styrene Oxide on Copper/Carbon Hybrid Electrodes: Active Species and Reaction Mechanism. Chemistry 2022; 28:e202200622. [DOI: 10.1002/chem.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wenze Li
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
| | - Ke Qi
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Xingyu Lu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Yujie Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Jialong Zhang
- College of Science Shenyang University of Chemical Technology Shenyang Liaoning 110142 P. R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning 110016 (P. R. China
- School of Materials Science and Engineering University of Science and Technology of China Shenyang Liaoning 110016 P. R. China
| |
Collapse
|
36
|
Bu J, Wan Q, Deng Z, Liu H, Li T, Zhou C, Zhong S. High-efficient degradation of sulfamethazine by electro-enhanced peroxymonosulfate activation with bimetallic modified Mud sphere catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Dual Responsive Sustainable Cu2O/Cu Nanocatalyst for Sonogashira and Chan-Lam Cross-Coupling Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-022-04060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Broadening the Action Spectrum of TiO2-Based Photocatalysts to Visible Region by Substituting Platinum with Copper. NANOMATERIALS 2022; 12:nano12091584. [PMID: 35564293 PMCID: PMC9105519 DOI: 10.3390/nano12091584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
In this study, TiO2-based photocatalysts modified with Pt and Cu/CuOx were synthesized and studied in the photocatalytic reduction of CO2. The morphology and chemical states of synthesized photocatalysts were studied using UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. A series of light-emitting diodes (LEDs) with maximum intensity in the range of 365–450 nm was used to determine the action spectrum of photocatalysts. It is shown for, the first time, that the pre-calcination of TiO2 at 700 °C and the use of Cu/CuOx instead of Pt allow one to design a highly efficient photocatalyst for CO2 transformation shifting the working range to the visible light (425 nm). Cu/CuOx/TiO2 (calcined at 700 °C) shows a rate of CH4 formation of 1.2 ± 0.1 µmol h−1 g−1 and an overall CO2 reduction rate of 11 ± 1 µmol h−1 g−1 (at 425 nm).
Collapse
|
39
|
Goto H, Masegi H, Sadale SB, Noda K. Intricate behaviors of gas phase CO2 photoreduction in high vacuum using Cu2O-loaded TiO2 nanotube arrays. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Sequeda IN, Meléndez AM. Understanding the Role of Copper Vacancies in Photoelectrochemical CO 2 Reduction on Cuprous Oxide. J Phys Chem Lett 2022; 13:3667-3673. [PMID: 35438506 DOI: 10.1021/acs.jpclett.2c00751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Controlling the electronic and photoexcited properties of cuprous oxide (Cu2O) through slight modifications of the synthesis method can impact a wide range of emerging technologies. Herein, we consider copper vacancies in Cu2O as a prototype of a p-type oxide semiconductor for studying the impact of crystal and electronic structure on carbon dioxide photoreduction. Oriented films of copper vacancy modulated Cu2O consisting of nano twin structures are electrodeposited by changing the potential in an aqueous alkaline copper(II)-lactate solution. The copper vacancies introduce tail states inside the band gap, improving the hole concentration and facilitating the charge separation and transfer in the Cu2O photocathode. This study gives an in-depth view of how a cation-deficient structure regulates and promotes photoelectrochemical activity toward CO2 reduction.
Collapse
Affiliation(s)
- Ingrid N Sequeda
- Center for Scientific and Technological Research in Materials and Nanosciences (CMN), Universidad Industrial de Santander, Piedecuesta, Santander, Colombia, C.P. 681011
| | - Angel M Meléndez
- Center for Scientific and Technological Research in Materials and Nanosciences (CMN), Universidad Industrial de Santander, Piedecuesta, Santander, Colombia, C.P. 681011
- School of Metallurgical Engineering and Materials Science, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia, C.P. 680002
| |
Collapse
|
41
|
Wang B, Liu X, Liu Z, Ma Z, Li Z, Wang B, Dong X, Wang Y, Song X. Microwave-assisted hydrothermal synthesis of copper selenides (Cu 2-xSe) thin films for quantum dots-sensitized solar cells. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:255001. [PMID: 35378522 DOI: 10.1088/1361-648x/ac640b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
In this work, copper selenide (Cu2-xSe) thin films were grown on FTO conductive glass substrates using a facile microwave-assisted hydrothermal method. The effects of synthesis parameters such as precursor components and deposition time on the stoichiometry and morphology of the synthesized films were systematically investigated through different techniques including XRD, SEM, and AFM. In order to evaluate the electrochemical catalytic performance of the synthesized copper selenide in electrolyte containing the sulfide/polysulfide redox couple, we assembled liquid-junction quantum dots-sensitized solar cells (QDSSC) using the synthesized copper selenide thin films as counter electrodes and CdSe quantum dots-sensitized mesoporous TiO2as photoanodes. Under the illumination of one Sun (100 mW cm-2), the QDSSC assembled with the optimal copper selenide CEs (Cu:Se = 1:1) exhibited a power conversion efficiency of 2.07%, which is much higher than that of traditional Pt counter electrode (0.76%).
Collapse
Affiliation(s)
- Baomei Wang
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Xingna Liu
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Zhen Liu
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Zinan Ma
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Zhongwei Li
- Henan Key Laboratory of Infrared Materials & Spectrum Measurements and Applications, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453007, People's Republic of China
| | - Bingrui Wang
- Henan Intelligent Emergency Support Engineering Research Center, Nanyang Normal University, Nanyang 473061, People's Republic of China
| | - Xiao Dong
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Yongyong Wang
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Xiaohui Song
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang 453007, People's Republic of China
| |
Collapse
|
42
|
A Critical Study of Cu2O: Synthesis and Its Application in CO2 Reduction by Photochemical and Electrochemical Approaches. Catalysts 2022. [DOI: 10.3390/catal12040445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper oxide (Cu2O) is a potential material as a catalyst for CO2 reduction. Cu2O nanostructures have many advantages, including interfacial charge separation and transportation, enhanced surface area, quantum efficiency, and feasibility of modification via composite development or integration of the favorable surface functional groups. We cover the current advancements in the synthesis of Cu2O nanomaterials in various morphological dimensions and their photochemical and electrochemical applications, which complies with the physical enrichment of their enhanced activity in every application they are employed in. The scope of fresh designs, namely composites or the hierarchy of copper oxide nanostructures, and various ways to improve CO2 reduction performance are also discussed in this review. Photochemical and electrochemical CO2 transformations have received tremendous attention in the last few years, thanks to the growing interest in renewable sources of energy and green facile chemistry. The current review provides an idea of current photochemical and electrochemical carbon dioxide fixing techniques by using Cu2O-based materials. Carboxylation and carboxylative cyclization, yield valuable chemicals such as carboxylic acids and heterocyclic compounds. Radical ions, which are induced by photo- and electrochemical reactions, as well as other high-energy organic molecules, are regarded as essential mid-products in photochemical and electrochemical reactions with CO2. It has also been claimed that CO2 can be activated to form radical anions.
Collapse
|
43
|
Uchiyama S, Morinaga A, Tsutsumi H, Katayama Y. Tuning the Polarity of a Fibrous Poly(vinylidene fluoride- co-hexafluoropropylene)-Based Support for Efficient Water Electrolysis. ACS OMEGA 2022; 7:10077-10086. [PMID: 35382293 PMCID: PMC8973098 DOI: 10.1021/acsomega.1c06128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Water electrolysis under alkaline conditions is of interest due to the applicability of non-precious metal-based materials for electrocatalysts. However, the successful design and synthesis of earth-abundant and efficient catalysts for the oxygen evolution reaction (OER) remain a significant challenge. This work presents cost-effective and straightforward ways to improve the OER activity under alkaline conditions by activating the catalyst-support and reactant-support interaction. Micro/nano-sized fibrous poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) was synthesized via simple and scalable electrospinning and subsequently coated with Cu by electroless deposition to obtain the electrocatalyst with a large specific surface area, enhanced mass transport, and high catalyst utilization. Scanning electron microscopy, infrared spectroscopy, and X-ray diffraction confirmed the successful synthesis of the series of Cu/PVdF-HFP fibrous catalysts with varied ferroelectric polarizability of the PVdF-HFP support in the order of stretch-anneal > anneal > stretch > without pre-treatment of the catalyst. The best OER activity was confirmed for the Cu/PVdF-HFP catalyst with stretch and annealed treatment among the catalysts tested, suggesting that both the reaction kinetics and energetics of stretch-annealed Cu/PVdF-HFP catalysts were optimal for the OER. The electron delocalization between Cu and PVdF-HFP substrates (electron transfer from Cu to the negatively charged (δ- eff) PVdF-HFP region at the Cu|PVdF-HFP interface) and the enhanced transport of reactive hydroxide species and/or the increase in the local pH by positively charged (δ+ eff) PVdF-HFP region concertedly accelerate the OER activity. The overall activity for the prototype water electrolyzer increased 10-fold with stretch-anneal treatment compared to the one without pre-treatment, highlighting the effect of tuning the catalyst-support and reactant-support interaction on improving the efficiency of the water electrolysis.
Collapse
|
44
|
Proniewicz E, Olszewski TK. SERS/TERS Characterization of New Potential Therapeutics: The Influence of Positional Isomerism, Interface Type, Oxidation State of Copper, and Incubation Time on Adsorption on the Surface of Copper(I) and (II) Oxide Nanoparticles. J Med Chem 2022; 65:4387-4400. [PMID: 35230122 PMCID: PMC8919263 DOI: 10.1021/acs.jmedchem.2c00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The aim of this study
was to investigate how the oxidation state
of copper (Cu(I) vs Cu(II)), the nature of the interface (solid/aqueous
vs solid/air), positional isomerism, and incubation time affect the
functionalization of the surface of copper oxide nanostructures by
[(butylamino)(pyridine)methyl]phenylphosphinic acid (PyPA). For this
purpose, 2-, 3-, and 4-isomers of PyPA and the nanostructures were
synthesized. The nanostructure were characterized by UV-visible spectroscopy
(UV–vis), scanning electron microscopy (SEM), Raman spectroscopy
(RS), and X-ray diffraction (XRD) analysis, which proved the formation
of spherical Cu2O nanoparticles (Cu2ONPs; 1500–600
nm) and leaf-like CuO nanostructures (CuONSs; 80–180/400–700
nm, width/length). PyPA isomers were deposited on the surface of NSs,
and adsorption was investigated by surface-enhanced Raman scattering
(SERS) and tip-enhanced Raman scattering (TERS). The changes of adsorption
on the surface of copper oxide NSs caused by the above-mentioned factors
were described and the enhancement factor on this substrate was calculated.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty of Foundry Engineering, AGH University of Science and Technology, ul. Reymonta 23, 30-059 Kraków, Poland.,Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-137, Japan
| | - Tomasz K Olszewski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
45
|
Feng H, Zhang Y, Cui F. Enhanced photocatalytic activity of Cu 2O for visible light-driven dye degradation by carbon quantum dots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8613-8622. [PMID: 34494186 DOI: 10.1007/s11356-021-16337-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Cuprous oxide (Cu2O), a p-type semiconductor material, plays an important role in photocatalysis, which has narrower band gap (~2.1 eV), abundant availability, and low toxicity. However, the applications of Cu2O are mainly restricted by its high recombination rate and low charge collection. Hence, it is of great significance to find an efficient method to improve the photocatalytic activity of Cu2O. In this work, the CQDs-loaded Cu2O nanocomposites (CQDs/Cu2O) were successfully obtained via hydrothermal method. It was worth noting that the CQDs/Cu2O nanocomposite displayed improved photocatalytic activity compared to that of pure Cu2O with a lower dosage (25 mg) under visible light, which could completely degrade the methylene blue in 8 min. The recycling experiments also showed that the photocatalytic activity still remained up to 90% after 8 cycles. In addition to the photodegradation of methylene blue, the CQDs/Cu2O nanocomposite also had an excellent antibacterial activity against Escherichia coli (100%, 30 min). These results demonstrated that introducing CQDs to Cu2O was a feasible method to improve the photocatalytic performance of Cu2O.
Collapse
Affiliation(s)
- Huihui Feng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, People's Republic of China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
| | - Fengling Cui
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China.
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Xinxiang, Henan, 453007, People's Republic of China.
| |
Collapse
|
46
|
Proniewicz E, Starowicz M, Ozaki Y. Determination of the Influence of Various Factors on the Character of Surface Functionalization of Copper(I) and Copper(II) Oxide Nanosensors with Phenylboronic Acid Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:557-568. [PMID: 34933549 PMCID: PMC8757468 DOI: 10.1021/acs.langmuir.1c02990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
In this work, we attempt to determine the influence of the oxidation state of copper [Cu(I) vs Cu(II)], the nature of the interface (solid/aqueous vs solid/air), the incubation time, and the structure of N-substituted phenylboronic acids (PBAs) functionalizing the surface of copper oxide nanostructures (NSs) on the mode of adsorption. For this purpose, 4-[(N-anilino)(phosphono)-S-methyl]phenylboronic acid (1-PBA) and its two analogues (2-PBA and bis{1-PBA}) and the copper oxide NSs were synthesized in a surfactant-/ion-free solution via a synthetic route that allows controlling the size and morphology of NSs. The NSs were characterized by scanning electron microscopy, ultraviolet-visible spectroscopy, Raman spectroscopy, and X-ray diffraction, which confirmed the formation of spherical Cu2O nanoparticles (Cu2ONPs) with a size of 1.5 μm to 600 nm crystallized in a cubic cuprite structure and leaf-like CuO nanostructures (CuONSs) with dimensions of 80-180 nm in width and 400-700 nm in length and crystallized in a monoclinic structure. PBA analogues were deposited on the surface of the copper oxide NSs, and adsorption was investigated using surface-enhanced Raman spectroscopy (SERS). The changes in the orientation of the molecule relative to the substrate surface caused by the abovementioned factors were described, and the signal enhancement on the copper oxide NSs was determined. This is the first study using vibrational spectroscopy for these compounds.
Collapse
Affiliation(s)
- Edyta Proniewicz
- Faculty
of Foundry Engineering, AGH University of
Science and Technology, ul. Reymonta 23, 30-059 Krakow, Poland
- School
of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Maria Starowicz
- Faculty
of Foundry Engineering, AGH University of
Science and Technology, ul. Reymonta 23, 30-059 Krakow, Poland
| | - Yukihiro Ozaki
- School
of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
47
|
Ramacharyulu PVRK, Lee YH, Kawashima K, Youn DH, Kim JH, Wygant BR, Mullins CB, Kim CW. A phase transition-induced photocathodic p-CuFeO 2 nanocolumnar film by reactive ballistic deposition. NEW J CHEM 2022. [DOI: 10.1039/d1nj04656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vertical nanocolumnar Cu–Fe–O electrodes synthesized by the reactive ballistic deposition technique followed by heat treatment in an Ar atmosphere undergo a switch for conductivity at elevated temperatures.
Collapse
Affiliation(s)
- P. V. R. K. Ramacharyulu
- Department of Nanotechnology Engineering, College of Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yong Ho Lee
- Department of Smart and Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kenta Kawashima
- McKetta Department of Chemical Engineering, Department of Chemistry, Texas Materials Institute, Center for Electrochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Duck Hyun Youn
- Department of Chemical Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jun-Hyuk Kim
- Korea Technology Finance Corporation (KOTEC), Busan, 48400, Republic of Korea
| | - Bryan R. Wygant
- McKetta Department of Chemical Engineering, Department of Chemistry, Texas Materials Institute, Center for Electrochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - C. Buddie Mullins
- McKetta Department of Chemical Engineering, Department of Chemistry, Texas Materials Institute, Center for Electrochemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Chang Woo Kim
- Department of Nanotechnology Engineering, College of Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Smart and Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
48
|
Geng B, Yan F, Zhang X, He Y, Zhu C, Chou SL, Zhang X, Chen Y. Conductive CuCo-Based Bimetal Organic Framework for Efficient Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106781. [PMID: 34623713 DOI: 10.1002/adma.202106781] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) with intrinsically porous structures and well-dispersed metal sites are promising candidates for electrocatalysis; however, the catalytic efficiencies of most MOFs are significantly limited by their impertinent adsorption/desorption energy of intermediates formed during electrocatalysis and very low electrical conductivity. Herein, Co is introduced into conductive Cu-catecholate (Cu-CAT) nanorod arrays directly grown on a flexible carbon cloth for hydrogen evolution reaction (HER). Electrochemical results show that the Co-incorporated Cu-CAT nanorod arrays only need 52 and 143 mV overpotentials to drive a current density of 10 mA cm-2 in alkaline and neutral media for HER, respectively, much lower than most of the reported non-noble metal-based electrocatalysts and comparable to the benchmark Pt/C electrocatalyst. Density functional theory calculations show that the introduction of Co can optimize the adsorption energy of hydrogen (ΔGH* ) of Cu sites, almost close to that of Pt (111). Furthermore, the adsorption energy of water ( Δ E H 2 O ) of Co sites in the CuCo-CAT is significantly lower than that of Cu sites upon coupling Cu with Co, effectively accelerating the Volmer step in the HER process. The findings, synergistic effect of bimetals, open a new avenue for the rational design of highly efficient MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Bo Geng
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Feng Yan
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xiao Zhang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yuqian He
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yujin Chen
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
49
|
Ji W, Wang Y, Zhang TC, Ouyang L, Yuan S. Heterostructure Cu 2O@TiO 2Nanotube Array Coated Titanium Anode for Efficient Photoelectrocatalytic Oxidation of As(III) in Aqueous Solution. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenlan Ji
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Cheng Zhang
- Civil and Environmental Engineering Department, University of Nebraska─Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
50
|
Pasquale L, Najafishirtari S, Brescia R, Scarpellini A, Demirci C, Colombo M, Manna L. Atmosphere-Induced Transient Structural Transformations of Pd-Cu and Pt-Cu Alloy Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:8635-8648. [PMID: 34853491 PMCID: PMC8619592 DOI: 10.1021/acs.chemmater.1c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
We have investigated the transformations of colloidal Pd-Cu and Pt-Cu bimetallic alloy nanocrystals (NCs) supported on γ-Al2O3 when exposed to a sequence of oxidizing and then reducing atmospheres, in both cases at high temperature (350 °C). A combination of in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray absorption spectroscopy was employed to probe the NC surface chemistry and structural/compositional variations in response to the different test conditions. Depending on the type of noble metal in the bimetallic NCs (whether Pd or Pt), different outcomes were observed. The oxidizing treatment on Pd-Cu NCs led to the formation of a PdCuO mixed oxide and PdO along with a minor fraction of CuO x species on the support. The same treatment on Pt-Cu NCs caused a complete dealloying between Pt and Cu, forming separate Pt NCs with a minor fraction of PtO NCs and CuO x species, the latter finely dispersed on the support. The reducing treatment that followed the oxidizing treatment largely restored the Pd-Cu alloy NCs, although with a residual fraction of CuO x species remaining. Similarly, Pt-Cu NCs were partially restored but with a large fraction of CuO x species still located on the support. Our results indicate that the noble metal present in the bimetallic Cu-based alloy NCs has a strong influence on the dealloying/migrations/realloying processes occurring under typical heterogeneous catalytic reactions, elucidating the structural/compositional variations of these NCs depending on the atmospheres to which they are exposed.
Collapse
Affiliation(s)
- Lea Pasquale
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Sharif Najafishirtari
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Rosaria Brescia
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30 16163, Genova, Italy
| | - Alice Scarpellini
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30 16163, Genova, Italy
| | - Cansunur Demirci
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Massimo Colombo
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Department
of Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|