1
|
Huang S, Luo J, Chen P, Chen J, Wang Z. Three-component modular synthesis of chiral 1,3-dioxoles via a Rh-catalyzed carbenic olefination cascade. Chem Sci 2024:d4sc06166g. [PMID: 39444556 PMCID: PMC11494413 DOI: 10.1039/d4sc06166g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The advance of organic synthesis and the discovery of novel chemical transformations are often propelled by the rational programming of various bond-forming mechanisms and sequences that involve delicate reactive intermediates. In this study, we present an innovative Rh(ii)-catalyzed asymmetric three-component cascade reaction involving IIII/PV-hybrid ylides, aldehydes, and carboxylic acids for the synthesis of 1,3-dioxoles with moderate to good yields and high enantioselectivity. This method utilizes IIII/PV-hybrid ylides as carbene precursors to form α-PV-Rh-carbenes, which initiate the formation of carbonyl ylides, followed by stereoselective cyclization with carboxylate anions and an intramolecular Wittig olefination cascade, ultimately resulting in the modular assembly of chiral 1,3-dioxoles. By employing this strategy, we successfully coupled various aldehydes and carboxylic acids to give chiral non-benzofused 1,3-dioxole scaffolds, highlighting the potential for late-stage functionalization of biologically relevant molecules, versatile synthetic manipulation, and the production of poly-1,3-dioxole macromolecules.
Collapse
Affiliation(s)
- Shisheng Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jilong Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Ping Chen
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen Guangdong 518118 P. R. China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen Guangdong 518118 P. R. China
| | - Zhaofeng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
2
|
Yuan R, Fang Z, Liu F, He X, Du S, Zhang N, Zeng Q, Wei Y, Wu Y, Tao L. Ferrocene-Based Antioxidant Self-Healing Hydrogel via the Biginelli Reaction for Wound Healing. ACS Macro Lett 2024; 13:475-482. [PMID: 38591821 DOI: 10.1021/acsmacrolett.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The development of antioxidant wound dressings to remove excessive free radicals around wounds is essential for wound healing. In this study, we developed an efficient strategy to prepare antioxidant self-healing hydrogels as wound dressings by combining multicomponent reactions (MCRs) and postpolymerization modification. A polymer containing ferrocene and phenylboronic acid groups was developed via the Biginelli reaction, followed by efficient modification. This polymer is antioxidant due to its ferrocene moieties and can rapidly cross-link poly(vinyl alcohol) to realize an antioxidant self-healing hydrogel through dynamic borate ester linkages. This hydrogel has low cytotoxicity and is biocompatible. In in vivo experiments, this hydrogel is superior to existing clinical dressings in promoting wound healing. This study demonstrates the value of the Biginelli reaction in exploring biomaterials, potentially offering insights into the design of other multifunctional polymers and related materials using different MCRs.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Fang Liu
- China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Sa Du
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, P. R. China
| | - Qiang Zeng
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing, 100101, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Nakamura Y, Huang YS, Huang CF, Samitsu S. Passerini polymerization of α-lipoic acid for dynamically crosslinking 1,2-dithiolane-functionalized polymers. Chem Commun (Camb) 2024; 60:5270-5273. [PMID: 38600894 DOI: 10.1039/d4cc00751d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Passerini polymerization using naturally occurring α-lipoic acid as a raw material yields polyamides with 1,2-dithiolane functional groups in a one-step reaction. The polyamide exhibits characteristics of an adaptable dynamically crosslinked network through reversible ring-opening reaction of 1,2-dithiolane, enabling self-healing, reusable strong adhesion, and regeneration through decrosslinking and re-crosslinking.
Collapse
Affiliation(s)
- Yasuyuki Nakamura
- Data-driven Polymer Design Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
| | - Yi-Shen Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan.
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan.
| | - Sadaki Samitsu
- Data-driven Polymer Design Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
| |
Collapse
|
4
|
Wang L, Zhang J, Li C, Dang W, Guo W, Xie J, Zhou F, Zhang Q. Access to 2,4-Disubstituted Pyrrole-Based Polymer with Long-Wavelength and Stimuli-Responsive Properties via Copper-Catalyzed [3+2] Polycycloaddition. Macromol Rapid Commun 2024; 45:e2300652. [PMID: 38407457 DOI: 10.1002/marc.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Pyrrole-based polymers (PBPs), a type of fascinating functional polymers, play a crucial role in materials science. However, efficient synthetic strategies of PBPs with diverse structures are mainly focused on conjugated polypyrroles and still remain challenging. Herein, an atom and step economy protocol is described to access various 2,4-disubstituted PBPs by in situ formation of pyrrole core structure via copper-catalyzed [3+2] polycycloaddition of dialkynones and diisocyanoacetates. A series of PBPs is prepared with high molecular weight (Mw up to 18 200 Da) and moderate to good yield (up to 87%), which possesses a fluorescent emission located in the green to yellow light region. Blending the PBPs with polyvinyl alcohol, the stretchable composite films exhibit a significant strengthening of the mechanical properties (tensile stress up to 59 MPa, elongation at break >400%) and an unprecedented stress-responsive luminescence enhancement that over fourfold fluorescent emission intensity is maintained upon stretching up to 100%. On the basis of computational studies, the unique photophysical and mechanical properties are attributed to the substitution of carbonyl chromophores on the pyrrole unit.
Collapse
Affiliation(s)
- Lingna Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jianbo Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wanbin Dang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junjian Xie
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Fengtao Zhou
- School of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions of Ministry of Education, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
5
|
Shen K, Liu H, Qiu C, Yuan M, Chen Z, Qi H. Scalable Fabrication of Structurally Stable Polymer Film with Excellent UV-Shielding, Fluorescent, and Antibacterial Capabilities. Macromol Rapid Commun 2024; 45:e2400015. [PMID: 38414279 DOI: 10.1002/marc.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Indexed: 02/29/2024]
Abstract
This research presents a new approach to facilely fabricating a multifunctional film using polyvinyl alcohol (PVA) as the base material. The film is modified chemically to incorporate various desirable properties such as high transparency, UV-shielding, antibacterial activity, and fluorescence. The fabrication process of this film is straightforward and efficient. The modified film showed exceptional UV-blocking capability, effectively blocking 100% of UV radiation. It also exhibits strong antibacterial properties. Additionally, the film emitted bright blue fluorescence, which can be useful in various optical and sensing applications. Despite the chemical modification, the film retained the excellent properties of PVA, including high transparency (90%) at 550 nm and good mechanical strength. Furthermore, it demonstrated remarkable stability even under harsh conditions such as exposure to long-term UV radiation, extreme temperatures (-40 or 120 °C), or immersion in different solvents. Overall, this work showcases a promising strategy to develop versatile, structurally stable, transparent, and flexible polymer films with multiple functionalities. These films have potential applications in various fields that require protection, such as packaging materials, biomedical devices, and optical components.
Collapse
Affiliation(s)
- Kaiyuan Shen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Hongchen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Changjing Qiu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Mengzhen Yuan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhishan Chen
- Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd., Qingyuan, 511500, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
6
|
Ahmad M, Naik MUD, Tariq MR, Khan I, Zhang L, Zhang B. Advances in natural polysaccharides for gold recovery from e-waste: Recent developments in preparation with structural features. Int J Biol Macromol 2024; 261:129688. [PMID: 38280695 DOI: 10.1016/j.ijbiomac.2024.129688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/01/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
The increasing demand for gold because of its high market price and its wide use in the electronic industry has attracted interest in gold recovery from electronic waste (e-waste). Gold is being dumped as solid e-waste which contains gold concentrations ten times higher than gold ores. Adsorption is a widely used approach for extracting gold from e-waste due to its simplicity, low cost, high efficiency, and reusability of adsorbent material. Natural polysaccharides received increased attention due to their natural abundance, multi-functionality, biodegradability, and nontoxicity. In this review, a brief history, and advancements in this technology were evaluated with recent developments in the preparation and mechanism advancements of natural polysaccharides for efficient gold recovery. Moreover, we have discussed some bifunctional modified polysaccharides with detailed gold adsorption mechanisms. The modified adsorbent materials developed from polysaccharides coupled with inorganic/organic functional groups would demonstrate an efficient technology for the development of new bio-based materials for efficient gold recovery from e-waste. Also, future views are recommended for highlighting the direction to achieve fast and effective gold recovery from e-waste in a friendly and sustainable manner.
Collapse
Affiliation(s)
- Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Xian Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, 710129, China
| | - Mehraj Ud-Din Naik
- Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Muhammad Rizwan Tariq
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian 710072, China; Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China.
| |
Collapse
|
7
|
Chen JJ, Guo Y, Wang R, Yang HZ, Yu XQ, Zhang J. Cationic lipids from multi-component Passerini reaction for non-viral gene delivery: A structure-activity relationship study. Bioorg Med Chem 2024; 100:117635. [PMID: 38340641 DOI: 10.1016/j.bmc.2024.117635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Although many types of cationic lipids have been developed as efficient gene vectors, the construction of lipid molecules with simple procedures remains challenging. Passerini reaction, as a classic multicomponent reaction, could directly give the α-acyloxycarboxamide products with biodegradable ester and amide bonds. Herein, two series of novel cationic lipids with heterocyclic pyrrolidine and piperidine as headgroups were synthesized through Passerini reaction (P-series) and amide condensation (A-series), and relevant structure-activity relationships on their gene delivery capability was studied. It was found that although both of the two series of lipids could form lipid nanoparticles (LNPs) which could effectively condense DNA, the LNP derived from P-series lipids showed higher transfection efficiency, serum tolerance, cellular uptake, and lower cytotoxicity. Unlike the A-series LNPs, the P-series LNPs showed quite different structure-activity relationship, in which the relative site of the secondary amine had significant effect on the transfection performance. The othro-isomers of the P-series lipids had lower cytotoxicity, but poor transfection efficiency, which was probably due to their unstable nature. Taken together, this study not only validated the feasibility of Passerini reaction for the construction of cationic lipids for gene delivery, but also afforded some clues for the rational design of effective non-viral lipidic gene vectors.
Collapse
Affiliation(s)
- Jia-Jia Chen
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Yu Guo
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Rong Wang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Hui-Zhen Yang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Xiao-Qi Yu
- College of Chemistry, Sichuan University, Chengdu 610064, PR China
| | - Ji Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
8
|
Alsolami ES, Alorfi HS, Alamry KA, Hussein MA. One-pot multicomponent polymerization towards heterocyclic polymers: a mini review. RSC Adv 2024; 14:1757-1781. [PMID: 38192311 PMCID: PMC10772543 DOI: 10.1039/d3ra07278a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
Multicomponent polymerization (MCP) is an innovative field related to polymer-based chemistry that offers numerous advantages derived from multicomponent reactions (MCRs). One of the key advantages of MCP is its ability to achieve high efficiency. Additionally, MCP offers other advantages, including operational simplicity, mild reaction conditions, and atom economy. MCP is a versatile technique that is used for synthesizing a wide range of analogs from several classes of heterocyclic compounds. The ring structures of heterocyclic polymers give them different mechanical, photophysical, and electrical properties to other types of polymers. Because of their unique properties, heterocyclic polymers have been widely utilized in various significant applications. MCRs are a type of chemical reaction that can be used to synthesize a wide variety of compounds in a single pot, which allows researchers to quickly assemble libraries of compounds. The development of MCPs from MCRs has made it easier to access a library of polymers with tunable structures. However, MCPs related to alkynes or acetylene triple bonds have more potential. In this review study, we provide an overview of the synthesis of heteroatom-functional polymers and alkyne-based development or other reactions such as Cu-catalyzed, catalyst-free, MCCP, MCTPs, green monomers, A3 coupling reactions, Passerini reactions, and sequence- and controlled-multicomponent polymerization. The up-to-date progress provides a convenient and efficient kind of approach related to heteroatoms and MCP synthesis, and perspectives in terms of future directions are also discussed in the study.
Collapse
Affiliation(s)
- Eman S Alsolami
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Hajar S Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Mahmoud A Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University Assiut 71516 Egypt
| |
Collapse
|
9
|
Neto BAD, Sorto JEP, Lapis AAM, Machado F. Functional chromophores synthesized via multicomponent Reactions: A review on their use as cell-imaging probes. Methods 2023; 220:142-157. [PMID: 37939912 DOI: 10.1016/j.ymeth.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
This review aims to provide a comprehensive overview of recent advancements and applications of fluorescence imaging probes synthesized via MCRs (multicomponent reactions). These probes, also known as functional chromophores, belong to a currently investigated class of fluorophores that are presently being successfully applied in bioimaging experiments, especially in various living cell lineages. We describe some of the MCRs that have been employed in the synthesis of these probes and explore their applications in biological imaging, with an emphasis on cellular imaging. The review also discusses the challenges and future perspectives in the field, particularly considering the potential impact of MCR-based fluorescence imaging probes on advancing this field of research in the coming years. Considering that this area of research is relatively new and nearly a decade has passed since the first publication, this review also provides a historical perspective on this class of fluorophores, highlighting the pioneering works published between 2011 and 2016.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil.
| | - Jenny E P Sorto
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil
| | | | - Fabricio Machado
- Laboratory of Medicinal and Technological Chemistry, University of Brasília, Chemistry Institute (IQ-UnB), Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal 70910-900, Brazil
| |
Collapse
|
10
|
Ma Z, Zhao S, Zhai H, Yuan R, Wei Y, Feng L, Tao L. Superhydrophobic Coatings Composed of Multifunctional Polymers Synthesized Using Successive Modification of Dihydropyrimidin-2(1 H)-thione. ACS Macro Lett 2023; 12:1491-1497. [PMID: 37874180 DOI: 10.1021/acsmacrolett.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Polymer synthesis via multicomponent reactions (MCRs) has opened avenues in polymer chemistry and led to the development of various types of functional polymers. Herein, we developed a strategy to prepare multifunctional polymers via the successive modification of dihydropyrimidin-2(1H)-thione (DHPMT), which can be generated by the tricomponent Biginelli reaction. Four hydrophobic polymers were efficiently prepared by using DHPMT derivatives. These polymers can be dip-coated onto the oxidized copper mesh to obtain superhydrophobic meshes because of the strong attractive forces between the DHPMT derivatives and Cu(II). The optimized mesh has self-cleaning properties and outstanding stability in various liquid environments; it has also been successfully applied for oil/water separation with high separation efficiency and good durability. These results demonstrate that successive modification of DHPMT is a promising method for fabricating multifunctional polymers, which may have applications in polymer chemistry and materials science.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuaiheng Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huajun Zhai
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lin Feng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Manenti M, Gusmini S, Lo Presti L, Molteni G, Silvani A. Enantiopure β-isocyano-boronic esters: synthesis and exploitation in isocyanide-based multicomponent reactions. Mol Divers 2023; 27:2161-2168. [PMID: 36258147 PMCID: PMC10520151 DOI: 10.1007/s11030-022-10549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Various boron-containing isocyanides have been efficiently synthesized from the corresponding enantiopure β-substituted β-amino boronic acid pinacol esters, without need for protecting group interconversion, through a two-step, purification-free procedure. They were employed in a variety of isocyanide-based multicomponent reactions, proving to be reliable components for all of them and allowing the efficient synthesis of unprecedented, boron-containing peptidomimetics and heteroatom-rich small molecules, including biologically relevant cyclic boronates. Jointing together the β-amido boronic acid moiety, deriving from the isocyanide component, with prominent pharmacophoric rings emerging from the multicomponent process, a successful application of the molecular hybridization concept could be realized.
Collapse
Affiliation(s)
- Marco Manenti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Simone Gusmini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Giorgio Molteni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
| | - Alessandra Silvani
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy.
| |
Collapse
|
12
|
Pan S, Zhang N, He X, Fang Z, Wu Y, Wei Y, Tao L. Poly(vinyl alcohol) Modified via the Hantzsch Reaction for Biosafe Antioxidant Self-Healing Hydrogel. ACS Macro Lett 2023; 12:1037-1044. [PMID: 37440314 DOI: 10.1021/acsmacrolett.3c00298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Efficient routes for the preparation of functional self-healing hydrogels from functional polymers are needed. In this study, we developed a strategy to effectively produce a vanillin-modified poly(vinyl alcohol) (PVA-vanillin) through the Hantzsch reaction. This polymer was cross-linked with a phenylboronic acid-containing polymer (PB) that was also prepared using the Hantzsch reaction to fabricate a hydrogel through borate ester linkages under mild conditions (25 °C, pH ∼ 7.4). This hydrogel had excellent antioxidant abilities due to the 1,4-dihydropyridine (DHP) rings and the vanillin moieties in the hydrogel structures; it was also self-healable and injectable owing to the dynamic borate ester linkages. Furthermore, the antioxidant self-healing hydrogel had low cytotoxicity and exhibited favorable safety in animal experiments, indicating its potential as a safe implantable cell or drug carrier. This study developed a method for preparing functional polymers and related self-healing hydrogels in a facile manner; it demonstrated the value of the Hantzsch reaction in exploiting antioxidant self-healing hydrogels for biomedical applications, which may provide insight into the design of other functional self-healing hydrogels through different multicomponent reactions.
Collapse
Affiliation(s)
- Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Nan Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhao Fang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Yuwei Wu
- The Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
13
|
Metal-free multicomponent polymerization of activated diyne, electrophilic styrene and isocyanide towards highly substituted and functional poly(cyclopentadiene). Sci China Chem 2023. [DOI: 10.1007/s11426-022-1467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Chen YJ, Wu LT, Xiao H, Sun XL, Wan WM. Recent Advances and Challenges in Barbier Polymerization. Chempluschem 2023; 88:e202200388. [PMID: 36581503 DOI: 10.1002/cplu.202200388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The Barbier reaction, a classical name reaction for carbon-carbon bond formation, has played important roles in organic chemistry for over 120 years. The introduction of the Barbier reaction into polymer chemistry for the development of a novel Barbier polymerization, expands the methodology, monomer, chemical structure and property libraries of polymerization, aggregation-induced emission (AIE) and non-traditional intrinsic luminescence (NTIL). This mini review focuses on Barbier polymerization, including the brief introduction of the history and importance of polymerization methods design and the achievements of Barbier polymerization from molecular design strategies, functionalities and properties. An outlook of Barbier polymerization is also proposed. This mini review on Barbier polymerization therefore may cause inspirations to scientists in different fields.
Collapse
Affiliation(s)
- Yu-Jiao Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Liang-Tao Wu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
15
|
Stepping Further from Coupling Tools: Development of Functional Polymers via the Biginelli Reaction. Molecules 2022; 27:molecules27227886. [PMID: 36431987 PMCID: PMC9698737 DOI: 10.3390/molecules27227886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. Recent years have seen the Biginelli reaction stepping further from simple coupling tools; for example, the functions of the Biginelli product 3,4-dihydropyrimidin-2(1H)-(thi)ones (DHPM(T)) have been gradually exploited to develop new functional polymers. In this mini-review, we mainly summarize the recent progress of using the Biginelli reaction to identify polymers for biomedical applications. These polymers have been documented as antioxidants, anticancer agents, and bio-imaging probes. Moreover, we also provide a brief introduction to some emerging applications of the Biginelli reaction in materials and polymer science. Finally, we present our perspectives for the further development of the Biginelli reaction in polymer chemistry.
Collapse
|
16
|
Wang X, Liu C, Xing Z, Suo H, Qu R, Li Q, Qin Y. Furfural-Based Polyamides with Tunable Fluorescence Properties via Ugi Multicomponent Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Chang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Zhihao Xing
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Hongyi Suo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Rui Qu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Qingzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| |
Collapse
|
17
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
18
|
Li M, Duan X, Jiang Y, Sun X, Xu X, Zheng Y, Song W, Zheng N. Multicomponent Polymerization of Azides, Alkynes, and Electrophiles toward 1,4,5-Trisubstituted Polytriazoles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuelun Duan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Jiang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinhao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiang Xu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yubin Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wangze Song
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Nan Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Hooshmand SE, Yazdani H, Hulme C. Six‐Component Reactions and Beyond: The Nuts and Bolts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hossein Yazdani
- Independent researcher Independent Researcher Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Christopher Hulme
- The University of Arizona Department of Chemistry and Biochemistry Tucson UNITED STATES
| |
Collapse
|
20
|
Duan X, Zheng N, Liu G, Li M, Wu Q, Sun X, Song W. Copper-Catalyzed One-Step Formation of Four C-N Bonds toward Polyfunctionalized Triazoles via Multicomponent Reaction. Org Lett 2022; 24:6006-6012. [PMID: 35930056 DOI: 10.1021/acs.orglett.2c02273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel four-component reaction of alkynes, amines, azides, and 2H-azirines has been developed for the first time by the efficient formation of four C-N bonds in one step under mild conditions, rapidly preparing polyfunctionalized triazoles with molecular diversity involving three different intermediates of copper-acetylide, copper-allenylidene, and copper-vinyl nitrene. Propargylic ester is disclosed as a "three-in-one" building block possessing triplicate cycloaddition and nucleophilic and electrophilic properties, which could enable such a four-component transformation by high yields, broad substrate scope, and functionalization.
Collapse
Affiliation(s)
- Xuelun Duan
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gongbo Liu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ming Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiming Wu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinhao Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Science, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
21
|
Sustainable functionalization and modification of materials via multicomponent reactions in water. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Akar E, Kandemir D, Luleburgaz S, Kumbaraci V, Durmaz H. Efficient Post-Polymerization modification of pendant aldehyde functional polymer via reductive etherification reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Döpping DA, Kern J, Rotter N, Llevot A, Theato P, Mutlu H. Synthesis and Characterization of Novel Isosorbide Based Polyester Derivatives Decorated with
α
‐Acyloxy Amides. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel A. Döpping
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Johann Kern
- Department of Otorhinolaryngology Head and Neck Surgery Medical Faculty Mannheim of University Heidelberg Theodor‐Kutzer‐Ufer 1–3 D‐68167 Mannheim Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology Head and Neck Surgery Medical Faculty Mannheim of University Heidelberg Theodor‐Kutzer‐Ufer 1–3 D‐68167 Mannheim Germany
| | - Audrey Llevot
- Bordeaux INP Laboratoire de Chimie des Polymères Organiques University of Bordeaux UMR 5629 ENSCBP 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| | - Patrick Theato
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) Engesserstr.18 D‐73131 Karlsruhe Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory (SML) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
24
|
Pektas B, Sagdic G, Daglar O, Luleburgaz S, Gunay US, Hizal G, Tunca U, Durmaz H. Ultrafast synthesis of dialkyne-functionalized polythioether and post-polymerization modification via click chemistry. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Synthesis of poly(pyrazolopyridine)s by Hantzsch multicomponent polymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Wang X, Han T, Gong J, Alam P, Zhang H, Lam JWY, Tang BZ. Diversity-Oriented Synthesis of Functional Polymers with Multisubstituted Small Heterocycles by Facile Stereoselective Multicomponent Polymerizations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xinnan Wang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junyi Gong
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Parvej Alam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu, Hangzhou 310027, China
| | - Jacky W. Y. Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Marco Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Road, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang, Shenzhen, Guangdong 518172, China
| |
Collapse
|
27
|
Xiao Y, Zhou Q, Fu Z, Yu L, Wang J. Synthesis of Poly(β-hydroxyketone)s with Three-Component Polymerization of Diazocarbonyl Compounds, Triethylboron, and Aldehydes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiyang Xiao
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Qi Zhou
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zihao Fu
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Lefei Yu
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Stiernet P, Debuigne A. Imine-Based Multicomponent Polymerization: Concepts, Structural Diversity and Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Kouznetsov VV, Vargas Méndez LY. Synthesis of eugenol‐based monomers for sustainable epoxy thermoplastic polymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Bucaramanga Colombia
| | - Leonor Y. Vargas Méndez
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Bucaramanga Colombia
| |
Collapse
|
30
|
Maruyama K, Kanazawa A, Aoshima S. ABC-Type Periodic Terpolymer Synthesis by a One-Pot Approach Consisting of Oxirane- and Carbonyl-Derived Cyclic Acetal Generation and Subsequent Living Cationic Alternating Copolymerization with a Vinyl Monomer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kazuya Maruyama
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
31
|
Liu H, Kanjilal P, Thayumanavan S. Self‐assembly of polymers from multicomponent reactions. POLYM INT 2022. [DOI: 10.1002/pi.6352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hongxu Liu
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - Pintu Kanjilal
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| | - S Thayumanavan
- Department of Chemistry University of Massachusetts Amherst Amherst MA USA
| |
Collapse
|
32
|
Ma Z, Zeng Y, He X, Pan S, Wei Y, Wang B, Tao L. Introducing the aza-Michael addition reaction between acrylate and dihydropyrimidin-2(1 H)-thione into polymer chemistry. Polym Chem 2022. [DOI: 10.1039/d2py01130a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aza-Michael addition reaction between dihydropyrimidin-2(1H)-thione and acrylate has been used to fabricate new polymers through different synthesis routes.
Collapse
Affiliation(s)
- Zeyu Ma
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Siyu Pan
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Bo Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
33
|
Alkan B, Daglar O, Luleburgaz S, Gungor B, Gunay US, Hizal G, Tunca U, Durmaz H. One-pot cascade polycondensation and Passerini three-component reactions for the synthesis of functional polyesters. Polym Chem 2022. [DOI: 10.1039/d1py01528a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A one-pot cascade four-component polymerization and post-polymerization modification reaction is introduced to synthetic polymer chemistry.
Collapse
Affiliation(s)
- Burcu Alkan
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Yalova Vocational School, University of Yalova, 77200 Yalova, Turkey
| | - Ozgun Daglar
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Serter Luleburgaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Begum Gungor
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Umit Tunca
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
34
|
Facile fabrication of end-functional PLLA with AIEgens via Ugi reaction. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Yazdani H, Hooshmand SE, Varma RS. Covalent organic frameworks and multicomponent reactions: an endearing give-and-take relationship. Org Chem Front 2022. [DOI: 10.1039/d2qo00697a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent organic frameworks (COFs) are porous and crystalline materials which are assembled by dynamic covalent bonds with two- or three-dimensional (2D or 3D) features. Unlike other polymers, COFs have significant...
Collapse
|
36
|
Luo X, Xie Y, Huang N, Wang L. Ugi Four-Component Reaction Based on in-situ Capture of Isocyanide and Post-Modification Tandem Reaction: One-Pot Synthesis of Nitrogen Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Chou LC, Mohamed MG, Kuo SW, Nakamura Y, Huang CF. Synthesis of multifunctional poly(carbamoyl ester)s containing dual-cleavable linkages and an AIE luminogen via Passerini-type multicomponent polymerization. Chem Commun (Camb) 2022; 58:12317-12320. [DOI: 10.1039/d2cc03829c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We conducted Passerini multicomponent polymerizations with aldehydes, carboxylic acids, and isocyanide and afforded novel functional poly(carbamoyl ester)s with dual-cleavable linkages and an aggregation-induced emission luminogen.
Collapse
Affiliation(s)
- Li-Chieh Chou
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Yasuyuki Nakamura
- Data-Driven Polymer Design Group, Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
38
|
Shi QX, Li Q, Xiao H, Sun XL, Bao H, Wan WM. Room-temperature Barbier single-atom polymerization induced emission as a versatile approach for the utilization of monofunctional carboxylic acid resources. Polym Chem 2022. [DOI: 10.1039/d1py01493e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Barbier polymerization is realized at room-temperature with single-atom polymerization and polymerization-induced emission characteristics, which exhibits capability on sensitive explosive detection and artificial light-harvesting system fabrication.
Collapse
Affiliation(s)
- Quan-Xi Shi
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| | - Qian Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| | - Hang Xiao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| | - Wen-Ming Wan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| |
Collapse
|
39
|
Cheng T, Bai T, Huang D, Qin A, Ling J, Tang BZ. Stereochemistry-Tunable Isocyanide-Based Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tianyu Cheng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation Induced Emission, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| |
Collapse
|
40
|
Ren Y, Dai W, Guo S, Dong L, Huang S, Shi J, Tong B, Hao N, Li L, Cai Z, Dong Y. Clusterization-Triggered Color-Tunable Room-Temperature Phosphorescence from 1,4-Dihydropyridine-Based Polymers. J Am Chem Soc 2021; 144:1361-1369. [PMID: 34937344 DOI: 10.1021/jacs.1c11607] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of poly(1,4-dihydropyridine)s (PDHPs) were successfully synthesized via one-pot metal-free multicomponent polymerization of diacetylenic esters, benzaldehyde, and aniline derivatives. These PDHPs without traditional luminescent units were endowed with tunable triplet energy levels by through-space conjugation from the formation of different cluster sizes. The large and compact clusters can effectively extend the phosphorescence wavelength. The triplet excitons can be stabilized by using benzophenone as a rigid matrix to achieve room-temperature phosphorescence. The nonconjugated polymeric clusters can show a phosphorescence emission up to 645 nm. A combination of static and dynamic laser light scattering was conducted for insight into the structural information on formed clusters in the host matrix melt. Moreover, both the fluorescence and phosphorescence emission can be easily tuned by the variation of the excitation wavelength, the concentration, and the molecular weight of the guest polymers. This work provides a unique insight for designing polymeric host-guest systems and a new strategy for the development of long wavelength phosphorescence materials.
Collapse
Affiliation(s)
- Yue Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Guo
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lichao Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Siqi Huang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nairong Hao
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
41
|
Liu H, Lu HH, Zhuang J, Thayumanavan S. Three-Component Dynamic Covalent Chemistry: From Janus Small Molecules to Functional Polymers. J Am Chem Soc 2021; 143:20735-20746. [PMID: 34870962 DOI: 10.1021/jacs.1c08574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new multicomponent reaction involving 2-hydroxybenzaldehyde, amine, and 2-mercaptobenzaldehyde (HAM reaction) has been developed and applied to multicomponent polymerization and controlled radical polymerization for the construction of random and block copolymers. This chemistry features mild reaction conditions, high yield, simple isolation, and water as the only byproduct. With the advantages of the distinct nucleophilicity of thiol and hydroxyl groups, the chemistry could be used for stepwise labeling and modifications on primary amines. The Janus chemical joint formed from this reaction exhibits degradability in buffers and generates the corresponding starting reagents, allowing amine release. Interestingly, the chemical joint exhibits thermally activated reversibility with water as the catalyst. This multicomponent dynamic covalent feature has been applied to the metamorphosis of random and block copolymers, generating polymers with diverse architectures. This chemistry is expected to be broadly applicable to synthetic polymer chemistry and materials science.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
42
|
Zhang X, Zhao W, Wang C, Cao L, Wang Q, Sun J. L‐glutamic acid as a versatile platform for rapid synthesis of functional polyesters via facile Passerini multicomponent polymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu Zhang
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Wei Zhao
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Chengliang Wang
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Lan Cao
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Qingfu Wang
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| | - Jingjiang Sun
- Key Laboratory of Rubber‐Plastics, Ministry of Education School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
43
|
Arslan M. Multicomponent approach for the synthesis of functional copolymers via tandem polycondensations of isatoic anhydride, bisaldehydes and bisprimary amines in trifluoroethanol. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Chen R, Ayyakkalai B, Sun J, Lee GA, Gopalan P. Formamide based monomer for highly functionalized polymers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ri Chen
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Balamurugan Ayyakkalai
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jian Sun
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Gene A. Lee
- Department of Chemical and Biological Engineering University of Wisconsin‐Madison Madison Wisconsin USA
| | - Padma Gopalan
- Department of Materials Science and Engineering University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
45
|
Lee IH, Bang KT, Yang HS, Choi TL. Recent Advances in Diversity-Oriented Polymerization Using Cu-Catalyzed Multicomponent Reactions. Macromol Rapid Commun 2021; 43:e2100642. [PMID: 34715722 DOI: 10.1002/marc.202100642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Indexed: 11/07/2022]
Abstract
Diversification of polymer structures is important for imparting various properties and functions to polymers, so as to realize novel applications of these polymers. In this regard, diversity-oriented polymerization (DOP) is a powerful synthetic strategy for producing diverse and complex polymer structures. Multicomponent polymerization (MCP) is a key method for realizing DOP owing to its combinatorial features and high efficiency. Among the MCP methods, Cu-catalyzed MCP (Cu-MCP) has recently paved the way for DOP by overcoming the synthetic challenges of the previous MCP methods. Here the emergence and progress of Cu-MCP, its current challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- In-Hwan Lee
- Department of Chemistry, Ajou University, Suwon, 16499, Korea
| | - Ki-Taek Bang
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Hee-Seong Yang
- Department of Energy System Research, Ajou University, Suwon, 16499, Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
46
|
DeStefano A, Segalman RA, Davidson EC. Where Biology and Traditional Polymers Meet: The Potential of Associating Sequence-Defined Polymers for Materials Science. JACS AU 2021; 1:1556-1571. [PMID: 34723259 PMCID: PMC8549048 DOI: 10.1021/jacsau.1c00297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/08/2023]
Abstract
Polymers with precisely defined monomeric sequences present an exquisite tool for controlling material properties by harnessing both the robustness of synthetic polymers and the ability to tailor the inter- and intramolecular interactions so crucial to many biological materials. While polymer scientists traditionally synthesized and studied the physics of long molecules best described by their statistical nature, many biological polymers derive their highly tailored functions from precisely controlled sequences. Therefore, significant effort has been applied toward developing new methods of synthesizing, characterizing, and understanding the physics of non-natural sequence-defined polymers. This perspective considers the synergistic advantages that can be achieved via tailoring both precise sequence control and attributes of traditional polymers in a single system. Here, we focus on the potential of sequence-defined polymers in highly associating systems, with a focus on the unique properties, such as enhanced proton conductivity, that can be attained by incorporating sequence. In particular, we examine these materials as key model systems for studying previously unresolvable questions in polymer physics including the role of chain shape near interfaces and how to tailor compatibilization between dissimilar polymer blocks. Finally, we discuss the critical challenges-in particular, truly scalable synthetic approaches, characterization and modeling tools, and robust control and understanding of assembly pathways-that must be overcome for sequence-defined polymers to attain their potential and achieve ubiquity.
Collapse
Affiliation(s)
- Audra
J. DeStefano
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Emily C. Davidson
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
47
|
Liu G, Xu Z, Dai X, Zeng Y, Wei Y, He X, Yan LT, Tao L. De Novo Design of Entropy-Driven Polymers Resistant to Bacterial Attachment via Multicomponent Reactions. J Am Chem Soc 2021; 143:17250-17260. [PMID: 34618447 DOI: 10.1021/jacs.1c08332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonbactericidal polymers that prevent bacterial attachment are important for public health, environmental protection, and avoiding the generation of superbugs. Here, inspired by the physical bactericidal process of carbon nanotubes and graphene derivatives, we develop nonbactericidal polymers resistant to bacterial attachment by using multicomponent reactions (MCRs) to introduce molecular "needles" (rigid aliphatic chains) and molecular "razors" (multicomponent structures) into polymer side chains. Computer simulation reveals the occurrence of spontaneous entropy-driven interactions between the bacterial bilayers and the "needles" and "razors" in polymer structures and provides guidance for the optimization of this type of polymers for enhanced resistibility to bacterial attachment. The blending of the optimized polymer with commercially available polyurethane produces a film with remarkably superior stability of the resistance to bacterial adhesion after wear compared with that of commercial mobile phone shells made by the Sharklet technology. This proof-of-concept study explores entropy-driven polymers resistant to bacterial attachment via a combination of MCRs, computer simulation, and polymer chemistry, paving the way for the de novo design of nonbactericidal polymers to prevent bacterial contamination.
Collapse
Affiliation(s)
- Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
48
|
Su M, Li T, Shi QX, Xiao H, Bao H, Wan WM. Barbier-Type Nitro/Nitroso Addition Polymerization as a Versatile Approach for Molecular Design of Polyarylamines through C–N Bond Formation. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control &Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
49
|
Zhao P, Deng M, Yang Y, Zhang J, Zhang Y. Synthesis and Self-Assembly of Thermoresponsive Biohybrid Graft Copolymers Based on a Combination of Passerini Multicomponent Reaction and Molecular Recognition. Macromol Rapid Commun 2021; 42:e2100424. [PMID: 34505724 DOI: 10.1002/marc.202100424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Indexed: 12/25/2022]
Abstract
Amphiphilic graft copolymers exhibit fascinating self-assembly behaviors. Their molecular architectures significantly affect the morphology and functionality of the self-assemblies. Considering the potential application of amphiphilic graft copolymers in the fabrication of nanocarriers, it is essential to synthesize well-defined graft copolymers with desired functional groups. Herein, the Passerini reaction and molecular recognition are introduced to the synthesis of functional thermoresponsive graft copolymers. A bifunctional monomer 2-((adamantan-1-yl)amino)-1-(4-((2-bromo-2-methylpropanoyl)oxy)phenyl)-2-oxoethyl methacrylate (ABMA) with a bromo group for atom transfer radical polymerization (ATRP) and an adamantyl group for molecular recognition is synthesized through the Passerini reaction. The graft copolymers are prepared by reversible addition-fragmentation transfer (RAFT) copolymerization of ABMA and oligo(ethylene glycol) methyl ether methacrylate (OEGMA) followed by RAFT end group removal and ATRP of di(ethylene glycol)methyl ether methacrylate (DEGMA) initiated by the ABMA units. The graft copolymer P(OEGMA-co-ABMA)-g-PDEGMA can be functionalized with β-cyclodextrin modified peptides, affording a thermoresponsive biohybrid graft copolymer. At a temperature above its lower critical solution temperature, the biohybrid graft copolymer self-assembles into peptide-modified polymersomes.
Collapse
Affiliation(s)
- Peiqiong Zhao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yongfang Yang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yue Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
50
|
Parhizkari M, Bayat M, Hosseini FS. Simple Synthesis of 2-Amino- N'-(9 H-Fluoren-9-Ylidene)-Hexahydroquinoline-3-Carbohydrazide Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1974500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marzieh Parhizkari
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Fahimeh Sadat Hosseini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|